WorldWideScience

Sample records for spot size pulsed

  1. Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Oskar; Naghilou, Aida [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria); Kitzler, Markus [TU Wien, Photonics Institute, Gusshausstraße 27-29, A-1040 Vienna (Austria); Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria)

    2017-02-28

    Highlights: • Influence of laser spot size and pulse number on the ablation of solids. • An extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. • Successfully applied to silicon and stainless steel. - Abstract: Laser spot size and pulse number are two major parameters influencing the ablation of solids. The extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. This model was successfully applied to silicon and stainless steel. It is demonstrated that heat accumulation cannot describe the experimental results.

  2. Real-time spot size camera for pulsed high-energy radiographic machines

    International Nuclear Information System (INIS)

    Watson, S.A.

    1993-01-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison

  3. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    Science.gov (United States)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  4. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  5. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  6. Assessment of Nugget Size of Spot Weld using Neutron Radiography

    Directory of Open Access Journals (Sweden)

    Triyono

    2011-08-01

    Full Text Available Resistance spot welding (RSW has been widely used for many years in the fabrication of car body structures, mainly due to the cost and time considerations. The weld quality as well as the nugget size is an issue in various manufacturing and processes due to the strong link between the weld quality and safety. It has led to the development of various destructive and non-destructive tests for spot welding such as peel testing, ultrasonic inspections, digital shearography, and infrared thermography. However, such methods cannot show spot weld nugget visually and the results are very operator’s skill dependent. The present work proposes a method to visualize the nugget size of spot welds using neutron radiography. Water, oil and various concentrations of gadolinium oxide-alcohol mixture were evaluated as a contrast media to obtain the best quality of radiography. Results show that mixture of 5 g gadolinium oxide (Gd2O3 in 25 ml alcohol produces the best contrast. It provides the possibility to visualize the shape and size of the nugget spot weld. Furthermore, it can discriminate between nugget and corona bond. The result of neutron radiography evaluation shows reasonable agreement with that of destructive test.

  7. Measurements of plasma mirror reflectivity and focal spot quality for tens of picosecond laser pulses

    Science.gov (United States)

    Forestier-Colleoni, Pierre; Williams, Jackson; Scott, Graeme; Mariscal, Dereck. A.; McGuffey, Christopher; Beg, Farhat N.; Chen, Hui; Neely, David; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the NIF (LLNL) is high-energy ( 4 kJ) with a pulse length of 30ps, and is capable of focusing to an intensity of 1018W/cm2 with a 100 μm focal spot. The ARC laser is at an intensity which can be used to produce proton beams. However, for applications such as radiography and warm dense matter creation, a higher laser intensity may be desired to generate more energetic proton beams. One possibility to increase the intensity is to decrease the focused spot size by employing a smaller f-number optic. But it is difficult to implement such an optic or to bring the final focusing parabola closer to the target within the complicated NIF chamber geometry. A proposal is to use ellipsoidal plasma mirrors (PM) for fast focusing of the ARC laser light, thereby increasing the peak intensity. There is uncertainty, however, in the survivability and reflectivity of PM at such long pulse durations. Here, we show experimental results from the Titan laser to study the reflectivity of flat PM as a function of laser pulse length. A calorimeter was used to measure the PM reflectivity. We also observed degradation of the far and near field energy distribution of the laser after the reflection by the PM for pulse-lengths beyond 10ps. Contract DE-AC52-07NA27344. Funded by the LLNL LDRD program: tracking code 17-ERD-039.

  8. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  9. Electron beam spot size stabilization for radiographic application

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Snell, C.M.

    1998-01-01

    The authors have demonstrated through computer simulations that self-biasing the target can effectively control the ion column which causes radial pinching of the electron beam, resulting in the growth of spot size on target. This method has the unique features in simplicity and non-intrusiveness in its implementation into radiographic systems. The concept is being actively explored experimentally at the Integrated Test Stand (ITS)

  10. Flying spot scanner having arbitrarily shaped field size

    International Nuclear Information System (INIS)

    Bjorkholm, P.J.

    1981-01-01

    A flying spot X-ray scanning system includes a grid controlled X-ray tube and associated collimators for producing a pencil beam of X-rays which is adapted to repeatedly scan along a line through a body to be examined and across an associated detector. The grid of the X-ray tube is energized by a train of rectangularly shaped pulses, and separate control means are provided for selectively varying the commencement of each such pulse thereby to determine the position of the scan field relative to the body being examined, and for selectively varying the duration of each pulse thereby to control the width of the scan field. The X-ray tube, collimators, and detector are adapted to be moved as a unit in a direction transverse to the scan line of the pencil beam, and a further control is provided for selectively varying the extent of this transverse movement thereby to control the longitudinal dimension of the scan field

  11. Stabilization of electron beam spot size by self bias potential

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.

    1998-01-01

    In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment

  12. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    Science.gov (United States)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  13. Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.

    Science.gov (United States)

    Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John

    2015-10-01

    A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Sweet Spot Size in Virtual Sound Reproduction: A Temporal Analysis

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2009-01-01

    The influence of head misalignments on the performance of binaural reproduction systems through loudspeakers is often evaluated in the frequency domain. The changes in magnitude give us an idea of how much of the crosstalk is leaked into the direct signal and therefore a sweet spot performance can......-correlation we estimate the interaural time delay and define a sweet spot. The analysis is based on measurements carried out on 21 different loudspeaker configurations, including two- and four-channels arrangements. Results show that closely spaced loudspeakers are more robust to lateral displacements than wider...... span angles. Additionally, the sweet spot as a function of head rotations increases systematically when the loudspeakers are placed at elevated positions....

  15. Effects of Variable Spot Size on Human Exposure to 95 GHz Millimeter Wave Energy

    Science.gov (United States)

    2017-05-11

    AFRL-RH-FS-TR-2017-0017 Effects of Variable Spot Size on Human Exposure to 95-GHz Millimeter Wave Energy James E. Parker Eric J. Nelson...Government’s approval or disapproval of its ideas or findings. TR 0017 "Effects of Variable Spot Size on Human Exposure to 95-GHz Millimeter Wave Energy ...Effects of Variable Spot Size on Human Exposure to 95-GHz Millimeter Wave Energy 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S

  16. Long-term Comparison of a Large Spot Vacuum Assisted Handpiece vs the Small Spot Size Traditional Handpiece of the 800 nm Diode Laser.

    Science.gov (United States)

    Youssef, Nour J; Rizk, Alain G; Ibrahimi, Omar A; Tannous, Zeina S

    2017-09-01

    BACKGROUND The 800 nm long-pulsed diode laser machine is safe and effective for permanent hair reduction. Traditionally, most long-pulsed diode lasers used for hair removal had a relatively small spot size. Recently, a long-pulsed diode laser with a large spot size and vacuum assisted suction handpiece was introduced. The treatment parameters of each type of handpiece differ. Short and long-term clinical efficacy, treatment associated pain, and patient satisfaction are important factors to be considered. This study aims to conduct a direct head to head comparison of both handpieces of the 800nm long-pulsed diode laser by evaluating long term hair reduction, treatment associated pain and patient satisfaction. Thirteen subjects were enrolled in this prospective, self-controlled, single-center study of axillary laser hair removal. The study involved 4 treatments using a long pulsed diode laser with a large spot size HS handpiece (single pass), HS handpiece (double pass), and a small spot size ET handpiece according to a randomized choice. The treatment sessions were done at 4-8 week intervals with follow up visits taken at 6 and 12 months after the last treatment session. Hair clearance and thickness analysis were assessed using macro hair count photographs taken at baseline visit, at each treatment session visit and at follow up visits. Other factors including pain, treatment duration, and patients' preference were secondary study endpoints. At 6 months follow up visits after receiving four laser treatments, there was statistically significant hair clearance in the three treatment arms with 66.1 % mean percentage hair reduction with the ET handpiece, 43.6% with the HSS (single pass) and 64.1 % with the HSD (double). However, at one year follow up, the results significantly varied from the 6 months follow up. The mean percentage hair reduction was 57.8% with the ET handpiece treated axillas (n=9), 16.5% with the HSS (single pass) handpiece treated axillas (n=7), and

  17. Experiments of Nanometer Spot Size Monitor at FETB Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry has been developed and installed in the final focus test beam (FFTB) line at SLAC. The beam experiments started in September 1993, the first fringe pattern from the monitor was observed in the beginning of April 1994, then the small vertical spot around 70 nm was observed in May 1994. The spot size monitor has been routinely used for tuning the beam optics in FFTB. Basic principle of this monitor has been well proved, and its high performance as a precise beam monitor in nanometer range has been demonstrated.

  18. Optimum condition of spot size and spacing in particle scanning irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hye Jeong [Dept. of Particle Accelerator and Medical Physics, Dong A University, Busan (Korea, Republic of); Yoo, Seung Hoon; Cho, Il Sung; Song, Yong eun; Shin, Jae Ik; Kim, Eun Ho; Jung, Won Gyun [Div. of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2015-10-15

    In our study, spot size, lateral spot spacing and longitudinal layer intervals were investigated to find optimum conditions for planning quality. Broad beam irradiation was used for the treatment, however, IMPT using scanning irradiation is very important for the reducing OAR dose. In the case of the scanning irradiation, there are many scanning parameters. Spot size, lateral spot spacing and longitudinal layer spacing (layer interval) are very important scanning conditions which affect the planning quality and treatment time. In most of treatment sites using proton scanning irradiation system, the spot size depends on the beam energy and spot spacing was used in 2-4 mm fixed. These conditions are applied all kinds of patients. However, optimized scanning conditions are very important for more efficient treatment of the patients which have individual specific features including PTV volume, irregularity of the target. As spot size decreases, the planning quality of the PTV and OAR became significantly better for skull base compared to the prostate case.

  19. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    Science.gov (United States)

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  20. Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1982-04-01

    Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.

  1. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  2. Ablation spot area and impulse characteristics of polymers induced by burst irradiation of 1 μm laser pulses

    Science.gov (United States)

    Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro

    2017-07-01

    The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.

  3. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    NARCIS (Netherlands)

    Neumann, V.A.; Laurita, N.J.; Pan, LiDong; Armitage, N.P.

    2016-01-01

    An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz

  4. Focal spot size predictions for beam transport through a gas-filled reactor

    International Nuclear Information System (INIS)

    Yu, S.S.; Lee, E.P.; Buchanan, H.L.

    1980-01-01

    Results from calculations of focal spot size for beam transport through a gas-filled reactor are summarized. In the converging beam mode, we find an enlargement of the focal spot due to multiple scattering and zeroth order self-field effects. This enlargement can be minimized by maintaining small reactors together with a careful choice of the gaseous medium. The self-focused mode, on the other hand, is relatively insensitive to the reactor environment, but is critically dependent upon initial beam quality. This requirement on beam quality can be significantly eased by the injection of an electron beam of modest current from the opposite wall

  5. Added value of delayed computed tomography angiography in primary intracranial hemorrhage and hematoma size for predicting spot sign.

    Science.gov (United States)

    Wu, Te Chang; Chen, Tai Yuan; Shiue, Yow Ling; Chen, Jeon Hor; Hsieh, Tsyh-Jyi; Ko, Ching Chung; Lin, Ching Po

    2018-04-01

    Background The computed tomography angiography (CTA) spot sign represents active contrast extravasation within acute primary intracerebral hemorrhage (ICH) and is an independent predictor of hematoma expansion (HE) and poor clinical outcomes. The spot sign could be detected on first-pass CTA (fpCTA) or delayed CTA (dCTA). Purpose To investigate the additional benefits of dCTA spot sign in primary ICH and hematoma size for predicting spot sign. Material and Methods This is a retrospective study of 100 patients who underwent non-contrast CT (NCCT) and CTA within 24 h of onset of primary ICH. The presence of spot sign on fpCTA or dCTA, and hematoma size on NCCT were recorded. The spot sign on fpCTA or dCTA for predicting significant HE, in-hospital mortality, and poor clinical outcomes (mRS ≥ 4) are calculated. The hematoma size for prediction of CTA spot sign was also analyzed. Results Only the spot sign on dCTA could predict high risk of significant HE and poor clinical outcomes as on fpCTA ( P sign on fpCTA or dCTA in the absence of intraventricular and subarachnoid hemorrhage. Conclusion This study clarifies that dCTA imaging could improve predictive performance of CTA in primary ICH. Furthermore, the XY value is the best predictor for CTA spot sign.

  6. A computational method to geometric measure of biological particles and application to DNA microarray spot size estimation.

    Science.gov (United States)

    Zhang, Mingjun; Mao, Kaixuan; Tao, Weimin; Tarn, Tzyh-Jong

    2006-04-01

    Geometric measures (volume, area and length) of biological particles are of fundamental interest for biological studies. Many times, the measures are at micro-/nano-scale, and based on images of the biological particles. This paper proposes a computational method to geometric measure of biological particles. The method has been applied to DNA microarray spot size estimation. Compared with existing algorithms for microarray spot size estimation, the proposed method is computational efficient and also provides confidence probability on the measure. The contributions of this paper include a generic computational method to geometric measure of biological particles and application to DNA microarray spot size estimation.

  7. Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams.

    Science.gov (United States)

    Urey, Hakan

    2004-01-20

    Simple polynomial formulas to calculate the FWHM and full width at 1/e2 intensity diffraction spot size and the depth of focus at a Strehl ratio of 0.8 and 0.5 as a function of a Gaussian beam truncation ratio and a system f-number are presented. Formulas are obtained by use of the numerical integration of a Huygens-Fresnel diffraction integral and can be used to calculate the number of resolvable spots, the modulation transfer function, and the defocus tolerance of optical systems that employ laser beams. I also derived analytical formulas for the diffraction ring intensity as a function of the Gaussian beam truncation ratio and the system f-number. Such formulas can be used to estimate the diffraction-limited contrast of display and imaging systems.

  8. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  9. Quantifying spot size reduction of a 1.8 kA electron beam for flash radiography

    Science.gov (United States)

    Burris-Mog, T. J.; Moir, D. C.

    2018-03-01

    The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittance and solenoid aberrations are also presented.

  10. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Moteabbed, Maryam; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-01-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D mean ) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D mean and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D mean and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  11. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    Science.gov (United States)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  12. Photodynamic therapy of choroidal neovascularization with enlargement of the spot size to include the feeding complex

    Directory of Open Access Journals (Sweden)

    Ilias Georgalas

    2008-12-01

    Full Text Available Ilias Georgalas, Alexandros A Rouvas, Dimitrios A Karagiannis, Athanasios I Kotsolis, Ioannis D LadasDepartment of Ophthalmology, Medical School of Athens University, Athens, GreeceAbstract: This is a case report of a 83-year-old man with choroidal neovascularization (CNV, due to age-related macular degeneration (AMD in his right eye. Digital fluorescein (FA and indocyanine green angiography (ICG were performed, which disclosed predominantly classic subfoveal CNV and a dilated and tortuous feeding complex. The visual acuity was 20/800. Anti-vascular endothelial growth factor (anti-VEGF treatment was suggested, however, the patient was not keen to receive an intraocular injection. Modified photodynamic therapy (PDT with spot size enlarged, to include not only the CNV lesion but the feeding complex as well, was performed. Ten days after one session of PDT, ICG showed absence of leakage from the CNV and complete occlusion of the feeding complex. The visual acuity gradually improved to 20/100 and remained stable during the following 23 months. No evidence of CNV leakage was seen in the FA and ICG during the follow up period. Adjustment of the PDT spot size to include the detectable by ICG feeding complex might be an additional option in order to close the subfoveal CNV and might be considered as an alternative to intravitreal injection of anti-VEGF in selected cases where anti-VEGF treatment is not available.Keywords: age-related macular degeneration, choroidal neovascularization, photodynamic treatment, feeder vessel

  13. Fine focal spot size improves image quality in computed tomography abdomen and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yin P.; Low, Keat; Kuganesan, Ahilan [Monash Health, Diagnostic Imaging Department, 246, Clayton Road, Clayton, Victoria (Australia); Lau, Kenneth K. [Monash Health, Diagnostic Imaging Department, 246, Clayton Road, Clayton, Victoria (Australia); Monash University, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Victoria (Australia); Buchan, Kevin [Philips Healthcare, Clinical Science, PO Box 312, Mont Albert, Victoria (Australia); Oh, Lawrence Chia Wei [Flinders Medical Centre, Division of Medical Imaging, Bedford Park South (Australia); Huynh, Minh [Swinburne University, Department of Statistics, Data Science and Epidemiology, School of Health Sciences, Faculty of Health, Arts and Design, Hawthorn (Australia)

    2016-12-15

    To compare the image quality between fine focal spot size (FFSS) and standard focal spot size (SFSS) in computed tomography of the abdomen and pelvis (CTAP) This retrospective review included all consecutive adult patients undergoing contrast-enhanced CTAP between June and September 2014. Two blinded radiologists assessed the margin clarity of the abdominal viscera and the detected lesions using a five-point grading scale. Cohen's kappa test was used to examine the inter-observer reliability between the two reviewers for organ margin clarity. Mann-Whitney U testing was utilised to assess the statistical difference of the organ and lesion margin clarity. 100 consecutive CTAPs were recruited. 52 CTAPs were examined with SFSS of 1.1 x 1.2 mm and 48 CTAPs were examined with FFSS of 0.6 x 0.7 mm. Results showed that there was substantial agreement for organ margin clarity (mean κ = 0.759, p < 0.001) among the reviewers. FFSS produces images with clearer organ margins (U = 76194.0, p < 0.001, r = 0.523) and clearer lesion margins (U = 239, p = 0.052, r = 0.269). FFSS CTAP improves image quality in terms of better organ and lesion margin clarity. Fine focus CT scanning is a novel technique that may be applied in routine CTAP imaging. (orig.)

  14. Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens).

    Science.gov (United States)

    Utne-Palm, A C; Eduard, K; Jensen, K H; Mayer, I; Jakobsen, P J

    2015-01-01

    Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius) was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG) of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG) mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate availability and

  15. Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens.

    Directory of Open Access Journals (Sweden)

    A C Utne-Palm

    Full Text Available Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate

  16. Simulation of the main physical processes in remote laser penetration with large laser spot size

    Directory of Open Access Journals (Sweden)

    S. A. Khairallah

    2015-04-01

    Full Text Available A 3D model is developed to simulate remote laser penetration of a 1mm Aluminum metal sheet with large laser spot size (∼ 3x3cm2, using the ALE3D multi-physics code. The model deals with the laser-induced melting of the plate and the mechanical interaction between the solid and the melted part through plate elastic-plastic response. The effect of plate oscillations and other forces on plate rupture, the droplet formation mechanism and the influence of gravity and high laser power in further breaking the single melt droplet into many more fragments are analyzed. In the limit of low laser power, the numerical results match the available experiments. The numerical approach couples mechanical and thermal diffusion to hydrodynamics melt flow and accounts for temperature dependent material properties, surface tension, gravity and vapor recoil pressure.

  17. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    Science.gov (United States)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  18. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Peikang [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hu, Shengliang, E-mail: hsliang@yeah.net [Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory Science and Technology on Electronic Test and Measurement, Taiyuan 030051 (China); School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhang, Taiping; Sun, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cao, Shirui [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)

    2010-07-15

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  19. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Bai, Peikang; Hu, Shengliang; Zhang, Taiping; Sun, Jing; Cao, Shirui

    2010-01-01

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  20. The impact of pulse duration and burn grade on size of retinal photocoagulation lesion: implications for pattern density.

    Science.gov (United States)

    Palanker, Daniel; Lavinsky, Daniel; Blumenkranz, Mark Scott; Marcellino, George

    2011-09-01

    Shorter pulses used in pattern scanning photocoagulation (10-20 milliseconds [ms]) tend to produce lighter and smaller lesions than the Early Treatment Diabetic Retinopathy Study standard 100-ms exposures. Smaller lesions result in fewer complications but may potentially reduce clinical efficacy. It is worthwhile to reevaluate existing standards for the number and size of lesions needed. The width of the coagulated zone in patients undergoing retinal photocoagulation was measured using optical coherence tomography. Lesions of "moderate," "light," and "barely visible" clinical grades were compared for 100, 200, and 400 μm spot sizes and pulse durations of 20 ms and 100 ms. To maintain the same total area as in 1,000 standard burns (100 ms, moderate) with a 400-μm beam, a larger number of 20-ms lesions are required: 1,464, 1,979, and 3,520 for moderate, light, and barely visible grades, respectively. Because of stronger relative effect of heat diffusion with a smaller beam, with 200 μm this ratio increases: 1,932, 2,783, and 5,017 lesions of 20 ms with moderate, light, and barely visible grades correspond to the area of 1,000 standard burns. A simple formula is derived for calculation of the required spot spacing in the laser pattern for panretinal photocoagulation with various laser parameters to maintain the same total coagulated area.

  1. Monte Carlo studies on the influence of focal spot size and intensity distribution on spatial resolution in magnification mammography

    Energy Technology Data Exchange (ETDEWEB)

    Koutalonis, M; Delis, H; Spyrou, G; Costaridou, L; Panayiotakis, G [University of Patras, School of Medicine, Department of Medical Physics, 265 00 Patras (Greece); Tzanakos, G [University of Athens, Department of Physics, Div. Nucl. and Particle Physics, 157 71 Athens (Greece)], E-mail: panayiot@upatras.gr

    2008-03-07

    Magnification is a special technique applied in mammography in cases where breast complaints have already been noticed, aiming to examine a specific area of the breast. Small-sized focal spots are essential in such techniques in order to reduce the resultant geometrical unsharpness. The x-ray intensity distribution of the focal spot is another crucial parameter for such a technique as it affects the mammographic resolution. In this study a Monte Carlo simulation model is utilized, in order to examine the effect of a wide range of focal spot sizes and three representative intensity distributions on spatial resolution under magnification. A thick sharp edge consisting of lead, non-transparent to x-rays was imaged under various conditions for this purpose, and the corresponding spatial resolution was calculated through the modulation transfer function (MTF). Results demonstrate that focal spots larger than 0.10 mm can mainly be used for low degrees of magnification, especially when combined with double peak Gaussian intensity distribution of the focal spot (sum of two single peak Gaussian distributions with different centers), as the resultant spatial resolution is not as high as the corresponding from smaller foci or uniform and single peak Gaussian distributions. Moreover, for the degrees of magnification usually utilized in clinical practice they do not reach the acceptable limit of 12 lp mm{sup -1}. The replacement of the x-ray tube when the focal spot starts being destroyed is very crucial as the possible alteration of single peak Gaussian distribution to double peak Gaussian results in the degradation of spatial resolution. A focal spot of 0.10 mm or smaller, combined with single peak Gaussian intensity distribution, can be considered appropriate even for higher degrees of magnification and its use can contribute in the effort to optimize the magnification views in mammography.

  2. Monte Carlo studies on the influence of focal spot size and intensity distribution on spatial resolution in magnification mammography

    Science.gov (United States)

    Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2008-03-01

    Magnification is a special technique applied in mammography in cases where breast complaints have already been noticed, aiming to examine a specific area of the breast. Small-sized focal spots are essential in such techniques in order to reduce the resultant geometrical unsharpness. The x-ray intensity distribution of the focal spot is another crucial parameter for such a technique as it affects the mammographic resolution. In this study a Monte Carlo simulation model is utilized, in order to examine the effect of a wide range of focal spot sizes and three representative intensity distributions on spatial resolution under magnification. A thick sharp edge consisting of lead, non-transparent to x-rays was imaged under various conditions for this purpose, and the corresponding spatial resolution was calculated through the modulation transfer function (MTF). Results demonstrate that focal spots larger than 0.10 mm can mainly be used for low degrees of magnification, especially when combined with double peak Gaussian intensity distribution of the focal spot (sum of two single peak Gaussian distributions with different centers), as the resultant spatial resolution is not as high as the corresponding from smaller foci or uniform and single peak Gaussian distributions. Moreover, for the degrees of magnification usually utilized in clinical practice they do not reach the acceptable limit of 12 lp mm-1. The replacement of the x-ray tube when the focal spot starts being destroyed is very crucial as the possible alteration of single peak Gaussian distribution to double peak Gaussian results in the degradation of spatial resolution. A focal spot of 0.10 mm or smaller, combined with single peak Gaussian intensity distribution, can be considered appropriate even for higher degrees of magnification and its use can contribute in the effort to optimize the magnification views in mammography.

  3. Objective evaluation of the sweet spot size in spatial sound reproduction using elevated loudspeakers

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2010-01-01

    to the loudspeakers. This paper presents a follow-up evaluation of the performance of the three inversion techniques when the above mentioned conditions are relaxed. A setup to measure the sweet spot of different loudspeaker arrangements is described. The sweet spot was measured for 21 different loudspeaker...

  4. An X-Ray Tube with Micron-sized Focal Spot using Multi-tipped CNTs

    International Nuclear Information System (INIS)

    Heo, Sung Hwan; Ihsan, Aamir; Cho, Sung Oh

    2006-01-01

    A microfocus x-ray is developing as a high resolution imaging applications including diagnostic medical image and industrial inspection. A conventional thermionic x-ray tube is widely used because of its stability of electron emission and its high electron beam current with a large thermionic electron emission area. However, thermionic electrons are hard to focus as a spot due to a wide energy spread. The thermionic x-ray tube is limited to increase x-ray brightness over 10 7 phs/mm 2 mrad 2 s. A field emitter that has a low energy spread was considered as a point x-ray source, but the field emission current was relatively low. The electron beam current was limited because electrons were emitted only a single emission point. Carbon nanotube (CNT) is a high brightness electron source and it can be deposited substrate-freely by chemical vapor deposition (CVD). It is possible to fabricate multi emitter, CNTs, on a sharp tip. In this study, a conical tungsten tip was used as a substrate of the CNTs to reduce the electron emission area and to increase the beam current by a high field enhancement factor. The emitted beam size and current were controlled by a focusing triode electron gun and an electromagnetic lens system to increase the electron beam brightness. X-ray was generated by using a transmission x-ray target that was optimally designed by MCNPX code

  5. Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, Amy A.; Tabataba-Vakili, Fachreddin; Cosentino, Richard; Beebe, Reta F.; Wong, Michael H.; Orton, Glenn S.

    2018-04-01

    Observations of Jupiter’s Great Red Spot (GRS) span more than 150 years. This allows for careful measurements of its size and drift rate. High spatial resolution spacecraft data also allow tracking of its spectral characteristics and internal dynamics and structure. The GRS continues to shrink in longitudinal length at an approximately linear rate of 0.°194 yr‑1 and in latitudinal width at 0.°048 yr‑1. Its westward drift rate (relative to System III W. longitude) has increased from ∼0.°26/day in the 1980s to ∼0.°36/day currently. Since 2014, the GRS’s short wavelength (<650 nm) reflectance has continued to decrease, while it has become brighter at 890 nm, indicating a change in clouds/haze at high altitudes. In addition, its north–south color asymmetry has decreased, and the dark core has become smaller. Internal velocities have increased on its east and west edges, and decreased on the north and south, resulting in decreased relative vorticity and circulation. The GRS’s color changes from 2014 to 2017 may be explained by changes in stretching vorticity or divergence acting to balance the decrease in relative vorticity.

  6. Estimation of the effective focal spot sizes in medical diagnostic X-ray tube assemblies

    Science.gov (United States)

    Grabska, Iwona; Fabiszewska, Ewa; Pasicz, Katarzyna; Skrzyński, Witold

    2016-06-01

    For evaluation of the effective focal spot sizes (EFSS), a method suggested by the EN 60336:2005 standard (standard) could be used. In this study we checked whether it is possible to make some deviations from the requirements of the standard without a significant effect on the result. An image receptor with one intensifying screen or two intensifying screens may be used, but the optical value of the slit image shall be in the range of 1.0÷1.4 and the X-ray tube power shall be ranged of about 30%÷50% of the nominal anode input power. A precision scaled magnifier (magnification of 5÷10x and scale of 0.1 mm) may be used for the slit radiogram width measurement instead of a time-consuming scanning of the slit radiogram. These deviations from the requirements of the EN 60336:2005 standard allows to shorten measurement time and to decrease tube current value during X-ray exposures, which reduces the risk of the Xray tube damage.

  7. Measurements and comparison of focal spot sizes of two types of x-ray tubes installed in simulators

    International Nuclear Information System (INIS)

    Wen, C.; Sorell, G.; Hille, N.

    1996-01-01

    Full text: Measurements of the effective focal spot size of two types of X-ray tubes installed in radiotherapeutic simulators (TOSHIBA and VARIAN-Ximatron) are presented. As recommended in ACPSEM Quality Assurance Protocols for Diagnostic X-ray Equipment [Heggie and Petty, APESM, Vol.8 No.1 1985], the effective focal spot size of X-ray tube is vital in determining the maximum resolution of radiographic and fluoroscopic images. Hence, the quality of clinical performance of diagnostic equipment is depended to a large extent upon the accuracy in measuring and maintaining the focal spot size of the X-ray tube and regular QA program. In determining the shape and the dimension of the effective focal spot that is located within the X-ray tube and can not be measured directly, a method developed by Spiegler and Breckinridge [Spiegler and Breckinrige, Radiation Physics, Vol. 102 Mar. 1972] was used. By irradiating a lead star pattern which is placed in a divert X-ray beam between the tube and a negative film, a magnified radiographic image of the test pattern can be obtained from a standard X-ray film. The actual shape of the effective focus is determined by tracing the locus of the image intensity inversion of the radial pattern where that is occurring when only a certain condition of spatial variation from a central ray-line is met. Then, the dimension of the focal spot can be calculated. In this measurements, three different test patterns (Typ 9/1, 5 deg Vertex Angle 0.03 mm Pb, Typ 9-2 deg-360 0.05 mmPb and Typ 9 Teilung 2 deg 0.05 mm Pb) with same diameter of 45 mm are used. Results from a series measurements which were carried out repetitively under same working condition of both simulators indicate that the effective focal spots of these two tubes are of similar rectangular shape. However, the dimensions of the focal spots are about 1.297 X 0.848 mm for the TOSHIBA tube and 0.692 X 0.532 mm for the Ximatron tube. The orientation of the focal spot for TOSHIBA tube is

  8. Determination of the size of X-ray tube focal spots: direct digitalization vs optical evaluation

    International Nuclear Information System (INIS)

    Furquim, Tania A.C.; Yanikian, Denise; Costa, Paulo R.

    1996-01-01

    A comparative study between standard techniques for evaluation of X-ray tubes focal spots and a newer one which uses digital resources for image acquisition is presented. Results from measurements by using both methods are presented

  9. Influence of primary prey on home-range size and habitat-use patterns of northern spotted owls (Strix occidentalis caurina)

    Science.gov (United States)

    Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward

    1995-01-01

    Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...

  10. Radiation dose reduction without compromise to image quality by alterations of filtration and focal spot size in cerebral angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joon; Park, Min Keun; Jung, Da Eun; Kang, Jung Han; Kim, Byung Moon [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Different angiographic protocols may influence the radiation dose and image quality. In this study, we aimed to investigate the effects of filtration and focal spot size on radiation dose and image quality for diagnostic cerebral angiography using an in-vitro model and in-vivo patient groups. Radiation dose and image quality were analyzed by varying the filtration and focal spot size on digital subtraction angiography exposure protocols (1, inherent filtration + large focus; 2, inherent + small; 3, copper + large; 4, copper + small). For the in-vitro analysis, a phantom was used for comparison of radiation dose. For the in-vivo analysis, bilateral paired injections, and patient cohort groups were compared for radiation dose and image quality. Image quality analysis was performed in terms of contrast, sharpness, noise, and overall quality. In the in-vitro analysis, the mean air kerma (AK) and dose area product (DAP)/frame were significantly lower with added copper filtration (protocols 3 and 4). In the in-vivo bilateral paired injections, AK and DAP/frame were significantly lower with filtration, without significant difference in image quality. The patient cohort groups with added filtration (protocols 3 and 4) showed significant reduction of total AK and DAP/patient without compromise to the image quality. Variations in focal spot size showed no significant differences in radiation dose and image quality. Addition of filtration for angiographic exposure studies can result in significant total radiation dose reduction without loss of image quality. Focal spot size does not influence radiation dose and image quality. The routine angiographic protocol should be judiciously investigated and implemented.

  11. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, L., E-mail: lorenzo.raimondi@elettra.trieste.it [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Svetina, C.; Mahne, N. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Cocco, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS-19 Menlo Park, CA 94025 (United States); Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); De Ninno, G. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); Zeitoun, P. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Dovillaire, G. [Imagine Optic, 18 Rue Charles de Gaulle, 91400 Orsay (France); Lambert, G. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Boutu, W.; Merdji, H.; Gonzalez, A.I. [Service des Photons, Atomes et Molécules, IRAMIS, CEA-Saclay, Btiment 522, 91191 Gif-sur-Yvette (France); Gauthier, D. [University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); and others

    2013-05-11

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

  12. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  13. Estimation of taper rates and volume of smaller-sized logs in spotted ...

    African Journals Online (AJOL)

    Spotted gum (Corymbia citriodora subsp. variegata) is a popular tree species for hardwood saw timber plantations in Southeast Queensland (SEQ), Australia. In many parts of the world, logs up to 10cm top diameter are considered to be merchantable logs and acceptable at sawmills. However, due to the higher handling ...

  14. Preliminary evaluation of sweet spot size in virtual sound reproduction using dipoles

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2009-01-01

    to the loudspeakers. In this paper we present a follow up evaluation of the performance of the three inversion techniques when these conditions are violated. A setup to measure the sweet spot of different loudspeakers arrangements is described. Preliminary measurement results are presented for loudspeakers placed...

  15. Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system

    Science.gov (United States)

    Khonina, S. N.; Ustinov, A. V.; Pelevina, E. A.

    2011-09-01

    It was shown that the presence of wave aberrations (analyzed in the form of Zernike functions) in high-numerical-aperture focusing systems results in narrowing of the transverse dimension of the focal spot below the diffraction limit. Moreover, for linear polarization, the most common for modern lasers, the results achieved along one direction are better than for the radial polarization, the obtaining of which requires complex or expensive devices. Overcoming of the diffraction limit happens due to a substantial reduction of energy in the central part of the focal region. However, the possibility of the registration of light fields that have a very low intensity provides perspectives on the received results. It was also shown that not only the size of the light spot can be reduced, but also the shadow area, formed by a light ring with very small radius.

  16. Illicit Drug Users in the Tanzanian Hinterland: Population Size Estimation Through Key Informant-Driven Hot Spot Mapping.

    Science.gov (United States)

    Ndayongeje, Joel; Msami, Amani; Laurent, Yovin Ivo; Mwankemwa, Syangu; Makumbuli, Moza; Ngonyani, Alois M; Tiberio, Jenny; Welty, Susie; Said, Christen; Morris, Meghan D; McFarland, Willi

    2018-02-12

    We mapped hot spots and estimated the numbers of people who use drugs (PWUD) and who inject drugs (PWID) in 12 regions of Tanzania. Primary (ie, current and past PWUD) and secondary (eg, police, service providers) key informants identified potential hot spots, which we visited to verify and count the number of PWUD and PWID present. Adjustments to counts and extrapolation to regional estimates were done by local experts through iterative rounds of discussion. Drug use, specifically cocaine and heroin, occurred in all regions. Tanga had the largest numbers of PWUD and PWID (5190 and 540, respectively), followed by Mwanza (3300 and 300, respectively). Findings highlight the need to strengthen awareness of drug use and develop prevention and harm reduction programs with broader reach in Tanzania. This exercise provides a foundation for understanding the extent and locations of drug use, a baseline for future size estimations, and a sampling frame for future research.

  17. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  18. Incorporation of pulse flours of different particle size in relation to pita bread quality.

    Science.gov (United States)

    Borsuk, Yulia; Arntfield, Susan; Lukow, Odean M; Swallow, Kevin; Malcolmson, Linda

    2012-08-15

    To increase pulse consumption, pita bread was fortified with pulse flours milled from green lentils, navy beans and pinto beans, which were ground to produce fine and coarse flours. Pita breads were prepared using composite flours containing pulse flours (25, 50, 75%) and wheat flour or 100% pulse flours and adjusting the amount of water required for mixing based on farinograph water absorption. Pita bread quality was evaluated according to diameter, pocket height, specific loaf volume, texture and crust colour. Blends made from pulse flours with coarse particle size showed higher rates of water absorption. All composite flours and 100% pulse flours produced pitas with pockets, confirming their suitability for this product. Crust colour of pitas was affected less by navy bean flour than by lentil flour. Pita breads made with pinto bean flour were superior in texture. Overall, navy and pinto bean flours appeared more suitable for pita bread. Flours with coarse particle sizes produced pitas with better colour and texture. Sensory parameters of pitas containing 25% coarse pinto or navy bean flour were as good as or better than those from the wheat control. Acceptable pita breads can be made using pulse flours, although the substitution level is limited to 25%. Copyright © 2012 Society of Chemical Industry.

  19. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Ding, X; Hu, Y; Shen, J; Korte, S; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Sahoo, N; Herman, M

    2016-01-01

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan

  20. Preliminary evaluation of sweet spot size in virtual sound reproduction using dipoles

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2009-01-01

    to the loudspeakers. In this paper we present a follow up evaluation of the performance of the three inversion techniques when these conditions are violated. A setup to measure the sweet spot of different loudspeakers arrangements is described. Preliminary measurement results are presented for loudspeakers placed......In a previous study, three crosstalk cancellation techniques were evaluated and compared under different conditions. Least square approximations in frequency and time domain were evaluated along with a method based on minimum-phase approximation and a frequency independent delay. In general......, the least square methods outperformed the method based on minimum-phase approximation. However, the evaluation was only done for the best-case scenario, where the transfer functions used to design the filters correspond to the listener's transfer functions and his/her location and orientation relative...

  1. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Benjamin John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mendez, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burris-Mog, Trevor John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Chengkun K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Espy, Michelle E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmidt, Derek William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sefkow, Adam [Univ. of Rochester, NY (United States); Shimada, Tsutomu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    Images of the R2DTO resolution target were obtained during laser-driven-radiography experiments performed at the TRIDENT laser facility, and analysis of these images using the Bayesian Inference Engine (BIE) determines a most probable full-width half maximum (FWHM) spot size of 78 μm. However, significant uncertainty prevails due to variation in the measured detector blur. Propagating this uncertainty in detector blur through the forward model results in an interval of probabilistic ambiguity spanning approximately 35-195 μm when the laser energy impinges on a thick (1 mm) tantalum target. In other phases of the experiment, laser energy is deposited on a thin (~100 nm) aluminum target placed 250 μm ahead of the tantalum converter. When the energetic electron beam is generated in this manner, upstream from the bremsstrahlung converter, the inferred spot size shifts to a range of much larger values, approximately 270-600 μm FWHM. This report discusses methods applied to obtain these intervals as well as concepts necessary for interpreting the result within a context of probabilistic quantitative inference.

  2. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis.

    Science.gov (United States)

    Schwartz, D C; Cantor, C R

    1984-05-01

    A new type of gel electrophoresis separates DNA molecules up to 2000 kb with resolutions exceeding the logarithmic molecular weight dependence of conventional electrophoresis. The technique uses 1.5% agarose, 10 to 20 micrograms of DNA per well, and low ionic strength buffers. It employs alternately pulsed, perpendicularly oriented electrical fields, at least one of which is inhomogeneous. The duration of the applied electrical pulses is varied from 1 sec to 90 sec to achieve optimal separations for DNAs with sizes from 30 to 2000 kb. This pulsed field gradient gel electrophoresis fractionates intact S. cerevisiae chromosomal DNA, producing a molecular karyotype that greatly facilitates the assignment of genes to yeast chromosomes. Each yeast chromosome consists of a single piece of DNA; the chromosome sizes are consistent with the genetic linkage map. We also describe a general method for preparing spheroplasts, and cell lysates, without significant chromosomal DNA breakage.

  3. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing

    NARCIS (Netherlands)

    Coumans, Frank A. W.; van der Pol, Edwin; Böing, Anita N.; Hajji, Najat; Sturk, Guus; van Leeuwen, Ton G.; Nieuwland, Rienk

    2014-01-01

    The size of extracellular vesicles (EVs) can be determined with a tunable resistive pulse sensor (TRPS). Because the sensing pore diameter varies from pore to pore, the minimum detectable diameter also varies. The aim of this study is to determine and improve the reproducibility of TRPS

  4. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    Science.gov (United States)

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Influence of moisture, particle size and pulse flour composition on phase transition behavior of rice flour.

    Science.gov (United States)

    Nithya, D J; Saravanan, M; Mohan, R Jagan; Alagusundaram, K

    2015-04-01

    Study on the phase transition characteristics is an important parameter in extrusion processing. The influence of Moisture Content (MC), particle size and level of cereal-pulse blend on the glass transition (Tg) and melt (Tm) temperatures of a ready to eat cereal-pulse formulation was determined. All samples were moisture conditioned in a 9 to 27 % with 3 % interval. Tg and Tm were measured by phase transition analyser (PTA). A substantial decrease in Tg and Tm was observed as moisture content level increased from 9 to 27 %. However Tg and Tm values could not be clearly defined below 9 % moisture content and above 27 % moisture content. The Tg and Tm values of the cereal-pulse formulation were found to be increased with increasing pulse composition (5 to 30 % with 5 % interval). Increase in particle size (150, 180, 212, 300, 425 and 500 μ) exhibited significant increase effect on Tg while less significant effect on Tm. This may be due to crystalline regions which play a role in cross linking amorphous regions of the polymeric network and thus suppress the mobility of amorphous regions. The observed differences in Tg and Tm induced by the moisture content, concentration of Bengal gram and particle size will be useful in simulation and optimization of barrel temperature set during extrusion processing.

  6. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip

    Science.gov (United States)

    van der Valk, N. C. J.; Planken, P. C. M.

    2002-08-01

    We report on a method to obtain a subwavelength resolution in terahertz time-domain imaging. In our method, a sharp copper tip is used to locally distort and concentrate the THz electric field. The distorted electric field, present mainly in the near field of the tip, is electro-optically measured in an (100) oriented GaP crystal. By raster scanning the tip along the surface of the crystal, we find the smallest THz spot size of 18 μm for frequencies from 0.1 to 2.5 THz. For our peak frequency of 0.15 THz, this corresponds to a resolution of λ/110. Our setup has the potential to reach a resolution down to a few μm.

  7. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2012-01-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose–volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves

  8. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Lomax, Antony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Bijl, Hendrik P.; Schilstra, Cornelis [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Hug, Eugen B. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  9. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode

    Science.gov (United States)

    Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens

    2016-12-01

    To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between 30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of 100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.

  10. The interactive effects of pulsed grazing disturbance and patch size vary among wetland arthropod guilds.

    Directory of Open Access Journals (Sweden)

    Anna R Armitage

    Full Text Available Pulse disturbances and habitat patch size can determine community composition independently or in concert, and may be particularly influential on small spatial scales for organisms with low mobility. In a field experiment, we investigated whether the effects of a pulsed disturbance that simulated a grazing event varied with habitat patch size. We focused on the short-term responses of multiple co-occurring emergent salt marsh arthropods with differing levels of mobility and dispersal potential. As part of a marsh restoration project, two types of emergent marsh structures were created: small circular mounds (0.5 m diameter separated by several meters of aquatic habitat, and larger, elongated terraces (>50 m long. Study plots (0.25 m(2 were established on both structures; in a subset of plots, we simulated a pulsed grazing disturbance event by clipping the aboveground tissue of emergent plants, primarily Spartina alterniflora. At the end of the two-month recovery period, Ischnodemus (Hemiptera: Blissidae density was over 50% lower in disturbed treatments within both large (terrace and small (mound patches. Predatory spider treatment responses were similar to Ischnodemus responses, suggesting a trophic relationship between those two arthropod groups. Alternatively, spiders may have been directly affected by the loss of shelter in the disturbed plots. Prokelisia (Homoptera: Delphacidae, which are generally more mobile than Ischnodemus, were not affected by disturbance treatment or by patch size, suggesting the potential for rapid recolonization following disturbance. Larval stem borers decreased by an order of magnitude in disturbed plots, but only in the large patches. In general, the disturbance effects of vegetation removal on arthropod density and community composition were stronger than patch size effects, and there were few interactions between pulsed disturbance and patch size. Rather, emergent marsh arthropod responses to disturbance and

  11. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  13. Modeling the effects of beam size and flaw morphology on ultrasonic pulse/echo sizing of delaminations in carbon composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2013-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  14. Size-controlled formation of Cu nanoclusters in pulsed magnetron sputtering system

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Block, S.; Drache, S.; Hubička, Zdeněk; Helm, Ch.A.; Jastrabík, Lubomír; Tichý, M.; Hippler, R.

    2011-01-01

    Roč. 205, 8-9 (2011), s. 2755-2762 ISSN 0257-8972 R&D Projects: GA AV ČR KAN301370701; GA AV ČR KJB100100805; GA MŠk(CZ) 1M06002 Grant - others:AVČR(CZ) M100100915 Institutional research plan: CEZ:AV0Z10100522 Keywords : Cu cluster growth * pulsed magnetron sputtering * cluster mass- and size- distribution * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.867, year: 2011

  15. Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing.

    Science.gov (United States)

    Maas, Sybren L N; De Vrij, Jeroen; Broekman, Marike L D

    2014-10-19

    Extracellular vesicles (EVs), including 'microvesicles' and 'exosomes', are highly abundant in bodily fluids. Recent years have witnessed a tremendous increase in interest in EVs. EVs have been shown to play important roles in various physiological and pathological processes, including coagulation, immune responses, and cancer. In addition, EVs have potential as therapeutic agents, for instance as drug delivery vehicles or as regenerative medicine. Because of their small size (50 to 1,000 nm) accurate quantification and size profiling of EVs is technically challenging. This protocol describes how tunable resistive pulse sensing (tRPS) technology, using the qNano system, can be used to determine the concentration and size of EVs. The method, which relies on the detection of EVs upon their transfer through a nano sized pore, is relatively fast, suffices the use of small sample volumes and does not require the purification and concentration of EVs. Next to the regular operation protocol an alternative approach is described using samples spiked with polystyrene beads of known size and concentration. This real-time calibration technique can be used to overcome technical hurdles encountered when measuring EVs directly in biological fluids.

  16. The influence of tested body size upon longitudinal ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Low ultrasonic frequencies are used in nondestructive testing of heterogeneous materials,such as concrete,rocks and timber.When frequencies are low enough,size and shape of tested bodies may influence measured longitudinal pulse velocities(geometric dispersion).A simplified mathematical model is developed from known experimental and theoretical results obtained for elastic wave propagation in rods of uniform circular cross section.Wave propagation is described by a spatial averaged dilatational field in an approach which is named quasi fluid.A formula is obtained which relates group velocity with an effective lateral size of the body,with transducers a frequency,with a non-dimensional parameter and with asymptotic P-wave velocity.In principle it can be applied to bars of any uniform cross section.The limitations of this formula are discussed in relation to path length,threshold of detection,patterns of radiation and reception and other variables.A more general formula is proposed.Practical application of this formula is briefly exemplified using some experimental data obtained by the author.The problem of longitudinal pulse propagation in reinforcing steel bars embedded in concrete is briefly considered

  17. Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses

    Science.gov (United States)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Schramm, H.-P.; Symietz, C.; Bonse, J.; Andree, S.; Heidmann, B.; Schmid, M.; Krüger, J.; Boeck, T.

    2017-10-01

    Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells.

  18. Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice.

    Science.gov (United States)

    Pena-Philippides, Juan Carlos; Yang, Yirong; Bragina, Olga; Hagberg, Sean; Nemoto, Edwin; Roitbak, Tamara

    2014-08-01

    Pulsed electromagnetic fields (PEMF) have been demonstrated to have anti-inflammatory and pro-regenerative effects in animals and humans. We used the FDA-approved Sofpulse (Ivivi Health Sciences, LLC) to study effect of PEMF on infarct size and poststroke inflammation following distal middle cerebral artery occlusion (dMCAO) in mice. Electromagnetic field was applied within 30-45 min after ischemic brain damage and utilized twice a day for 21 consecutive days. Ischemic infarct size was assessed using MRI and histological analysis. At 21 days after dMCAO, the infarct size was significantly (by 26%) smaller in PEMF-treated animals as compared to controls. Neuroinflammation in these animals was evaluated using specialized cytokine/chemokine PCR array. We demonstrate that PEMF significantly influenced expression profile of pro- and anti-inflammatory factors in the hemisphere ipsilateral to ischemic damage. Importantly, expression of gene encoding major pro-inflammatory cytokine IL-1α was significantly reduced, while expression of major anti-inflammatory IL-10 was significantly increased. PEMF application significantly downregulated genes encoding members of the major pro-apoptotic tumor necrosis factor (TNF) superfamily indicating that the treatment could have both anti-inflammatory and anti-apoptotic effects. Both reduction of infarct size and influence on neuroinflammation could have a potentially important positive impact on the poststroke recovery process, implicating PEMF as a possible adjunctive therapy for stroke patients.

  19. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E. [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A.D. [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D.N.; Legge, S.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  20. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E.; Dymnikov, A.D.; Jamieson, D.N.; Legge, S.A.

    1993-01-01

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs

  1. Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Joslin, Elizabeth J.; Eichler, Juergen; Stoller, Patrick C.; Da Silva, Luiz B.

    2000-01-01

    We report the effects of the repetition rate and the beam size on the threshold for ultrashort laser pulse induced damage in dentin. The observed results are explained as cumulative thermal effects. Our model is consistent with the experimental results and explains the dependence of the threshold on repetition rate, beam size, and exposure time. (c) 2000 American Institute of Physics

  2. Quantitation of size of myocardial infarctions by computerized transmission tomography. Comparison with hot-spot and cold-spot radionuclide scans

    International Nuclear Information System (INIS)

    Gerber, K.H.; Higgins, C.B.

    1983-01-01

    The current study evaluated the ability to quantitate the volume of myocardial infarctions when they are outlined by intravenously administered contrast media in the myocardial perfusion phase and in the phase of delayed contrast enhancement of the infarct. Quantitation by contrast media was assessed from computerized transmission tomography (CTT) scans of the ex situ heart and compared with quantitation by technetium-99m (/sup 99m/Tc)pyrophosphate (/sup 99m/Tc PYP) and thallium-201 (201Tl) scans of the same ex situ hearts. True volume was defined by histochemical morphometry. CTT during the contrast perfusion phase uniformly underestimated infarct size but had a good correlation with true volume. CTT during enhancement phase correlated closely with true volume (r . 0.98) and most precisely measured true size (y . 1.06 X 0.23). The /sup 99m/Tc PYP scan overestimated infarct volume (predictive overestimation of 6 to 199%) but had a good correlation with true volume. 201Tl underestimated infarct volume but correlated well with true volume. Thus, quantitation of infarct volume from CTT scans performed during either the perfusion or infarct enhancement phase after intravenous contrast media provides a good estimate of true infarct volume. Delineation of the infarct by contrast media in the ex situ heart is more precise during the phase of delayed enhancement of the infarct

  3. Treatment of resistant tattoos using a new generation Q-switched Nd:YAG laser: influence of beam profile and spot size on clearance success.

    Science.gov (United States)

    Karsai, Syrus; Pfirrmann, Gudrun; Hammes, Stefan; Raulin, Christian

    2008-02-01

    Multiple treatments of resistant tattoos often result in fibrosis and visible textural changes that lessen response to subsequent treatments. The aim of this study is to evaluate the influence of beam profile and spot size on clearance rates and side effects in the setting of resistant tattoos. Thirty-six professional, black tattoos (32 patients) were treated unsuccessfully with a Q-switched Nd:YAG laser (MedLite C3, HoyaConBio Inc., Fremont, CA). Because of therapy resistance all tattoos were re-treated using a new generation Nd:YAG laser (MedLite C6, HoyaConBio Inc.). Maximum energy fluence (E (max)), mean energy fluence, mean spot size, level of clearance, side effects and beam profile (irradiance distribution) of both laser systems were assessed and evaluated in a retrospective study. All tattoos were previously treated with the C3 laser at 1,064 nm using a mean E(max) of 5.8+/-0.8 J/cm(2) (range 3.8-7.5 J/cm(2)) as compared with a mean E(max) of 6.4+/-1.6 J/cm(2) (range 3.2-9.0 J/cm(2)) during the C6 treatment course. Corresponding spot sizes were larger during C6 treatments as compared with C3 (5.0+/-0.9 and 3.6+/-0.2 mm, respectively). The C6 laser had a "flat top" and homogenous profile regardless of the spot size. For the C3 laser the beam shape was "Gaussian," and the homogeneity was reduced by numerous micro-spikes and micro-nadirs. After the C6 treatment course 33.3% of the tattoos showed clearance of grade 1 (0-25%), 16.7% of grade 2 (26-50%), 16.7% of grade 3 (51-75%), 30.5% of grade 4 (76-95%), 2.8% of grade 5 (96-100%). The total rate of side effects due to C6 treatment was 8.3% in all tattoos (hyperpigmentation 5.6%, hypopigmentation 2.7%, textural changes/scars 0%). This clinical study documents for the first time the impact of a 1,064-nm Nd:YAG laser with a more homogenous beam profile and a larger spot size on the management of resistant tattoos. Only a few treatment sessions were necessary to achieve an additional clearance with a low rate of

  4. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-01-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  5. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  6. Hematoma size in deep intracerebral hemorrhage and its correlation with dot-like hemosiderin spots on gradient echo T2*-weighted MRI.

    Science.gov (United States)

    Imaizumi, Toshio; Honma, Toshimi; Horita, Yoshifumi; Kohama, Ikuhide; Miyata, Kei; Kawamura, Maiko; Niwa, Jun

    2006-07-01

    Dot-like low intensity spots (dot-like hemosiderin spots: dotHSs) on gradient echo T2*-weighted MRI have been histologically diagnosed to represent old cerebral microbleeds associated with microangiopathies. They have also been correlated to the fragility of small vessels and the tendency to bleed. Therefore, a substantial number of dotHSs might be associated with a large-sized, deep intracerebral hematoma (ICH). On the other hand, dotHSs may reflect old microbleeds that did not enlarge to symptomatic size. To investigate how dotHSs are related to the size (maximal diameter) of primary deep ICH, we analyzed the diameter and the number of dotHSs in 151 patients with deep ICH not associated with subarachnoid hemorrhage or intraventricular hemorrhage (75 males and 76 females, age ranged from 37 to 90 [65.7 +/- 11.3 years old] who were consecutively admitted to Hakodate Municipal Hospital. The hazard ratio (HR) for a maximal diameter of deep ICH or =2 cm (4.7 +/- 7.0, P= .012). Multivariate analysis revealed that a maximal diameter of deep ICH of < or =2 cm was found in patients with dotHS (HR, 3.7; 95% confidence interval [CI], 1.4-10.1; P= .009). Though small sample size limited the power of our analyses, these findings suggest that the number of dotHSs may be associated with a small diameter of deep ICH.

  7. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

    KAUST Repository

    Cenker, Emre

    2017-02-27

    During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature

  8. No Effect of Body Size on the Frequency of Calling and Courtship Song in the Two-Spotted Cricket, Gryllus bimaculatus.

    Science.gov (United States)

    Miyashita, Atsushi; Kizaki, Hayato; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-01

    The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.

  9. Estimate of effect of initial field distribution using streamlines of the average Poynting vector on the change of the effective spot size of the laser beam propagating in the turbulent atmosphere

    Science.gov (United States)

    Marakasov, D. A.; Rytchkov, D. S.

    2015-11-01

    The results of studies of the effect of the initial distribution of the laser beam to change its effective spot size in a turbulent atmosphere are presented. Investigations were carried out for axially symmetric light beams using the method of streamlines of the averaged Poynting vector. The dependence on a shape of the initial intensity distribution of effective spot size of the beam at the receiving plane is investigated as in presence as in absence of phase dislocations in the initial field distribution. It has been shown that it is possible to choose the values of the parameters of ring and vortex beams and that the magnitude of the effective spot size in the plane of the reception will be lower than for a Gaussian beam with the same value of initial effective spot size in the propagation of laser radiation in a turbulent atmosphere.

  10. Miniaturized electrospraying as a technique for the production of microarrays of reproducible micrometer-sized protein spots.

    Science.gov (United States)

    Moerman, R; Frank, J; Marijnissen, J C; Schalkhammer, T G; van Dedem, G W

    2001-05-15

    Electrospraying in a stable cone-jet mode at N m(-1) and conductivities ranging from 0.04 to 2.2 S m(-1) were sprayed at ultralow flow rates ranging from 100 to 300 pL s(-1). The charged jet that emanates from the cone tip breaks up into a spray of charged droplets that are deposited in the form of a uniform spot of 130-350 microm in diameter by spraying during 0.5-3 s at 220-400 microm above a substrate, respectively. After a spot was deposited, spraying was stopped instantaneously by increasing the distance between the capillary tip and the substrate by an additional 100 microm using a computer-controlled x-y-z table. This was immediately followed by a rapid shift of the substrate 400 microm sideways and 100 microm upward, thus causing spraying to resume instantaneously because of the increased electric field strength, which resulted in the deposition of the next spot. It is shown here that spraying of lactate dehydrogenase (LDH), glucose-6-phosphate dehydrogenase (G6P-DH), and pyruvate kinase (PK) on a liquid layer resulted in the complete preservation of their activities despite the high solution conductivity of 3.3 S m(-1) and high currents ranging from 300 to 500 nA. LDH and PK activities were fully preserved after spraying onto dry aluminum by adding 0.05 M buffer and 0.5 and 1 wt % of trehalose, respectively, to the spray solutions. Electrospraying allows for accurate dispensing of liquid volumes as small as 50 pL. Enzymatic activities of LDH and PK are fully preserved after spraying.

  11. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing

    Directory of Open Access Journals (Sweden)

    Frank A. W. Coumans

    2014-12-01

    Full Text Available Introduction: The size of extracellular vesicles (EVs can be determined with a tunable resistive pulse sensor (TRPS. Because the sensing pore diameter varies from pore to pore, the minimum detectable diameter also varies. The aim of this study is to determine and improve the reproducibility of TRPS measurements. Methods: Experiments were performed with the qNano system (Izon using beads and a standard urine vesicle sample. With a combination of voltage and stretch that yields a high blockade height, we investigate whether the minimum detected diameter is more reproducible when we configure the instrument targeting (a fixed stretch and voltage, or (b fixed blockade height. Results: Daily measurements with a fixed stretch and voltage (n=102 on a standard urine sample show a minimum detected vesicle diameter of 128±19 nm [mean±standard deviation; coefficient of variation (CV 14.8%]. The vesicle concentration was 2.4·109±3.8·109 vesicles/mL (range 1.4·108–1.8·1010. When we compared setting a fixed stretch and voltage to setting a fixed blockade height on 3 different pores, we found a minimum detected vesicle diameter of 118 nm (CV 15.5%, stretch, and 123 nm (CV 4.5%, blockade height. The detected vesicle concentration was 3.2–8.2·108 vesicles/mL with fixed stretch and 6.4–7.8·108 vesicles/mL with fixed blockade height. Summary/conclusion: Pore-to-pore variability is the cause of the variation in minimum detected size when setting a fixed stretch and voltage. The reproducibility of the minimum detectable diameter is much improved by setting a fixed blockade height.

  12. Is there a single spot size and grid for intensity modulated proton therapy? Simulation of head and neck, prostate and mesothelioma cases

    International Nuclear Information System (INIS)

    Widesott, Lamberto; Lomax, Antony J.; Schwarz, Marco

    2012-01-01

    Purpose: To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam. Methods: The authors vary the σ of the initial Gaussian size of the spot, from σ x = σ y = 3 mm to σ x = σ y = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, Δx and Δy, is optimized on the spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis. Results: For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for σ = 3, 4, 5, 6, and 8 mm, respectively. σ ≤ 5 mm is required for tumor volumes with low dose and σ≤ 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for σ = 3, 4, 5, 6, and 8 mm, respectively. Beams with σ > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as σ = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of σ, while there is loss of high dose PTV coverage for σ > 5 mm. The best grids have a spacing of 6, 7, 8, 9, and 12 mm for σ = 3, 4, 5, 6

  13. Is there a single spot size and grid for intensity modulated proton therapy? Simulation of head and neck, prostate and mesothelioma cases

    Energy Technology Data Exchange (ETDEWEB)

    Widesott, Lamberto; Lomax, Antony J.; Schwarz, Marco [AtreP, Agenzia Provinciale per la Protonterapia, 38122 Trento (Italy); Paul Scherrer Institute, 5232 Villigen (Switzerland); AtreP, Agenzia Provinciale per la Protonterapia, 38122 Trento (Italy)

    2012-03-15

    Purpose: To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam. Methods: The authors vary the {sigma} of the initial Gaussian size of the spot, from {sigma}{sub x} = {sigma}{sub y} = 3 mm to {sigma}{sub x} = {sigma}{sub y} = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, {Delta}x and {Delta}y, is optimized on the spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis. Results: For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. {sigma} {<=} 5 mm is required for tumor volumes with low dose and {sigma}{<=} 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Beams with {sigma} > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as {sigma} = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of {sigma}, while there is loss of high dose PTV coverage

  14. Mongolian spots

    Directory of Open Access Journals (Sweden)

    Divya Gupta

    2013-01-01

    Full Text Available Mongolian spots (MS are birthmarks that are present at birth and their most common location is sacrococcygeal or lumbar area. Lesions may be single or multiple and usually involve < 5% total body surface area. They are macular and round, oval or irregular in shape. The color varies from blue to greenish, gray, black or a combination of any of the above. The size varies from few to more than 20 centimetres. Pigmentation is most intense at the age of one year and gradually fades thereafter. It is rarely seen after the age of 6 years. Aberrant MS over occiput, temple, mandibular area, shoulders and limbs may be confused with other dermal melanocytoses and bruises secondary to child abuse, thus necessitating documentation at birth. Although regarded as benign, recent data suggest that MS may be associated with inborn errors of metabolism and neurocristopathies. Mongolian spots usually resolve by early childhood and hence no treatment is generally needed if they are located in the sacral area. However, sometimes it may be required for extrasacral lesions for cosmesis.

  15. A small size 1-3 atm pulsed CO2 laser with series-connected spark gaps ultraviolet preionization.

    Science.gov (United States)

    Silakhori, K; Jelvani, S; Ghanavati, F; Sajad, B; Talebi, M; Sadr, M R

    2014-01-01

    A small size pulsed CO2 laser with rounded edge flat profiled electrodes and variable gas pressure in 1-3 atm range has been constructed and characterized. The perionization system consists of a pair of 16 series-connected spark gaps located along either side of the main electrodes by which, the number of required preionization capacitors is reduced to 4. Sharpening of the main discharge has been performed using a 300 pF peaking capacitor. A maximum energy of 160 mJ/pulse was obtained for CO2:N2:He≡1:1:8 gas mixture and 33 kV discharge voltage. By increasing the laser gas pressure in 1-3 atm range, the duration of spike and tail parts of the laser pulses have been reduced from 110 ns and 4 μs to 37 ns and 1 μs, respectively.

  16. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  17. A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution

    Directory of Open Access Journals (Sweden)

    Hong-fu Guo

    2017-01-01

    Full Text Available Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.

  18. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liang, Q.; Hu, X.F.; Li, H.Q.; He, X.X.; Wang, Xiaoru; Zhang, W.

    2006-01-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (H c ) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, H c , and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced H c and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence

  19. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  20. The Jump Size Distribution of the Commodity Spot Price and Its Effect on Futures and Option Prices

    Directory of Open Access Journals (Sweden)

    L. Gómez-Valle

    2017-01-01

    Full Text Available In this paper, we analyze the role of the jump size distribution in the US natural gas prices when valuing natural gas futures traded at New York Mercantile Exchange (NYMEX and we observe that a jump-diffusion model always provides lower errors than a diffusion model. Moreover, we also show that although the Normal distribution offers lower errors for short maturities, the Exponential distribution is quite accurate for long maturities. We also price natural gas options and we see that, in general, the model with the Normal jump size distribution underprices these options with respect to the Exponential distribution. Finally, we obtain the futures risk premia in both cases and we observe that for long maturities the term structure of the risk premia is negative. Moreover, the Exponential distribution provides the highest premia in absolute value.

  1. Dealing with large sample sizes: comparison of a new one spot dot blot method to western blot.

    Science.gov (United States)

    Putra, Sulistyo Emantoko Dwi; Tsuprykov, Oleg; Von Websky, Karoline; Ritter, Teresa; Reichetzeder, Christoph; Hocher, Berthold

    2014-01-01

    Western blot is the gold standard method to determine individual protein expression levels. However, western blot is technically difficult to perform in large sample sizes because it is a time consuming and labor intensive process. Dot blot is often used instead when dealing with large sample sizes, but the main disadvantage of the existing dot blot techniques, is the absence of signal normalization to a housekeeping protein. In this study we established a one dot two development signals (ODTDS) dot blot method employing two different signal development systems. The first signal from the protein of interest was detected by horseradish peroxidase (HRP). The second signal, detecting the housekeeping protein, was obtained by using alkaline phosphatase (AP). Inter-assay results variations within ODTDS dot blot and western blot and intra-assay variations between both methods were low (1.04-5.71%) as assessed by coefficient of variation. ODTDS dot blot technique can be used instead of western blot when dealing with large sample sizes without a reduction in results accuracy.

  2. Interstellar scattering effect on pulsar mean pulse shape and apparent angular size: stochastic ray trajectory method

    International Nuclear Information System (INIS)

    Bocharov, A.A.

    1988-01-01

    The extension of stochastic ray-trajectory method - a specific approach to the analysis of radio wave scattering in the interstellar medium - is presented. This method enables one to obtain different characteristics of scattered radiation, connected with mean pulse shape. It allows one to complete very simple and efficient programs for numerical calculation of these characteristics

  3. Sizing of near-surface fatigue cracks in cladded pressure vessels by the multiple beam-satellite pulse technique

    International Nuclear Information System (INIS)

    Gruber, G.J.

    1983-01-01

    The stainless steel cladding of the inside surface of a reactor pressure vessel makes ultrasonic inspection for detection and sizing of cracks immediately under the cladding significantly harder. One solution to the inspection difficulty has been found in the multiple beam-satellite pulse technique. (While this technique both detects and sizes, only sizing is addressed in this paper.) The technique employs a multiple-beam transducer, which produces both longitudinal and shear waves. Novel waveform-processing and pattern-recognition methods are used in conjunction with this transducer design. The longitudinal-wave component is diffracted mainly by the upper extremity of the crack at or near the clad-base material interface, and its shear-wave components are diffracted mainly by the lower extremity of the crack in the base material. Proof-of-principle sizing results, based on the observance of a pair of satellite pulses from the diffracted beams, were obtained for three sets of planar flaws. They were (1) six side-milled underclad notches ranging in throughwall dimension from 3.1 to 12.9 mm, (2) fatigue cracks implanted in three cladded pressure vessel blocks and ranging in depth from 3.7 to 27.9 mm, and (3) six underclad fatigue cracks in the 2.7 to 8.5 mm depth range

  4. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  5. The manipulation of micron-sized metal particles by pulse laser

    Science.gov (United States)

    Chen, Jimin; Shun, Daqing; Zhong, Xiajun

    2006-08-01

    In Selective Laser Micro Sintering the powder particles should be assembled or arranged and sintered together. Optical tweezers make used of optical refractive force to manipulate micro objects. Currently the manipulated objects are limited to nano or several micro meters scale. In this paper we develop a novel optical tweezers which employs pulse laser force to drive bigger particles and assemble them. This pulse laser is controlled to form spiral trap which can grasp big particles. In our experiment the 50μm- 100μm-diameter metal particles were moved on a solid surfaces in a process we call 'laser spiral driving force'. Nearly any shape particle, including sphere and non-regular shape, can be moved on the surfaces.

  6. Determining the sizes of micropores in activated charcoals by the pulsed NMR method

    Science.gov (United States)

    Gogelashvili, G. Sh.; Khozina, E. V.; Vartapetyan, R. Sh.; Ladychuk, D. V.; Grunin, Yu. B.

    2011-07-01

    The pulsed NMR method was used to measure the nuclear spin-spin relaxation of protons of water adsorbed in micropores of activated charcoal (AC) samples with different porous structures. A correlation was found between the spin-spin relaxation time of water protons in AC with completely filled micropores and the volume density of water primary adsorption centers in the AC samples. An equation for approximating obtained dependences is proposed that allows us to determine the volume of micropores in AC.

  7. Small-sized monitor of beam current and profile for the proton pulse electrostatic accelerator

    International Nuclear Information System (INIS)

    Getmanov, V.N.

    1985-01-01

    Design and principle of operation of current monitor and beam profile of range-coordinate type are described. Monitor operation peculiarities are discussed using diagnostics of a beam of 330-420 keV electrostatic pulse proton accelerator with a beam current of up to 20 mA, at a current density of up to 23 mA x cm -2 and wth pulse duraton of about 20 μs. The monitor consists of a vacuum-dense foil of 3.0+-0.1 μm in thickness (or 0.81+-0.0x- mg x cm -2 ) two grid electrodes, each containing 12 wires, and as solid copper bottom. Foil serves for chopping off background particles with a path lesser 3.0 μm and stands thermal pulse load up to 0.5 J/cm -2 . Grid electrode wires are oriented perpendicularly to lach other and form a two-coordinate secondary-emisson roughness indicator. The bothhom is used for measuring an absolute value of beam current

  8. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized Systems

    Science.gov (United States)

    Ho, Phay; Knight, Christopher; Young, Linda; Tegze, Miklos; Faigel, Gyula

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract No. DE-AC02-06CH11357.

  9. The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation

    International Nuclear Information System (INIS)

    Tilaki, R. M.; Iraji, A. zad A.; Mahdavi, S. M.

    2007-01-01

    The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium

  10. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals.

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  11. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    Science.gov (United States)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  12. Age Spots

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Age Spots Treatment Options Learn more about treatment ...

  13. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    Science.gov (United States)

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes. © 2015 Institute of Food Technologists®

  14. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    International Nuclear Information System (INIS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-01-01

    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm 2 to 0.63 J/cm 2 . The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  15. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip.

    Science.gov (United States)

    Song, Yongxin; Li, Mengqi; Pan, Xinxiang; Wang, Qi; Li, Dongqing

    2015-02-01

    An electrokinetic microfluidic chip is developed to detect and sort target cells by size from human blood samples. Target-cell detection is achieved by a differential resistive pulse sensor (RPS) based on the size difference between the target cell and other cells. Once a target cell is detected, the detected RPS signal will automatically actuate an electromagnetic pump built in a microchannel to push the target cell into a collecting channel. This method was applied to automatically detect and sort A549 cells and T-lymphocytes from a peripheral fingertip blood sample. The viability of A549 cells sorted in the collecting well was verified by Hoechst33342 and propidium iodide staining. The results show that as many as 100 target cells per minute can be sorted out from the sample solution and thus is particularly suitable for sorting very rare target cells, such as circulating tumor cells. The actuation of the electromagnetic valve has no influence on RPS cell detection and the consequent cell-sorting process. The viability of the collected A549 cell is not impacted by the applied electric field when the cell passes the RPS detection area. The device described in this article is simple, automatic, and label-free and has wide applications in size-based rare target cell sorting for medical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theoretical estimation of nonlinear optical force on dielectric spherical particles of arbitrary size under femtosecond pulsed excitation

    Science.gov (United States)

    Devi, Anita; De, Arijit K.

    2017-08-01

    Experimental evidence indicates that high-repetition-rate ultrafast pulsed excitation is more efficient in optical trapping of dielectric nanoparticles as compared with continuous-wave excitation at the same average power. The physics behind the different nature of force under these two excitation conditions remained deceptive until quite recently when it was theoretically explained, in the dipole limit, as a combined effect of (1) repetitive instantaneous momentum transfer and (2) optical Kerr nonlinearity. The role of optical Kerr effect was theoretically studied for larger dielectric spherical particles, in the ray optics limit, also. However, a theoretical underpinning is yet to be established as to whether the effect of optical nonlinearity is omnipresent across different particle sizes, which we investigate here. Using localized approximation of generalized Lorenz-Mie theory, we theoretically analyze the nature of force (and potential) and provide a detailed comparative discussion between this generalized scattering formulation with dipole scattering formulation for dielectric nanoparticles.

  17. Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity.

    Science.gov (United States)

    Ben Ammar, J; Lanoisellé, J-L; Lebovka, N I; Van Hecke, E; Vorobiev, E

    2011-01-01

    Efficiency of pulsed electric field (PEF) induced permeabilization at 293 K in selected fruit and vegetable plant tissues (apple, potato, carrot, courgette, orange, and banana) at electric field strength (E) of 400 V·cm(-1), 1000 V·cm(-1) and pulse duration (t(p)) of 1000 μs was studied experimentally. The mean cell radius (〈r〉) was within 30 to 60 μm, and the ratio of electrical conductivities of the intact and damaged tissues (σ(i)/σ(d)) was within 0.07 to 0.79 for the studied tissues. Electroporation theory predicts higher damage for tissue with larger cells; however, the direct correlation between PEF damage efficiency and size of cell was not always observed. To explain this anomaly, a theoretical Monte Carlo model was developed and checked for parameters typical for potato tissue. The model showed a strong dependence of PEF damage efficiency and power consumption (W) on σ(i)/σ(d) ratio. The optimum value of electric field strength (E(opt)) was an increasing function of σ(i)/σ(d), and plant tissues with high σ(i)/σ(d) ratio (σ(i)/σ(d) ≈ 1) required application of a rather strong field (for example, E(opt) ≈ 3000 V·cm(-1) for σ(i)/σ(d) ≈ 0.8). However, the PEF treatment at a lower field (E ≈ 400 V·cm(-1)) allowed regulation of the selectivity of damage of cells in dependence of their size. A good qualitative correspondence between experimental data and simulation results were observed.

  18. SPOT Program

    Science.gov (United States)

    Smith, Jason T.; Welsh, Sam J.; Farinetti, Antonio L.; Wegner, Tim; Blakeslee, James; Deboeck, Toni F.; Dyer, Daniel; Corley, Bryan M.; Ollivierre, Jarmaine; Kramer, Leonard; hide

    2010-01-01

    A Spacecraft Position Optimal Tracking (SPOT) program was developed to process Global Positioning System (GPS) data, sent via telemetry from a spacecraft, to generate accurate navigation estimates of the vehicle position and velocity (state vector) using a Kalman filter. This program uses the GPS onboard receiver measurements to sequentially calculate the vehicle state vectors and provide this information to ground flight controllers. It is the first real-time ground-based shuttle navigation application using onboard sensors. The program is compact, portable, self-contained, and can run on a variety of UNIX or Linux computers. The program has a modular objec-toriented design that supports application-specific plugins such as data corruption remediation pre-processing and remote graphics display. The Kalman filter is extensible to additional sensor types or force models. The Kalman filter design is also strong against data dropouts because it uses physical models from state and covariance propagation in the absence of data. The design of this program separates the functionalities of SPOT into six different executable processes. This allows for the individual processes to be connected in an a la carte manner, making the feature set and executable complexity of SPOT adaptable to the needs of the user. Also, these processes need not be executed on the same workstation. This allows for communications between SPOT processes executing on the same Local Area Network (LAN). Thus, SPOT can be executed in a distributed sense with the capability for a team of flight controllers to efficiently share the same trajectory information currently being computed by the program. SPOT is used in the Mission Control Center (MCC) for Space Shuttle Program (SSP) and International Space Station Program (ISSP) operations, and can also be used as a post -flight analysis tool. It is primarily used for situational awareness, and for contingency situations.

  19. Dark Spots

    Science.gov (United States)

    2006-01-01

    Dark spots (left) and 'fans' appear to scribble dusty hieroglyphics on top of the Martian south polar cap in two high-resolution Mars Global Surveyor, Mars Orbiter Camera images taken in southern spring. Each image is about 3-kilometers wide (2-miles).

  20. Large spot transpupillary thermotherapy: A quicker laser for treatment of high risk prethreshold retinopathy of prematurity - A randomized study

    Directory of Open Access Journals (Sweden)

    Shah Parag

    2011-01-01

    Full Text Available To compare structural and functional outcome and time efficiency between standard spot sized conventional pulsed mode diode laser and continuous mode large spot transpupillary thermotherapy (LS TTT for treatment of high risk prethreshold retinopathy of prematurity (ROP. Ten eyes of five preterm babies having bilateral symmetrical high risk prethreshold ROP were included in this study. One eye of each baby was randomized to get either standard spot sized conventional pulsed mode diode laser or continuous mode LS TTT. There was no significant difference between structural or functional outcome in either group. The mean time taken for conventional diode laser was 20.07 minutes, while that for LS TTT was 12.3 minutes. LS TTT was 40% more time efficient than the conventional laser. It may be better suited for the very small fragile premature infants as it is quicker than the conventional laser.

  1. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    Science.gov (United States)

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  2. Dominant white spotting in the Chinese hamster.

    Science.gov (United States)

    Henwood, C; Henwood, J; Robinson, R

    1987-01-01

    An autosomal dominant white spotting mutant is described for the Chinese hamster. The mutant gene is designated as dominant spot (symbol Ds). The homozygote DsDs is a prenatal lethal while the heterozygote Ds + displays white spotting. The expression of white is variable, ranging from a white forehead spot to extensive white on the body. The venter is invariably white. Growth appears to be normal and the fertility of both sizes shows no impairment.

  3. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.

    Science.gov (United States)

    Peng, Ran; Li, Dongqing

    2017-05-11

    The RPS (Resistive Pulse Sensing) technique is a popular tool for the label-free detection of particles. This paper describes a simple, cost-effective PDMS nanofluidic chip for the detection and characterization of nanoparticles based on the differential RPS technique with high resolution and sensitivity. The chip is composed of two layers of PDMS slabs. Microchannel systems fabricated by the photolithography method on the top layer are used for sample loading and differential signal acquisition, and a straight nanochannel on the bottom layer fabricated by an unconventional approach bridging the gap between the microchannels works as an RPS sensing gate. A single-stage differential amplifier is used to amplify the RPS signals when particles or DNA pass through the sensing gate. It was demonstrated that this nanofluidic RPS chip can detect nanoparticles as small as 23 nm with a high SNR (Signal-to-Noise Ratio). The experimental results also show that the device is able to distinguish nanoparticles of smaller size differences such as 60 nm and 83 nm with high resolution, showing superior performance in comparison with the results obtained from DLS (Dynamic Light Scattering). This differential nano-RPS chip was also applied to detect the translocation of dsDNA molecules.

  4. Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses.

    Science.gov (United States)

    Zhang, Lu; Chen, Li-Ming; Yuan, Da-Wei; Yan, Wen-Chao; Wang, Zhao-Hua; Liu, Cheng; Shen, Zhong-Wei; Faenov, Anatoly; Pikuz, Tatiana; Skobelev, Igor; Gasilov, Vladimir; Boldarev, Alexei; Mao, Jing-Yi; Li, Yu-Tong; Dong, Quan-Li; Lu, Xin; Ma, Jing-Long; Wang, Wei-Ming; Sheng, Zheng-Ming; Zhang, Jie

    2011-12-05

    We observed that increasing the clusters size and laser pulse contrast can enhance the X-ray flux emitted by femtosecond-laser-driven-cluster plasma. By focusing a high contrast laser (10(-10)) on large argon clusters, high flux Kα-like X-rays (around 2.96 keV) is generated with a total flux of 2.5 × 10(11) photons/J in 4π and a conversion efficiency of 1.2 × 10-4. In the case of large Kr clusters, the best total flux for L-shell X-rays is 5.3 × 1011 photons/J with a conversion efficiency of 1.3 × 10-4 and, for the Kα X-ray (12.7 keV), it is 8 × 10(8) photons/J with a conversion efficiency of 1.6 × 10-6. Using this X-ray source, a single-shot high-performance X-ray imaging is demonstrated.

  5. Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature

    Science.gov (United States)

    Dixit, Saurabh; Singhal, Sonal; Vankar, V. D.; Shukla, A. K.

    2017-10-01

    In this article, size dependent correlation of acoustic states is established for radial breathing mode (RBM). Single walled carbon nanotubes (SWCNTs) are synthesized along with carbon encapsulated iron nanoparticles by pulse laser deposition at room temperature. Ferrocene is used as a catalyst for growth of SWCNTs. Various studies such as HR-TEM, X-Ray Diffraction (XRD), Raman spectroscopy and NIR-Absorption spectroscopy are utilized to confirm the presence of SWCNTs in the as-synthesized and purified samples. RBM of SWCNTs can be differentiated here from Raman modes of carbon encapsulated iron nanoparticles by comparing their line shape asymmetry as well as oscillator strength. Furthermore, a quantum confinement model is proposed for RBM. It is invoked here that RBM is manifestation of quantum confinement of acoustic phonons. Well reported analytical relation of RBM is utilized to explore the nature of phonons responsible for RBM on the basis of quantum confinement model. Diameters of SWCNTs estimated by Raman studies are found to be in reasonably good agreement with that of NIR-absorption studies.

  6. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

    Science.gov (United States)

    Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph

    2017-07-01

    Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.

  7. Pulsed and oscillating gradient MRI for assessment of cell size and Extracellular space (POMACE) in mouse gliomas

    Science.gov (United States)

    Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene

    2016-01-01

    Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059

  8. Compliance of the normal-sized aorta in adolescents with Marfan syndrome: comparison of MR measurements of aortic distensibility and pulse wave velocity

    International Nuclear Information System (INIS)

    Eichhorn, J.G.; Ruediger, H.J.; Gorenflo, M.; Khalil, M.; Ulmer, H.; Krissak, R.; Kauczor, H.U.; Ley, S.; Universitaetsklinik Heidelberg; Arnold, R.; Universitaetskinderklinik Freiburg; Boese, J.; Siemens AG, Medical Solutions, Forchheim; Krug, R.; Fink, C.

    2007-01-01

    Purpose: To compare the aortic compliance of the normal-sized aorta of adolescents with Marfan syndrome and healthy controls using MR measurements of the aortic distensibility and pulse wave velocity. Materials and Methods: Fourteen patients (median age: 15 [9-21] years) and 11 healthy subjects (23 [12-32] years) were examined at 1.5 T. The MR protocol included 2D steady-state free precession (SSFP)-CINE MRI of the aortic distensibility and PC-MRI of the pulse wave velocity. All measurements were positioned perpendicular to the descending aorta at the level of the diaphragm for assessing the changes in the aortic cross-sectional areas and additionally above and below this plane for assessing the pulse wave velocity. In addition contrast-enhanced 3D-MR angiography was performed in adolescents with Marfan syndrome to exclude morphologic changes and to prove normal-sized aorta. Results: Compared with control subjects, adolescents with Marfan syndrome had significantly decreased distensibility and significantly increased pulse wave velocity (χ 2 -test, p = 0.0002) using an age-related non-linear regression analysis. The related aortic compliance was significantly decreased (χ 2 -test, p = 0.0002). There was a good correlation between the two methods (r = 0.86). A low intraobserver variability was found for both methods (≤ 2 %). (orig.)

  9. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast‑growing Eucalyptus forest plantation using airborne LiDAR data

    Science.gov (United States)

    Carlos Alberto Silva; Andrew Thomas Hudak; Carine Klauberg; Lee Alexandre Vierling; Carlos Gonzalez‑Benecke; Samuel de Padua Chaves Carvalho; Luiz Carlos Estraviz Rodriguez; Adrian Cardil

    2017-01-01

    LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m− 2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations...

  10. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    –metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... are presented together with results of numerical simulations made in the finite element computer program SORPAS® 3D, which is based on an electro-thermo-mechanical formulation. The numerical models are presented together with the specific modeling conditions leading to numerical simulations in good agreement...

  11. Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lorentini, S. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Padova Univ. (Italy). Medical Physics School; Amichetti, M.; Fellin, F.; Schwarz, M. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Spiazzi, L. [Brescia Hospital (Italy). Medical Physics Dept.; Tonoli, S.; Magrini, S.M. [Brescia Hospital (Italy). Radiation Oncology Dept.

    2012-03-15

    Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT. We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions. IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (D{sub mean} reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V{sub 20} reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints. Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 x 3 mm (up to 9 x 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

  12. Development and application of resistive pulse spectroscopy: studies on the size, form and deformability of red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.P.

    1979-01-01

    The following studies were conducted using the resistive pulse spectroscopy (RPS) technique: cumulative spectra and individual pulse forms for rigid latex polymer spheres; acquisition and analysis of RPS spectral data by means of special computer program; interaction of red blood cells with glutaraldehyde; membrane properties of erythrocytes undergoing abrupt osmotic hemolysis; reversible effects of the binding of chlorpromazine HCl at the red cell membrane surface; effects of high cholesterol diet on erythrocytes of guinea pigs; and multi-population analysis for a mixture of fetal and maternal red cells. (HLW)

  13. Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the black-spotted and red-spotted tokay geckoes (Gekko gecko)

    OpenAIRE

    Zhang, Yueyun; Chen, Chongtao; Li, Li; Zhao, Chengjian; Chen, Weicai; Huang, Yong

    2014-01-01

    The black-spotted tokay and the red-spotted tokay are morphologically distinct and have largely allopatric distributions. The black-spotted tokay is characterized by a small body size and dark skin with sundry spots, while the red-spotted tokay has a relatively large body size and red spots. Based on morphological, karyotypic, genetic, and distribution differences, recent studies suggested their species status; however, their classifications remain controversial, and additional data such as e...

  14. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables

    Science.gov (United States)

    Jacob Strunk; Hailemariam Temesgen; Hans-Erik Andersen; James P. Flewelling; Lisa Madsen

    2012-01-01

    Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation precision for some forest inventory variables. This study documents the bias and precision of a model-assisted (regression estimation) approach to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density and the number of...

  15. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  16. High precision laser direct microstructuring system based on bursts of picosecond pulses

    Science.gov (United States)

    Mur, Jaka; Petelin, Jaka; Osterman, Natan; Petkovšek, Rok

    2017-08-01

    We have developed an efficient, high precision system for direct laser microstructuring using fiber laser generated bursts of picosecond pulses. An advanced opto-mechanical system for beam deflection and sample movement, precise pulse energy control, and a custom built fiber laser with the pulse duration of 65 ps have been combined in a compact setup. The setup allows structuring of single-micrometer sized objects with a nanometer resolution of the laser beam positioning due to a combination of acousto-optical laser beam deflection and tight focusing. The precise synchronization of the fiber laser with the pulse burst repetition frequency of up to 100 kHz allowed a wide range of working parameters, including a tuneable number of pulses in each burst with the intra-burst repetition frequency of 40 MHz and delivering exactly one burst of pulses to every chosen position. We have demonstrated that tightly focused bursts of pulses significantly increase the ablation efficiency during the microstructuring of a copper layer and shorten the typical processing time compared to the single pulse per spot regime. We have used a simple short-pulse ablation model to describe our single pulse ablation data and developed an upgrade to the model to describe the ablation with bursts. Bursts of pulses also contribute to a high quality definition of structure edges and sides. The increased ablation efficiency at lower pulse energies compared to the single pulse per spot regime opens a window to utilize compact fiber lasers designed to operate at lower pulse energies, reducing the overall system complexity and size.

  17. A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5 in Morocco

    Directory of Open Access Journals (Sweden)

    Michel Le Page

    2014-11-01

    Full Text Available This paper describes the setting and results of a real-time experiment of irrigation scheduling by a time series of optical satellite images under real conditions, which was carried out on durum wheat in the Haouz plain (Marrakech, Morocco, during the 2012/13 agricultural season. For the purpose of this experiment, the irrigation of a reference plot was driven by the farmer according to, mainly empirical, irrigation scheduling while test plot irrigations were being managed following the FAO-56 method, driven by remote sensing. Images were issued from the SPOT4 (Take5 data set, which aimed at delivering image time series at a decametric resolution with less than five-day satellite overpass similar to the time series ESA Sentinel-2 satellites will produce in the coming years. With a Root Mean Square Error (RMSE of 0.91mm per day, the comparison between daily actual evapotranspiration measured by eddy-covariance and the simulated one is satisfactory, but even better at a five-day integration (0.59mm per day. Finally, despite a chaotic beginning of the experiment—the experimental plot had not been irrigated to get rid of a slaking crust, which prevented good emergence—our plot caught up and yielded almost the same grain crop with 14% less irrigation water. This experiment opens up interesting opportunities for operational scheduling of flooding irrigation sectors that dominate in the semi-arid Mediterranean area.

  18. Green synthesis of gold nanoparticles of different sizes and shapes using agar-agar water solution and femtosecond pulse laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida de Matos, Ricardo [Universidade Federal de Sao Paulo (UNIFESP) - Campus Diadema, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas (ICAQF), Departamento de Ciencias Exatas e da Terra (DCET), Diadema, SP (Brazil); Universidade Federal de Sao Paulo - UNIFESP, Sao Paulo (Brazil); Silva Cordeiro, Thiago da; Elgul Samad, Ricardo; Dias Vieira, Nilson [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Sao Paulo (Brazil); Coronato Courrol, Lilia [Universidade Federal de Sao Paulo - UNIFESP, Sao Paulo (Brazil); Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Sao Paulo (Brazil)

    2012-11-15

    We report a method to create gold nanoparticles of different sizes and shapes using agar-agar water solution and irradiation with light from a xenon lamp, followed by ultrashort laser pulses. No additives, such as solvents, surfactants or reducing agents, were used in the procedure. Laser irradiation (laser ablation) was important to the reduction of the nanoparticles diameter and formation of another shapes. Distilled water was used as solvent and agar-agar (hydrophilic colloid extracted from certain seaweeds) was important for the stabilization of gold nanoparticles, avoiding their agglomeration. The formation of gold nanoparticles was confirmed with ultraviolet-visible absorption and TEM microscopy. The gold nanoparticles acquired spherical, prism, and rod shapes depending on the laser parameters. Variation of laser irradiation parameters as pulse energy, irradiation time and repetition rate was assessed. The relevant mechanisms contributing for the gold nanoparticles production are discussed. (orig.)

  19. Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids

    Science.gov (United States)

    Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan

    2018-03-01

    For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied

  20. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized System Dynamics

    Science.gov (United States)

    Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula

    2016-05-01

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  1. Use Of Pulsed IR Thermography For Determination Of Size And Depth Of Subsurface Defect Taking Into Account The Shape Of Its Cross-Section Area

    Directory of Open Access Journals (Sweden)

    Wysocka-Fotek O.

    2015-06-01

    Full Text Available The paper is devoted to reconstruction of size and depth (distance from the tested surface of artificial defects with square and rectangular cross-section areas using the pulsed IR thermography. Defects in form of flat-bottom holes were made in austenitic steel plate. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature. In order to asses the depth of defects with considered geometries on the basis of calibration relations (i.e. dependence of time of contrast maximum vs. defect depth for given defect diameter obtained for circular defects, the ‘equivalent diameter’ describing not only the defect cross-section area but also its shape was assigned. It has been shown that presented approach gives satisfactory results.

  2. SpotADAPT

    DEFF Research Database (Denmark)

    Kaulakiene, Dalia; Thomsen, Christian; Pedersen, Torben Bach

    2015-01-01

    by Amazon Web Services (AWS). The users aiming for the spot market are presented with many instance types placed in multiple datacenters in the world, and thus it is difficult to choose the optimal deployment. In this paper, we propose the framework SpotADAPT (Spot-Aware (re-)Deployment of Analytical...... execution within boundaries). Moreover, during the execution of the workload, SpotADAPT suggests a redeployment if the current spot instance gets terminated by Amazon or a better deployment becomes possible due to fluctuations of the spot prices. The approach is evaluated using the actual execution times...

  3. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  4. Can lesion size during radiofrequency ablation be predicted by the temperature rise to a low power test pulse in vitro?

    DEFF Research Database (Denmark)

    Petersen, Helen Høgh; Svendsen, Jesper Hastrup

    2003-01-01

    During radiofrequency ablation sufficient power must be delivered to achieve a proper lesion, while tissue temperatures are kept below 100 degrees C. Tissue temperature and hence lesion size are determined by electrode to tissue contact and convective cooling, which vary with any obtained electrode...

  5. Influence of Pulse Electrodeposition and Heat Treatment on Microstructure, Tribological, and Corrosion Behavior of Nano-Grain Size Co-W Coatings

    Science.gov (United States)

    Abazari, Somayeh; Rastegari, Saeed; Kheirandish, Shahram

    2017-07-01

    In the present study, Co-W nano-structured alloy coatings are produced on low-carbon steel substrate by means of pulse electrodeposition from a citrate-based bath under different average current densities and duty cycles. The results indicate that the coating deposited under 60% of duty cycle and 1 A/dm2 of average current density exhibit optimum pulse plating conditions with 44.38 wt.% W, 37 nm grain size, and 758 HV microhardness. The effect of heat treatment temperature on microstructure, composition, corrosion behavior, and morphology of amorphous deposited Co-W alloy with 44 wt.% W was investigated. The microhardness of the coating increased to 1052 HV after heat treatment at 600 °C, which is due to the formation of Co3W and CoWO4 phases in the deposit. Furthermore, the coatings heat-treated at 600 °C had lower friction coefficients and better wear resistance under various loads than before heating.

  6. 3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method

    Science.gov (United States)

    Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth

    2015-02-01

    Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.

  7. Practical issues of retrieving isolated attosecond pulses

    International Nuclear Information System (INIS)

    Wang He; Chini, Michael; Khan, Sabih D; Chen, Shouyuan; Gilbertson, Steve; Feng Ximao; Mashiko, Hiroki; Chang Zenghu

    2009-01-01

    The attosecond streaking technique is used for the characterization of isolated extreme ultraviolet (XUV) attosecond pulses. This type of measurement suffers from low photoelectron counts in the streaked spectrogram, and is thus susceptible to shot noise. For the retrieval of few- or mono-cycle attosecond pulses, high-intensity streaking laser fields are required, which cause the energy spectrum of above-threshold ionized (ATI) electrons to overlap with that of the streaked photoelectrons. It is found by using the principal component generalized projections algorithm that the XUV attosecond pulse can accurately be retrieved for simulated and experimental spectrograms with a peak value of 50 or more photoelectron counts. Also, the minimum streaking intensity is found to be more than 50 times smaller than that required by the classical streaking camera for retrieval of pulses with a spectral bandwidth supporting 90 as transform-limited pulse durations. Furthermore, spatial variation of the streaking laser intensity, collection angle of streaked electrons and time delay jitter between the XUV pulse and streaking field can degrade the quality of the streaked spectrogram. We find that even when the XUV and streaking laser focal spots are comparable in size, the streaking electrons are collected from a 4π solid angle, or the delay fluctuates by more than the attosecond pulse duration, the attosecond pulses can still be accurately retrieved. In order to explain the insusceptibility of the streaked spectrogram to these factors, the linearity of the streaked spectrogram with respect to the streaking field is derived under the saddle point approximation.

  8. Measuring microfocus focal spots using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fry, David A [Los Alamos National Laboratory

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  9. The use of the 1.0 mm handpiece in high energy, pulsed CO2 laser destruction of facial adnexal tumors.

    Science.gov (United States)

    Sajben, F P; Ross, E V

    1999-01-01

    The treatment of syringoma and trichoepithelioma has included punch and shave biopsy, excision, electrodessication, as well as continuous wave and superpulsed carbon dioxide laser ablation. More recently, high-energy pulsed CO2 lasers have been reported to be effective with standard available handpieces that deliver collimated beams. To report our experience using a focusing handpiece (1.0 mm spot at focus) with a high energy pulsed CO2 laser. Four patients with syringoma and two with multiple trichoepithelioma were treated with a high energy pulsed CO2 laser using a 1 mm spot size focusing handpiece. Pulse energies ranged from 125 to 250 mJ. All patients were followed 2 weeks after treatment and then for variable periods ranging from 8 to 18 months (mean=13.3 months). The 1 mm spot focusing handpiece permitted rapid tumor ablation with optimal matching of lesion size and laser spot diameter. Recurrence of tumor was associated with superficial ablation while complications such as hypopigmentation and atrophy were associated with deeper ablation. Facial adnexal tumors such as syringoma and trichoepithelioma can be successfully treated with the 1.0 mm handpiece in tandem with high energy pulsed CO2 lasers.

  10. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Directory of Open Access Journals (Sweden)

    Hamza Qayyum

    2016-05-01

    Full Text Available The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  11. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Lu, Chieh-Hsun [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan (China); Chuang, Ying-Hung [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2016-05-15

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  12. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties

    Directory of Open Access Journals (Sweden)

    W. Z. Liu

    2011-06-01

    Full Text Available Single crystalline ZnO nanowires were fabricated on Si (100 substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescence spectrum of ZnO nanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

  13. Disruption effects on the beam size measurement

    International Nuclear Information System (INIS)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-01-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D y is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10 10 particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 μm horizontally and 0.55 μm vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H D of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit

  14. Superluminal Sweeping Spot Pair Events in Astronomical Settings

    Science.gov (United States)

    Nemiroff, Robert J.

    2015-01-01

    Sweeping beams of light can cast spots that move superluminally across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Astronomical settings where superluminal spot pairs might be found include Earth's Moon, passing asteroids, pulsars, and variable nebula. Potentially recoverable information includes three dimensional imaging, relative geometric size factors, and distances.

  15. Spot market for uranium

    International Nuclear Information System (INIS)

    Colhoun, C.

    1982-01-01

    The spot market is always quoted for the price of uranium because little information is available about long-term contracts. A review of the development of spot market prices shows the same price curve swings that occur with all raw materials. Future long-term contracts will probably be lower to reflect spot market prices, which are currently in the real-value range of $30-$35. An upswing in the price of uranium could come in the next few months as utilities begin making purchases and trading from stockpiles. The US, unlike Europe and Japan, has already reached a supply and demand point where the spot market share is increasing. Forecasters cannot project the market price, they can only predict the presence of an oscillating spot or a secondary market. 5 figures

  16. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  18. Mononucleosis spot test

    Science.gov (United States)

    Monospot test; Heterophile antibody test; Heterophile agglutination test; Paul-Bunnell test; Forssman antibody test ... The mononucleosis spot test is done when symptoms of mononucleosis are ... Fatigue Fever Large spleen (possibly) Sore throat Tender ...

  19. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjaei, Ali Shekari; Shokri, Babak [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839-63113 (Iran, Islamic Republic of)

    2016-06-15

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, we present the optimum pulse duration for such wakes.

  20. Generation of energy-tunable and ultra-short-pulse gamma rays via inverse Compton scattering in an electron storage ring

    Science.gov (United States)

    Taira, Y.; Adachi, M.; Zen, H.; Tanikawa, T.; Yamamoto, N.; Hosaka, M.; Takashima, Y.; Soda, K.; Katoh, M.

    2011-10-01

    Inverse Compton-scattered gamma rays of tunable energy were generated by changing the collision angle between a laser and an electron beam of fixed energy at the electron storage ring, UVSOR-II. Analytic expressions were derived for energy and intensity of the gamma rays. The measured energy and intensity of the gamma rays agreed with the theoretical values, and the pulse width was calculated to be a few ps, under experimental conditions. It was shown that ultra-short gamma ray pulses with a pulse width of 150 fs can be generated by optimizing the size of the laser spot.

  1. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  2. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  3. Cotton-wool spots.

    Science.gov (United States)

    Brown, G C; Brown, M M; Hiller, T; Fischer, D; Benson, W E; Magargal, L E

    1985-01-01

    A series of 24 consecutive patients presenting with a fundus picture characterized by a predominance of cotton-wool spots, or a single cotton-wool spot, is reported. Excluded were patients with known diabetes mellitus. Etiologic conditions found included previously undiagnosed diabetes mellitus in five patients, systemic hypertension in five patients, cardiac valvular disease in two patients, radiation retinopathy in two patients, and severe carotid artery obstruction in two patients. Dermatomyositis, systemic lupus erythematosus, polyarteritis nodosa, leukemia, AIDS, Purtscher's retinopathy, metastatic carcinoma, intravenous drug abuse, partial central retinal artery obstruction, and giant cell arteritis were each found in one patient. In only one patient did a systemic workup fail to reveal an underlying cause. The presence of even one cotton-wool spot in an otherwise normal fundus necessitates an investigation to ascertain systemic etiologic factors.

  4. Hot spot formation on different tokamak wall materials

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Bezlyudny, I.V.

    1998-01-01

    The thermal contraction phenomenon and generation of 'hot spots' due to thermoemission were described. The paper consider non-linear stages of heat contraction on the graphite, beryllium, tungsten and vanadium wall. It is shown that on the beryllium surface hot spot can't appear due to strong cooling by sublimation. For other materials the conditions of hot spot appearance due to local superheating of the wall have been calculated and their parameters were found: critical surface temperature, size of spots and their temperature profiles, heat fluxes from plasma to the spots. It have been calculated fluxes of sublimating materials from spots to the plasma. It is noticed that nominal temperature of the grafite divertor plate, accepted in ITER's project to being equal 1500 C, is lower then critical temperature of the development heat contraction due to thermoemission. (orig.)

  5. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  6. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  7. Ultrasonic assessment of tension shear strength in resistance spot welding

    Science.gov (United States)

    Moghanizadeh, Abbas

    2015-05-01

    Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain sizes which are able to have significant effects on the physical characteristics of the material. This research provides a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated. The results confirm that it is possible to determine the spot welding parameters for individual quality by using ultrasonic test.

  8. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    Science.gov (United States)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  9. Integrating sustainable hunting in biodiversity protection in Central Africa: hot spots, weak spots, and strong spots.

    Directory of Open Access Journals (Sweden)

    John E Fa

    Full Text Available Wild animals are a primary source of protein (bushmeat for people living in or near tropical forests. Ideally, the effect of bushmeat harvests should be monitored closely by making regular estimates of offtake rate and size of stock available for exploitation. However, in practice, this is possible in very few situations because it requires both of these aspects to be readily measurable, and even in the best case, entails very considerable time and effort. As alternative, in this study, we use high-resolution, environmental favorability models for terrestrial mammals (N = 165 in Central Africa to map areas of high species richness (hot spots and hunting susceptibility. Favorability models distinguish localities with environmental conditions that favor the species' existence from those with detrimental characteristics for its presence. We develop an index for assessing Potential Hunting Sustainability (PHS of each species based on their ecological characteristics (population density, habitat breadth, rarity and vulnerability, weighted according to restrictive and permissive assumptions of how species' characteristics are combined. Species are classified into five main hunting sustainability classes using fuzzy logic. Using the accumulated favorability values of all species, and their PHS values, we finally identify weak spots, defined as high diversity regions of especial hunting vulnerability for wildlife, as well as strong spots, defined as high diversity areas of high hunting sustainability potential. Our study uses relatively simple models that employ easily obtainable data of a species' ecological characteristics to assess the impacts of hunting in tropical regions. It provides information for management by charting the geography of where species are more or less likely to be at risk of extinction from hunting.

  10. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  11. Occurrence of gum spots in black cherry after partial harvest cutting

    Science.gov (United States)

    Charles O. Rexrode; H. Clay Smith; H. Clay Smith

    1990-01-01

    Bark beetles, primarily the bark beetle Phlosotribus liminori (Harris), are the major cause of gum spots in sawtimber-size black cherry Prunus serotina Ehrh. Approximately 90 percent of all gum spots in the bole sections are caused by bark beetles. Gum spots were studied in 95 black cherry trees near Parsons, West Virginia. Over 50 percent of the bark beetle-caused gum...

  12. effect of the plasma ion channel on self-focusing of a Gaussian laser pulse in underdense plasma

    Directory of Open Access Journals (Sweden)

    Sh Irani

    2013-09-01

    Full Text Available  We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. Then, an equation for the width of laser pulse with a relativistic mass correction term and the effect of ion channel were derived and the propagation of high-intensity laser pulse in an underdense plasma with weak relativistic approximation was investigated. It is shown that the ratio of ion channel radius to spot size could result in different forms of self focusing for the laser pulse in plasma.

  13. Chocolate spot of Eucalyptus

    OpenAIRE

    Cheewangkoon, R.; Groenewald, J.Z.; Hyde, K.D.; To-anun, C.; Crous, P.W.

    2012-01-01

    Chocolate Spot leaf disease of Eucalyptus is associated with several Heteroconium-like species of hyphomycetes that resemble Heteroconium s.str. in morphology. They differ, however, in their ecology, with the former being plant pathogenic, while Heteroconium s.str. is a genus of sooty moulds. Results of molecular analyses, inferred from DNA sequences of the large subunit (LSU) and internal transcribed spacers (ITS) region of nrDNA, delineated four Heteroconium-like species on Eucalyptus, name...

  14. El spot electoral negativo

    Directory of Open Access Journals (Sweden)

    Palma Peña-Jiménez

    2011-01-01

    Full Text Available l spot político tiene durante la campaña un objetivo final inequívoco: la consecución del voto favorable. Se dirige al cuerpo electoral a través de la televisión y de Internet, y presenta, en muchos casos, un planteamiento negativo, albergando mensajes destinados a la crítica frontal contra el adversario, más que a la exposición de propuestas propias. Este artículo se centra en el análisis del spot electoral negativo, en aquellas producciones audiovisuales construidas sin más causa que la reprobación del contrincante. Se trata de vídeos que, lejos de emplearse en difundir las potencialidades de la organización y las virtudes de su candidato –además de su programa electoral–, consumen su tiempo en descalificar al oponente mediante la transmisión de mensajes, muchas veces, ad hominem. Repasamos el planteamiento negativo del spot electoral desde su primera manifestación, que en España data de 1996, año de emisión del conocido como vídeo del dóberman, sin olvidar otros ejemplos que completan el objeto de estudio.

  15. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  16. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  17. Atmospheric Photo Ionization of Argon with a Short Pulse Laser

    National Research Council Canada - National Science Library

    Manheimer, Wallace

    2004-01-01

    One of the goals of the NRL laser-atmospheric propagation program is to produce a plasma spot, at a controlled range with a combination of longitudinal compression of a laser pulse over long distance...

  18. The Spotting Distribution of Wildfires

    Directory of Open Access Journals (Sweden)

    Jonathan Martin

    2016-06-01

    Full Text Available In wildfire science, spotting refers to non-local creation of new fires, due to downwind ignition of brands launched from a primary fire. Spotting is often mentioned as being one of the most difficult problems for wildfire management, because of its unpredictable nature. Since spotting is a stochastic process, it makes sense to talk about a probability distribution for spotting, which we call the spotting distribution. Given a location ahead of the fire front, we would like to know how likely is it to observe a spot fire at that location in the next few minutes. The aim of this paper is to introduce a detailed procedure to find the spotting distribution. Most prior modelling has focused on the maximum spotting distance, or on physical subprocesses. We will use mathematical modelling, which is based on detailed physical processes, to derive a spotting distribution. We discuss the use and measurement of this spotting distribution in fire spread, fire management and fire breaching. The appendix of this paper contains a comprehensive review of the relevant underlying physical sub-processes of fire plumes, launching fire brands, wind transport, falling and terminal velocity, combustion during transport, and ignition upon landing.

  19. Vocal complexity and sociality in spotted paca (Cuniculus paca)

    Science.gov (United States)

    2018-01-01

    The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca’s acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species’ ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse

  20. Thermal Stress Analyses for an NLC Positron Target with a 3 mm Spot Radius Beam

    International Nuclear Information System (INIS)

    Stein, W.; Sunwoo, A.; Sheppard, J. C.; Bharadwaj, V.; Schultz, D.

    2002-01-01

    The power deposition of an incident electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into three parts, with each part impinging on a 4 radiation lengths thick target. Three targets are required to avoid excessive thermal stresses in the targets. Energy deposition from each beam pulse occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 3 mm and results in a maximum temperature jump of 147 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 83 ksi (5.77 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  1. Characterization of flaws in pipeline girth welds and austenitic piping welds using satellite pulses

    International Nuclear Information System (INIS)

    Gruber, G.; Schick, W.R.

    1985-01-01

    Three ultrasonic flaw-sizing techniques (amplitude-drop technique, satellite-pulse observation technique and peak-echo technique) were evaluated against ten planar and seven volumetric flaws in the girth welds of large-diameter pipe specimens. Ninety-five percent of the time, the throughwall-dimension estimates for the seventeen flaws yielded by the supplemented Satellite-Pulse Observation Technique (SPOT results combined with those of the Peak-Echo Technique (PET) in case of a planar flaw) were within 1.6 mm of the maximum values determined by metallographic examination. Two additional series of trials were carried out under blind test conditions to validate (1) the SPOT to size small intergranular stress corrosion cracks (IGSCC) in austenitic piping welds and (2) the Multipulse-Observation Sizing Technique (MOST) to size small-to-large IGSC cracks in the welds and heat-affected zones of boiling-water-reactor stainless steel piping. The MOST results are still awaiting confirmation by metallographic examination

  2. PULSE GENERATOR

    Science.gov (United States)

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  3. Submicron hollow spot generation by solid immersion lens and structured illumination

    NARCIS (Netherlands)

    Kim, M.S.; Assafrao, A.C.; Scharf, T.; Wachters, A.J.H.; Pereira, S.F.; Urbach, H.P.; Brun, M.; Olivier, S.; Nicoletti, S.; Herzig, H.P.

    2012-01-01

    We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (?-SIL) made of SiO2. Such structured focal spots are characterized by a

  4. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  5. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  6. Advances in spot curing technology

    International Nuclear Information System (INIS)

    Burga, R.

    1999-01-01

    A brief review of spot curing technology was presented. The process which a spot of energy of a specific wavelength bandwidth and irradiance is used to cause a coating, encapsulant or adhesive to change from a liquid to a solid state

  7. Pulse Oximetry

    Science.gov (United States)

    ... American Thoracic Society www. thoracic. org American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES How accurate is the pulse oximeter? The ... patient. co. uk/ doctor/ Pulse- Oximetry. htm This ... service of the American Thoracic Society. The content is for educational purposes only. It ...

  8. Disruption effects on the beam size measurement

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-06-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.

  9. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  10. Laser reflection spot as a pattern in a diamond coating – a microscopic study

    Directory of Open Access Journals (Sweden)

    GORDANA S. RISTIĆ

    2009-07-01

    Full Text Available Diamond coatings were deposited by the synchronous and coupled action of a hot filament CVD method and a pulsed CO2 laser in spectro-absorbing and spectro-non-absorbing diamond precursor atmospheres. The obtained coatings were structured/patterned, i.e., they were comprised of uncovered, bare locations. An extra effect observed only in the spectro-active diamond precursor atmosphere was the creation of another laser spot in the coating – a reflection spot. In order to establish the practical usability of the latter one, extensive microscopic investigations were performed with consideration of the morphology changes in the spot of the direct laser beam. Normal incidence SEM images of this spot showed a smooth surface, without any pulse radiation damage. AFM imaging revealed the actual surface condition and gave precise data on the surface characteristics.

  11. Turbulent Region Near Jupiter's Great Red Spot

    Science.gov (United States)

    1997-01-01

    True and false color mosaics of the turbulent region west of Jupiter's Great Red Spot. The Great Red Spot is on the planetary limb on the right hand side of each mosaic. The region west (left) of the Great Red Spot is characterized by large, turbulent structures that rapidly change in appearance. The turbulence results from the collision of a westward jet that is deflected northward by the Great Red Spot into a higher latitude eastward jet. The large eddies nearest to the Great Red Spot are bright, suggesting that convection and cloud formation are active there.The top mosaic combines the violet (410 nanometers) and near infrared continuum (756 nanometers) filter images to create a mosaic similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundance of trace chemicals in Jupiter's atmosphere. The lower mosaic uses the Galileo imaging camera's three near-infrared (invisible) wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. Purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.The mosaic is centered at 16.5 degrees south planetocentric latitude and 85 degrees west longitude. The north-south dimension of the Great Red Spot is approximately 11,000 kilometers. The smallest resolved features are tens of kilometers in size. North is at the top of the picture. The images used were taken on June 26, 1997 at a range of 1.2 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech

  12. Complete mitochondrial genome of the red-spotted tokay gecko (Gekko gecko, Reptilia: Gekkonidae): comparison of red- and black-spotted tokay geckos.

    Science.gov (United States)

    Qin, Xin-Min; Qian, Fang; Zeng, De-Long; Liu, Xiao-Can; Li, Hui-Min

    2011-10-01

    Here, we sequenced the complete mitochondrial genome of the red-spotted tokay gecko (Squamata: Gekkonidae). The genome is 16,590 bp in size. Its gene arrangement pattern was identical with that of black-spotted tokay gecko. We compared the mitochondrial genome of red-spotted tokay gecko with that of the black-spotted tokay gecko. Nucleotide sequence of the two whole mitochondrial genomes was 97.99% similar, and the relatively high similarity seems to indicate that they may be separated at the subspecies level. The information of mitochondrial genome comparison of the two morphological types of tokay gecko is discussed in detail.

  13. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  14. On cold spots in tumor subvolumes

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Fowler, Jack F.

    2002-01-01

    Losses in tumor control are estimated for cold spots of various 'sizes' and degrees of 'cold dose'. This question is important in the context of intensity modulated radiotherapy where differential dose-volume histograms (DVHs) for targets that abut a critical structure often exhibit a cold dose tail. This can be detrimental to tumor control probability (TCP) for fractions of cold volumes even as small as 1%, if the cold dose is lower than the prescribed dose by substantially more than 10%. The Niemierko-Goitein linear-quadratic algorithm with γ 50 slope 1-3 was used to study the effect of cold spots of various degrees (dose deficit below the prescription dose) and size (fractional volume of the cold dose). A two-bin model DVH has been constructed in which the cold dose bin is allowed to vary from a dose deficit of 1%-50% below prescription dose and to have volumes varying from 1% to 90%. In order to study and quantify the effect of a small volume of cold dose on TCP and effective uniform dose (EUD), a four-bin DVH model has been constructed in which the lowest dose bin, which has a fractional volume of 1%, is allowed to vary from 10% to 45% dose deficit below prescription dose. The highest dose bin represents a simultaneous boost. For fixed size of the cold spot the calculated values of TCP decreased rapidly with increasing degrees of cold dose for any size of the cold spot, even as small as 1% fractional volume. For the four-subvolume model, in which the highest dose bin has a fractional volume of 80% and is set at a boost dose of 10% above prescription dose, it is found that the loss in TCP and EUD is moderate as long as the cold 1% subvolume has a deficit less than approximately 20%. However, as the dose deficit in the 1% subvolume bin increases further it drives TCP and EUD rapidly down and can lead to a serious loss in TCP and EUD. Since a dose deficit to a 1% volume of the target that is larger than 20% of the prescription dose may lead to serious loss of

  15. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  16. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  17. Generation and patterning of Si nanoparticles by femtosecond laser pulses

    Science.gov (United States)

    Zywietz, Urs; Reinhardt, Carsten; Evlyukhin, Andrey B.; Birr, Tobias; Chichkov, Boris N.

    2014-01-01

    The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.

  18. Verification of the anatomy and newly discovered histology of the G-spot complex.

    Science.gov (United States)

    Ostrzenski, A; Krajewski, P; Ganjei-Azar, P; Wasiutynski, A J; Scheinberg, M N; Tarka, S; Fudalej, M

    2014-10-01

    To expand the anatomical investigations of the G-spot and to assess the G-spot's characteristic histological and immunohistochemical features. An observational study. International multicentre. Eight consecutive fresh human female cadavers. Anterior vaginal wall dissections were executed and G-spot microdissections were performed. All specimens were stained with haematoxylin and eosin (H&E). The tissues of two women were selected at random for immunohistochemical staining. The primary outcome measure was to document the anatomy of the G-spot. The secondary outcome measures were to identify the histology of the G-spot and to determine whether histological samples stained with H&E are sufficient to identify the G-spot. The anatomical existence of the G-spot was identified in all women and was in a diagonal plane. In seven (87.5%) and one (12.5%) of the women the G-spot complex was found on the left or right side, respectively. The G-spot was intimately fused with vessels, creating a complex. A large tangled vein-like vascular structure resembled an arteriovenous malformation and there were a few smaller feeding arteries. A band-like structure protruded from the tail of the G-spot. The size of the G-spot varied. Histologically, the G-spot was determined as a neurovascular complex structure. The neural component contained abundant peripheral nerve bundles and a nerve ganglion. The vascular component comprised large vein-like vessels and smaller feeding arteries. Circular and longitudinal muscles covered the G-complex. The anatomy of the G-spot complex was confirmed. The histology of the G-spot presents as neurovascular tissues with a nerve ganglion. H&E staining is sufficient for the identification of the G-spot complex. © 2014 Royal College of Obstetricians and Gynaecologists.

  19. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial...... of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method....

  20. Investigating the Pulse Mode Laser Joining of Overlapped Plastic and Metal Sheets

    Science.gov (United States)

    Bauernhuber, Andor; Markovits, Tamás; Takács, János

    The growing utilization of plastic materials in our devices calls for joining them with traditional, often applied structural materials, like metals. Laser assisted metal plastic joining can be used to solve the problem mentioned above, however, relatively few materials have been investigated which could be used to create this special joint. In the course of this research, authors used pulse mode Nd:YAG laser source, structural steel and poly(methyl methacrylate) to create joining between rarely examined material pairs so far, and to explore the effects of technological settings like laser pulse shape, laser spot size, welding speed and joint strength. Material surfaces were also modified (sand blasting,) to enhance joint properties. In plastic material during joining and torn surfaces were investigated. Joints with good strength results were prepared to enable further research on transparent-absorbent metal plastic joining.

  1. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses

    Science.gov (United States)

    Mur, Jaka; Petkovšek, Rok

    2018-01-01

    Pulsed laser sources facilitate various applications, including efficient material removal in different scientific and industrial applications. Commercially available laser systems in the field typically use a focused laser beam of 10-20 μm in diameter. In line with the ongoing trends of miniaturization, we have developed a picosecond fiber laser-based system combining fast beam deflection and tight focusing for material processing and optical applications. We have predicted and verified the system's precision, resolution, and minimum achievable feature size for material processing applications. The analysis of the laser's performance requirements for the specific applications of high-precision laser processing is an important aspect for further development of the technique. We have predicted and experimentally verified that maximal edge roughness of single-micrometer-sized features was below 200 nm, including the laser's energy and positioning stability, beam deflection, the effect of spot spacing, and efficient isolation of mechanical vibrations. We have demonstrated that a novel fiber laser operating regime in bursts of pulses increases the laser energy stability. The results of our research improve the potential of fiber laser sources for material processing applications and facilitate their use through enabling the operation at lower pulse energies in bursts as opposed to single pulse regimes.

  2. Pulsed-field gel electrophoresis of the D4F104S1 locus reveals the size and the parental origin of the facioscapulohumeral muscular dystrophy (FSHD)-associated deletions

    Energy Technology Data Exchange (ETDEWEB)

    Wijmenga, C.; Deutekom, J.C.T. van; Padberg, G.W.; Van Ommen, G.J.B.; Hofker, M.H.; Frants, R.R. (Leiden Univ. (Netherlands)); Hewitt, J.E. (Univ. of Manchester (United Kingdom))

    1994-01-01

    Recently, probe p13E-11 (D4F104S1) was shown to identify de novo DNA rearrangements, which are associated with the development of facioscapulohumeral muscular dystrophy (FSHD). These rearrangements are likely to become instrumental in cloning the FSHD gene itself. Analysis by pulsed-field gel electrophoresis demonstrates that p13E-11 recognizes two highly polymorphic loci, with HindIII restriction fragments ranging in size from about 30 to 320 kb. Haplotype analysis unambiguously assigned one of the two loci to chromosome 4q35. The detection of identical NotI or NruI fragments with both CEB8 (D4F35S1) and p13E-11 demonstrated that the DNA rearrangements are deletions that are restricted to the HindIII fragments detectable by p13E-11. In two cases, the sizes of the deletion could be established and were found to be 25 and 85 kb in length, respectively. So far, the authors have been able to define the parental origin of the mutation in seven different patients and have found that in five cases the maternal allele was involved. 22 refs., 4 figs., 1 tab.

  3. Influence of repetitive pulsed laser irradiation on the surface characteristics of an aluminum alloy in the melting regime

    International Nuclear Information System (INIS)

    Choi, Sung Ho; Jhang, Kyung Young

    2015-01-01

    We have investigated the influence of repetitive near-infrared (NIR) pulsed laser shots in the melting regime on the surface characteristics of an aluminum 6061-T6 alloy. Characteristics of interest include surface morphology, surface roughness, and surface hardness in the melted zone as well as the size of the melted zone. For this study, the proper pulse energy for inducing surface melting at one shot is selected using numerical simulations that calculate the variation in temperature at the laser beam spot for various input pulse energies in order to find the proper pulse energy for raising the temperature to the melting point. In this study, 130 mJ was selected as the input energy for a Nd:YAG laser pulse with a duration of 5 ns. The size of the melted zone measured using optical microscopy (OM) increased logarithmically with an increasing shot number. The surface morphology observed by scanning electron microscopy (SEM) clearly showed a re-solidified microstructure evolution after surface melting. The surface roughness and hardness were measured by atomic force microscopy (AFM) and nano-indentation, respectively. The surface roughness showed almost no variation due to the surface texturing after laser shots over 10. The hardness inside the melted zone was lower than that outside the zone because the β'' phase was transformed to a β phase or dissolved into a matrix.

  4. 9 CFR 149.4 - Spot audit.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Spot audit. 149.4 Section 149.4... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.4 Spot audit. (a) In addition to regularly scheduled site audits, certified production sites will be subject to spot audits. (1) Random spot...

  5. Detection, Tracking and Analysis of Turbulent Spots and Other Coherent Structures in Unsteady Transition

    Science.gov (United States)

    Lewalle, Jacques; Ashpis, David (Technical Monitor)

    2000-01-01

    Transition on turbine blades is an important factor in the determination of eventual flow separation and engine performance. The phenomenon is strongly affected by unsteady flow conditions (wake passing). It is likely that some physics of unsteadiness should be included in advanced models, but it is unclear which properties would best embody this information. In this paper, we use a GEAE experimental database in unsteady transition to test some tools of spot identification, tracking and characterization. In this preliminary study, we identify some parameters that appear to be insensitive to wake passing effects, such as convection speed, and others more likely to require unsteady modeling. The main findings are that wavelet duration can be used as a measure of spot size, and that spot energy density is most closely correlated to the wake passing. The energy density is also correlated to spot size, but spot size appears unrelated to the phase angle. Recommendations are made for further study.

  6. On the origin of delta spots

    International Nuclear Information System (INIS)

    Tang, F.

    1983-01-01

    Mount Wilson sunspot drawings from 1966 through 1980 were used in conjunction with Hα filtergrams from Big Bear Solar Observatory to examine the origin of delta spots, spots with bipolar umbrae within one penumbra. Of the six cases we studied, five were formed by the union of non-paired spots. They are either shoved into one another by two neighboring growing bipoles or by a new spot born piggy-back style on an existing spot of opposite polarity. Proper motions of the growing spots take on curvilinear paths around one another to avoid a collision. This is the shear motion observed in delta spots (Tanaka, 1979). In the remaining case, the delta spot was formed by spots that emerged as a pair. Our findings indicate no intrinsic differences in the formation or the behavior between delta spots of normal magnetic configuration. (orig.)

  7. Influence of Gas Sort on the Nucleation Region Width of Si Nanocrystal Grains Prepared by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Zechao Deng

    2014-01-01

    Full Text Available We have calculated the nucleation region (NR location of Si nanocrystal grains prepared by pulsed laser ablation (PLA with fluence of 4 J/cm2 in 10 Pa gas at room temperature, and ambient gases were He, Ne, and Ar, respectively. Results of calculation indicated that NR width in Ne gas was narrowest, while it was widest in He gas. Maximum mean size of grains deposited on substrates under ablated spot, which were placed horizontally, was the smallest in Ne gas. It would be attribute to more effective energy transfer during the process of collision when atomic mass of Si and ambient gas Ne are more close to each other. In this work, an additional gas flow with the same element as ambient gas was introduced, which is vertical to the plume axis at different lateral positions above ablated spot.

  8. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  9. Effect of laser pulsing on the composition measurement of an Al-Mg-Si-Cu alloy using three-dimensional atom probe.

    Science.gov (United States)

    Sha, G; Ringer, S P

    2009-04-01

    The effect of laser pulse energy on the composition measurement of an Al-Mg-Si-Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20-80K and a voltage range of 2.5-5kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9nJ with a beam spot size of about 5microm, providing an equivalent voltage pulse fraction, approximately 14% at 80K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.

  10. Effect of laser pulsing on the composition measurement of an Al-Mg-Si-Cu alloy using three-dimensional atom probe

    International Nuclear Information System (INIS)

    Sha, G.; Ringer, S.P.

    2009-01-01

    The effect of laser pulse energy on the composition measurement of an Al-Mg-Si-Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20-80 K and a voltage range of 2.5-5 kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9 nJ with a beam spot size of about 5 μm, providing an equivalent voltage pulse fraction, ∼14% at 80 K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.

  11. Is this Red Spot the Blue Spot (locus ceruleum)?

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Won Sick; Lee, Yu Kyung; Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2010-06-15

    The authors report brain images of 18F-FDG-PET in a case of schizophrenia. The images showed strikingly increased bilateral uptake in the locus ceruleum. The locus ceruleum is called the blue spot and known to be a center of the norepinephrinergic system.

  12. Pulse electric current sintering of cubic boron nitride/tungsten carbide–cobalt (cBN/WC–Co) composites: Effect of cBN particle size and volume fraction on their microstructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo, E-mail: xiaoboking@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xianning West Road No. 28, Xi' an 710049, Shaanxi Province (China); State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi' an Jiaotong University, Xianning West Road No. 28, Xi' an 710049, Shaanxi Province (China); Qin, Yi [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xianning West Road No. 28, Xi' an 710049, Shaanxi Province (China); Jin, Feng [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi' an Jiaotong University, Xianning West Road No. 28, Xi' an 710049, Shaanxi Province (China); Yang, Jian-Feng, E-mail: yang155@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xianning West Road No. 28, Xi' an 710049, Shaanxi Province (China); Ishizaki, Kozo [Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2014-06-01

    Cubic boron nitride/tungsten carbide–cobalt (cBN/WC–Co) composites were fabricated by pulse electric current sintering (PECS), using Ni–P as sintering additives to promote low temperature densification. The effect of cBN particle size and volume fraction on the densification, microstructure and mechanical properties of WC–Co composites was investigated. There was no phase transformation from cBN to hBN (hexagonal BN) with low-hardness due to low sintering temperature (1100–1200 °C) and short sintering time. Smaller cBN particle led to lower sinter-ability of the composites due to its high specific surface area. The 30 vol% 10–14 µm cBN/WC–Co composite (P14V30) exhibited high hardness (18.3 GPa, 1200 °C) and high fracture toughness (15.6 MP·m{sup 1/2}, 1000 °C). The high hardness resulted from the homogeneously dispersed cBN particles, which had a good bonding with the WC matrix. Increased fracture toughness was mainly attributed to crack deflection or bridging and pullout of cBN grains.

  13. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  14. Ultrafast Manipulation of Magnetic Order with Electrical Pulses

    Science.gov (United States)

    Yang, Yang

    During the last 30 years spintronics has been a very rapidly expanding field leading to lots of new interesting physics and applications. As with most technology-oriented fields, spintronics strives to control devices with very low energy consumption and high speed. The combination of spin and electronics inherent to spintronics directly tackles energy efficiency, due to the non-volatility of magnetism. However, speed of operation of spintronic devices is still rather limited ( nanoseconds), due to slow magnetization precessional frequencies. Ultrafast magnetism (or opto-magnetism) is a relatively new field that has been very active in the last 20 years. The main idea is that intense femtosecond laser pulses can be used in order to manipulate the magnetization at very fast time-scales ( 100 femtoseconds). However, the use of femtosecond lasers poses great application challenges such as diffraction limited optical spot sizes which hinders device density, and bulky and expensive integration of femtosecond lasers into devices. In this thesis, our efforts to combine ultrafast magnetism and spintronics are presented. First, we show that the magnetization of ferrimagnetic GdFeCo films can be switched by picosecond electronic heat current pulses. This result shows that a non-thermal distribution of electrons directly excited by laser is not necessary for inducing ultrafast magnetic dynamics. Then, we fabricate photoconductive switch devices on a LT-GaAs substrate, to generate picosecond electrical pulses. Intense electrical pulses with 10ps (FWHM) duration and peak current up to 3A can be generated and delivered into magnetic films. Distinct magnetic dynamics in CoPt films are found between direct optical heating and electrical heating. More importantly, by delivering picosecond electrical pulses into GdFeCo films, we are able to deterministically reverse the magnetization of GdFeCo within 10ps. This is more than one order of magnitude faster than any other electrically

  15. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  16. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  17. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  18. Spot Welding of 6061 Aluminum Alloy by Friction Stir Spot Welding Process

    Directory of Open Access Journals (Sweden)

    M. A. Tashkandi

    2017-06-01

    Full Text Available This study was focused on the effect of welding parameters on the lap-shear fracture load of the welded joints prepared by friction stir spot welding. Four different weld parameters were analyzed: rotational speed, dwell time, pin length and shoulder size of the welding tool. It was found that the lap-shear fracture load increases with an increase of the welding parameters to a limited value and decreases with further increase. The strong welded joints failed under nugget-pull out fracture.

  19. Characterization of Continuous and Pulsed Emission modes of a Hybrid Micro Focus X-ray Source for Medical Imaging Applications.

    Science.gov (United States)

    Ghani, Muhammad U; Wong, Molly D; Ren, Liqiang; Wu, Di; Zheng, Bin; Rong, John X; Wu, Xizeng; Liu, Hong

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16-50 μm as the source output power changes from 10-39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (μA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 μm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 μm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications.

  20. Theory and simulation of anode spots in low pressure plasmas

    Science.gov (United States)

    Scheiner, Brett; Barnat, Edward V.; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.

    2017-11-01

    When electrodes are biased above the plasma potential, electrons accelerated through the associated electron sheath can dramatically increase the ionization rate of neutrals near the electrode surface. It has previously been observed that if the ionization rate is great enough, a double layer separates a luminous high-potential plasma attached to the electrode surface (called an anode spot or fireball) from the bulk plasma. Here, results of the first 2D particle-in-cell simulations of anode spot formation are presented along with a theoretical model describing the formation process. It is found that ionization leads to the build-up of an ion-rich layer adjacent to the electrode, forming a narrow potential well near the electrode surface that traps electrons born from ionization. It is shown that anode spot onset occurs when a quasineutral region is established in the potential well and the density in this region becomes large enough to violate the steady-state Langmuir condition, which is a balance between electron and ion fluxes across the double layer. A model for steady-state properties of the anode spot is also presented, which predicts values for the anode spot size, double layer potential drop, and form of the sheath at the electrode by considering particle, power, and current balance. These predictions are found to be consistent with the presented simulation and previous experiments.

  1. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  2. Dressing percentage in Romanian spotted breed

    Directory of Open Access Journals (Sweden)

    eleonora nistor

    2013-05-01

    Full Text Available The purpose of this research was to determine whether there are significant differences in terms of carcass weight, forequarters, hindquarters and the dressing percentage among Romanian Spotted breed steers and first generation crossbreed obtained between Romanian Spotted and Holstein at slaughter age of 12 and 17 months respectively. Study was done on Romanian Spotted breed steer aged 12 months (36 heads and 17 months (19 heads; Romanian Spotted x Holstein first generation crossbreed of aged 12 months (29 heads and 17 months (20 heads. The Romanian Spotted breed steer, show superiority in terms of carcass weight compared to crossbreed of Romanian Spotted x Holstein, therefore this breed has a better suitability for fattening for meat. Regarding dressing percentage is higher in crossbreed of Romanian Spotted x Holstein compared with Romanian Spotted breed steers, but the difference is insignificant.

  3. Self-Focusing and de-Focusing of Intense Left- and Right-Hand Polarized Laser Pulse in Hot Magnetized Plasma in the Presence of an External Non-Uniform Magnetized Field

    Science.gov (United States)

    Abedi-Varaki, Mehdi; Jafari, Saed

    2017-10-01

    In this paper, self-focusing of an intense circularly polarized laser beam in the presence of a non-uniform positive guide magnetic field with slope constant parameter δ in hot magnetized plasma, using Maxwell's equations and relativistic fluid momentum equation is investigated. An envelope equation governing the spot-size of laser beam for both of left- and right-hand polarizations has been derived, and the effects of the plasma temperature and magnetic field on the electron density distribution of hot plasma with respect to variation of normalized laser spot-size has been studied. Numerical results show that self-focusing is better increased in the presence of an external non-uniform magnetic field. Moreover, in plasma density profile, self-focusing of the laser pulse improves in comparison with no non-uniform magnetic field. Also, with increasing slope of constant parameter of the non-uniform magnetic field, the self-focusing increases, and subsequently, the spot-size of laser pulse propagated through the hot magnetized plasma decreases.

  4. [Efficacy of pulsed-dye laser on residual red lesions of cutaneous leishmaniasis].

    Science.gov (United States)

    Slaoui, W; Chiheb, S; Benchikhi, H

    2015-01-01

    Cutaneous leishmaniasis caused by Leishmania tropica can leave troublesome and unsightly lesions. Treatment of these scars remains difficult. Pulsed-dye laser (PDL) is one therapeutic approach that may improve the clinical appearance of erythematosus lesions. The purpose of this retrospective study was to evaluate the effectiveness of PDL on the residual red lesions of erythematous facial leishmaniasis in three patients. Case no. 1: a 14-year-old girl presented an ulcerative and erythematous nodular lesion on her left cheek. One month after treatment, an erythematous lesion measuring 3 cm persisted on the patient's cheek, without atrophy or hyperpigmentation. PDL 595nm was used at the following settings: duration: 3ms; spot size: 7mm; energy: 8 j/cm(2). Case no. 2: a 43-year-old woman presented an erythematous papular lesion on her right cheek. Following treatment, a 4-cm hypertrophic, red telangiectasic lesion remained. PDL 595nm was used with the following settings: pulse duration: 3 ms; spot-size: 10mm; energy: 8 j/cm(2). Case no. 3: a 60-year-old woman presented an erythematous papular lesion on her cheek. After treatment, an infiltrated erythematous macule with surface telangiectasia measuring 3.5cm remained. PDL 595nm was also given using the following settings: pulse duration: 3 ms; spot size: 10mm; energy: 8 j/cm(2). All three patients underwent three sessions of PDL. The erythematous and telangiectasic lesions showed improvement after the initial session and had completely disappeared after the third session. Post-laser purpura subsided within around 10 days. Therapeutic response was assessed clinically by comparing photographs taken before and after treatment and follow-up lasted 12 months. Cutaneous leishmaniasis caused by L. tropica is endemo-epidemic in Morocco. A number of treatments are available for red residual lesions but thanks to its effect on erythematous and vascular lesions, PDL has been shown to provide the most reproducibly

  5. Auroral bright spot sequence near 14 MLT

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Lybekk, B.

    1990-08-01

    Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude - MLT sector. The reported events, covering a 35 min interval around 14 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wavelike motions of the low-latitude boundary layer. Based on this interpretation the observed spot size, speed and repetition period (∼ 10 min) give a wavelenght ∼ 900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. 46 refs., 11 figs

  6. A microsatellite platform for hot spot detection

    Energy Technology Data Exchange (ETDEWEB)

    Walter, I.; Briess, K.; Baerwald, W.; Lorenz, E.; Skrbek, W.; Schrandt, F. [DLR, Berlin (Germany). Inst. of Space Sensor Technology & Planetary Exploration

    2005-01-01

    The main payload of the BIRD micro-satellite is the newly developed hot spot recognition system. It's a dual-channel instrument for middle and thermal infrared imagery based on cooled MCT line detectors. The miniaturisation by integrated detector/cooler assemblies provides a highly efficient design. Since the launch in October 2001 from SHAR/India the BIRD payload, claiming 30% of the BIRD mass of 92 kg, is fully operational. Among others forest fires (Australia), volcanoes (Etna, Chile) and burning coal mines (China) have been detected and their parameters like size, temperature and energy release could be determined. As the status of the payload system is satisfactorily it has a potential to be applied in new missions with the help of modern detector technology.

  7. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Rong, John X. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Wu, Xizeng [Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical Engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 µm to 50 µm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications. - Highlights: • A micro focus x-ray source that operates in both continuous and pulse emission modes was quantitatively characterized. • The source output, beam quality, focal spot measurements, kV accuracy, spectra analyses and spatial resolution were measured. • Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam

  8. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    Science.gov (United States)

    Sharma, B. S.; Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.

    2014-02-01

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃1019 W/cm2) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  9. Laser Pyrometer For Spot Temperature Measurements

    Science.gov (United States)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  10. Modelling of a proton spot scanning system using MCNP6

    International Nuclear Information System (INIS)

    Ardenfors, O; Gudowska, I; Dasu, A; Kopeć, M

    2017-01-01

    The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R 90 and R 80 , and within 0.2 mm for R 50 . The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons. (paper)

  11. Efficacy and safety of long-pulse pulsed dye laser delivered with compression versus cryotherapy for treatment of solar lentigines

    Directory of Open Access Journals (Sweden)

    Hassan Seirafi

    2011-01-01

    Full Text Available Background: Although cryotherapy is still the first-line therapy for solar lentigines, because of the side effects such as post-inflammatory hyperpigmentation (PIH, especially in patients with darker skin types, pigment-specific lasers should be considered as a therapy for initial treatment. Aim: The aim of this study is to evaluate the efficacy and safety of cryotherapy compared with 595-nm pulsed dye laser (PDL with cutaneous compression in the treatment of solar lentigines. Materials and Methods: Twenty-two patients (skin type II−IV with facial or hand lentigines participated in this study. Lesions of one side of the face or each hand were randomly assigned and treated with either cryotherapy or PDL. Treatments were performed with radiant exposures of 10 J/cm 2 , 7-mm spot size and 1.5 ms pulse duration with no epidermal cooling. Photographs were taken before treatment and 1-month later. The response rate and side effects were compared. Results: PDL was more likely to produce substantial lightening of the solar lentigines than cryotherapy, especially in skin type III and IV (n = 8, n = 9; P 0.05. PIH was seen only in cryotherapy group. PDL group had only minimal erythema. No purpura was observed. Conclusion: PDL with compression is superior to cryotherapy in the treatment of solar lentigines in darker skin types.

  12. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  13. Sweet Spots and Door Stops

    Science.gov (United States)

    Thompson, Michael; Tsui, Stella; Leung, Chi Fan

    2011-01-01

    A sweet spot is referred to in sport as the perfect place to strike a ball with a racquet or bat. It is the point of contact between bat and ball where maximum results can be produced with minimal effort from the hand of the player. Similar physics can be applied to the less inspiring examples of door stops; the perfect position of a door stop is…

  14. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  15. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Science.gov (United States)

    Zhang, Guo-Bo; Chen, Min; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Ma, Yan-Yun; Yu, Tong-Pu; Yu, Lu-Le; Weng, Su-Ming; Sheng, Zheng-Ming

    2016-03-01

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  16. WEIBULL MULTIPLICATIVE MODEL AND MACHINE LEARNING MODELS FOR FULL-AUTOMATIC DARK-SPOT DETECTION FROM SAR IMAGES

    Directory of Open Access Journals (Sweden)

    A. Taravat

    2013-09-01

    Full Text Available As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method, synthetic aperture radar (SAR can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks. As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  17. Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection from SAR Images

    Science.gov (United States)

    Taravat, A.; Del Frate, F.

    2013-09-01

    As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  18. Justifications shape ethical blind spots.

    Science.gov (United States)

    Pittarello, Andrea; Leib, Margarita; Gordon-Hecker, Tom; Shalvi, Shaul

    2015-06-01

    To some extent, unethical behavior results from people's limited attention to ethical considerations, which results in an ethical blind spot. Here, we focus on the role of ambiguity in shaping people's ethical blind spots, which in turn lead to their ethical failures. We suggest that in ambiguous settings, individuals' attention shifts toward tempting information, which determines the magnitude of their lies. Employing a novel ambiguous-dice paradigm, we asked participants to report the outcome of the die roll appearing closest to the location of a previously presented fixation cross on a computer screen; this outcome would determine their pay. We varied the value of the die second closest to the fixation cross to be either higher (i.e., tempting) or lower (i.e., not tempting) than the die closest to the fixation cross. Results of two experiments revealed that in ambiguous settings, people's incorrect responses were self-serving. Tracking participants' eye movements demonstrated that people's ethical blind spots are shaped by increased attention toward tempting information. © The Author(s) 2015.

  19. Generating phase-matched high-order harmonics using CEP controlled few-cycle pulses

    International Nuclear Information System (INIS)

    Kovacs, K.; Tosa, V.; Dombi, P.; Porras, M.A.

    2010-01-01

    Complete text of publication follows. Recently Porras and Dombi showed, by performing analytical calculations, that it is possible to freeze or to control the variation of the carrier-to-envelope phase (CEP) of propagated few-cycle laser pulses in the focal region. These methods consist in changing the variation of the beam's spot size for different spectral components at the focusing element and/or placing a dispersive slab (or medium) in the way of the propagating pulse. We developed a numerical method to calculate the electric field of the laser in these special configurations, which allowed us to simulate high-order harmonic generation (HHG) and perform phase-matching (PM) calculations for different types of CEP variations of the input pulse. The fundamental pulse at 800 nm wavelength has a FWHM of 5 fs and peak intensity not exceeding 0.4 PW/cm 2 . HHG is assumed to take place in neon at low pressure (< 40 Torr) and the interaction medium is placed close to the focal region of the pulse. Under these conditions ionization rate remains low during HHG, thus in the PM calculations we do not take into account the dispersion due to plasma contribution and neutrals. We assume that the electric field is not perturbed during propagation and we perform PM calculations for different harmonic orders in the whole interaction region. We will present the effect of different CEP variations of the fundamental pulse on the high-harmonic spectra and will explore the possibilities to obtain strong coherent HH radiation under favorable PM conditions.

  20. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P skin rejuvenation in Asian people.

  1. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  2. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  3. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  4. Computational analysis of hot-spot formation by quasi-steady deformation waves in porous explosive

    Science.gov (United States)

    Gilbert, John; Chakravarthy, Sunada; Gonthier, Keith A.

    2013-05-01

    The impact and shock sensitivity of porous (granular) high-explosives is related to the formation of small mass regions of elevated temperature within the material called hot-spots by dissipative mechanisms such as plastic and friction work. Because of their small size, hot-spots are difficult to experimentally interrogate, particularly for high volumetric strain rates (ɛ˙V>10,000 s-1). In this study, simulations are performed for large ensembles of deformable particles (≈4000 particles) using a combined finite and discrete element technique to characterize statistical distributions of hot-spot intensity, geometry, and spatial proximity within and behind quasi-steady, piston supported uniaxial waves in granular HMX (C4H8N8O8). Emphasis is placed on examining how the material's initial particle packing density, characterized by its effective solid volume fraction ϕ¯s ,0, affects hot-spot statistics for pressure dominated waves corresponding to piston speeds within the range 300≤Up≤500 m /s. Predictions indicate that hot-spot intensity is only marginally affected by initial porosity (1-ϕ¯s ,0) for all piston speeds, whereas hot-spot size, number density, volume fraction, and volume specific surface area appreciably increase with porosity and exponentially increase with piston speed. Minor variations in particle shape are predicted to be largely inconsequential. Joint distributions of hot-spot intensity and size are combined with thermal explosion data to identify and examine critical hot-spots that quickly react behind waves. These results indicate that the observed increase in sensitivity with initial porosity for sustained loading is likely due to an increase in hot-spot size and number rather than intensity.

  5. Compliance of the normal-sized aorta in adolescents with Marfan syndrome: comparison of MR measurements of aortic distensibility and pulse wave velocity; Compliance der morphologisch unauffaelligen Aorta bei Jugendlichen mit Marfan Syndrom: Vergleich von MR-Messungen der aortalen Dehnbarkeit und der Pulswellengeschwindigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, J.G.; Ruediger, H.J.; Gorenflo, M.; Khalil, M.; Ulmer, H. [Universitaetskinderklinik Heidelberg (Germany). Kardiologie; Krissak, R.; Kauczor, H.U. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Radiologie; Ley, S. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Radiologie; Universitaetsklinik Heidelberg (Germany). Paediatrische Kardiologie; Arnold, R. [Universitaetskinderklinik Heidelberg (Germany). Kardiologie; Universitaetskinderklinik Freiburg (Germany). Paediatrische Kardiologie; Boese, J. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Medizinische Physik in der Radiologie; Siemens AG, Medical Solutions, Forchheim (Germany). Angiography, Fluoroscopic and Radiographic Systems; Krug, R. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Medizinische Physik in der Radiologie; Fink, C. [Medizinische Fakultaet Mannheim der Univ. Heidelberg, Mannheim (Germany). Inst. fuer Klinische Radiologie

    2007-08-15

    Purpose: To compare the aortic compliance of the normal-sized aorta of adolescents with Marfan syndrome and healthy controls using MR measurements of the aortic distensibility and pulse wave velocity. Materials and Methods: Fourteen patients (median age: 15 [9-21] years) and 11 healthy subjects (23 [12-32] years) were examined at 1.5 T. The MR protocol included 2D steady-state free precession (SSFP)-CINE MRI of the aortic distensibility and PC-MRI of the pulse wave velocity. All measurements were positioned perpendicular to the descending aorta at the level of the diaphragm for assessing the changes in the aortic cross-sectional areas and additionally above and below this plane for assessing the pulse wave velocity. In addition contrast-enhanced 3D-MR angiography was performed in adolescents with Marfan syndrome to exclude morphologic changes and to prove normal-sized aorta. Results: Compared with control subjects, adolescents with Marfan syndrome had significantly decreased distensibility and significantly increased pulse wave velocity ({chi}{sup 2}-test, p = 0.0002) using an age-related non-linear regression analysis. The related aortic compliance was significantly decreased ({chi}{sup 2}-test, p = 0.0002). There was a good correlation between the two methods (r = 0.86). A low intraobserver variability was found for both methods ({<=} 2 %). (orig.)

  6. Breeding biology of the Spotted Barbtail (Premnoplex brunnescens)

    Science.gov (United States)

    Munoz, Daniel; Martin, Thomas E.

    2014-01-01

    The Spotted Barbtail (Furnariidae) is poorly studied but shows some extreme traits for a tropical passerine. We located and monitored 155 nests to study this species for 7 years in an Andean cloud forest in Venezuela. Spotted Barbtails have an unusually long incubation period of 27.2 ± 0.16 days, as a result of very long (3–6 hr) off-bouts even though both adults incubate. The long off-bouts yield low incubation temperatures for embryos and are associated with proportionally large eggs (21% of adult mass). They also have a long nestling period of 21.67 ± 0.33 days, and a typical tropical brood size of two. The slow growth rate of the typical broods of two is even slower in broods artificially reduced to one young. Nonetheless, the young stay in the nest long enough to achieve wing lengths that approach adult size.

  7. Pulsed Drift Tube Accelerator

    International Nuclear Information System (INIS)

    Faltens, A.

    2004-01-01

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K + beams at a constant line charge density of 0.25(micro) C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2(micro)s rectangular 1 Ampere C s + beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K + , was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1mm radius spot at a

  8. Influence of pulse electrodeposition parameters on microhardness ...

    Indian Academy of Sciences (India)

    and fine globular. Also, effect of electrodeposition parameters such as average current density, pulse frequency and duty cycle on the microhardness and grain size of nanocomposite coatings that produced through the pulse current electrodeposition method have been investigated. By amplifying both duty cycles up to 50% ...

  9. Watermarking spot colors in packaging

    Science.gov (United States)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  10. Morphological study of the pathogenesis of retinal cotton wool spot.

    Science.gov (United States)

    Murata, M; Yoshimoto, H

    1983-01-01

    To investigate the true structural changes in retinal cotton wool spots, serial sections of several blocks of retinal corresponding to cotton wool spots obtained from two hypertensive cases were studied by light and electron microscopy. Occlusion of the feeder arteriole and capillaries, and numerous vacuoles of various sizes in the inner retinal layer were the constant histological features in cotton wool spots. Cytoid body was another change in these areas but it was not a constant feature. Increase of membranous structure resembling endoplasmic reticulum was thought to be incorporated in the formation of the pseudonucleus in the cytoid body. Phagocytosis by macrophages led to the disappearance of the cytoid body. It was concluded that the true feature of the cotton wool spot is nothing but vacuolation, an edematous change of the inner retinal layers due to ischemia following occlusion of the feeder arteriole, and that the cytoid body is only a nonspecific and transient alteration of nerve fibers in the early stage of the ischemic lesion in the retina.

  11. A continuous scale-space method for the automated placement of spot heights on maps

    Science.gov (United States)

    Rocca, Luigi; Jenny, Bernhard; Puppo, Enrico

    2017-12-01

    Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers' judgment in ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of critical points in a continuous scale-space model is employed as the main measure of the importance of features, and an algorithm and a data structure for its computation are described. We also introduce a method for the comparison of algorithmically computed spot height locations with manually produced reference compilations. The new method is compared with two known techniques from the literature. Results show spot height locations that are closer to reference spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps in real time.

  12. Methodology and software to detect viral integration site hot-spots

    Directory of Open Access Journals (Sweden)

    Kim Namshin

    2011-09-01

    Full Text Available Abstract Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region, which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy, CGD (chronic granulomatous disease and SCID-X1 (X-linked severe combined immunodeficiency trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS and combined (2401 VIS resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap

  13. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    Property change during nanosecond pulse laser annealing of amorphous. NiTi thin film ... near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning ... ratio, shape recovery, damping capacity, chemical resistance, biocompatibility and ...

  14. Oil futures and spot markets

    International Nuclear Information System (INIS)

    Samii, M.V.

    1992-01-01

    In the last decade, the oil futures market has risen to prominence and has become a major factor in influencing oil market psychology and the crude oil market. On a normal day, over 92 thousand contracts, the equivalent of 92 million barrels per day, change hands on the New York Mercantile Exchange, NYMEX. This market has provided a vehicle for hedging against risk. At the same time, it has also created opportunities for speculation. Those who previously were unable to participate in oil market transactions can now become involved through the futures market. The large number of participants in the future market and the availability of information has made this market more efficient and transparent, relative to the crude oil market. While there has been considerable in-depth analysis of other future markets, relatively little theoretical attention has focused on that of oil. This paper looks at the following issues. First, what is the relationship between futures and spot oil prices? And secondly, are futures prices a good predictor of spot crude prices in the future? (author)

  15. The terminal vibration of laser spot tail in dual channel type linear CCD

    Science.gov (United States)

    Zhang, Zhen; Cheng, Deyan; Shi, Yubin; Zhang, Jianmin

    2017-11-01

    A special phenomenon about laser spot tail in dual channel type linear CCD is studied. In the CCD, the charges packets in odd and even number pixels are respectively transferred by two channels, in which, the threshold difference of surface full well induces the length difference of spot tails. So, the terminal vibration of spot tail is caused. A simulation of this phenomenon is given and qualitatively validated by the experiment results of laser irradiating a dual channel type linear CCD. In the experiment, the phenomenon has been used to estimate relative size of surface full well thresholds in two channels of CCD.

  16. Half-life of cotton-wool spots in the acquired immunodeficiency syndrome.

    Science.gov (United States)

    Mansour, A M; Rodenko, G; Dutt, R

    1990-03-01

    Cotton-wool spots are a hallmark of human immunodeficiency virus (HIV) retinopathy in the acquired immunodeficiency syndrome (AIDS). We analysed the half-life of cotton-wool spots in AIDS in a prospective study, and found the average time to disappearance to be 6.9 weeks. HIV retinopathy differs from diabetic retinopathy in having a smaller size cotton-wool spot and a much shorter half-life, suggesting a patchy involvement of the retinal capillaries in AIDS and a widespread capillary disease in preproliferative and proliferative diabetic retinopathy.

  17. Pulse reversal plating of nickel alloys

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2007-01-01

    Pulse plating has previously been reported to improve the properties of nickel and nickel alloy deposits. Typically, focus has been on properties such as grain size, hardness and smoothness. When pulse plating is to be utilised for microtechnologies such as microelectromechanical systems (MEMS......), internal stress and material distribution are even more important. With baths based upon nickel chloride, and nickel and cobalt chlorides, pulse reversal plating of both pure nickel and nickel-cobalt alloys has been used to fabricate tools for microinjection moulding. Pulse reversal plating of ternary soft...... magnetic alloys, comprising 45-65%Co, 15-35%Fe and 15-35%Ni, is also reported....

  18. Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the black-spotted and red-spotted tokay geckoes (Gekko gecko).

    Science.gov (United States)

    Zhang, Yueyun; Chen, Chongtao; Li, Li; Zhao, Chengjian; Chen, Weicai; Huang, Yong

    2014-09-01

    The black-spotted tokay and the red-spotted tokay are morphologically distinct and have largely allopatric distributions. The black-spotted tokay is characterized by a small body size and dark skin with sundry spots, while the red-spotted tokay has a relatively large body size and red spots. Based on morphological, karyotypic, genetic, and distribution differences, recent studies suggested their species status; however, their classifications remain controversial, and additional data such as ecological niches are necessary to establish firm hypotheses regarding their taxonomic status. We reconstructed their ecological niches models using climatic and geographic data. We then performed niche similarity tests (niche identity and background tests) and point-based analyses to explore whether ecological differentiation has occurred, and whether such differences are sufficient to explain the maintenance of their separate segments of environmental ranges. We found that both niche models of the black- and the red-spotted tokay had a good fit and a robust performance, as indicated by the high area under the curve (AUC) values ("black" = 0.982, SD = ± 0.002, "red" = 0.966 ± 0.02). Significant ecological differentiation across the entire geographic range was found, indicating that the involvement of ecological differentiation is important for species differentiation. Divergence along the environmental axes is highly associated with climatic conditions, with isothermality being important for the "black" form, while temperature seasonality, precipitation of warmest quarter, and annual temperature range together being important for the "red" form. These factors are likely important factors in niche differentiation between the two forms, which result in morphological replacement. Overall, beside morphological and genetic differentiation information, our results contribute to additional insights into taxonomic distinction and niche differentiation between the black- and the red-spotted

  19. Treatment of Basal Cell Carcinomas with Pulsed Dye Laser: A Case Series

    Directory of Open Access Journals (Sweden)

    Norman Minars

    2012-01-01

    Full Text Available Background. Basal cell carcinoma (BCC is the most prevalent skin cancer. Because of its highly vascular characteristic, it is amendable to treatment with pulse dye laser (PDL. The goal of this study is to determine the safety and efficacy of PDL therapy for mostly facial BCCs. Materials and Methods. Sixteen men and thirteen women (29 total with 39 biopsy-proven BCCs were treated with 1–4 PDL (595 nm therapies at 2–4-week intervals. The treatment parameters included pulse energy of 15 J/cm 2, pulse length of 3 millisecond, with no dynamic cooling, and 7 mm spot size. The age of the patients was 30–90 years (mean 73 years. Response rates were evaluated by the clinical assessments with mean followup of 11 months. Results. Twenty-four patients with thirty-two tumors reached at least three months followup: 24/32 (75% tumors with complete resolution (mean 3 treatment sessions; 5/32 (16% tumors recurred; 3/32 (9% tumors with incomplete responses after four treatments. Minimal side effects and discomfort were experienced by the patients with PDL therapy. Conclusion. PDL is a safe, tolerable, and moderately effective method of treating various BCCs. The ideal niche and standardized settings for PDL treatment of BCCs are yet to be determined.

  20. Properties of TiO2/Au nanocomposite produced by pulsed laser irradiation of mixture of individual colloids

    Science.gov (United States)

    Ghorbani, Vahideh; Dorranian, Davoud

    2016-12-01

    TiO2/Au nanocomposite was produced by irradiating the mixture of Au and TiO2 nanoparticle suspensions with the second harmonic beam of Nd:YAG pulsed laser. TiO2 and Au nanoparticles were produced by laser ablation method separately. Titanium dioxide and gold nanoparticles were prepared by ablation of a high purity titanium and gold plates in deionized water, respectively. The fundamental wavelength of a Nd:YAG laser operating at 1064 nm with pulse width of 7 ns and 10 Hz repetition rate was employed to produce nanoparticles. Targets was placed on the bottom of water contain. The synthesized Au and TiO2 colloidal solutions were mixed in equal volumetric ratio and irradiated with the 532 nm laser. The laser spot size was 6 mm on the solution surface, and the laser fluence during the post-irradiation was at 2 J/cm2. Irradiation was done using 5000 pulses at 10 Hz repetition rate and 7 ns pulse width. Results show that the absorption spectrum of nanocomposite is similar to TiO2 spectrum with a surface plasmonic absorption peak at about 530 nm. Both lattice structure of TiO2 and Au nanoparticles appears in the lattice structure of nanocomposite.

  1. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-01-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  2. Pulse pile-up. II: Tailed pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The considerations of the preceding paper are extended to the case of pulses having infinite (exponential) tails. Exact solutions are presented for pure exponential pulses all of the same height; ruin theory is applied for pulses of more realistic form. (Author) (2 refs., 9 figs.)

  3. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model.

    Science.gov (United States)

    Wong, B J; Dickinson, M R; Berns, M W; Neev, J

    1996-12-01

    Laser ablation of hard tissues during neurotologic operations has been accomplished with continuous-wave (CW) lasers in the visible and midinfrared spectrum. The mechanism of ablation at these wavelengths is secondary to photothermal-induced tissue destruction. As a result, significant thermal damage to surrounding tissue may occur. Pulsed ultraviolet (UV) lasers have been suggested as an alternative to the argon, KTP-532, and CO2 lasers currently used in clinical practice. The pulse length of Excimer lasers are considerably shorter than the thermal diffusion time of bone tissue, and as a consequence thermal injury is minimal. This makes pulsed lasers an attractive tool for tissue ablation in the ear: in essence a "cold knife." However, the short pulse width of Excimer lasers (typically 10-150 ns) can create large thermoelastic stresses in the ablation specimen. This study identifies the presence of these photoacoustic waves during the Excimer laser treatment of the cadaveric human temporal bone. A XeCl (lambda = 308 nm, tau p = 12 ns) excimer laser was used to ablate hard tissue surrounding the oval window and facial ridge with energies of 75, 45, 25, and 12 mJ/pulse. Spot size was estimated to be 0.5 mm2. Custom high-frequency polyvinyldifluoride (PVDF) piezoelectric film transducers were fabricated and attached to the promontory, round window niche, and facial ridges. The signals were amplified using a low-noise preamplifier and recorded on a digitizing oscilloscope. Photoacoustic waves were clearly identified. Notably, large acoustic waves were measured on the promontory and on both sides of the facial ridge. The implications and clinical relevance of these findings is discussed and compared to findings obtained from a model system.

  4. Laser welding of nylon thin films using a pulsed CO2 waveguide laser

    Science.gov (United States)

    Villagomez, R.; Valenzuela, Rogelio; Camacho-Mesa, Roxana B.

    2011-10-01

    In this work, we present an experimental investigation for welding Nylon: Bi-Oriented Polyamide (BOPA) thin films using a CO2 waveguide laser in a pulsed configuration. The material used in this study is Nylon 6, all set in square sheet thin films samples of 100 cm2 with 15 µm thickness. Our optical setup is based on deliver the laser beam all the way through the work piece using X-Y scanning mirrors mounted on galvo-like motors and an f-theta lens with 15 cm focal length and 50 µm focal spot sizes. The fluence (laser energy) is controlled by a pulse signal generator having the possibility to change the pulse repetition rate (PRR) and the pulse width (PW) of the laser beam. Our results show the best weld seam for scanning speeds of 20mm/s and the pulsed laser beam with 2 KHz PRR and 80 µs for the PW time. The scanning speed and trajectory for the welding process are all controlled by a computer in which one can modify the weld parameters. The irradiance at the focal point is set to 1.146 MW/cm2 while the average optical power was set to 22.5W. Our experimental parameters are previously modeled by using COMSOL Multiphysics software were the laser heat source is modeled on the selected material. This model is based on the heat transfer partial differential equation and solved by finite elements procedure. Model results show a perfect agreement with the experiments. Finally, the quality of the welded seam is studied by means of sealed tight and share force critical mechanical test.

  5. Short intense ion pulses for materials and warm dense matter research

    Science.gov (United States)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius rTesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  6. Generation of pulsed Bessel-Gauss beams using passive axicon-theoretical and experimental studies.

    Science.gov (United States)

    Parsa, Shahrzad; Fallah, Hamid Reza; Ramezani, Mohsen; Soltanolkotabi, Mahmood

    2012-10-20

    We studied the conditions for generating passive Bessel-Gauss beams by using an axicon. We designed an appropriate Gaussian resonator and extracted a quasi-fundamental Gaussian mode from a pulsed Nd:YAG laser pumped by a Xenon flash lamp and measured its parameters, such as propagation factor, divergence angle, and Rayleigh range. Then we generated passive Bessel-Gauss beams using an axicon and investigated their propagation properties, theoretically and experimentally. For example, for the axicon of 1°, the output energy and the Rayleigh range of the generated Bessel-Gauss beams were measured to be 58 mJ and 229.3 mm, respectively. We compared these properties with our results of the Gaussian mode. Finally, by using axicons with different apex angles, and also by changing the beam spot size on the axicon, we generated Bessel-Gauss beams and studied their properties theoretically and experimentally.

  7. Combination of a micro-lens multi-spot generator with a galvanometer scanner for flexible parallel micromachining of silicon

    Science.gov (United States)

    Zimmermann, Maik; Schmidt, Michael

    2011-10-01

    Multi focus optics are used for parallelizing production and for large-scale material processing. These elements split the beam into a periodic spot pattern with a defined grid and spot size. The challenge lies in the generation of a homogeneous envelope. Additionally the demand for flexible systems for an in-process changing of optical properties increases. Different components for multi spot generation like diffractive optical elements or micro lens arrays have been investigated. Diffractive optical elements offer large degree of freedom in the generation of arbitrary intensity distributions. In the paper we demonstrate the use of a diffractive element in combination with a multi spot generator. Within the paper we present the investigation of a micro lens array in a fly's eye condenser setup for the generation of homogeneous spot patterns. The multi spot generator is combined with a galvanometer scanner for forming an arbitrary shaped laser beam into a spot-, ring or arbitrary array pattern. We show the principal functionality of the multi-spot generator. Furthermore constrains of this setup are demonstrated. The multi spot scanner is used for micro structuring of silicon with a nanosecond diode pumped solid state laser. The ablation rate and structure quality are compared to single spot processing.

  8. Hot spots of mutualistic networks.

    Science.gov (United States)

    Gilarranz, Luis J; Sabatino, Malena; Aizen, Marcelo A; Bascompte, Jordi

    2015-03-01

    Incorporating interactions into a biogeographical framework may serve to understand how interactions and the services they provide are distributed in space. We begin by simulating the spatiotemporal dynamics of realistic mutualistic networks inhabiting spatial networks of habitat patches. We proceed by comparing the predicted patterns with the empirical results of a set of pollination networks in isolated hills of the Argentinian Pampas. We first find that one needs to sample up to five times as much area to record interactions as would be needed to sample the same proportion of species. Secondly, we find that peripheral patches have fewer interactions and harbour less nested networks - therefore potentially less resilient communities - compared to central patches. Our results highlight the important role played by the structure of dispersal routes on the spatial distribution of community patterns. This may help to understand the formation of biodiversity hot spots. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  9. Cosmicflows-3: Cold Spot Repeller?

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Hélène M.; Graziani, Romain; Dupuy, Alexandra [University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN, Lyon (France); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Pomarède, Daniel [Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    The three-dimensional gravitational velocity field within z ∼ 0.1 has been modeled with the Wiener filter methodology applied to the Cosmicflows-3 compilation of galaxy distances. The dominant features are a basin of attraction and two basins of repulsion. The major basin of attraction is an extension of the Shapley concentration of galaxies. One basin of repulsion, the Dipole Repeller, is located near the anti-apex of the cosmic microwave background dipole. The other basin of repulsion is in the proximate direction toward the “Cold Spot” irregularity in the cosmic microwave background. It has been speculated that a vast void might contribute to the amplitude of the Cold Spot from the integrated Sachs–Wolfe effect.

  10. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Science.gov (United States)

    Taira, Wataru; Otaki, Joji M

    2016-01-01

    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  11. Birth-jump processes and application to forest fire spotting.

    Science.gov (United States)

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  12. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  13. Finite Cosmology and a CMB Cold Spot

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.; /SLAC; Overduin, J.M.; /Stanford U., HEPL

    2006-03-20

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.

  14. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color. ...

  15. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color. ...

  16. 7 CFR 28.413 - Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling Color and Middling Spotted Color. ...

  17. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color. ...

  18. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  19. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  20. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  1. Submicron hollow spot generation by solid immersion lens and structured illumination

    International Nuclear Information System (INIS)

    Kim, M-S; Scharf, T; Herzig, H P; Assafrao, A C; Wachters, A J H; Pereira, S F; Urbach, H P; Brun, M; Olivier, S; Nicoletti, S

    2012-01-01

    We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (μ-SIL) made of SiO 2 . Such structured focal spots are characterized by a doughnut-shaped intensity distribution, whose central dark region is of great interest for optical trapping of nano-size particles, super-resolution microscopy and lithography. In this work, we have used a high-resolution interference microscopy technique to measure the structured immersed focal spots, whose dimensions were found to be significantly reduced due to the immersion effect of the μ-SIL. In particular, a reduction of 37% of the dark central region was verified. The measurements were compared with a rigorous finite element method model for the μ-SIL, revealing excellent agreement between them. (paper)

  2. The broadband social acoustic signaling behavior of spinner and spotted dolphins

    Science.gov (United States)

    Lammers, Marc O.; Au, Whitlow W. L.; Herzing, Denise L.

    2003-09-01

    Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.

  3. Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Gottlieb, C.; Günther, T.; Wilsch, G.

    2018-04-01

    In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).

  4. Spotted hyaenas Crocuta crocuta prey on new-born elephant calves in Hwange National Park, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Julia Salnicki

    2001-07-01

    Full Text Available Spotted hyaena Crocuta crocuta are known to be opportunists and to have a varied diet including mammals, reptiles and birds. Prey most often hunted are medium sized ungulates but spotted hyaenas will on occasion take larger species such as giraffe Giraffa camelopardalis and zebra Equus burchellii. They are also known to hunt whichever species are most abundant and will vary their prey seasonally. In this study spotted hyaenas were observed to take an unusual prey species in the form of elephant calves (Loxodonta africana. On a number of occasions hyaenas were observed feeding on or killing newborn and very young elephant calves. These observations were made whilst the authors were conducting research on spotted hyaena ecology in the woodlands of Hwange National Park, Zimbabwe and were made during the dry season between September and November 1999.

  5. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  6. HUBBLE FINDS NEW DARK SPOT ON NEPTUNE

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA

  7. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.

    2016-01-01

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  8. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  9. Telemetry-based mortality estimates of juvenile spot in two North Carolina estuarine creeks

    Science.gov (United States)

    Friedl, Sarah E.; Buckel, Jeffery A.; Hightower, Joseph E.; Scharf, Frederick S.; Pollock, Kenneth H.

    2013-01-01

    We estimated natural mortality rates (M) of age-1 Spot Leiostomus xanthurus by using a sonic telemetry approach. Sonic transmitters were surgically implanted into a total of 123 age-1 Spot in two North Carolina estuarine creeks during spring 2009 and 2010, and the fish were monitored by using a stationary acoustic receiver array and manual tracking. Fates of telemetered Spot were inferred based on telemetry information from estimated locations and swimming speeds. Potential competitors of age-1 Spot were assessed through simultaneous otter trawl sampling, while potential predators of Spot were collected using gill nets and trammel nets. The number of inferred natural mortalities was zero in 2009 (based on 29 telemetered Spot at risk) and four in 2010 (based on 52 fish at risk), with fish being at risk for up to about 70 d each year. Catches of potential competitors or predators did not differ between years, and age-1 Spot were not found in analyzed stomach contents of potential predators. Our estimated 30-d M of 0.03 (95% credible interval = 0.01–0.07) was lower than that predicted from weight-based (M = 0.07) and life-history-based (M = 0.06–0.36) estimates. Our field-based estimate of M for age-1 Spot in this estuarine system can assist in the assessment and management of Spot by allowing a direct comparison with M-values predicted from fish size or life history characteristics. The field telemetry and statistical analysis techniques developed here provide guidance for future telemetry studies of relatively small fish in open, dynamic habitat systems, as they highlight strengths and weaknesses of using a telemetry approach to estimate M.

  10. Hot spot detection for breast cancer in Ki-67 stained slides: image dependent filtering approach

    Science.gov (United States)

    Niazi, M. Khalid Khan; Downs-Kelly, Erinn; Gurcan, Metin N.

    2014-03-01

    We present a new method to detect hot spots from breast cancer slides stained for Ki67 expression. It is common practice to use centroid of a nucleus as a surrogate representation of a cell. This often requires the detection of individual nuclei. Once all the nuclei are detected, the hot spots are detected by clustering the centroids. For large size images, nuclei detection is computationally demanding. Instead of detecting the individual nuclei and treating hot spot detection as a clustering problem, we considered hot spot detection as an image filtering problem where positively stained pixels are used to detect hot spots in breast cancer images. The method first segments the Ki-67 positive pixels using the visually meaningful segmentation (VMS) method that we developed earlier. Then, it automatically generates an image dependent filter to generate a density map from the segmented image. The smoothness of the density image simplifies the detection of local maxima. The number of local maxima directly corresponds to the number of hot spots in the breast cancer image. The method was tested on 23 different regions of interest images extracted from 10 different breast cancer slides stained with Ki67. To determine the intra-reader variability, each image was annotated twice for hot spots by a boardcertified pathologist with a two-week interval in between her two readings. A computer-generated hot spot region was considered a true-positive if it agrees with either one of the two annotation sets provided by the pathologist. While the intra-reader variability was 57%, our proposed method can correctly detect hot spots with 81% precision.

  11. Pink Spot - Literature Review and Case Report.

    Science.gov (United States)

    Petel, Roy; Fuks, Anna

    Pink spots in teeth were first described by Mummery in 1920, and were related to resorption. Resorption is a pathologic process that often eludes the clinician with its varied etiologic factors and diverse clinical presentations. Resorption can be generally classified as internal and external resorption. Internal resorption has been described as a rare occurrence as compared to external resorption. This article describes a pink spot that was diagnosed as a progressing resorption process. Early diagnosis enabled a successful management of the lesion. Early diagnosis and treatment of an internal resorption, clinically seen as a pink spot, in a primary central incisor may prevent its fast progress and subsequent loss.

  12. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  13. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  14. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  15. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  16. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    International Nuclear Information System (INIS)

    Li, Li; Zhang, Ziang; Yu, Miao; Song, Zhengxun; Weng, Zhankun; Wang, Zuobin; Li, Wenjun; Wang, Dapeng; Zhao, Le; Peng, Kuiqing

    2015-01-01

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arrays with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ 0  = 1064 nm. The minimal feature size is only several nanometers (sub λ 0 /100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser

  17. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  18. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Hodgson, Erin W.; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  19. Detecting Blind Spot By Using Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    T. S. Ajay

    2015-08-01

    Full Text Available Safety remains a top concern for automobile industries and new-car shoppers. Detection of Blind Spots is a major concern for safety issues. So automobiles have been constantly updating their products with new technologies to detect blind spots so that they can add more safety to the vehicle and also reduce the road accidents. Almost 1.5 million people die in road accidents each year. Blind spot of an automobile is the region of the vehicle which cannot be observed properly while looking either through side or rear mirror view. To meet the above requirements this paper describes detecting blind spot by using ultrasonic sensor and controlling the direction of car by automatic steering. The technology embedded in the system is capable of automatically steer the vehicle away from an obstacle if the system determines that a collision is impending or if the vehicle is in the vicinity of our car.

  20. How Many Spots Does a Cheetah Have?

    Science.gov (United States)

    Reed, Kristine M.

    2000-01-01

    Describes first grade students' mathematical investigation of the number of spots on a cheetah. The exploration of counting and estimation strategies that grew from the investigation gives evidence that mathematicians come in all ages. (ASK)

  1. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  2. A telemetry experiment on spotted grunter Pomadasys ...

    African Journals Online (AJOL)

    associated fish in South Africa was investigated by conducting a tracking experiment on spotted grunter Pomadasys commersonnii in the East Kleinemonde Estuary. The telemetry equipment comprised two VEMCO V8 transmitters and a ...

  3. Modeling Hot Spot Motor Vehicle Theft Crime in Relation to Landuse and Settlement Patterns

    Directory of Open Access Journals (Sweden)

    Djaka Marwasta

    2004-01-01

    Full Text Available The crowd of Yogyakarta urban has impacted its surrounding area, including Depok sub district, which is indicated by the rising of physical development, for example education facilities and settlements. The progress does not only bring positive impact, but also negative impact for instance the rising of crime number i.e. motor vehicle robbery. The aims of this research are 1 mapping motor vehicle robbery data as the distribution map and identifying motor vehicle robbery hot spot base on distrbution map; and 2 studying the correlation of motor vehicle robbery hot spot with physical environment phenomena, i.e. land use type and settlement pattern. The research method consists of two parts; they are motor vehicle robbery cluster analysis and the relation of motor vehicle robbery and physical environment analysis. Motor vehicle robbery cluster analysis is using distribution data, which analyzes the distribution into motor vehicle robbery hot spot with nearest neighbor tehnique. Contingency coefficient and frequency distribution analysis is used to analyze the correlation of motor vehicle robbery hot spot and physical environment. Contingency coefficient is used to study the relation of motor vehicle robbery hot spot polygon with physical environment condition, whereas frequency distribution is used to study the distribution of motor vehicle robbery in the hot spot with physical environment condition. Physical environment which consists of land use type, housing density, house regularity pattern, and the average of building size, are obtained from interpretation of black and white panchromatic aerial photograph year 2000, in the scale 1 : 20.000. the most motor vehicle robbery hot spot is found on the settlement area, 68,3% from 378 motor vehicle robbery cases in the hot spot. The seond level is found on the education area (16.4%. The most motor vehicle hot spot in the settlement is found on the hight density and irregular settlement, which have big

  4. X-ray spot film device

    International Nuclear Information System (INIS)

    Pury, T.; Tsen, M.L.S.; Gray, F.L.; Stehr, R.E.; Konle, R.L.

    1981-01-01

    Improvements are described in an X-ray spot film device which is used in conjunction with an X-ray table to make a selected number of radiographic exposures on a single film and to perform fluoroscopic examinations. To date, the spot film devices consist of two X-ray field defining masks, one of which is moved manually. The present device is more convenient to use and speeds up the procedure. (U.K.)

  5. X-ray focal spot reconstruction by circular penumbra analysis—Application to digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Di Domenico, Giovanni, E-mail: didomenico@fe.infn.it; Cardarelli, Paolo; Taibi, Angelo; Gambaccini, Mauro [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, FE I-44122, Italy and INFN - sezione di Ferrara, via Saragat 1, FE I-44122 (Italy); Contillo, Adriano [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, via Saragat 1, FE I-44122 (Italy)

    2016-01-15

    Purpose: The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. Methods: The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. Results: In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. Conclusions: The method was

  6. Thermal Wave Imaging: Flying SPOT Camera.

    Science.gov (United States)

    Wang, Yiqian

    1993-01-01

    A novel "Flying Spot" infrared camera for nondestructive evaluation (NDE) and nondestructive characterization is presented. The camera scans the focal point of an unmodulated heating laser beam across the sample in a raster. The detector of the camera tracks the heating spot in the same raster, but with a time delay. The detector is thus looking at the "thermal wake" of the heating spot. The time delay between heating and detection is determined by the speed of the laser spot and the distance between it and the detector image. Since this time delay can be made arbitrarily small, the camera is capable of making thermal wave images of phenomena which occur on a very short time scale. In addition, because the heat source is a very small spot, the heat flow is fully three-dimensional. This makes the camera system sensitive to features, like tightly closed vertical cracks, which are invisible to imaging systems which employ full-field heating. A detailed theory which relates the temperature profile around the heating spot to the sample thermal properties is also described. The camera represents a potentially useful tool for measuring thermal diffusivities of materials by means of fitting the recorded temperature profiles to the theoretical curves with the diffusivity as a fitting parameter.

  7. A new kind of relativity: Compensated delays as phenomenal blind spots.

    Science.gov (United States)

    Vrobel, Susie

    2015-12-01

    The French phenomenologist Merleau-Ponty identified the human body as the blind spot of perception and cognition. Being situated in its environment both spatially and temporally, the body forms a primordial field of presence, which is transparent from the obserpant's(1) perspective and therefore creates a sytemic blindness. This paper is primarily concerned with what Merleau-Ponty calls the pulse of the duration of the body, which, in his view, "impregnates" our perception. This notion of duration will be described in terms of the temporal extensions of an embodied obserpant. For biological systems, these extensions may be measured in the obserpant's temporal endo-sphere, a time cone, which extends in two dimensions: succession and simultaneity (Δtlength and Δtdepth, respectively). Obserpants are described not as having, but being a model of the world (including themselves). The perception of Δtlength and Δtdepth results in a fractal temporal structure, which correlates with successive and instantaneous perception. This temporal structure becomes important during temporal recalibration, i.e. delay compensation. During such processes, the distribution of the temporal dimensions succession and simultaneity may vary from one obserpant's Now to another's. Furthermore, recalibration provides a window in which the obserpant's Now may be tipped towards either temporal dimension. We can measure the difference between obserpant A's temporal extension and that of obserpant B in Δtlength and Δtdepth. The complexity of an obserpant's temporal perspective - his temporal interface - can thus be compared and quantified by the size of his time cone. The units of this measurement are the number of compensated and uncompensated delays. During temporal recalibration, an obserpant can turn succession into simultaneity and vice-versa. Moreover, what is successive in obserpant A's Now may be simultaneous for obserpant B and vice-versa. This discrepancy can be modelled as time

  8. Portion size

    Science.gov (United States)

    ... with hummus. To control your portion sizes when eating out, try these tips: Order the small size. Instead of a medium or large, ask for the smallest size. By eating a small hamburger instead of a large, you ...

  9. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    Science.gov (United States)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  10. Multiple Colliding Electromagnetic Pulses: A Way to Lower the Threshold of e+e- Pair Production from Vacuum

    Science.gov (United States)

    Bulanov, S. S.; Mur, V. D.; Narozhny, N. B.; Nees, J.; Popov, V. S.

    2010-06-01

    The scheme of a simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as the Extreme Light Infrastructure (ELI) and High Power laser Energy Research (HiPER). It is shown that the multiple pulse configuration is beneficial for observing e+e- pair production from a vacuum under the action of sufficiently strong electromagnetic fields. The field of focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The e+e- pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses are focused on one spot. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short e+e- bunches.

  11. The communicative potential of bat echolocation pulses.

    Science.gov (United States)

    Jones, Gareth; Siemers, Björn M

    2011-05-01

    Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.

  12. Time-dependent H-like and He-like Al lines produced by ultra-short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Kato, Masatoshi [National Inst. for Fusion Science, Nagoya (Japan); Shepherd, R.; Young, B.; More, R.; Osterheld, Al

    1998-03-01

    We have performed numerical modeling of time-resolved x-ray spectra from thin foil targets heated by the LLNL Ultra-short pulse (USP) laser. The targets were aluminum foils of thickness ranging from 250 A to 1250 A, heated with 120 fsec pulses of 400 nm light from the USP laser. The laser energy was approximately 0.2 Joules, focused to a 3 micron spot size for a peak intensity near 2 x 10{sup 19} W/cm{sup 2}. Ly{alpha} and He{alpha} lines were recorded using a 900 fsec x-ray streak camera. We calculate the effective ionization, recombination and emission rate coefficients including density effects for H-like and He-like aluminum ions using a collisional radiative model. We calculate time-dependent ion abundances using these effective ionization and recombination rate coefficients. The time-dependent electron temperature and density used in the calculation are based on an analytical model for the hydrodynamic expansion of the target foils. During the laser pulse the target is ionized. After the laser heating stops, the plasma begins to recombine. Using the calculated time dependent ion abundances and the effective emission rate coefficients, we calculate the time dependent Ly{alpha} and He{alpha} lines. The calculations reproduce the main qualitative features of the experimental spectra. (author)

  13. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  14. Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite.

    Science.gov (United States)

    Truitt, Anne; Elkeeb, Laila; Ortiz, Arisa; Saedi, Nazanin; Echague, Agustina; Kelly, Kristen M

    2012-06-01

    Cellulite is a common, unwanted condition, which is challenging to treat. The objective of this investigation was to evaluate safety and effectiveness of a long-pulsed 1064 Nd:YAG laser as a method for improvement in cellulite appearance and to evaluate parameter selection. Twenty-two female subjects with posterior leg cellulite were randomly assigned to treatment of left or right thigh with higher energy treatment with cryogen spray cooling (CSC) (10-mm spot size; 50 J/cm(2); 50-ms pulse duration and CSC settings of 30-ms duration with a 20-ms delay) or lower energy treatment with no CSC (10 mm; 20 J/cm(2); 50 ms). Subjects received three treatments at 4 weeks intervals. Digital photographs and circumference measurements were taken pre-treatment and up to 6 months post-treatment. Nineteen subjects completed three treatments and 16 subjects completed 6-month follow-up. Circumference measurements pre- and post-treatment were not significantly different. Blinded evaluators noted mild improvement in three of seven subjects in high energy group and moderate improvement in two of nine subjects in low energy group. Multiple passes with a long-pulsed 1064 Nd:YAG achieved mild or moderate improvement in some subjects as rated by blinded evaluators.

  15. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    Directory of Open Access Journals (Sweden)

    M. G. Rahimian

    2017-08-01

    Full Text Available We fabricated conical nanostructures on silicon with a tip dimension of ∼ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ=±1. The height of the nano-cone, encircled by a smooth rim, increased from ∼ 350 nm to ∼ 1 μm with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  16. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  17. Analysis of ochratoxin A in dried blood spots - Correlation between venous and finger-prick blood, the influence of hematocrit and spotted volume.

    Science.gov (United States)

    Osteresch, Bernd; Cramer, Benedikt; Humpf, Hans-Ulrich

    2016-05-01

    We report the improvement of a method for the detection of ochratoxin A (OTA) and its thermal degradation product 2'R-ochratoxin A in dried blood spots (DBS) by high performance liquid chromatographic (HPLC) tandem mass spectrometry (MS/MS). The DBS technique was advanced for the analysis of these two compounds in DBS with unknown amounts of blood as well as varying hematocrit values. Furthermore the comparability of venous vs. capillary blood was investigated. Human whole blood samples were spotted, dried, and extracted with a solvent consisting of acetone, acetonitrile and water for analysis by HPLC-MS/MS. Quantification was carried out by stable isotope labelled internal standards. Blood samples of volunteers (n=50) were used to further optimize and simplify the procedure. Ochratoxin A and 2'R-ochratoxin A concentrations found in the entire spots (approx. 100 μL blood) were compared with punched DBS discs of 8.8mm size containing approximately 20 μL blood. As a result the amounts of both toxins in a punched 8.8mm disc correlate well with the entire DBS. Also the use of capillary blood from finger-pricks versus venous blood was evaluated. The analyte levels correlate as well indicating that the less invasive finger-prick sampling gives also reliable results. The influence of hematocrit was investigated in a range of 25-55% according to the hematocrit in the used real blood samples (34-46% hematocrit). However no significant hematocrit effect was observed for the utilized real blood samples. Moreover different blood volumes were spotted and punched as a minimal spot size is usually recommended for accurate analysis. In this experiment finger-prick samples typically consist of about 90 μL blood. Therefore spots of 75, 100 and 125 μL blood were prepared and analyzed. Similar to the hematocrit effect, no considerable influence was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  19. Pulse Reversal Plating of Nickel and Nickel Alloys for MEMS

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2001-01-01

    Pulse plating has previously been reported to improve the properties of nickel and nickel alloy deposits. Typically, focus has been on properties such as grain size, hardness and smoothness. When pulse plating is to be utilized for micro electromechanical systems (MEMS), internal stress and mater......Pulse plating has previously been reported to improve the properties of nickel and nickel alloy deposits. Typically, focus has been on properties such as grain size, hardness and smoothness. When pulse plating is to be utilized for micro electromechanical systems (MEMS), internal stress...

  20. Possible recombinogenic effect of caprolactam in the mammalian spot test.

    Science.gov (United States)

    Fahrig, R

    1989-11-01

    Tests of caprolactam in the mouse spot test showed that treatment with this compound increased the frequency of color spots among animals treated in utero. The nature of these spots suggests that caprolactam may induce spots through the induction of mitotic recombination.

  1. 7 CFR 28.423 - Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  2. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    Science.gov (United States)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce

  3. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Science.gov (United States)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Wilson, R.; Carroll, D. C.; Dance, R. J.; MacLellan, D. A.; Yuan, X. H.; Butler, N. M. H.; Capdessus, R.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-06-01

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  4. Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.; Philipp, Hugh T.; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that form when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.

  5. Kobs (Kobus kob Erxleber, 1777) activities at salt-lick spots in Kainji ...

    African Journals Online (AJOL)

    Activities (foraging, ruminating, resting, salt-licking, walking, playing, agonistic, mating, vigilant and standing) of kobs (Kobus kob Erxleber, 1777) visiting two different sizes of salt-lick spots (Larger:100.00m2 and Smaller: 15.10m2) located on (Latitude N09054'76'', longitude E03057'17'') and (Latitude N09054'33'', ...

  6. ELECTRICAL PULSE COUNTER APPARATUS

    Science.gov (United States)

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  7. Cotton-wool spots in acquired immunodeficiency syndrome compared with diabetes mellitus, systemic hypertension, and central retinal vein occlusion.

    Science.gov (United States)

    Mansour, A M; Jampol, L M; Logani, S; Read, J; Henderly, D

    1988-08-01

    The cotton-wool spot is a common fundus finding in patients with many ocular and systemic diseases. We investigated the characteristics of cotton-wool spots in patients with four major diseases, ie, acquired immunodeficiency syndrome, diabetes mellitus, systemic hypertension, and central retinal vein occlusion, to see if any differences were detected in their number, size, or location. A composite of all the cotton-wool spots for each of these four categories was obtained by computed reconstruction to analyze variations in their distribution and size. The cotton-wool spots had a predilection for the temporal quadrants in the four categories and were smaller in patients with acquired immunodeficiency syndrome than the other groups. Patients with ischemic central retinal vein occlusion had more cotton-wool spots than the other groups. No other definite differences were detected. Cotton-wool spots than the other groups. No other definite differences were detected. Cotton-wool spots seem to be a common pathway following various insults to the retina, most probably of a vaso-occlusive origin.

  8. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    temperature gradient perpendicular to the laser track (Chan. Figure 3. FESEM images of spots lasered at intensities of (a) 40 and (b) 55 mJ/mm2. Figure 2. Effect of PLA on optical microstructure of NiTi thin film: (a) as sputtered and (b to f) irradiated with pulse laser beam of 2, 20, 30, 40 and 50 mJ/mm2 respective intensities.

  9. Tests of fixity of the Indo-Atlantic hot spots relative to Pacific hot spots

    Science.gov (United States)

    Koivisto, Emilia A.; Andrews, David L.; Gordon, Richard G.

    2014-01-01

    Rates of inter-hot spot motion have been debated for decades. Herein we present updated predictions for the tracks of the Tristan da Cunha, Réunion, and Iceland hot spots assuming them to be fixed relative to Pacific hot spots. Uncertainties in Pacific hot spot rotations, which include uncertainties in the current locations of hot spots of 100-200 km, are combined with uncertainties in relative plate motions accumulated through the plate circuit to obtain the final uncertainty in the predicted positions (including uncertainties of 150-200 km in the current locations of the Indo-Atlantic hot spots). Improvements to reconstruction methods, to relative plate reconstructions, to age dates along the tracks, and to the geomagnetic reversal timescale lead to significant changes from prior results. When compared with the observed tracks, the predicted tracks indicate nominal rates of motion of only 2-6 mm a-1 of these Indo-Atlantic hot spots relative to Pacific hot spots over the past 48 Ma. Within the uncertainties, the rates range from no motion to rates as high as 8-13 mm a-1. For reconstructions prior to 48 Ma B.P., however, the apparent rates of inter-hot spot motion are much larger, 46-55 ± 20 mm a-1, if the motion occurred entirely between 68 Ma B.P. and 48 Ma B.P. Either hot spots moved rapidly before 48 Ma B.P., and slowed drastically at ≈ 48 Ma B.P., or global plate circuits through Antarctica become less reliable as one goes increasingly further into the past. Most paleomagnetic data favor the latter explanation.

  10. Spotting Stellar Activity Cycles in Gaia Astrometry

    Science.gov (United States)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-03-01

    Astrometry from Gaia will measure the positions of stellar photometric centroids to unprecedented precision. We show that the precision of Gaia astrometry is sufficient to detect starspot-induced centroid jitter for nearby stars in the Tycho-Gaia Astrometric Solution (TGAS) sample with magnetic activity similar to the young G-star KIC 7174505 or the active M4 dwarf GJ 1243, but is insufficient to measure centroid jitter for stars with Sun-like spot distributions. We simulate Gaia observations of stars with 10 year activity cycles to search for evidence of activity cycles, and find that Gaia astrometry alone likely can not detect activity cycles for stars in the TGAS sample, even if they have spot distributions like KIC 7174505. We review the activity of the nearby low-mass stars in the TGAS sample for which we anticipate significant detections of spot-induced jitter.

  11. Photoelectric method for determination of the moment of formation of an anodic spot

    International Nuclear Information System (INIS)

    Barinov, V.N.; Goncharov, V.K.; Smirnov, A.V.

    1986-01-01

    In studying the problem of the effect of the amplitude and form of discharge current pulses on the time for transition from a diffuse discharge form to a contracted one and on the value of the threshold current I /SUB As/ for formation of an anodic spot, the authors used a photoelectric method for determination of the moment of appearance of the anodic spot based on determination of the spectral composition of the plasma at different moments of time after the beginning of discharge initiation. The photoelectric method can be used in studying emission processes on a cathode and also in those cases where both electrodes are made of the same material. An example shows synchronous oscillograms of I /SUB p/ (tau) and J /SUB i/ (tau) for copper electrodes. It is evident that during transition of the discharge to a contracted form with an anodic spot there was a sharp increase of the intensity of deexcitation of the ionic copper line. At the moment of extinction of the anodic spot, the amplitude values of J /SUB i/ (tau) corresponded to a level characteristic of the diffuse form of arc burning

  12. Nondestructive Testing of Ceramic Hip Joint Implants with Laser Spot Thermography

    Directory of Open Access Journals (Sweden)

    Roemer J.

    2017-12-01

    Full Text Available The paper presents an application of laser spot thermography for damage detection in ceramic samples with surface breaking cracks. The measurement technique is an active thermographic approach based on an external heat delivery to a test sample, by means of a laser pulse, and signal acquisition by an infrared camera. Damage detection is based on the analysis of surface temperature distribution near the exciting laser spot. The technique is nondestructive, non-contact and allows for full-field measurements. Surface breaking cracks are a very common type of damage in ceramic materials that are introduced in the manufacturing process or during the service period. This paper briefly discusses theoretical background of laser spot thermography, describes the experimental test rig and signal processing methods involved. Damage detection results obtained with laser spot thermography are compared with reference measurements obtained with vibrothermography. This is a different modality of active thermography, that has been previously proven effective for this type of damage. We demonstrate that both measurement techniques can be effectively used for damage detection and quality control applications of ceramic materials.

  13. Four spot laser anemometer and optical access techniques for turbine applications

    Science.gov (United States)

    Wernet, Mark P.

    1987-01-01

    A time-of-flight anemometer (TOFA) system utilizing a spatial lead-lag filter for bipolar pulse generation has been constructed and tested. This system, called a four-spot laser anemometer, was specifically designed for use in high-speed, turbulent flows in the presence of walls or surfaces. The TOFA system uses elliptical spots to increase the flow acceptance angle to be comparable with that of a fringe-type anemometer. The tightly focused spots used in the four spot yield excellent flare light rejection capabilities. Good results have been obtained to 75 microns normal to a surface, with an f/2.5 collection lens. This system is being evaluated for use in a warm turbine facility. Results from both a particle-lag velocity experiment and boundary layer profiles will be discussed. In addition, an analysis of the use of curved windows in a turbine casing will be presented. Curved windows, matching the inner radius of the turbine casing, preserve the flow conditions, but introduce astigmatic aberrations. A correction optic was designed that virtually eliminates these astigmatic aberrations throughout the intrablade survey region for normal incidence.

  14. The hydrodynamic behaviour of a pulsed column

    International Nuclear Information System (INIS)

    Vassallo, Gary.

    1983-01-01

    Holdup, droplet size and continuous-phase backmixing were measured in a 72 mm i.d. pulsed perforated-plate column. The contactor was operated using the system 2 M HNO 3 -30% TBP/OP. Pulse amplitude, frequency and both phase flow rates were varied over a wide range of values although the column was maintained in the continuous dispersion region. Dispersed-phase holdup appeared to pass through a minimum at a constant pulse velocity corresponding to the onset of continuous dispersion type operation. The value of this minimum varied linearly with the dispersed-phase flow rate. Measurements of holdup were correlated using the slip velocity concept, modified to allow for droplet coalescence. Values of the Sauter-mean droplet diameter were found to vary with the pulse velocity and holdup. It was shown that the ratio of the characteristic droplet velocity in a pulsed perforated-plate column to that in a spray column as derived from the correlation of Hu and Kintner is a function of the pulse velocity and holdup. This led to an expression which correlated the droplet size data with negligible error. Continuous-phase back mixing was found to increase with amplitude; frequency and dispersed-phase flow rate. The effect of the continuous-phase flow rate was variable. At low values, increasing the phase velocity reduced back mixing while at high values, an increase in the phase velocity had the reverse effect

  15. Sweet Spot Supersymmetry and Composite Messengers

    International Nuclear Information System (INIS)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-01-01

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10 5 GeV ∼ mess ∼ 10 GeV. Various values of the effective number of messenger fields N mess are possible depending on the choice of the gauge group

  16. Volume dips; spot price ranges narrow

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  17. Fast Keyword Spotting in Telephone Speech

    Directory of Open Access Journals (Sweden)

    J. Nouza

    2009-12-01

    Full Text Available In the paper, we present a system designed for detecting keywords in telephone speech. We focus not only on achieving high accuracy but also on very short processing time. The keyword spotting system can run in three modes: a an off-line mode requiring less than 0.1xRT, b an on-line mode with minimum (2 s latency, and c a repeated spotting mode, in which pre-computed values allow for additional acceleration. Its performance is evaluated on recordings of Czech spontaneous telephone speech using rather large and complex keyword lists.

  18. System for determining sizes of biological macromolecules

    International Nuclear Information System (INIS)

    Nelson, R.M.; Danby, P.C.

    1987-01-01

    An electrophoresis system for determining the sizes of radiolabelled biological macromolecules is described. It comprises a cell containing an electrophoresis gel and having at least one lane, a voltage source connected across the gel for effecting the movement of macromolecules in the lane, a detector fixed relative to the moving molecules for generating electrical pulses responsive to signals emitted by the radiolabelled molecules; a pulse processor for counting the pulse rate, and a computational device for comparing the pulse rate to a predetermined value. (author)

  19. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  20. Seven-spot ladybird optimization: a novel and efficient metaheuristic algorithm for numerical optimization.

    Science.gov (United States)

    Wang, Peng; Zhu, Zhouquan; Huang, Shuai

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  1. Society, demography and genetic structure in the spotted hyena.

    Science.gov (United States)

    Holekamp, Kay E; Smith, Jennifer E; Strelioff, Christopher C; Van Horn, Russell C; Watts, Heather E

    2012-02-01

    Spotted hyenas (Crocuta crocuta) are large mammalian carnivores, but their societies, called 'clans', resemble those of such cercopithecine primates as baboons and macaques with respect to their size, hierarchical structure, and frequency of social interaction among both kin and unrelated group-mates. However, in contrast to cercopithecine primates, spotted hyenas regularly hunt antelope and compete with group-mates for access to kills, which are extremely rich food sources, but also rare and ephemeral. This unique occurrence of baboon-like sociality among top-level predators has favoured the evolution of many unusual traits in this species. We briefly review the relevant socio-ecology of spotted hyenas, document great demographic variation but little variation in social structure across the species' range, and describe the long-term fitness consequences of rank-related variation in resource access among clan-mates. We then summarize patterns of genetic relatedness within and between clans, including some from a population that had recently gone through a population bottleneck, and consider the roles of sexually dimorphic dispersal and female mate choice in the generation of these patterns. Finally, we apply social network theory under varying regimes of resource availability to analyse the effects of kinship on the stability of social relationships among members of one large hyena clan in Kenya. Although social bonds among both kin and non-kin are weakest when resource competition is most intense, hyenas sustain strong social relationships with kin year-round, despite constraints imposed by resource limitation. Our analyses suggest that selection might act on both individuals and matrilineal kin groups within clans containing multiple matrilines. © 2011 Blackwell Publishing Ltd.

  2. High voltage pulse conditioning

    International Nuclear Information System (INIS)

    Springfield, R.M.; Wheat, R.M.

    1990-01-01

    This patent describes an apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close

  3. Transitional–turbulent spots and turbulent–turbulent spots in boundary layers

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-01-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304

  4. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-03

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  5. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  6. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  7. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  8. Triggered tremor sweet spots in Alaska

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  9. Hot-spot tectonics on Io

    Science.gov (United States)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  10. CHARACTERISATION OF SPOT WELD GROWTH ON DISSIMILAR JOINTS WITH DIFFERENT THICKNESSES

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-06-01

    Full Text Available A sound weld from spot welding is what most manufacturers desire and prefer for mechanical assemblies in their systems. The robustness is mainly attributed to the joining mechanism of mechanical parts. This paper focuses on the effect of parametric changes for dissimilar joints using 304 austenitic stainless steel and carbon steel of two different thicknesses. A pneumatic-based spot welder was used to accomplish the entire welding process. The parameters varied during the experiments are the welding current and welding time, while the electrode pressing force and electrode tip size are kept constant. The welding process began from a poor weld and moved on to a better weld by increasing the process parameters. However, this study is limited to the basic parametric variation to find the optimum parametric setup for 1 and 2 mm base metals. The welded specimens are subjected to tensile, hardness and metallurgical tests to characterise the spot weld growth for both thicknesses.

  11. Sharper focal spot formed by higher-order radially polarized laser beams.

    Science.gov (United States)

    Kozawa, Yuichi; Sato, Shunichi

    2007-06-01

    The intensity distributions near the focal point for radially polarized laser beams including higher-order transverse modes are calculated based on vector diffraction theory. For higher-order radially polarized mode beams as well as a fundamental mode (R-TEM01*) beam, the strong longitudinal component forms a sharper spot at the focal point under a high-NA focusing condition. In particular, double-ring-shaped radially polarized mode (R-TEM11*) beams can effectively reduce the focal spot size because of destructive interference between the inner and the outer rings with pi phase shift. Compared with an R-TEM01* beam focusing in a limit of NA=1, the full width at half-maximum values of the focal spot for an R-TEM11* beam are decreased by 13.6% for the longitudinal component and 25.8% for the total intensity.

  12. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  13. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  14. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    The effect of frequency and duty cycle of pulsed current was investigated. It was found that pulse frequency and duty cycle affect the size and porosity of nanocrystalline borides and by controlling these effective parameters, surface modification can render the CP-Ti material extremely corrosion resistant as a biomaterial.

  15. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  16. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  17. Competitive interactions and resource partitioning between northern spotted owls and barred owls in western Oregon

    Science.gov (United States)

    Wiens, J. David; Anthony, Robert G.; Forsman, Eric D.

    2014-01-01

    The federally threatened northern spotted owl (Strix occidentalis caurina) is the focus of intensive conservation efforts that have led to much forested land being reserved as habitat for the owl and associated wildlife species throughout the Pacific Northwest of the United States. Recently, however, a relatively new threat to spotted owls has emerged in the form of an invasive competitor: the congeneric barred owl (S. varia). As barred owls have rapidly expanded their populations into the entire range of the northern spotted owl, mounting evidence indicates that they are displacing, hybridizing with, and even killing spotted owls. The range expansion by barred owls into western North America has made an already complex conservation issue even more contentious, and a lack of information on the ecological relationships between the 2 species has hampered recovery efforts for northern spotted owls. We investigated spatial relationships, habitat use, diets, survival, and reproduction of sympatric spotted owls and barred owls in western Oregon, USA, during 2007–2009. Our overall objective was to determine the potential for and possible consequences of competition for space, habitat, and food between these previously allopatric owl species. Our study included 29 spotted owls and 28 barred owls that were radio-marked in 36 neighboring territories and monitored over a 24-month period. Based on repeated surveys of both species, the number of territories occupied by pairs of barred owls in the 745-km2 study area (82) greatly outnumbered those occupied by pairs of spotted owls (15). Estimates of mean size of home ranges and core-use areas of spotted owls (1,843 ha and 305 ha, respectively) were 2–4 times larger than those of barred owls (581 ha and 188 ha, respectively). Individual spotted and barred owls in adjacent territories often had overlapping home ranges, but interspecific space sharing was largely restricted to broader foraging areas in the home range

  18. Hyperspectral analysis of columbia spotted frog habitat

    Science.gov (United States)

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  19. A device for the color measurement and detection of spots on the skin

    Science.gov (United States)

    Pladellorens, Josep; Pintó, Agusti; Segura, Jordi; Cadevall, Cristina; Antó, Joan; Pujol, Jaume; Vilaseca, Meritxell; Coll, Joaquín

    2006-08-01

    In this work we present a new and fast easyâ€``to-use device which allows the measurement of color and the detection of spots on the human skin. The developed device is highly practical for relatively untrained operators and uses inexpensive consumer equipment, such as a CCD color camera, a light source composed of LEDs and a laptop. In order to perform these measurements the system takes a picture of the skin. After that, the operator selects the region of the skin to be analyzed on the image displayed and the system provides the CIELAB color coordinates, the chroma and the ITA parameter (Individual Tipology Angle), allowing the comparison with other reference images by means of the CIELAB color differences. The system also detects the spots, such as freckles, age spots, sun spots, pimples, black heads, etc., in a determined region, allowing the objective measurement of their size and area. The knowledge of the color of the skin and the detection of spots can be useful in several areas such as in dermatology applications, the cosmetics industry, the biometrics field, health care etc.

  20. Examination of spotted sand bass (Paralabrax maculatofasciatus pollutant bioaccumulation in San Diego Bay, San Diego, California

    Directory of Open Access Journals (Sweden)

    Chad L. Loflen

    2013-11-01

    Full Text Available The spotted sand bass (Paralabrax maculatofasciatus is an important recreational sport and subsistence food fish within San Diego Bay, a large industrialized harbor in San Diego, California. Despite this importance, few studies examining the species life history relative to pollutant tissue concentrations and the consumptive fishery exist. This study utilized data from three independent spotted sand bass studies from 1989 to 2002 to investigate PCB, DDT, and mercury tissue concentrations relative to spotted sand bass age and growth in San Diego Bay, with subsequent comparisons to published pollutant advisory levels and fishery regulations for recreational and subsistence consumption of the species. Subsequent analysis focused on examining temporal and spatial differences for different regions of San Diego Bay.Study results for growth confirmed previous work, finding the species to exhibit highly asymptotic growth, making tissue pollutant concentrations at initial take size difficult if not impossible to predict. This was corroborated by independent tissue concentration results for mercury, which found no relationship between fish size and pollutant bioaccumulation observed. However, a positive though highly variable relationship was observed between fish size and PCB tissue concentration.Despite these findings, a significant proportion of fish exhibited pollutant levels above recommended state recreational angler consumption advisory levels for PCBs and mercury, especially for fish above the minimum take size, making the necessity of at-size predictions less critical. Lastly, no difference in tissue concentration was found temporally or spatially within San Diego Bay.

  1. Pulse duration discriminator

    International Nuclear Information System (INIS)

    Kosakovskij, L.F.

    1980-01-01

    Basic circuits of a discriminator for discrimination of pulses with the duration greater than the preset one, and of a multifunctional discriminator allowing to discriminate pulses with the duration greater (tsub(p)>tsub(s)) and lesser (tsub(p) tsub(s) and with the duration tsub(p) [ru

  2. PULSE HEIGHT ANALYZER

    Science.gov (United States)

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  3. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  4. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  5. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  6. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  7. Magnetic Axis Drift and Magnetic Spot Formation in Neutron Stars with Toroidal Fields

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2018-01-01

    We explore magnetic field configurations that lead to the formation of magnetic spots on the surface of neutron stars and the displacement of the magnetic dipole axis. We find that a toroidally dominated magnetic field is essential for the generation of a single spot with a strong magnetic field. Once a spot forms, it survives for several million years, even after the total magnetic field has decayed significantly. We find that the dipole axis is not stationary with respect to the neutron star’s surface and does not in general coincide with the location of the magnetic spot. This is due to non-axisymmetric instabilities of the toroidal field that displace the poloidal dipole axis at rates that may reach 0.°4 per century. A misaligned poloidal dipole axis with the toroidal field leads to more significant displacement of the dipole axis than the fully aligned case. Finally we discuss the evolution of neutron stars with such magnetic fields on the P{--}\\dot{P} diagram and the observational implications. We find that neutron stars spend a very short time before they cross the Death Line of the P{--}\\dot{P} diagram, compared to their characteristic ages. Moreover, the maximum intensity of their surface magnetic field is substantially higher than the dipole component of the field. We argue that SGR 0418+5729 could be an example of this type of behavior, having a weak dipole field, yet hosting a magnetic spot responsible for its magnetar behavior. The evolution on the pulse profile and braking index of the Crab pulsar, which are attributed to an increase of its obliquity, are compatible with the anticipated drift of the magnetic axis.

  8. On the origin of pulsing X-ray emission of AE Aqr

    Science.gov (United States)

    Globina, V. I.; Ikhsanov, N. R.

    2017-12-01

    The cataclysmic variable AE Aquarii is a low-mass close binary system containing a red dwarf and a 33 s rotation period magnetic white dwarf which operates as a rotation-powered pulsar. The 33 s pulsations are detected in the optical, UV and X-rays. The 16.5 s harmonic is also present in the optical and UV. This pulsing emission comes from two hot spots (T p ∼ 26000 K) located in the regions of magnetic poles on the white dwarf surface. The nature of the X-ray pulsations of AE Aqr is still under discussion. No 16.5 s harmonic in X-ray is observed and the luminosity of the pulsing component in X-rays is significantly smaller than the luminosity of the pulsing component in the optical and UV. We suggest that the source of pulsing X-ray emission is also located in the magnetic pole region at the surface of the white dwarf and can be associated with a hot spot (T ∼ 106 ‑ 107 K). This spot is heated by the backflowing charged particles. However, the source of particles responsible for the heating the X-ray spot differs from the source of particles responsible for the heating the area emitting in the optical an UV.

  9. Enhanced performance of a repetitively pulsed 130 mJ KrF laser ...

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... Contributed Papers Volume 82 Issue 1 January 2014 pp 153-157 ... Abstract. Studies related to the effect of pre-ionizer on laser output energy of a repetitively pulsed KrF laser are presented. The dependence of laser output energy, spectral width and beam spot homogeneity on pre-ionization parameters, ...

  10. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  11. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  12. Spikes and memory in (Nord Pool) electricity price spot prices

    DEFF Research Database (Denmark)

    Proietti, Tomasso; Haldrup, Niels; Knapik, Oskar

    from the normal price, where the latter is defined as the expectation arising from a model accounting for long memory at the zero and at the weekly seasonal frequencies, given the knowledge of the past realizations. Hence, a spike is associated to a time series innovation with size larger than......Electricity spot prices are subject to transitory sharp movements commonly referred to as spikes. The paper aims at assessing their effects on model based inferences and predictions, with reference to the Nord Pool power exchange. We identify a spike as a price value which deviates substantially...... a specified threshold. The latter regulates the robustness of the estimates of the underlying price level and it is chosen by a data driven procedure that focuses on the ability to predict future prices. The normal price is computed by a modified Kalman filter, which robustifies the inferences by cleaning...

  13. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  14. Pulsed power for particle beam accelerators in military applications

    International Nuclear Information System (INIS)

    Smith, I.D.

    1980-01-01

    Techniques useful for generating and conditioning power for high energy pulsed accelerators with potential weapon applications are described. Pulsed electron accelerators are exemplified by ETA and ATA at Lawrence Livermore Laboratories and RADLAC at Sandia Laboratories Albuquerque. Pulse-power techniques used in other applications are briefly mentioned, including some that may be useful for collective ion accelerators. The limitations of pulse-power and the general directions of desirable development are illustrated. The main needs are to increase repetition rate and to decrease size

  15. SPOT: How good for geology? A comparison with LANDSAT MSS

    Science.gov (United States)

    Sesoeren, A.

    1986-12-01

    Geological interpretation possibilities of SPOT MSS and LANDSAT MSS positive prints enlarged to the same scale were compared, using as a test area part of the Jebel Amour (Algeria). The SPOT imagery offers many advantages, filling the gap between remote sensing from space and aerial photography. The best results by visual interpretation are obtained in combining SPOT for the required details with LANDSAT for the synoptic veiw. Further improvements are expected from the use of SPOT stereo-pairs.

  16. Spotted-Leaf Mutants of Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Qi-na HUANG

    2010-12-01

    Full Text Available Many rice spotted-leaf (spl mutants are ideal sources for understanding the mechanisms involved in blast resistance, bacterial blight resistance and programmed cell death in plants. The genetic controls of 50 spotted-leaf mutants in rice have been characterized and a few spotted-leaf genes have been isolated as well. This article reviews the origin, genetic modes, isolation and characterization of spotted-leaf genes responsible for their phenotypes, and their resistance responses to main rice diseases.

  17. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  18. A New Intermediate Far-Field Spot Design for Polar Direct Drive at the National Ignition Facility

    Science.gov (United States)

    Cao, D.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.

    2015-11-01

    New far-field spot shapes were required and subsequently designed for the intermediate phase plates that will be fielded at the National Ignition Facility for polar-direct-drive laser-coupling experiments. Two-dimensional DRACO simulations using the new far-field spot design, coupled with appropriate ring energies and beam pointing angles, achieve a high neutron yield-over-clean (YOC) ratio with a clean hot-spot radius averaging 50 μm and a convergence ratio (CR) above 17 when performed with a 1300- μm plastic shell target driven by a 700-kJ double-picket pulse. This meets the original design objectives of maintaining a clean hot spot with a CR of 17. The presented far-field spot shapes are based on an ignition polar-direct-drive configuration modeled with the iSNB nonlocal thermal transport model. In addition, the use of Multi-FM during the first two pickets does not hinder performance, but instead slightly improves the neutron yield. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. 7 CFR 27.93 - Bona fide spot markets.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Spot Markets § 27.93 Bona fide spot markets. The following markets have been determined, after investigation, and are hereby... 7 Agriculture 2 2010-01-01 2010-01-01 false Bona fide spot markets. 27.93 Section 27.93...

  20. Sowing rates for reforestation by the seed-spotting method

    Science.gov (United States)

    Gilbert H. Schubert; Harry A. Fowells

    1964-01-01

    Presents guides to determine the number of seeds to sow per spot and the number of spots required per acre to obtain acceptable stocking. Based on theoretical probabilities, these guides were found to be reasonably close to actual field results When the probability-of-success was at least 55 percent. To compensate for lower actual stocking, increase the number of spots...

  1. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  2. 7 CFR 28.421 - Good Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Spotted Color. 28.421 Section 28.421 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Good Middling Spotted Color is color which is better than Strict Middling Spotted Color. ...

  3. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  4. White Spot Syndrome Virus infection in Penaeus monodon is ...

    Indian Academy of Sciences (India)

    2013-11-06

    Nov 6, 2013 ... White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. ... has been increasingly hampered by white spot syndrome disease caused by White Spot ..... metabolic proteins have additional roles in immunity and transcriptional ...

  5. Spot-Welding Gun With Pivoting Twin-Collet Assembly

    Science.gov (United States)

    Nguyen, Francis; Simpson, Gareth; Hoult, William S.

    1996-01-01

    Modified spot-welding gun includes pivoting twin-collet assembly that holds two spot-welding electrodes. Designed to weld highly conductive (30 percent gold) brazing-alloy foils to thin nickel alloy workpieces; also suitable for other spot-welding applications compatible with two-electrode configuration.

  6. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  7. Great red spot dependence on solar activity

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1979-01-01

    A new inquiry has been made into the question of whether Jupiter's Great Red Spot shows a solar activity dependence. From 1892 to 1947 a clear correlation was present. A dearth of sightings in the seventeenth century, along with the Maunder Minimum, further supports the relation. An anticorrelation, however, from l948 to l967 removed support for such an effect. The old observations have reexamined and recent observations have also been studied. The author reexamines this difficult question and suggests a possible physical mechanism for a Sun-Jovian weather relation. Prinn and Lewis' conversion reaction of Phosphine gas to triclinic red phosphorous crystals is a reaction dependent upon solar radiation. It may explain the dependence found, as well as the striking appearance of the Great Red Spot in the UV

  8. SPS remanent radiation the warm spots

    CERN Document Server

    Billen, R

    1998-01-01

    The remanent radiation in the SPS ring is measured after each operational period. We all know very well the "hot spots" in the dedicated regions for particle injection and extraction. So far, not a lot of attention has been paid to those regions where there are clear traces of radiation, without an obvious reason. From an operational point of view, these regions might be quite important, since they could reveal a specific problem. This paper will look into those "warm spots", their location in the SPS ring and the transverse plane in which the radiation originates. Some classification of typical problem classes is made, as well as hints to the possible origins of the radiation problems.

  9. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  10. Sustainable control of white spot disease

    DEFF Research Database (Denmark)

    Heinecke, Rasmus Demuth; Buchmann, Kurt

    White spot disease caused by the ciliate Ichthyophthirius multifiliis Fouquet, 1876 is a serious problem in freshwater aquaculture worldwide. This parasitosis is of frequent occurrence in both conventional earth pond fish farms and in fish farms using new high technology re-circulation systems...... all had significant influences on parasite survival. Strategic treatment using the environmentally friendly chemical sodium percarbonate in combination with continuous micro-filtering of the pond water is suggested for control and management of this parasitosis....

  11. Heap hot spots visualization in Java

    OpenAIRE

    Mahdavi, Babak; Driesen, Karel

    2001-01-01

    Data memory (heap) management is a particularly important feature of the Java programming environment. The visualization of memory location in form of hot spots can help to see how the data cache is used during the execution of a program. The behavior of such executed program can be thus speculated. Through a series of experiments using Load and Store trace files, some pertinent aspect of data memory accessing, can be visualized, including the frequency of how often the Java virtual machine r...

  12. Forecasting European thermal coal spot prices

    Directory of Open Access Journals (Sweden)

    Alicja Krzemień

    2015-01-01

    Finally, in order to analyse the time series model performance a Generalized Regression Neural Network (GRNN was used and its performance compared against the whole AR(2 process. Empirical results obtained confirmed that there is no statistically significant difference between both methods. The GRNN analysis also allowed pointing out the main drivers that move the European Thermal Coal Spot prices: crude oil, USD/CNY change and supply side drivers.

  13. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  14. Pulse-width discriminators

    International Nuclear Information System (INIS)

    Budyashov, Yu.G.; Grebenyuk, V.M.; Zinov, V.G.

    1978-01-01

    A pulse duration discriminator is described which is intended for processing signals from multilayer scintillators. The basic elements of the scintillator are: an input gate, a current generator, an integrating capacitor, a Schmidt trigger and an anticoincidence circuit. The basic circuit of the discriminator and its time diagrams explaining its operating are given. The discriminator is based on microcircuits. Pulse duration discrimination threshold changes continuously from 20 to 100 ns, while its amplitude threshold changes within 20 to 100 mV. The temperature instability of discrimination thresholds (both in pulse width and in amplitude) is better than 0.1 per cent/deg C

  15. Radio frequency pulse compression

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1988-12-01

    High gradients require peak powers. One possible way to generate high peak powers is to generate a relatively long pulse at a relatively low power and compress it into a shorter pulse with higher peak power. It is possible to compress before dc to rf conversion as is done for the relativistic klystron or after dc to rf conversion as is done with SLED. In this note only radio frequency pulse compression (RFPC) is considered. Three methods of RFPC will be discussed: SLED, BEC, and REC. 3 refs., 8 figs., 1 tab

  16. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  17. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  18. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2017-09-26

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  19. DNA-nanostructure-assembly by sequential spotting

    Directory of Open Access Journals (Sweden)

    Breitenstein Michael

    2011-11-01

    Full Text Available Abstract Background The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid to incorporate advanced structures. Conclusions The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.

  20. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  1. Superluminal Spot Pair Events in Astronomical Settings: Sweeping Beams

    Science.gov (United States)

    Nemiroff, Robert J.

    2015-02-01

    Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events-they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when a real spot's speed toward the observer drops below c, while a virtual spot pair annihilation event will be observed when a real spot's radial speed away from the observer rises above c. Superluminal spot pair events might be found angularly, photometrically, or polarimetrically, and might carry useful geometry or distance information. Two example scenarios are briefly considered. The first is a beam swept across a scattering spherical object, exemplified by spots of light moving across Earth's Moon and pulsar companions. The second is a beam swept across a scattering planar wall or linear filament, exemplified by spots of light moving across variable nebulae including Hubble's Variable Nebula. In local cases where the sweeping beam can be controlled and repeated, a three-dimensional map of a target object can be constructed. Used tomographically, this imaging technique is fundamentally different from lens photography, radar, and conventional lidar.

  2. Ablative fractional carbon dioxide laser combined with intense pulsed light for the treatment of photoaging skin in Chinese population: A split-face study.

    Science.gov (United States)

    Mei, Xue-Ling; Wang, Li

    2018-01-01

    Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  3. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  4. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  5. Pulsed Lorentz Accelerator

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pulsed Lorentz Accelerator (PLA) is proposed to fill the propulsion gap for 6U and smaller satellites. The primary objective is to demonstrate the basic...

  6. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  7. Online measurement method for pulse amplitude in pulsed extraction columns

    International Nuclear Information System (INIS)

    Wang Xinghai; Li Shichang; Chen Jing

    2009-01-01

    Online measurement of pulse amplitude by air purge was studied. The pulse amplitude in a pulsed extraction column was calculated online by measurement of characteristic parameters of the signal's curve. The method can be used for calculation of different pulsed extraction columns. (authors)

  8. Realtime aspects of pulse-to-pulse modulation

    International Nuclear Information System (INIS)

    Steiner, R.; Riedel, C.; Roesch, W.

    1992-01-01

    The pulse-to-pulse modulation of the SIS-ESR control system is described. Fast response to operator interaction and to changes in process conditions is emphasized as well as the essential part played by the timing system in pulse-to-pulse modulation. (author)

  9. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  10. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  11. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  12. Ultrashort pulse induced nanogratings

    Directory of Open Access Journals (Sweden)

    Nolte Stefan

    2013-11-01

    Full Text Available When intense femtosecond laser pulses are focused into a glass substrate, self-organized periodic nanostructures, so-called nanogratings, are generated in a certain parameter regime. To clarify the ultimate structure of the nanogratings we employed focused ion beam (FIB milling and small angle X-ray scattering (SAXS. The results considerably show that voids are the primary constituents and their number increases with ongoing exposure to laser pulses. Potential applications will be highlighted.

  13. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass

    Science.gov (United States)

    Nordin, I. H. W.; Okamoto, Y.; Okada, A.; Jiang, H.; Sakagawa, T.

    2016-04-01

    Micro-welding characteristics of silicon and glass by pulsed lasers are described. In this study, four types of laser beam, which are nanosecond pulsed laser and picosecond pulsed laser of 532 and 1064 nm in wavelength, were used for joining monocrystalline silicon and glass. Influence of wavelength and pulse duration on micro-welding of monocrystalline silicon and glass was experimentally investigated under the same spot diameter, and the molten area of monocrystalline silicon and glass was characterized. Finally, the breaking strength was evaluated for the overlap weld joint with different pulse duration and wavelength. A splash area of molten silicon around the weld bead line was obvious in the nanosecond pulsed laser. On the other hand, there was no remarkable molten splash around the weld bead line in the picosecond pulsed laser. Breaking strength of specimens with 1064 nm wavelength was higher than with 532 nm wavelength in nanosecond laser, whereas breaking strength of laser-irradiated specimen by picosecond pulse duration was higher than that by nanosecond pulse duration. It is concluded that the combination of picosecond pulse duration and infrared wavelength leads to the stable molten area appearance of the weld bead and higher breaking strength in micro-welding of glass and monocrystalline silicon.

  14. ELIPGRID-PC: A PC program for calculating hot spot probabilities

    International Nuclear Information System (INIS)

    Davidson, J.R.

    1994-10-01

    ELIPGRID-PC, a new personal computer program has been developed to provide easy access to Singer's 1972 ELIPGRID algorithm for hot-spot detection probabilities. Three features of the program are the ability to determine: (1) the grid size required for specified conditions, (2) the smallest hot spot that can be sampled with a given probability, and (3) the approximate grid size resulting from specified conditions and sampling cost. ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-sheets or graphics software. The program has been successfully tested using Singer's published ELIPGRID results. An apparent error in the original ELIPGRID code has been uncovered and an appropriate modification incorporated into the new program

  15. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  16. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  17. Natal and breeding dispersal of northern spotted owls

    Science.gov (United States)

    Forsman, E.D.; Anthony, R.G.; Reid, J.A.; Loschl, P.J.; Sovern, S.G.; Taylor, M.; Biswell, B.L.; Ellingson, A.; Meslow, E.C.; Miller, G.S.; Swindle, K.A.; Thrailkill, J.A.; Wagner, F.F.; Seaman, D.E.

    2002-01-01

    We studied the dispersal behavior of 1,475 northern spotted owls (Strix occidentalis caurina) during banding and radio-telemetry studies in Oregon and Washington in 1985-1996. The sample included 324 radio-marked juveniles and 1,151 banded individuals (711 juveniles, 440 non-juveniles) that were recaptured or resighted after dispersing from the initial banding location. Juveniles typically left the nest during the last week in May and the first two weeks in June (x?? ?? SE = 8 June ?? 0.53 days, n = 320, range = 15 May-1 July), and spent an average of 103.7 days in the natal territory after leaving the nest (SE = 0.986 days, n = 137, range = 76-147 days). The estimated mean date that juveniles began to disperse was 19 September in Oregon (95% CI = 17-21 September) and 30 September in Washington (95% CI = 25 September-4 October). Mean dispersal dates did not differ between males and females or among years. Siblings dispersed independently. Dispersal was typically initiated with a series of rapid movements away from the natal site during the first few days or weeks of dispersal. Thereafter, most juveniles settled into temporary home ranges in late October or November and remained there for several months. In February-April there was a second pulse of dispersal activity, with many owls moving considerable distances before settling again in their second summer. Subsequent dispersal patterns were highly variable, with some individuals settling permanently in their second summer and others occupying a series of temporary home ranges before eventually settling on territories when they were 2-5 years old. Final dispersal distances ranged from 0.6-111.2 km for banded juveniles and 1.8-103.5 km for radio-marked juveniles. The distribution of dispersal distances was strongly skewed towards shorter distances, with only 8.7% of individuals dispersing more than 50 km. Median natal dispersal distances were 14.6 km for banded males, 13.5 km for radio-marked males, 24.5 km for

  18. X-ray topographic investigation of the deformation field around spots irradiated by FLASH single pulses

    Czech Academy of Sciences Publication Activity Database

    Wierzchowski, W.; Wieteska, K.; Balcer, T.; Klinger, D.; Sobierajski, R.; Zymierska, D.; Chalupský, Jaromír; Hájková, Věra; Burian, Tomáš; Gleeson, A.J.; Juha, Libor; Tiedtke, K.; Toleikis, S.; Vyšín, Luděk; Wabnitz, H.; Gaudin, J.

    2011-01-01

    Roč. 80, č. 10 (2011), s. 1036-1040 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : silicon * FLASH irradiation * x-ray topography * deformation fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.227, year: 2011

  19. Population dynamics of spotted owls in the Sierra Nevada, California

    Science.gov (United States)

    Blakesley, J.A.; Seamans, M.E.; Conner, M.M.; Franklin, A.B.; White, Gary C.; Gutierrez, R.J.; Hines, J.E.; Nichols, J.D.; Munton, T.E.; Shaw, D.W.H.; Keane, J.J.; Steger, G.N.; McDonald, T.L.

    2010-01-01

    from 1,865 observations of reproductive outcomes for female spotted owls. The proportion of subadult females among all territorial females of known age ranged from 0.00 to 0.25 among study areas and years. The proportion of subadults among female spotted owls was negatively related to reproductive output (no. of young fledged/territorial F owl) for ELD and SIE. Eldorado study area and LAS showed an alternate-year trend in reproductive output, with higher output in even-numbered years. Mean annual reproductive output was 0.988 ?? 0.154 for ELD, 0.624 ?? 0.140 for LAS, 0.478 ?? 0.106 for SIE, and 0.555 ?? 0.110 for SKC. Eldorado Study Area exhibited a declining trend and the greatest variation in reproductive output over time, whereas SIE and SKC, which had the lowest reproductive output, had the lowest temporal variation. Meta-analysis confirmed that reproductive output varied among study areas. Reproductive output was highest for adults, followed by second-year subadults, and then by first-year subadults. We used 842 marked subadult and adult owls to estimate population rate of change. Modeling indicated that ??t (??t is the finite rate of population change estimated using the reparameterized JollySeber estimator Pradel 1996) was either stationary (LAS and SIE) or increasing after an initial decrease (ELD and SKC). Mean estimated ??t for the 4 study areas was 1.007 (95 CI 0.9521.066) for ELD; 0.973 (95 CI 0.9461.001) for LAS; 0.992 (95 CI 0.9661.018) for SIE; and 1.006 (95 CI 0.9471.068) for SKC. The best meta-analysis model of population trend indicated that ?? varied across time but was similar in trend among the study areas. Our estimates of realized population change (??t; Franklin et al. 2004), which we estimated as the product 1 ?? ??3 ?? ??4 ?? .?? ??k -1, were based on estimates of ??t from individual study areas and did not require estimating annual population size for each study area. Trends represented the proportion of the population size in the first ye

  20. Dynamics of traveling reaction pulses

    International Nuclear Information System (INIS)

    Dovzhenko, A. Yu.; Rumanov, E. N.

    2007-01-01

    The growth of activator losses is accompanied by the decay of a traveling reaction pulse. In a ring reactor, this propagation threshold is present simultaneously with a threshold related to the ring diameter. The results of numerical experiments with pulses of an exothermal reaction reveal the transition from pulse propagation to a homogeneous hot regime, established regimes with periodic variations of the pulse velocity, and oscillatory decay of the pulse. When the medium becomes 'bistable' as a result of the variation in parameters, this factor does not prevent the propagation of pulses, but leads to changes in the pulse structure

  1. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  2. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  3. Incidence and common locations of Mongolian spots in newborns: a university hospital

    Directory of Open Access Journals (Sweden)

    Shajari H

    2007-11-01

    Full Text Available Background: Mongolian spots are the most frequently encountered pigmented lesions in newborns. The patches appear at birth or shortly there after, rarely later the MS in term newborns in always present at birth. The shape of MS was commonly either irregular or indefinite, with its borders gradually blending with the surrounding skin. The color most frequently observed in all ethnic groups was blue- green. For the Negro population the color was commonly greenish- blue the next most common color in the total population was blue- gray. Brown coloration in the form of brown specks on a back ground of blue was present in ten percent Negro Newborns. The most common location is the sacra- gluteal region, which frequently is the only part affected. MS occasionally are found in the extremities in those cases with extensive involvement, particularly in the shoulders. The presence of MS in the head or neck has been called aberrant Mongolian spot. The macula has been variously described as irregularly round, oval, roughly triangular, heart shaped, resembling a tennis racket, and angular. The size may vary from a dot of a few millimeters to six or more centimeters in diameter the mark of ten disappears during the first or second year of life. Those marks distant from the sacral region are said to be more apt to persist than the typical sacral one and the buttocks was the site of predilection. Its incidence varies from over 80% in Asians (Mongolian and Chinese to 10% of white infants. Only a limited number of studies were carried out in Iran. Our objective was to study Mongolian spots incidence and common locations in newborns at Shariati hospital."nMethods: During 2004-06, 2305 consecutive newborns were examined at Shariati hospital. Diagnosis of Mongolian spot was based on clinical impression with Pediatricians."nResults: Mongolian spot was observed in 11.4% neonates. The most frequent site of involvement is the sacral, followed by the gluteal area

  4. Laser spot detection based on reaction diffusion

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J. M.; Dormido, R.; Duro, N.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1-11, č. článku 315. ISSN 1424-8220 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser spot detection * laser beam detection * reaction diffusion models * Fitzhugh-Nagumo model * reaction diffusion computation * Turing patterns Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.677, year: 2016

  5. The fractal nature of vacuum arc cathode spots

    International Nuclear Information System (INIS)

    Anders, Andre

    2005-01-01

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion

  6. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  7. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  8. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    the hypothesis that a decrease in the size of food plates may lead to significant reductions in food waste from buffets. It supports and extends the set of circumstances in which a recent experiment found that reduced dinner plates in a hotel chain lead to reduced quantities of leftovers....

  9. Dramatic Change in Jupiter's Great Red Spot from Spacecraft Observations

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Rogers, John H.; Orton, Glenn S.; de Pater, Imke; Asay-Davis, Xylar; Carlson, Robert W.; Marcus, Philip S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500 nanometers, and increased spectral slope between 500 and 630 nanometers. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2 day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres.

  10. Application of laser spot cutting on spring contact probe for semiconductor package inspection

    Science.gov (United States)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan

    2017-12-01

    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  11. From SPOT 5 to Pleiades HR: evolution of the instrumental specifications

    Science.gov (United States)

    Rosak, A.; Latry, C.; Pascal, V.; Laubier, D.

    2017-11-01

    Image quality specifications should aimed to fulfil high resolution mission requirements of remote sensing satellites with a minimum cost. The most important trade-off to be taken into account is between Modulation Transfer Function, radiometric noise and sampling scheme. This compromise is the main driver during design optimisation and requirement definition in order to achieve good performances and to minimise the mission cost. For the SPOT 5 satellite, a new compromise had been chosen. The supermode principle of imagery (sampling at 2.5 meter with a pixel size of 5 meter) imp roves the resolution by a factor of four compared with the SPOT 4 satellite (10 meter resolution). This paper presents the image quality specifications of the HRG-SPOT 5 instrument. We introduce all the efforts made on the instrument to achieve good image quality and low radiometric noise, then we compare the results with the SPOT 4 instrument's performances to highlight the improvements achieved. Then, the in-orbit performance will be described. Finally, we will present the new goals of image quality specifications for the new Pleiades-HR satellite for earth observation (0.7 meter resolution) and the instrument concept.

  12. The effect of desogestrel, gestodene, and other factors on spotting and bleeding.

    Science.gov (United States)

    Rosenberg, M J; Waugh, M S; Higgins, J E

    1996-02-01

    Spotting and bleeding are among the most common side effects associated with oral contraceptive (OC) use and their occurrence is a prime determinant of whether a new user will continue to use OCs. Desogestrel and gestodene are two new progestins that were developed in part to minimize the occurrence of these side effects. Assessing the effect of these progestins is difficult, however, in part because their effects may be subtle, requiring a large sample size and possibly being overshadowed by other factors. To address these issues, we analyzed data from two comparative multicenter clinical trials that included 15,421 cycles among 2767 women. One study compared 75 micrograms gestodene + 30 micrograms ethinyl estradiol (EE) with 150 micrograms desogestrel + 30 micrograms EE, the other compared the same gestodene preparation with 150 micrograms desogestrel + 20 micrograms EE. Both studies found a higher risk of spotting or bleeding in all cycles among users of the desogestrel-containing preparation, with the differences ranging between 20% and 70% higher for the first study and 40% and 140% in the second. These differences were statistically significant in four of six cycles in each study and persisted after controlling for consistency and recency of OC use as well as smoking. After pooling the data and controlling for estrogen dose, the desogestrel-containing preparation was significantly associated with more frequent spotting or bleeding in five of six cycles. Smoking and consistency and recency of OC use were also independent predictors of spotting or bleeding.

  13. HydroPulse Drilling

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  14. Performance of an app measuring spot quality in dried blood spot sampling

    NARCIS (Netherlands)

    Veenhof, Herman

    2016-01-01

    Introduction: The Dried Blood Spot sampling (DBS) method gives patients and health care workers the opportunity for remote sampling using a drop of blood from a fingerprick on a sampling card which can be send to the laboratory by mail. Laboratory analysts frequently reject DBS samples because of

  15. Cold Spots in Neonatal Incubators Are Hot Spots for Microbial Contamination▿

    Science.gov (United States)

    de Goffau, Marcus C.; Bergman, Klasien A.; de Vries, Hendrik J.; Meessen, Nico E. L.; Degener, John E.; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    2011-01-01

    Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments. We therefore investigated whether the level of microbial contamination (i.e., the bacterial load) inside neonatal incubators can be predicted on the basis of their average temperature and relative humidity settings, paying special attention to local temperature differences. Swab samples were taken from the warmest and coldest spots found within Caleo incubators, and these were plated to determine the number of microbial CFU per location. In incubators with high average temperature (≥34°C) and relative humidity (≥60%) values, the level of microbial contamination was significantly higher at cold spots than at hot spots. This relates to the fact that the local equilibrium relative humidity at cold spots is sufficiently high to sustain microbial growth. The abundance of staphylococci, which are the main causative agents of late-onset sepsis in preterm neonates, was found to be elevated significantly in cold areas. These findings can be used to improve basic incubator hygiene. PMID:22003021

  16. Cold spots in neonatal incubators are hot spots for microbial contamination.

    Science.gov (United States)

    de Goffau, Marcus C; Bergman, Klasien A; de Vries, Hendrik J; Meessen, Nico E L; Degener, John E; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2011-12-01

    Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments. We therefore investigated whether the level of microbial contamination (i.e., the bacterial load) inside neonatal incubators can be predicted on the basis of their average temperature and relative humidity settings, paying special attention to local temperature differences. Swab samples were taken from the warmest and coldest spots found within Caleo incubators, and these were plated to determine the number of microbial CFU per location. In incubators with high average temperature (≥ 34°C) and relative humidity (≥ 60%) values, the level of microbial contamination was significantly higher at cold spots than at hot spots. This relates to the fact that the local equilibrium relative humidity at cold spots is sufficiently high to sustain microbial growth. The abundance of staphylococci, which are the main causative agents of late-onset sepsis in preterm neonates, was found to be elevated significantly in cold areas. These findings can be used to improve basic incubator hygiene.

  17. Evidence for the spotting hypothesis in gymnasts.

    Science.gov (United States)

    Heinen, Thomas

    2011-04-01

    The goal of this study was to investigate the visual spotting hypothesis in 10 experts and 10 apprentices as they perform back aerial somersaults from a standing position with no preparatory jumps (short flight duration condition) and after some preparatory jumps with a flight time of 1s (long flight duration condition). Differences in gaze behavior and kinematics were expected between experts and apprentices and between experimental conditions. Gaze behavior was measured using a portable and wireless eye-tracking system in combination with a movement-analysis system. Experts exhibited a smaller landing deviation from the middle of the trampoline bed than apprentices. Experts showed higher fixation ratios during the take-off and flight phase. Experts exhibited no blinks in any of the somersaults in both conditions, whereas apprentices showed significant blink ratios in both experimental conditions. The findings suggest that gymnasts can use visual spotting during the back aerial somersault, even when the time of flight is delimited. We conclude that knowledge about gaze-movement relationships may help coaches develop specific training programs in the learning process of the back aerial somersault.

  18. Hot spot exercise: 1975 (HSX-75)

    International Nuclear Information System (INIS)

    Trolan, R.T.; Wilson, R.L.; Jessen, F.W.

    1976-01-01

    A special unannounced exercise, called HOT SPOT Exercise--1975 (HSX-75), was prepared to test the general capability of the LLL ALERT Program to activate and deploy the LLL and Sandia Laboratory, Livermore (SLL) component of the ERDA/ARG. The exercise activities were limited to the LLL facilities in Livermore and the Site 300 explosive test facility located approximately 15 miles southeast of Livermore. The exercise simulated an accident at a U.S. Army storage facility (Site 300). The simulated accident involved two LLL designed weapons (W-70). One weapon was dropped during unloading operations and ignited the gas tank of the weapon transporter. The subsequent fire caused a low-order detonation of the high explosive component. The fire caused dispersal of fissile material downwind from the site. A second weapon was damaged in the explosion by fragments from the first weapon. The extent of damage to the second weapon was initially unknown. The exercise was conducted on September 23, 1975. A complete description of the specific nature of the simulated accident is contained in the scenario. Umpires were assigned to evaluate and subsequently report on the effectiveness of the response. All test objectives were accomplished. The following appendices are included: operational safety procedures, photographs and site map, HOT SPOT equipment, atmospheric release advisory capability, personnel list, chronology of events, and critique comments

  19. Senzorové uzly Java Sun SPOT

    OpenAIRE

    Malina, Karel

    2010-01-01

    Tato bakalářská práce se zabývá využitím senzorových uzlů Java Sun Spot pro vícebodové bezdrátové sledování teploty a její regulace pomocí těchto uzlů. V teoretické části je uveden popis, složení a ovládání senzorových uzlů Java Sun Spot. V praktické části jsou uvedeny naprogramované aplikace, ve vývojovém prostředí NetBeans, pro bezdrátové sledování teploty, kapacity baterie a jejich zobrazení na hostitelském počítači ve formě grafu. Ve druhé části praktické části je popsán způsob regulace t...

  20. Resistance to leaf spot disease in peanut

    International Nuclear Information System (INIS)

    Soriano, J.D.

    1988-01-01

    Full text: Leaf spot disease causes defoliation of peanut plants during pod development thereby reducing yield. To induce mutations for resistance to the disease, dormant seeds of peanut were irradiated with 10-40 kR gamma rays with pre- and post-irradiation treatments to minimize radiation damage. Spores of the causal fungi, Cercospora arachidicola Hori and Cercosporidium personatum (B and C) Deigh., were cultured under asceptic conditions in PDA medium with 2-3 drops of 10% table salt solution to enhance development of spores. The first two leaves of M 2 seedlings were hand-inoculated two or three times in the field at one week intervals. Out of a total of 2,453 M 2 seedlings inoculated thrice, 9 plants showed complete resistance based on degree of infection. However, after recurrent selection, only 3 M 5 lines gave complete resistance, the rest exhibiting only intermediate resistance. The disease resistant lines yielded almost twice as much as several commercial varieties due to extensive leaf defoliation in the latter. One of the mutant lines is being crossed with some popular susceptible varieties. Inheritance studies showed that leaf spot resistance is governed by two recessive mutant genes acting complementary. The F 2 ratio was close to 15:1. The mutant lines are presently evaluated through the Bureau of Plant Industry before seeds are distributed to peanut growers. (author)

  1. A new index for electricity spot markets

    International Nuclear Information System (INIS)

    Falbo, Paolo; Fattore, Marco; Stefani, Silvana

    2010-01-01

    Different indexes are used in electricity markets worldwide to represent the daily behavior of spot prices. However, the peculiarities of these markets require a careful choice of the index, based on mathematical formulation and its statistical properties. Choosing a bad index may influence the financial policies of market players, since derivative pricing and hedging performance can be deeply affected. In this paper with an initial theoretical analysis, we intend to show that the most widely used indexes (simple arithmetic average and weighted average with current volumes) are poor representatives of the spot market. We will then perform an analysis of the hedging strategy on a derivative instrument (an Asian option) written on a reference index. The resulting simulations, applied to OMEL (Spain) and EEX (Germany), are sufficiently clear cut to suggest that the decision to adopt an index to represent properly a market must be taken very carefully. Finally we will propose a new index (FAST index) and, after comparing it with the previous indexes, will show that both theoretically and practically this index can be taken as a good electricity market synthetic indicator. (author)

  2. Current Extensions on PULSE

    Directory of Open Access Journals (Sweden)

    Sanda Dragos

    2010-09-01

    Full Text Available Using a learning management system (LMS is a common practise nowadays. Such instruments are used in educational institutions to enhance and support the teaching act as well as in industry for training purposes. In a computer science department of an university such instrument tends to be a basic requirement. That is because not only it allows a better management of courses and a better communication between students and professors, but can also serve as a perfect instrument for presenting teaching related materials for computer science subjects. During the years I have created and used several such instruments: a System with Interactive ackNowledgement and Evaluation of students work during laboratory sessions (SINE, a Php Utility used in Laboratories for Student Evaluation (PULSE, and PULSE Extended. The aim of this paper is to present the current enhancements of PULSE.

  3. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  4. Medical students’ attitudes and perspectives regarding novel computer-based practical spot tests compared to traditional practical spot tests

    Science.gov (United States)

    Wijerathne, Buddhika; Rathnayake, Geetha

    2013-01-01

    Background Most universities currently practice traditional practical spot tests to evaluate students. However, traditional methods have several disadvantages. Computer-based examination techniques are becoming more popular among medical educators worldwide. Therefore incorporating the computer interface in practical spot testing is a novel concept that may minimize the shortcomings of traditional methods. Assessing students’ attitudes and perspectives is vital in understanding how students perceive the novel method. Methods One hundred and sixty medical students were randomly allocated to either a computer-based spot test (n=80) or a traditional spot test (n=80). The students rated their attitudes and perspectives regarding the spot test method soon after the test. The results were described comparatively. Results Students had higher positive attitudes towards the computer-based practical spot test compared to the traditional spot test. Their recommendations to introduce the novel practical spot test method for future exams and to other universities were statistically significantly higher. Conclusions The computer-based practical spot test is viewed as more acceptable to students than the traditional spot test. PMID:26451213

  5. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    Science.gov (United States)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  6. Combining geometric matching with SVM to improve symbol spotting

    Science.gov (United States)

    Nayef, Nibal; Breuel, Thomas M.

    2013-01-01

    Symbol spotting is important for automatic interpretation of technical line drawings. Current spotting methods are not reliable enough for such tasks due to low precision rates. In this paper, we combine a geometric matching-based spotting method with an SVM classifier to improve the precision of the spotting. In symbol spotting, a query symbol is to be located within a line drawing. Candidate matches can be found, however, the found matches may be true or false. To distinguish a false match, an SVM classifier is used. The classifier is trained on true and false matches of a query symbol. The matches are represented as vectors that indicate the qualities of how well the query features are matched, those qualities are obtained via geometric matching. Using the classification, the precision of the spotting improved from an average of 76.6% to an average of 97.2% on a database of technical line drawings.

  7. Spot: A Programming Language for Verified Flight Software

    Science.gov (United States)

    Bocchino, Robert L., Jr.; Gamble, Edward; Gostelow, Kim P.; Some, Raphael R.

    2014-01-01

    The C programming language is widely used for programming space flight software and other safety-critical real time systems. C, however, is far from ideal for this purpose: as is well known, it is both low-level and unsafe. This paper describes Spot, a language derived from C for programming space flight systems. Spot aims to maintain compatibility with existing C code while improving the language and supporting verification with the SPIN model checker. The major features of Spot include actor-based concurrency, distributed state with message passing and transactional updates, and annotations for testing and verification. Spot also supports domain-specific annotations for managing spacecraft state, e.g., communicating telemetry information to the ground. We describe the motivation and design rationale for Spot, give an overview of the design, provide examples of Spot's capabilities, and discuss the current status of the implementation.

  8. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  9. Millimicrosecond pulse techniques

    CERN Document Server

    Lewis, Ian A D

    1959-01-01

    Millimicrosecond Pulse Techniques, Second Edition focuses on millimicrosecond pulse techniques and the development of devices of large bandwidth, extending down to comparatively low frequencies (1 Mc/s). Emphasis is on basic circuit elements and pieces of equipment of universal application. Specific applications, mostly in the field of nuclear physics instrumentation, are considered. This book consists of eight chapters and opens with an introduction to some of the terminology employed by circuit engineers as well as theoretical concepts, including the laws of circuit analysis, Fourier analysi

  10. Long Pulse Technology Tokamak

    International Nuclear Information System (INIS)

    Jernigan, T.C.

    1978-01-01

    The LPTT tokamak is a non-circular tokamak (R = 1.5 m, a = .45 m) proposed by ORNL for extended pulse operation at high β (5%) and reactor level wall power loading (40 w/cm 2 ). The toroidal field coils are superconducting and a super-conducting bundle divertor is proposed for active impurity control. All systems are designed for continuous operation which will provide pulse lengths > 20 seconds with a 6 to 10 weber flux swing. Experimental access and flexibility in operation are primary design goals

  11. Single-shot pulse duration and intensity diagnostic for 10-ps MeV gamma pulses based on interferometry

    Science.gov (United States)

    Peng, Bo-dong; Hei, Dong-wei; Song, Yan; Liu, Jun; Zhao, Jun

    2018-04-01

    To measure the temporal width and the intensity evolution versus time of a MeV gamma pulse generated by a Compton Scatter Source, a time-space conversion method is proposed. This design is based on the consideration that the temporal length of the MeV pulse is proportional to the spatial length of the pulse in a certain semiconductor. The spatial length and the intensity evolution versus time of the MeV pulse can be obtained by recording the region of the refractive index change that is induced by the MeV pulse. The simulation suggests that the equivalent temporal spread of a mono-energy MeV δ pulse in a bulk semiconductor is on the order of picoseconds and does not vary significantly with photon energy and material type. According to our analysis, the excess carrier generation time, excess carrier diffusion and recombination do not significantly influence the temporal resolution of this method. The temporal response of the refractive index change to a MeV pulse is also fast enough to meet the measurement requirements. The signal generation process for measuring a 10-ps MeV pulse with a 200-fs probe beam is analyzed, revealing that the transverse size of the MeV pulse does not influence the temporal resolution of this method.

  12. Bier’s spots with onset in childhood*

    Science.gov (United States)

    Portocarrero, Larissa Karine Leite; Saraiva, Maria Isabel Ramos; Barbosa, Marcella Amaral Horta; Veronez, Isis Suga; Swiczar, Bethania Cabral Cavalli; Valente, Neusa Yuriko Sakai

    2016-01-01

    Bier spots are small, irregular, hypopigmented macules that are usually found on the arms and legs. The macules disappear when the limb is raised. Bier spots have been reported in association with a number of conditions but there is no consistent association to specific desease. Although they usually affect young adults, we report a case of Bier spots that began in childhood. As an asymptomatic and possibly transitional condition, the disease does not require treatment. PMID:28300906

  13. Dynamic characterization of the CT angiographic 'spot sign'.

    Directory of Open Access Journals (Sweden)

    Santanu Chakraborty

    Full Text Available BACKGROUND AND PURPOSE: Standard (static CT angiography is used to identify the intracerebral hemorrhage (ICH spot sign. We used dynamic CT-angiography to describe spot sign characteristics and measurement parameters over 60-seconds of image acquisition. METHODS: We prospectively identified consecutive patients presenting with acute ICH within 4.5 hours of symptom onset, and collected whole brain dynamic CT-angiography (dCTA. Spot parameters (earliest appearance, duration, maximum Hounsfield unit (HU, time to maximum HU, time to spot diagnostic definition, spot volume and hematoma volumes were measured using volumetric analysis software. RESULT: We enrolled 34 patients: three were excluded due to secondary causes of ICH. Of the remaining 31 patients there were 18 females (58% with median age 70 (range 47-86 and baseline hematoma volume 33 ml (range 0.7-103 ml. Positive dCTA spot sign was present in 13 patients (42% visualized as an expanding 3-dimensional structure temporally evolving its morphology over the scan period. Median time to spot appearance was 21 s (range 15-35 seconds. This method allowed tracking of spots evolution until the end of venous phase (active extravasation with median duration of 39 s (range 25-45 seconds. The average density and time to maximum density was 204HU and 30.8 s (range 23-31 s respectively. Median time to spot diagnosis was 20.8 s using either 100 or 120HU definitions. CONCLUSION: Dynamic CTA allows a 3-dimensional assessment of spot sign formation during acute ICH, and captured higher spot sign prevalence than previously reported. This is the first study to describe and quantify spot sign characteristics using dCTA; these can be used in ongoing and upcoming ICH studies.

  14. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  15. Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses.

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-07-04

    Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.

  16. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  17. Pulsed high-energy radiographic machine emitting x-rays: PHERMEX

    International Nuclear Information System (INIS)

    Dick, R.D.

    1976-01-01

    The PHERMEX facility that is used to provide radiography of explosives and explosive-driven systems is described. This facility allows precision flash radiography of large objects containing high atomic number materials. The facility consists of a high-current, three-cavity, 27-MeV linear electron accelerator; a 13.5-MW radiofrequency power source; a timing, firing, and signal detection system; and a data acquisition system. PHERMEX was built in the early part of the 1960s to complement other hydrodynamics facilities at Los Alamos and to implement studies related to shock waves, detonation, and other hydrodynamic phenomena. After 15 y of operation and several thousand explosive shots later, PHERMEX has proven to be a very important diagnostic tool in the study of hydrodynamic systems. The attractive features of PHERMEX are the following: very intense submicrosecond 27-MeV bremsstrahlung radiation; 1-mm diam spot size; 100 R at 1 m from a 200-ns pulse; precise determination of edges, discontinuities, and areal mass distribution; and flash radiographs of large explosive systems close to the target

  18. Neurocognitive effects after brief pulse and ultrabrief pulse unilateral electroconvulsive therapy for major depression: a review.

    Science.gov (United States)

    Verwijk, Esmée; Comijs, Hannie C; Kok, Rob M; Spaans, Harm-Pieter; Stek, Max L; Scherder, Erik J A

    2012-11-01

    Neurocognitive functioning is well known to be affected after ECT. However quantified data about the severity of the cognitive impairment after ultrabrief pulse and brief pulse ECT are limited, which makes it hard to judge its clinical relevance. To review all prospective studies using right unilateral (ultra) brief pulse index electroconvulsive therapy published up until February 2011 which used at least one instrument for cognitive assessment before and after ECT. The severity and persistence of neurocognitive side effects immediately (one to seven days post ECT), between one and six months and after six months post ECT were assessed by calculating effect sizes using Cohen's d. Ten studies fulfilled the inclusion criteria and provided detailed information to compute effect sizes. The results indicate loss of autobiographical memory and impairment of verbal fluency, anterograde verbal and non-verbal memory immediately after brief pulse RUL ECT. To a lesser extent impairment of working memory and reduced speed of processing is found. Autobiographical memory is the only domain still being impaired between one and six months post ECT, but improved in this period. Verbal fluency normalized to baseline performance between one and six months post ECT whereas anterograde verbal and non-verbal memory normalized or even improved. Speed of processing improved within six months after ECT. Long-term data on these cognitive domains were not available. Based on two of the ten included studies the results suggest that ultrabrief pulse RUL ECT causes less decline in autobiographical and anterograde memory after ECT than brief pulse RUL ECT. This review may be limited because of the small number of included studies and due to unreliable effect sizes. Furthermore, few data were available for non-memory domains and cognitive functioning after six months. Loss of autobiographical memory is still present between one and six months after unilateral brief pulse ECT. Ultrabrief pulse RUL

  19. Nanosecond pulsed laser ablation of silicon in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, R.; Anvari, J.Z.; Mansour, N. [Shahid Beheshti University, Department of Physics, Tehran (Iran)

    2009-03-15

    Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface's ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent. (orig.)

  20. Pulse power modulators - an overview

    International Nuclear Information System (INIS)

    Venkatramani, N.

    2006-01-01

    Pulse power modulators are electronic devices to provide, high voltage, high current, power bursts. Ideally, a modulator, with the means to shape and control the pulses, acts as a switch between a high voltage power supply and its load. This article gives an overview of the pulse power modulators: starting with the basics of pulse and modulation, it covers modulation topologies, different types of modulators, major subsystems and pulse measurement techniques. The various applications of pulse power modulators and the recent trends have been included at the end. (author)

  1. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  2. Development of pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Masaki; Kawasuso, Atsuo; Itoh, Hisayoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Masuno, Shinichi [Mitsubishi Electric Engineering Company Limited, Tokyo (Japan); Hirano, Takeshi; Kondo, Masakazu [Mitsubishi Electric Corporation, Tokyo (Japan); Okada, Sohei [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan)

    2003-03-01

    We have developed a high-energy pulsed positron beam apparatus employing an RF acceleration method in order to apply positron annihilation lifetime spectroscopy (PALS) studies to bulk materials at high-temperature and/or high-pressure conditions. This apparatus contains a slow positron pulsing system and a radio frequency (RF) acceleration cavity. Performance tests were carried out using electron and positron beams. Beam energy ({approx}1 MeV), s beam size ({phi} 0.5 mm) and a beam transmission are as good as expectations of machine design. In the time structures of accelerated beam, satellite pulses superposed on broad pulses were observed. In order to make PULS measurement using RF cavity, it is important to form a high quality beam with single fine pulses by refine of the bunching system and the RF source driven with high duty ratio. (author)

  3. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  4. Differential pulse code modulation

    Science.gov (United States)

    Herman, C. F. (Inventor)

    1976-01-01

    A differential pulse code modulation (DPCM) encoding and decoding method is described along with an apparatus which is capable of transmission with minimum bandwidth. The apparatus is not affected by data transition density, requires no direct current (DC) response of the transmission link, and suffers from minimal ambiguity in resolution of the digital data.

  5. Pulsed Power Supply.

    Science.gov (United States)

    The patent describes a step-up power supply which is provided by a plurality of transistors arranged to drive respective, equal turn primary windings...winding, thus maximizing the total voltage applied to the transformer. The power supply amplifies pulses from a blocking oscillator to drive a tuned-plate, tuned-grid transmitter.

  6. Analog pulse processor

    Science.gov (United States)

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  7. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  8. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    International Nuclear Information System (INIS)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 μs, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1 + to 4 + . The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  9. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  10. Design of the pulse rod drive mechanism for pulsed reactor

    International Nuclear Information System (INIS)

    You Keyi

    1988-07-01

    The pulse rod drive mechanism is a critical movable device for a pulsed reactor. It is an executor under pulse operations, and it may be used in a shim rod under steady-state operations. The pneumatic-electromechanical driving method is taken in the designing. The structure, operating, calculation of parameters and designing methods of the pulse rod drive mechanism are briefly described in this paper. The testing results of the prototypical mechanism are also presented

  11. Efficacy of 'fine' focal spot imaging in CT abdominal angiography

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Lawrence Chia Wei; Devapalasundaram, Ashwini; Ardley, Nicholas [Monash Health, Department of Diagnostic Imaging, Clayton, Victoria (Australia); Lau, Kenneth K. [Monash Health, Department of Diagnostic Imaging, Clayton, Victoria (Australia); Monash University, Department of Medicine, Faculty of Medicine, Nursing, and Health Sciences, Victoria (Australia); Buchan, Kevin [Phillips Healthcare, Clinical Science, PO Box 312, Mont Albert, Victoria (Australia); Huynh, Minh [RMIT University, School of Mathematical and Geospatial Sciences, Victoria (Australia)

    2014-12-15

    To assess the efficacy of fine focal spot imaging in calcification beam-hardening artefact reduction and vessel clarity on CT abdominal angiography (CTAA). Adult patients of any age and gender who presented for CTAA were included. Thirty-nine patients were examined with a standard focal spot size (SFSS) of 1 x 1 mm in the first 3 months while 31 consecutive patients were examined with a fine focal spot size (FFSS) of 1 x 0.5 mm in the following 3 months. Vessel clarity and calcification beam-hardening artefacts of the abdominal aorta, celiac axis, superior mesenteric artery, inferior mesenteric artery, renal arteries, and iliac arteries were assessed using a 5-point grading scale by two blinded radiologists randomly. Cohen's Kappa test indicated that on average, there was substantial agreement among reviewers for vessel wall clarity and calcification artefact grading. Mann-Whitney test showed that there was a significant difference between the two groups, with FFSS performing significantly better for vessel clarity (U, 6481.50; p < 0.001; r, 0.73) and calcification artefact reduction (U, 1916; p < 0.001; r, 0.77). Fine focus CT angiography produces images with better vessel wall clarity and less vessel calcification beam-hardening artefact. (orig.)

  12. Qualitative research ethics on the spot

    DEFF Research Database (Denmark)

    Sørensen, Nelli Øvre; Øye, Christine; Glasdam, Stinne

    2015-01-01

    , the article explores and discusses research ethical dilemmas. Objectives and ethical considerations: First, and especially, the article addresses the challenges for gatekeepers who influence the informant’s decisions to participate in research. Second, the article addresses the challenges in following...... research ethical guidelines related to informed consent and doing no harm. Third, the article argues for the importance of having research ethical guidelines and review boards to question and discuss the possible ethical dilemmas that occur in qualitative research. Discussion and conclusion: Research...... ethics must be understood in qualitative research as relational, situational, and emerging. That is, that focus on ethical issues and dilemmas has to be paid attention on the spot and not only at the desktop....

  13. Dispersion of hot spots in steam generators

    International Nuclear Information System (INIS)

    Achenbach, E.J.

    1988-01-01

    The streamwise development of hot spots in a helical type heat exchanger has been treated experimentally and theoretically as well. Velocity profiles across the bundle have been measured varying the Reynolds number, Re, from 10 3 to 1.35 x 10 5 . Pressurized air or helium have been applied as coolant. In an additional series of tests the length scale parameter of the turbulence structure has been determined. It is correlated with the turbulent Peclet number, Pe t , which occurs in the basic equation as an unknown parameter. Its value was found to be independent of Re (Pe t = 8.2). Introducing this value leads to a good agreement of theoretical and experimental results. (author)

  14. Superconductors for fusion magnets tested under pulsed field in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Bottura, L.; Katheder, H.; Blau, B.; Rohleder, I.; Vecsey, G.

    1995-01-01

    The SULTAN III test facility has been upgraded with a pair of pulsed field coils to carry out AC losses and stability experiments under full operating loads on large size, fusion conductors for ITER. A fast data aquisition system records the conductor behaviour under fast field transient. The commissioning results of the pulsed coils and instrumentation are critically discussed and the test capability of the set up is assessed. (orig.)

  15. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  16. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  17. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  18. Research on the compensation of laser launch optics to improve the performance of the LGS spot.

    Science.gov (United States)

    Liu, Jie; Wang, Jianli; Wang, Yuning; Tian, Donghe; Zheng, Quan; Lin, Xudong; Wang, Liang; Yang, Qingyun

    2018-02-01

    To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4.07 arcseconds to 3.52 arcseconds. With the compensation, an improved guide star spot can be obtained, which is crucial for the adaptive optics systems of ground-based large telescopes.

  19. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  20. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  1. Rhizosphere size

    Science.gov (United States)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  2. [The spotted sterile male--a new mutation of dominant spotting on the mouse chromosome 5].

    Science.gov (United States)

    Blandova, Z K; Vakhrusheva, M P; Malashenko, A M; Osipov, V V

    1986-06-01

    Spotted sterile male - a new mutation in mice is described (tentative symbol Ssm). White spotting on the belly, legs and tail as well as sterility in heterozygous males Ssm/+ of the B10.M strain are caused by autosomal semidominant gene Ssm. The gene is localized on the 5 chromosome: the frequency of recombination between Ssm and go is 13.6 +/- 1.6%; Ssm is closely linked to Wv. The diheterozygotes Ssm+/+Wv are darkeyed white sterile mice. The deficiency of spermatogenic epithelium cells, emptyness of seminiferous tubules as well as interstitial tissue overgrowing occurred in the testis in sterile males Ssm/+ of B10.M. The fertile hybrid males Ssm/+ are obtained in outcrossing of females Ssm/+ of B10.M with males of YT/Y, CBA/CaY, DBA/2JY, A.CA/Y strains.

  3. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack.

  4. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    Spot heating; overloading; fatigue crack growth retardation; residual stress; delay cycles. ... It is observed that the extent of crack growth retardation increases with increasing level of overload as well as with increasing spot temperature. It is also ... Manuscript received: 29 November 2001; Manuscript revised: 24 June 2002 ...

  5. Inheritance of resistance to angular leaf spot in yellow beans ...

    African Journals Online (AJOL)

    Angular leaf spot (Phaeoisariopsis griseola (Sacc) is an important disease of common bean (Phaseolus vulgaris L.) in most parts of Africa, causing yield losses of 40-80%. This study was carried out to determine the inheritance of resistance to angular leaf spot in yellow beans. Biparental crosses were done between ...

  6. Spatial Analysis of Accident Spots Using Weighted Severity Index ...

    African Journals Online (AJOL)

    Weighted Severity Index (WSI) was created based on these factors/drivers. Also, Density-based Clustering for Traffic Accident Risk (DBCTAR) was carried out to assist in ascertaining the distribution of Black Spots Severity (BSS). Results obtained include: shortestpath analysis, service area analysis, accident spot severity ...

  7. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack growth retardation ...

  8. Identification of electricity spot models by using convolution particle filter

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.

    2011-01-01

    We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modied spot model. Using the martingale property of the modied price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. As the futures

  9. Food habits of Mexican Spotted Owls in Arizona

    Science.gov (United States)

    Joseph L. Ganey

    1992-01-01

    The Spotted Owl (Strix occidentalis) is most common in mature and old-growth coniferous forests throughout much of its range (Forsman et al. 1984, Laymon 1988, Ganey and Balda 1989a, Thomas et al. 1990). Proximate factors underlying habitat selection in Spotted Owls are understood poorly. Abundance and availability of food, however, may be a key...

  10. Spotted owl roost and nest site selection in northwestern California

    Science.gov (United States)

    J.A. Blakesley; A.B. Franklin; R.J. Gutierrez

    1992-01-01

    We directly observed roost and nest site selection in a population of northern spotted owls (Strix occidentalis caurina) in northwestern California during 1985-89. Because of potential biases caused by use of radio telemetry in previous studies, we examined habitat use relative to habitat availability at a level not previously reported for spotted...

  11. Different methods of fluoride delivery in prevention of white spot ...

    African Journals Online (AJOL)

    Orthodontic patients on fixed appliances are at an increased risk of developing white spot lesions which can progress to frank cavitations. Fluoride application in different forms has been shown to be effective in the reduction of formation of white spot lesions. The aim of this short communication is to discuss different ...

  12. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Abstract. In this study, mechanical properties of resistance spot welding of DP450 and DP600, galvanized and ungalvanized automotive sheets have been investigated. The specimens have been joined by resistance spot welding at different weld currents and times. Welded specimens have been examined for their ...

  13. Estimates of age, growth and mortality of spotted catfish, Arius ...

    African Journals Online (AJOL)

    Spotted catfish is a benthic species that can be found abundantly off the coast of Yunlin in southwestern Taiwan. Its biological parameters are little known. In this study, life history parameters of this species were estimated using samples caught by bottom trawling. The spotted catfish was the major bycatch species which ...

  14. Laser Beam Caustic Measurement with Focal Spot Analyser

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Gong, Hui; Bagger, Claus

    2005-01-01

    In industrial applications of high power CO2-lasers the caustic characteristics of the laser beam have great effects on the performance of the lasers. A welldefined high intense focused spot is essential for reliable production results. This paper presents a focal spot analyser that is developed...... for measuring the beam profiles of focused high power CO2-lasers....

  15. Treatment of White Spot Lesions with Icon (Resin Infiltration)

    Science.gov (United States)

    2017-03-23

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 8 MAR2017 1. Your paper, entitled T reatment of White Spot Lesions with Icon ( Resin ... Resin Infiltration) 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Treatment of White Spot lesions with Icon ( Resin In filtration) 7. FUNDING

  16. 7 CFR 28.425 - Low Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  17. 7 CFR 28.422 - Strict Middling Spotted Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  18. Characterizing and identifying black spot resistance genes in polyploid roses

    Science.gov (United States)

    The ornamental quality of outdoor grown roses (Rosa hybrida) is under constant threat from foliar diseases, such as black spot caused by Diplocarpon rosae. Fungicides are primarily used to manage black spot; however, there is a high consumer demand for disease resistant roses which eliminate the nee...

  19. Alternaria leaf spot of sugar beet: factors associated with risk

    Science.gov (United States)

    Recently, increased incidence and severity of Alternaria leaf spot has been observed in Michigan and other growing regions. In the past, Alternaria leaf spot in sugar beet has been a minor foliar disease issue in the United States and management of this disease usually has not been required. If seve...

  20. inheritance of resistance to angular leaf spot in yellow beans ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Susceptible. II -indeterminate erect; III -indeterminate semi-prostate; ALS = Angular leaf spot. Isolation of Phaeoisariopsis griseola and plant inoculation. Isolation of angular leaf spot was made from lesions of naturally infected bean leaves showing fungal sporulation. In the case of non-sporulating lesions, the fungus was.