WorldWideScience

Sample records for spore bacteria fungi

  1. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    Science.gov (United States)

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of

  2. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls.

    Directory of Open Access Journals (Sweden)

    Gopal Selvakumar

    Full Text Available Association between arbuscular mycorrhizal fungi (AMF and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS. Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls.

  3. LEVELS AND TYPES OF AEROBIC SPORE FORMING BACTERIA ...

    African Journals Online (AJOL)

    Limnothrissa miodon) had the product sourced from them analysed morphologically by a microscope and biochemically for levels of aerobic spore forming bacteria that could adversely affect safety of the product. The four companies whose packaged ...

  4. Stingless bees (Hymenoptera, Meliponini feeding on stinkhorn spores (Fungi, Phallales: robbery or dispersal?

    Directory of Open Access Journals (Sweden)

    Marcio L. Oliveira

    2000-09-01

    Full Text Available Records about stingless bee-fungi interaction are very rare. In Brazilian Amazonia, workers of Trigona crassipes (Fabricius, 1793 and Trigona fulviventris Guérin, 1835 visiting two stinkhorn species, Dictyophora sp. and Phallus sp., respectively, were observed. The workers licked the fungi gleba, a mucilaginous mass of spores covering the pileum. Neither gleba residue nor spores were found on the body surface of these bee workers. These observations indicate that these bee species include spores as a complement in their diet. On the other hand, they also suggest that these stingless bees can, at times, facilitale spore dispersal, in case intact spores are eliminated with the feces.

  5. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    Science.gov (United States)

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  6. Effect of irradiation of bacteria on the formation of spores

    International Nuclear Information System (INIS)

    Szulc, M.; Tropilo, J.; Olszewski, G.

    1980-01-01

    Studies were carried out on bacteria: Bac. subtilis, Bac. cereus, Cl. perfringens, Cl. botulinum which were irradiated in two media (PBS and broth containing 1% of protein) with 100, 1000, 5000 and 10 000 X-radiation doses. The results obtained show that: all bacteria species studied (vegetative forms) are characterized by a high sensitivity to X-radiation, though distinctly lower than the species of Enterobacteriaceae family; the bacteria species studied are characterized by various sporing rate. The highest sporing rate was shown by Bac. cereus, the following: Bac. subtilis, Cl. perfringens and Cl. botulinum; increased X-radiation doses weaken sporing of Bac. subtilis and Bac. cereus. This effect could not be observed in Cl. perfringens and Cl. botulinum. (author)

  7. Spore-Forming Bacteria that Resist Sterilization

    Science.gov (United States)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  8. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.)

  9. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    Energy Technology Data Exchange (ETDEWEB)

    Koshikawa, Tomihiko [Japan Radioisotope Association, Shiga (Japan). Koka Laboratory

    1994-12-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.).

  10. The proteome of spore surface layers in food spoiling bacteria

    NARCIS (Netherlands)

    Abhyankar, W.R.

    2014-01-01

    Endospores are dormant, multilayered, highly resistant cellular structures formed in response to stress by certain bacteria belonging to the genera Bacillus, Clostridium and other related organisms. In presence of nutrients and favorable conditions spores germinate and grow out as normal vegetative

  11. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    Science.gov (United States)

    Gopal, Selvakumar; Shagol, Charlotte C; Kang, Yeongyeong; Chung, Bong Nam; Han, Seung Gab; Tong-Min, Sa

    2018-02-02

    The propagation of pure cultures of AMF is an essential requirement for their large scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from the salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of Sorghum-Sudan grass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1 kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2.5 kg capacity pots containing sterilized soil. Among the 150 inoculants, only 27 seedlings were colonized by AMF spores. After 240 days, five inoculants among the 27 seedlings resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum, and Funneliformis mosseae. Furthermore, indigenous spore Funneliformis mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using single spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describes the feasible and cost effective method to mass produce AMF spores for large scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The fastest flights in nature: high-speed spore discharge mechanisms among fungi.

    Directory of Open Access Journals (Sweden)

    Levi Yafetto

    Full Text Available BACKGROUND: A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include "squirt guns" that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s(-1 and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. CONCLUSIONS/SIGNIFICANCE: The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation.

  13. Estimation of Available Phosphorus in Soil Using the Population of Arbuscular Mycorrhizal Fungi Spores

    Directory of Open Access Journals (Sweden)

    Machfud Effendy

    2011-09-01

    Full Text Available Soil microbes, such as arbuscular mycorrhizal fungi (AMF have the ability to dissolve unavailable phosphorus (P and they can be used as an indicator of the P availability in soil. The study was conducted on upland soil in East Java. The soil was sampled twice, before and after planting at the harvesting time. The population of AMF spores and soil P availability were observed. The AMF spores were isolated using wet sieving method, decanting, and followed by sucrose density gradient centrifugation. The available P was observed using the Olsen extraction. The numbers of AMF spore was corelated with available P, moreover the numbers of AMF spore was compared to the availabality of P. The results showed that the total number of AMF spores at six sites were ranged from a little to midle, and the available P ranged from low to high level. All soil site samples had a linear corelation between numbers of AMF spore and available P in soil. The greater the number of AMF spore, the higher the available P in soil. It was likely that the availability of P in soil can be predicted by the population of AMF spores in soil. Therefore, the number of AMF spore can be need as a biological method to predict the available P in soil and to make a recommendation the use of P fertilizer.

  14. Effect of berberine and (+/-)-bicuculline isolated from Corydalis chaerophylla on spore germination of some fungi.

    Science.gov (United States)

    Basha, S Ameer; Mishra, R K; Jha, R N; Pandey, V B; Singh, U P

    2002-01-01

    Berberine and (+/-)-bicuculline were isolated from roots and leaves, respectively, of Corydalis chaerophylla. Both were effective in vitro against spore germination of some plant pathogenic fungi (Alternaria brassicicola, A. brassicae, A. cheiranthi, A. melongenae, A. solani, Colletotrichum musae, C. falcatum, Curvularia penniseti, C. lunata, C. maculans, C. pallescens, Curvularia sp., Erysiphe pisi, E. cichoracearum, Erysiphe sp., Fusarium udum, Helminthosporium spiciferum, H. penniseti, H. frumentacei, Heterosporium sp., Oidium erysiphoides and Ustilago cynodontis). Berberine and (+/-)-bicuculline significantly inhibited spore germination of all the fungi at concentrations of 100-1000 ppm. Berberine was effective against all the fungi at all concentrations; most of the fungi did not germinate at 1000 ppm. H. penniseti conidia did not germinate at any concentration of (+/-)-bicuculline. U. cynodontis was the least sensitive fungus at lower concentrations but 800 ppm dose was highly effective.

  15. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.

    Science.gov (United States)

    Wen, Zhugui; Shi, Liang; Tang, Yangze; Hong, Lizhou; Xue, Jiawang; Xing, Jincheng; Chen, Yahua; Nara, Kazuhide

    2018-01-01

    Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2  = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.

  16. Inhibitive Effect of Fuyuziphine isolated from Plant (Pittapapra) (Fumaria indica) on Spore Germination of Some Fungi.

    Science.gov (United States)

    Pandey, M B; Singh, Ashok K; Singh, Anil K; Singh, U P

    2007-09-01

    The alkaloid fuyuziphine was isolated from the whole plant of Fumaria indica. It had inhibitive effect against spore germination of some plant pathogenic fungi (Collectotrichum sp., C. gloeosporioides, C. falcatum, Curvularia maculans, C. lunata, Erysiphe cichoracearum, Helminthosporium pennisetti, Oidium erysiphoides, Ustilago cynodontis, Alternaria chieranthi, A. melongenae, A. brassicicola and A. solani). Curvularia lunata, Oidium erysiphoides, Alternaria brassicicola and A. solani did not germinate at 750 and 1000 ppm and Colletotrichum gloeosporioides, C. falcatum, Curvularia maculans were inhibited at 1000 ppm for 24 hr incubation. Germination of most fungi was significantly inhibited at 100~750 ppm.

  17. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  18. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.

    Science.gov (United States)

    Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M

    2017-12-18

    Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked

  19. Enumeration, isolation and identification of bacteria and fungi from ...

    African Journals Online (AJOL)

    Enumeration, isolation and identification of bacteria and fungi from soil contaminated with petroleum products using layer chicken droppings as an amendment The media used were nutrient agar for total heterotrophic bacterial count, potato dextrose agar for fungi count, serial dilution was carried out and the pour plate ...

  20. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  1. Relative Effectiveness of Water Hyacinth, Bacteria and Fungi in ...

    African Journals Online (AJOL)

    phytoremedian), bacteria and fungi (bioremedians) used for the purification of domestic sewage was carried out using Completely Randomised Design (CRD) replicated three times. Physical, bacteriological and chemical properties of domestic sewage ...

  2. Deposition of Bacteria and Bacterial Spores by Bathroom Hot Air Hand Dryers.

    Science.gov (United States)

    Del Carmen Huesca-Espitia, Luz; Aslanzadeh, Jaber; Feinn, Richard; Joseph, Gabrielle; Murray, Thomas S; Setlow, Peter

    2018-02-09

    Hot air hand dryers in multiple men's and women's bathrooms in 3 basic science research areas in an academic health center were screened for their deposition on plates of: i) total bacteria, some of which were identified; and ii) a kanamycin resistant Bacillus subtilis strain, PS533, spores of which are produced in large amounts in one basic science research laboratory. Plates exposed to hand dryer air for 30 seconds averaged 18-60 colonies/plate but interior hand dryer nozzle surfaces had minimal bacterial levels, plates exposed to bathroom air for 2 minutes with hand dryers off averaged ≤1 colony, and plates exposed to bathroom air moved by a small fan for 20 minutes had averages of 15 and 12 colonies/plate in two buildings tested. Retrofitting hand dryers with HEPA filters reduced bacterial deposition by hand dryers ∼4-fold, and potential human pathogens were recovered from plates exposed to hand dryer air whether or not a HEPA filter was present, and from bathroom air moved by a small fan. Spore-forming colonies, identified as B. subtilis PS533 averaged ∼2.5-5% of bacteria deposited by hand dryers throughout basic research areas examined regardless of distance from the spore forming laboratory, and these were almost certainly deposited as spores. Comparable results were obtained when bathroom air was sampled for spores. These results indicate that many kinds of bacteria, including potential pathogens and spores, can be deposited on hands exposed to bathroom hand dryers, and that spores could be dispersed throughout buildings and deposited on hands by hand dryers. Importance While there is evidence that bathroom hand dryers can disperse bacteria from hands or deposit bacteria on surfaces, including recently washed hands, there is less information on: i) the organisms dispersed by hand dryers; ii) if hand dryers provide a reservoir of bacteria or simply blow large amounts of bacterially contaminated air; and iii) if bacterial spores are deposited on

  3. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy.

    Science.gov (United States)

    Maughan, Heather

    2007-02-01

    Rates of molecular evolution are known to vary considerably among lineages, partially due to differences in life-history traits such as generation time. The generation-time effect has been well documented in some eukaryotes, but its prevalence in prokaryotes is unknown. "Because many species of Firmicute bacteria spend long periods of time as metabolically dormant spores, which could result in fewer DNA substitutions per unit time, they present an excellent system for testing predictions of the molecular clock hypothesis." To test whether spore-forming bacteria evolve more slowly than their non-spore-forming relatives, I used phylogenetic methods to determine if there were differences in rates of amino acid substitution between spore-forming and non-spore-forming lineages of Firmicute bacteria. Although rates of evolution do vary among lineages, I find no evidence for an effect of spore-formation on evolutionary rate and, furthermore, evolutionary rates are similar to those calculated for enteric bacteria. These results support the notion that variation in generation time does not affect evolutionary rates in bacterial lineages.

  4. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  5. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    Science.gov (United States)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  6. Bioactive potential of symbiotic bacteria and fungi from marine ...

    African Journals Online (AJOL)

    Marine sponges are rich in microbial biota. In this study, totally four sponges namely Callyspongia diffusa, Hyattella Cribriformis, Sigmadocia carnosa, Spongia officininalis Var ceylonensis were collected and their associated bacteria and fungi were isolated. Among the microbes isolated, Pseudomonas fluorescens and ...

  7. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi ...

    African Journals Online (AJOL)

    At present, the greatest interest resides with the development and application of specific biocontrol agent for the control of diseases on plant and this form the focus of this work. Several soil bacteria were evaluated in vitro for their effectiveness on the basis of their ability to suppress fungi in plate inhibition assays. 51 strains ...

  8. The interactions of bacteria with fungi in soil : Emerging concepts

    NARCIS (Netherlands)

    Haq, Irshad; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk; Gadd, GM; Sariaslani, S

    2014-01-01

    In this chapter, we review the existing literature on bacterial fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in

  9. Impact of Collimonas bacteria on community composition of soil fungi

    NARCIS (Netherlands)

    Höppener-Ogawa, S.; Leveau, J.H.J.; Hundscheid, M.P.J.; Van Veen, J.A.; De Boer, W.

    2009-01-01

    The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil

  10. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna Malgorzata

    2010-01-01

    Purpose: The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococus aureus (bacteria) and Candida albicans (fungi), to determine the po...

  11. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    Science.gov (United States)

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Long, Liangkun; Lin, Qunying; Yao, Qing; Zhu, Honghui

    2017-05-01

    This study was aimed to investigate the diversity and function of bacterial population associated with Gigaspora margarita spores. The fungus was propagated in sterilized sand/soil pots using alfalfa (Medicago sativa), grain sorghum (Sorghum bicolor), or maize (Zea mays) as host plants, or in sterilized vermiculite pots using alfalfa as host plants, respectively. Bacteria were isolated from the new-formed spores using diluted plate method, and typical bacterial isolates were identified according to 16S rRNA gene phylogenetic analysis. Total 43 bacterial isolates affiliated to three phyla and 23 genera were obtained. The spore-associated bacterial communities were obviously different among the four source spores, suggesting that plant species or substrates could influence the bacterial population. Bacillus and Streptomyces were most frequently associated with the fungal spores. Function analysis of these bacteria by plate tests, it was found that about 30.2% isolates stimulated the spore germination, five out of seven tested isolates improved the hyphal growth, total 57.5% of the tested isolates solubilized phosphorus at different levels, 15% isolates degraded chitin, and a few isolates suppressed the growth of Escherichia coli or Staphylococcus aureus. In pot experiment, three bacterial isolates (belonging to Curtobacterium, Ensifer, or Bacillus, respectively) displayed improvement effect on alfalfa growth and/or the colonization of roots by G. margarita.

  13. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  14. Plants, mycorrhizal fungi, and bacteria: a network of interactions.

    Science.gov (United States)

    Bonfante, Paola; Anca, Iulia-Andra

    2009-01-01

    This review focuses on interactions among plants, mycorrhizal fungi, and bacteria, testing the hypothesis whether mycorrhizas can be defined as tripartite associations. After summarizing the main biological features of mycorrhizas, we illustrate the different types of interaction occurring between mycorrhizal fungi and bacteria, from loosely associated microbes to endobacteria. We then discuss, in the context of nutritional strategies, the mechanisms that operate among members of the consortium and that often promote plant growth. Release of active molecules, including volatiles, and physical contact among the partners seem important for the establishment of the bacteria/mycorrhizal fungus/plant network. The potential involvement of quorum sensing and Type III secretion systems is discussed, even if the exact nature of the complex interspecies/interphylum interactions remains unclear.

  15. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  16. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  17. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria

    NARCIS (Netherlands)

    Maagd, de R.A.; Bravo, A.; Berry, C.; Crickmore, N.; Schnepf, H.E.

    2003-01-01

    Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures

  18. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    Science.gov (United States)

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  19. Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms

    OpenAIRE

    Lof, Marloes; Janus, Marleen M.; Krom, Bastiaan P.

    2017-01-01

    Oral health is more than just the absence of disease. The key to oral health is a diverse microbiome in an ecological balance. The oral microbiota is one of the most complex and diverse microbial communities in the human body. To maintain oral health, balance between the human host and the intrinsic microorganisms is essential. The healthy oral cavity is represented by a great microbial diversity, including both bacteria and fungi. The bacterial microbiome is very well studied. In contrast, f...

  20. Spore germination of fungi belonging to Aspergillus species under deep-sea conditions

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Nagarajan, M.; Raghukumar, C.

    of fungal spores in the deep sea may face several obstacles like the mycostatic effect of seawater (Kirk, 1980), low temperature, elevated hydrostatic pressure and low nutrient conditions. A defining characteristic of spores is their ability to develop... hyphal colony. The first step in this is the spore germina- tion, which can be defined as the sequence of events that converts the resting/dormant spore into a rapidly growing germ tube from which the myce- lium is produced by elongation, septum formation...

  1. A simple identification method for spore-forming bacteria showing high resistance against γ-rays

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko; Sone, Koji; Kobayashi, Toshikazu

    1993-01-01

    A simple identification method was developed for spore-forming bacteria which are highly resistant against γ-rays. Among 23 species of Bacillus studied, the spores of Bacillus megaterium, B. cereus, B. thuringiensis, B. pumilus and B. aneurinolyticus showed high resistance against γ-rays as compared with other spores of Bacillus species. Combination of the seven kinds of biochemical tests, namely, the citrate utilization test, nitrate reduction test, starch hydrolysis test, Voges-Proskauer reaction test, gelatine hydrolysis test, mannitol utilization test and xylose utilization test showed a characteristic pattern for each species of Bacillus. The combination pattern of each the above tests with a few supplementary test, if necessary, was useful to identify Bacillus species showing high radiation resistance against γ-rays. The method is specific for B. megaterium, B. thuringiensis and B. pumilus, and highly selective for B. aneurinolyticus and B. cereus. (author)

  2. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.

    Science.gov (United States)

    Franco-Ramírez, Alicia; Ferrera-Cerrato, Ronald; Varela-Fregoso, Lucía; Pérez-Moreno, Jesús; Alarcón, Alejandro

    2007-10-01

    Arbuscular mycorrhizal fungi (AMF) have been hypothesized to enhance plant adaptation and growth in petroleum-contaminated soils. Nevertheless, neither AMF-biodiversity under chronically petroleum-contaminated soils nor spore germination response to petroleum hydrocarbons has been well studied. Chronically petroleum-contaminated rhizosphere soil and roots from Echinochloa polystachya, Citrus aurantifolia and C. aurantium were collected from Activo Cinco Presidentes, Tabasco, Mexico. Root colonization and spore abundance were evaluated. Additionally, rhizosphere soil samples were propagated using Sorghum vulgare L. as a plant trap under greenhouse conditions; subsequently, AMF-spores were identified. AMF-colonization ranged from 63 to 77% while spore number ranged from 715 to 912 in 100 g soil, suggesting that AMF tolerate the presence of petroleum hydrocarbons in the rhizosphere. From grass species, four AMF-morphospecies were identified: Glomus ambisporum, G. sinuosum (previously described as Sclerocystis sinuosum), Acaulospora laevis, and Ambispora gerdermanni. From citrus trees, four AMF-species were also identified: Scutellospora heterogama, G. ambisporum, Acaulospora scrobiculata, and G. citricola. In a second study, it was observed that spore germination and hyphal length of G. mosseae, G. ambisporum, and S. heterogama were significantly reduced by either volatile compounds of crude oil or increased concentrations of benzo[a ]pyrene or phenanthrene in water-agar.

  3. Impact of Collimonas bacteria on community composition of soil fungi.

    Science.gov (United States)

    Höppener-Ogawa, Sachie; Leveau, Johan H J; Hundscheid, Maria P J; van Veen, Johannes A; de Boer, Wietse

    2009-06-01

    The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil that had a low abundance of indigenous collimonads. Development of fungal communities was stimulated by addition of cellulose or by introducing plants (Plantago lanceolata). Community composition of total fungi in soil and rhizosphere and of arbuscular mycorrhizal fungi in roots was examined by PCR-DGGE. The introduction of collimonads altered the composition of all fungal communities studied but had no effects on fungal biomass increase, cellulose degrading activity or plant performance. The most likely explanation for these results is that differences in sensitivity of fungal species to the presence of collimonads result in competitive replacement of species. The lab and greenhouse experiments were complemented with a field experiment. Mesh bags containing sterile sand with or without collimonads were buried in an ex-arable field and a forest. The presence of collimonads had an effect on the composition of fungi invading these bags in the ex-arable site but not in the forest site.

  4. Interactions among endophytic bacteria and fungi: effects and potentials.

    Science.gov (United States)

    Bandara, W M M S; Seneviratne, Gamini; Kulasooriya, S A

    2006-12-01

    Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As such in vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.

  5. Effect of Various Organic Matter stimulates Bacteria and Arbuscular Mycorrhizal Fungi Plantations on Eroded Slopes in Nepal

    Science.gov (United States)

    Shrestha Vaidya, G.; Shrestha, K.; Wallander, H.

    2009-04-01

    Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces erosion. Trees and shrubs on the lower hillsides in Nepal form symbiosis with arbuscular mycorrhizal (AM) fungi and these fungi are important for the uptake of mineral nutrients from the soil. In addition, the mycelia formed by these fungi have an important function in stabilizing the soil. The success of plantations of these eroded slopes is therefore highly dependent on the extent of mycorrhizal colonization of the plants. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant and nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter was placed in mesh bags which were buried around the trees of Bauhinia purpurea and Leucaena diversifolia .This experiment were done in two seasons ( (the wet and the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the six month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the wet and dry seasons. More microbial biomass was produced during wet season than during dry season. Further more, organic matter addition enhanced the production of AM fungal and bacterial biomass during both seasons. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival, growth and nutrient composition in the soil in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded

  6. A data analysis of the irradiation parameter D10 for bacteria and spores under various conditions.

    Science.gov (United States)

    van Gerwen, S J; Rombouts, F M; van't Riet, K; Zwietering, M H

    1999-09-01

    This paper provides approximate estimates for the irradiation parameter D10 to globally predict the effectiveness of any irradiation process. D10 is often reported to depend on many specific factors, implying that D10 cannot be estimated without exact knowledge of all factors involved. For specific questions these data can of course be useful but only if the conditions reported exactly match the specific question. Alternatively, this study determined the most relevant factors influencing D10, by quantitatively analyzing data from many references. The best first step appeared to be a classification of the data into vegetative bacteria and spores. As expected, spores were found to have significantly higher D10 values (average 2.48 kGy) than vegetative bacteria (average 0.762 kGy). Further analyses of the vegetative bacteria confirmed the expected extreme irradiation resistance of nonpathogenic Deinococcus radiodurans (average 10.4 kGy). Furthermore the analysis identified Enterococcus faecium, Alcaligenes spp., and several members of the Moraxella-Acinetobacter group as having very high resistance at very low temperatures (average 3.65 kGy). After exclusion of high- and low-resistance spores and some specific conditions showing relevant high or low D10 values, the average for spores was estimated to be 2.11 kGy. For vegetative bacteria this average was estimated to be 0.420 kGy. These approximate estimates are not definite, as they depend on the data used in the analyses. It is expected that inclusion of more data will not change the estimates to a great extent. The approximate estimates are therefore useful tools in designing and evaluating irradiation processes.

  7. Spore population, colonization, species diversity and factors influencing the association of arbuscular mycorrhizal fungi with litchi trees in India.

    Science.gov (United States)

    Kumar, Vinod; Kumar, Rajesh; Kumar, Ajit; Anal, Dubedi

    2016-01-01

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) in association with litchi (Litchi chinensis Sonn.) trees were studied during 2012-2013, where orchard soil had high pH (7.42-9.53) and salinity (0.07- 0.39 dSm(-1)). A total of 105 rhizospheric soil and root samples were collected considering variables like location, age of tree, cultivar and production management. Results showed that spore count was in the range of 1-22 g(-1) soil. All the examined root segments had colonization of AMF, which ranged between 3.3 to 90.0%. AMF community comprised of Glomus mosseae, G. intaradices, G. constricta, G. coronatum, G. fasciculatum, G. albidum, G. hoi, G. multicauli, Acaulospora scrobiculata, A. laevis, Rhizophagus litchi and Entrophosphora infrequens. Higher spore density and AMF colonization were observed at medium level (13-28 kg ha(-1)) of available phosphorus that decreased ('r' = -0.21 for spore density, -0.48 for root colonization) with increasing soil phosphorus. While nitrogen did not influence the AMF association, a weak negative linear relationship with AMF colonization ('r' = -0.30) was apparent in the medium level (112-200 kg ha(-1)) of potash. Micronutrients (Zn, Fe, Cu, Mn and B) did not affect spore density (zero or a very weak linear correlation) but influenced root colonization ('r' = -0.53 to -0.44), the effect being more prominent above critical limits. Nutritionally sufficient, irrigated litchi orchards had greater spore count (46% samples having 5-22 spores g(-1) soil) and colonization (> 50% in 37.4% roots examined) than nutrient deficient, non-irrigated orchards, indicating essentiality of a threshold nutrients and moisture regime for the association. AMF symbiosis was influenced by cultivar (greater in 'China'), but tree age was not correlated to mycorrhizal association. A consortium of native species coupled with the understanding of nutrient effects on AMF would be useful for field application in litchi.

  8. Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, Elisabeth

    2009-07-01

    Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended for biogas production contains pathogenic micro-organisms. A pre-pasteurisation step at 70 deg C for 60 min before anaerobic digestion reduces non spore-forming bacteria such as Salmonella spp. To maintain the standard of the digested residues it must be handled in a strictly hygienic manner to avoid recontamination and re-growth of bacteria. The risk of contamination is particularly high when digested residues are transported in the same vehicles as the raw material. However, heat treatment at 70 deg C for 60 min will not reduce spore-forming bacteria such as Bacillus spp. and Clostridium spp. Spore-forming bacteria, including those that cause serious diseases, can be present in substrate intended for biogas production. The number of species and the quantity of Bacillus spp. and Clostridium spp. in manure, slaughterhouse waste and in samples from different stages during the biogas process were investigated. The number of species of clostridia seemed to decrease following digestion, likewise the quantity. However, Bacillus spp. seemed to pass unaffected through the biogas process. In laboratory-scale experiments the effects on clostridia during pasteurisation and digestion were investigated. Pathogenic clostridia were inoculated in substrates from homogenisation tanks and digester tanks. The inoculated clostridia remained after pasteurisation, but the impacts of digestion differ between different species. Culture followed by identification of C. chauvoei by PCR in samples from cattle died from blackleg, is faster and safer than culture followed by biochemical identification of C. chauvoei. However, for environmental samples the PCR method is not practically applicable for detection of C. chauvoei. To avoid spreading of diseases via biogas plants when digested residues are spread on arable land, a pasteurisation

  9. Uniform categorization of biocommunication in bacteria, fungi and plants.

    Science.gov (United States)

    Witzany, Günther

    2010-05-26

    This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.

  10. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    Science.gov (United States)

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  11. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2018-04-01

    Full Text Available Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae. Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1 the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana; and (2 the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 106 viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests indicated an

  12. Radiosensibility of spores in water suspension of fungi that affect papers; Radiosensibilidade de esporos em suspensao aquosa de fungos que atacam papeis

    Energy Technology Data Exchange (ETDEWEB)

    Tomazello, Maria Guiomar Carneiro [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil). Dept. de Fisica]. E-mail: mgtomaze@unimpe.br; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Florestais]. E-mail: mtomazel@carpa.ciagri.usp.br; Moraes, Silvia Goreti Cardoso de [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil)

    1998-06-01

    The paper and graphic documents can be affected by biological, chemical and physical agents. Among the biological agents, the most important are the fungi and insects, causing damage to bibliographic materials and promoting the deterioration and destruction of scientific-historical or cultural valuable documents. Together with the traditional methods of fungal prevention, such as application of fumigants, studies have been made since the late sixties, with the employment of gamma radiation for the disinfection of materials affected by fungi. The objective of this paper is to study the radio sensibility of the spores of some main fungi that attack papers. The results showed that the spores in water suspension have different levels of sensibility when irradiated with different doses of gamma radiation. The D{sub 0} doses - survival of 37% of the spores - varied from 1,43 kGy (cladosporium cladosporioides) to 0,077 kGy (Penicillium purpurogenum). (author)

  13. Radiosensibility of spores in aqueous suspension of fungi that attack papers; Radiosensibilidade de esporos em suspensao aquosa de fungos que afetam papeis

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro-Tomazello, Maria G.; Moraes, Silvia G.C. de [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil); Wiendl, Frederico M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz

    1997-12-01

    The paper and graphic documents can be affected by biological, chemical and physical agents. Among the biological agents, the most important are the fungi and insects, causing damage to bibliographic materials and promoting the deterioration and destruction of scientific-historical or cultural valuable documents. Together with the traditional methods of fungal prevention, like the application of fumigants, studies have been made since the late sixties, with the employment of gamma radiation for the desinfection of materials affected by fungi. The objective of this paper was to study the radiosensibility of the spores of the principal fungi that attack papers. The results showed that the spores in water suspension have different levels of sensibility when irradiated with different doses of gamma radiation. The Do doses survival of 37% of the spores-varied from 1,43 (cladosporium cladosporioides) to 0,077 kGy (Penicillium purpurogenum). (author). 12 refs., 3 figs., 3 tabs.

  14. Biodegradation of lignin by fungi, bacteria and laccases.

    Science.gov (United States)

    Asina, Fnu; Brzonova, Ivana; Voeller, Keith; Kozliak, Evguenii; Kubátová, Alena; Yao, Bin; Ji, Yun

    2016-11-01

    Indulin AT biodegradation by basidiomycetous fungi, actinobacteria and commercial laccases was evaluated using a suite of chemical analysis methods. The extent of microbial degradation was confirmed by novel thermal carbon analysis (TCA), as the treatments altered the carbon desorption and pyrolysis temperature profiles in supernatants. Laccase treatments caused only minor changes, though with increases occurring in the 850°C and char precursor fractions. After fungal treatments, lignin showed a similar change in the TCA profile, along with a gradual decrease of the total carbon, signifying lignin mineralization (combined with polymerization). By contrast, bacteria produced phenolic monomers without their further catabolism. After 54days of cultivation, a 20wt% weight loss was observed only for fungi, Coriolus versicolor, corroborating the near-80% carbon mass balance closure obtained by TCA. Compositional changes in lignin as a result of biodegradation were confirmed by thermal desorption (TD)-pyrolysis-GC-MS validating the carbon fractionation obtained by TCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Infections with Spore-forming Bacteria in Persons Who Inject Drugs, 2000-2009.

    OpenAIRE

    Palmateer, NE; Hope, VD; Roy, K; Marongiu, A; White, JM; Grant, KA; Ramsay, CN; Goldberg, DJ; Ncube, F

    2013-01-01

    : Since 2000 in the United Kingdom, infections caused by spore-forming bacteria have been associated with increasing illness and death among persons who inject drugs (PWID). To assess temporal and geographic trends in these illnesses (botulism, tetanus, Clostridium novyi infection, and anthrax), we compared rates across England and Scotland for 2000-2009. Overall, 295 infections were reported: 1.45 per 1,000 PWID in England and 4.01 per 1,000 PWID in Scotland. The higher rate in Scotland was ...

  16. 9 CFR 113.25 - Culture media for detection of bacteria and fungi.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Culture media for detection of bacteria and fungi. 113.25 Section 113.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Standard Procedures § 113.25 Culture media for detection of bacteria and fungi. (a...

  17. The effect of immunoglobulins and somatic cells on the gravity separation of fat, bacteria, and spores in pasteurized whole milk.

    Science.gov (United States)

    Geer, S R; Barbano, D M

    2014-01-01

    Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31s) whole milk; (2) LTP (72°C for 17.31s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7min) whole milk with added bacteria and spores; (5) HTP (76°C for 7min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was

  18. The structural bases of long-term anabiosis in non-spore-forming bacteria

    Science.gov (United States)

    Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.

    2006-01-01

    Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.

  19. Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2016-01-01

    Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products...... cause sporulation, reducing the risk of clogging. Substrate released during sporulation can be utilized by attached vegetative bacteria and they will continue growing and producing surfactant, which prolongs the effect of the injected substrate. The simulation scenarios show that application...... of the spore-forming bacteria gives a higher total production of surfactant and the reduced risk of clogging, leading to an increased period of production and a higher oil recovery....

  20. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients.

    Science.gov (United States)

    De Bellis, Palmira; Minervini, Fiorenza; Di Biase, Mariaelena; Valerio, Francesca; Lavermicocca, Paola; Sisto, Angelo

    2015-03-16

    . cereus group III with high values of log-cycle reductions. In conclusion, our results indicate that spore-forming bacteria contaminating bread ingredients and bread could represent a source of concern for consumer health related to the presence of strains, such as strains of B. cereus group III and single strains of other species, showing the ability to produce toxic substances associated to a thermal resistance enough to survive the bread cooking conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....

  2. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    Science.gov (United States)

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types.

    Science.gov (United States)

    Livne-Luzon, Stav; Avidan, Yael; Weber, Gil; Migael, Hen; Bruns, Thomas; Ovadia, Ofer; Shemesh, Hagai

    2017-04-01

    The success of dispersal events depend on the organism's ability to reach and establish in a new habitat. In symbiotic organisms, establishment also depends on the presence of their symbiont partner in the new habitat. For instance, the establishment of obligate ectomycorrhizal (EM) trees outside the forest is largely limited by the presence of EM fungi in soil. Wild boars (Sus scrofa) are important dispersal agents of EM fungal spores, particularly in the moderately dry Mediterranean region. The aim of this study was to explore how EM fungal spores dispersed by wild boars influence the EM fungal community associated with the roots of Pinus halepensis seedlings at different habitat types. Using a greenhouse bioassay, we grew pine seedlings in two soil types: old-field and forest soils mixed with either natural or autoclaved wild boar feces. In both soils, we observed a community dominated by a few EM fungal species. Geopora (85 %) and Suillus (68 %) species dominated the forest and old-field soils, respectively. The addition of natural wild boar feces increased the abundance of Tuber species in both EM fungal communities. However, this effect was more pronounced in pots with old-field soil, leading to a more even community, equally dominated by both Tuber and Suillus species. In forest soil, Geopora maintained dominance, but decreased in abundance (67 %), due to the addition of Tuber species. Our findings indicate that wild boar feces can be an important source for EM inoculum, especially in habitats poor in EM fungi such as old-fields.

  4. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi.

    Science.gov (United States)

    Supreeth, M; Raju, N S

    2017-08-01

    Large quantities of pesticides are applied on crops to protect them from pests in modern agricultural practices around the globe. The two insecticides, chlorpyrifos, belonging to the organophosphorous group and endosulfan, belonging to the organochlorine group, are vastly used insecticides on agricultural crops in the last three decades. Hence, both these insecticides are ubiquitous in the environment. Once applied, these two insecticides undergo transformation in the environment either biologically or non-biologically. Microbial degradation has been considered a safe and cost-effective method for removing contaminants from the environment. Both the insecticides have been subjected to biodegradation studies using various bacteria and fungi by the researchers. Here, in this review, we report on biotransformed products formed during the course of biodegradation of these two insecticides and also discuss about the aftereffects of their transformed metabolites. This is important, because the primary biotransformed metabolites 3,5,6, trichloro-2-pyridinol of chlorpyrifos and endosulfan sulfate of endosulfan are toxic as their parent compounds and are noxious to variety of organisms. In conclusion, it is recommended to obtain microbial cultures capable of mineralizing pesticides completely without formation of any such toxic by-product before adopting bioremediation or bioaugmentation technology.

  5. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  6. The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria

    NARCIS (Netherlands)

    Ballhausen, M-B.; De Boer, W.

    2016-01-01

    Root-derived, labile organic compounds are thought to enter the rhizosphere food web mainly via consumption by mycorrhizal fungi and bacteria. Studies tracking the fate of root derived carbon via stable isotope probing (SIP), however, indicate an important role for saprotrophic fungi as consumers of

  7. Diversity of bacteria and fungi associated with tarballs: Recent developments and future prospects

    Digital Repository Service at National Institute of Oceanography (India)

    Shinde, V.L.; Suneel, V.; Shenoy, B.D.

    are known to be associated with tarballs. They presumably play an important role in tarball degradation and some are potential human and animal pathogens. This paper highlights the recent studies on tarball-associated bacteria and fungi. Future perspectives...

  8. UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores.

    Science.gov (United States)

    Kujundzic, Elmira; Matalkah, Fatimah; Howard, Cody J; Hernandez, Mark; Miller, Shelly L

    2006-10-01

    In-room air cleaners (ACs) and upper-room air ultraviolet germicidal irradiation (UVGI) are engineering control technologies that can help reduce the concentrations of airborne bacteria and fungal spores in the indoor environment. This study investigated six different types of ACs and quantified their ability to remove and/or inactivate airborne bacteria and fungal spores. Four of the air cleaners incorporated UV lamp(s) into their flow path. In addition, the efficacy of combining ACs with upper-room air UVGI was investigated. With the ventilation system providing zero or six air changes per hour, the air cleaners were tested separately or with the upper-room air UVGI system in operation in an 87-m3 test room. Active bacteria cells and fungal spores were aerosolized into the room such that their numbers and physiologic state were comparable both with and without air cleaning and upper-room air UVGI. In addition, the disinfection performance of a UV-C lamp internal to one of the ACs was evaluated by estimating the percentage of airborne bacteria cells and fungal spores captured on the air filter medium surface that were inactivated with UV exposure. Average airborne microbial clean air delivery rates (CADRm) varied between 26-981 m3 hr-1 depending on the AC, and between 1480-2370 m3 hr-1, when using air cleaners in combination with upper-room air UVGI. Culturing, direct microscopy, and optical particle counting revealed similar CADRm. The ACs performed similarly when challenged with three different microorganisms. Testing two of the ACs showed that no additional air cleaning was provided with the operation of an internal UV-C lamp; the internal UV-C lamps, however, inactivated 75% of fungal spores and 97% of bacteria cells captured in the air filter medium within 60 min.

  9. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry

    Science.gov (United States)

    Gopal, Nidhi; Hill, Colin; Ross, Paul R.; Beresford, Tom P.; Fenelon, Mark A.; Cotter, Paul D.

    2015-01-01

    Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry. PMID:26733963

  10. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry

    Directory of Open Access Journals (Sweden)

    Nidhi eGopal

    2015-12-01

    Full Text Available Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurisation and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.

  11. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  12. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  13. Cave Entrance dependent Spore Dispersion of Filamentous Fungi Isolated from Various Sediments of Iron Ore Cave in Brazil: a colloquy on human threats while caving

    Directory of Open Access Journals (Sweden)

    Erika Linzi Silva Taylor

    2014-04-01

    Full Text Available Caves are stable environments with characteristics favoring the development of fungi. The fungal community present in a cave also includes pathogenic and opportunistic species out of which some are also served as energy sources in such energy stared ecosystems. Studies on microbial diversity and their role on such energy starved ecosystem are scarce. The present study was aimed to identify the cultivable filamentous fungi present in the various sediment of an iron ore cave and to recognize them as pathogenic and/or opportunistic species. Further the impact of cave entrance on the spore depositions on various distances dependent sediments were analyzed. The results suggest a diverse microbial community inhabiting the cave and an influence of cave entrance over spore deposition on various sediments. We counted a total of 4,549 filamentous fungi that included 34 species of 12 genera: Acremonium, Aspergillus, Cladosporium, Fusarium, Geotrichum, Paecilomyces, Purpureocillium, Penicillium, Torula, Trichoderma, Mucor and Rhizopus. A positive significant relation was observed between spore deposition and distance from cave entrance (p= 0.001. Areas of potential mycoses risks were recognized. This is the first study on microbiological community of an iron ore cave in the country.

  14. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil.

    Science.gov (United States)

    Zangaro, Waldemar; Rostirola, Leila Vergal; de Souza, Priscila Bochi; de Almeida Alves, Ricardo; Lescano, Luiz Eduardo Azevedo Marques; Rondina, Artur Berbel Lírio; Nogueira, Marco Antonio; Carrenho, Rosilaine

    2013-04-01

    The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.

  15. About the use of antagonistic bacteria and fungi

    OpenAIRE

    Tilcher, R.; Schmidt, C.; Lorenz, D.; Wolf, G. A.

    2002-01-01

    Microorganisms isolated from the phylloplane of vine and cereal plants inhibiting different phytopathogenic fungi were tested as biological control agents against Plasmopara viticola (downy mildew of grapevine). Based on screening in vitro against Phytophthora infestans, P. parasitica, Pythium ultimum, Botrytis cinerea 62 bacterial isolates were selected for tests with Plasmopara viticola.. Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungu...

  16. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    Science.gov (United States)

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.

  17. Optimization of Spore Forming Bacteria Flooding for Enhanced Oil Recovery in North Sea Chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    was used for this purpose. A spore forming bacterium, Bacillus licheniformis 421, was used as it was shown to be a good candidate in the previous study. Bacterial spore can penetrate deeper into the chalk rock, squeezing through the pore throats. Our results show that B. licheniformis 421 when injected...

  18. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  19. Continental-scale distributions of dust-associated bacteria and fungi

    DEFF Research Database (Denmark)

    Barberán, Albert; Ladau, Joshua; Leff, Jonathan W.

    2015-01-01

    It has been known for centuries that microorganisms are ubiquitous in the atmosphere, where they are capable of long-distance dispersal. Likewise, it is well-established that these airborne bacteria and fungi can have myriad effects on human health, as well as the health of plants and livestock...... across the United States to understand the continental-scale distributions of bacteria and fungi in the near-surface atmosphere. The microbial communities were highly variable in composition across the United States, but the geographic patterns could be explained by climatic and soil variables...

  20. Isolation and genetic identification of spore-forming bacteria associated with concentrated-milk processing in Nebraska.

    Science.gov (United States)

    Martinez, Bismarck A; Stratton, Jayne; Bianchini, Andreia

    2017-02-01

    Spore-forming bacteria are heat-resistant microorganisms capable of surviving and germinating in milk after pasteurization. They have been reported to affect the quality of dairy products by the production of enzymes (lipolytic and proteolytic) under low-temperature conditions in fluid milk, and have become a limiting factor for milk powder in reaching some selective markets. The objective of this research was to isolate and identify the population of spore-forming bacteria (psychrotrophic and thermophilic strains) associated with concentrated milk processing in Nebraska. During 2 seasons, in-process milk samples from a commercial plant (raw, pasteurized, and concentrated) were collected and heat-treated (80°C/12 min) to recover only spore-formers. Samples were spread-plated using standard methods agar and incubated at 32°C to enumerate mesophilic spore counts. Heat-treated samples were also stored at 7°C and 55°C to recover spore-formers that had the ability to grow under those temperature conditions. Isolates obtained from incubation or storage conditions were identified using molecular techniques (16S or rpoB sequencing). Based on the identification of the isolates and their relatedness, strains found in raw, pasteurized, and concentrated milk were determined to be similar. Paenibacillus spp. were associated with both raw and concentrated milk. Due to their known ability to cause spoilage under refrigeration, this shows the potential risk associated with the transferring of these problematic organisms into other dairy products. Other Bacillus species found in concentrated milk included Bacillus clausii, Bacillus subtilis, Lysinibacillus sp., Bacillus safensis, Bacillus licheniformis, Bacillus sonorensis, and Brevibacillus sp., with the last 3 organisms being capable of growing at thermophilic temperatures. These strains can also be translocated to other dairy products, such as milk powder, representing a quality problem. The results of this research

  1. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  2. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    Science.gov (United States)

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  3. Fungi, beta-Glucan, and Bacteria in Nasal Lavage of Greenhouse Workers and Their Relation to Occupational Exposure

    DEFF Research Database (Denmark)

    Madsen, A. M.; Tendal, K.; Thilsing, T.

    2013-01-01

    occupational exposure to fungi, -glucan, and bacteria and contents of fungi, -glucan, and bacteria in nasal lavage (NAL) of greenhouse workers. We also studied whether contents of microorganisms in NAL were related to gender, time of the work week, and runny nose. NAL samples (n 135) were taken Monday morning....... The ratios of fungi in NAL between Thursday at noon and Monday morning were 14 (median value) for men and 3.5 for women. Gender had no effect on the exposure level but had a significant effect on the content of fungi, -glucan, and bacteria in NAL, with the highest contents in NAL of men. On Thursdays...

  4. [The study of mycolytic properties of aerobic spore-forming bacteria producing extracellular chitinases].

    Science.gov (United States)

    Aktuganov, G E; Melent'ev, A I; Galimzianova, N F; Shirokov, A V

    2008-01-01

    The mycolytic activity of 27 strains of antagonistic bacilli belonging to two taxonomic groups (18 strains of Bacillus subtilis and 9 strains of Paenibacillus ehimensis) capable of induced synthesis of chitinolytic enzymes was studied. Most of the B. subtilis strains neither displayed visible mycolytic effects on the phytopathogenic fungus Bipolaris sorokiniana in vitro, nor produced chitinases in the presence of an auto-claved mycelium. On the contrary, P. ehimensis strains grown under conditions favorable for induction of chitinases and other hydrolases exhibited a pronounced lytic effect on B. sorokiniana and actively grew by utilizing mycelium as the sole source of carbon and nitrogen. Comparison of the mycolytic activities of extracellular hydrolases in the studied strains demonstrated low correlation between chitinase production and the ability of the strains to degrade the cell walls of B. sorokiniana. Characterization of enzyme profiles in the studied strains revealed that beta-1,3-glucanase was a more significant factor than chitinase for determining the mycolytic potential of bacteria and their ability to utilize the mycelium of phytopathogenic fungi as a growth substrate.

  5. Action of Antimicrobial Copper on Bacteria and Fungi Isolated from Commercial Poultry Hatcheries

    Directory of Open Access Journals (Sweden)

    RFR Depner

    Full Text Available ABSTRACT Since 2008, when the US Environmental Protection Agency (EPA registered copper and its alloys as an antimicrobial agent for contact surfaces, research has demonstrated their antimicrobial activity. The aim of this study was to evaluate the efficacy of antimicrobial copper against bacteria and fungi isolated from commercial poultry hatcheries in order to develop a microbiological control alternative in these environments. Samples were collected from the surfaces of hatcher baskets from two hatcheries. Mesophilic microorganisms and fungi/yeasts were isolated and standardized in concentration of 105 cells/mL. Four copper plates and four stainless steel plates were completely immersed for one minute in bacteria and fungi/yeasts solutions and left to dry for a day at room temperature. Subsequently, samples were collected from the metal plates with the aid of sterile swab and delimiter. These samples were planted onto Plate Count Agar (for mesophilic culture and Sabouraud Dextrose Agar (for fungi and yeast culture and incubated at 36°C for 48 hours and at 25°C for 5-7 days, respectively. After incubation, the colonies recovered from the plates were counted according to IN 62 of the Brazilian Ministry of Agriculture. Almost all contamination was eliminated from the surface of copper plates in a single day, while the stainless steel plates proved to be innocuous to the screened microorganisms. Copper, as a contact surface, proved to have important antimicrobial action on bacteria, fungi and yeasts common to hatcheries.

  6. Differences in activity and N demand between bacteria and fungi in a microcosm incubation experiment with selective inhibition

    NARCIS (Netherlands)

    Kooijman, A.M.; Bloem, J.; Dalen, van B.R.; Kalbitz, K.

    2016-01-01

    Bacteria and fungi are important micro-organisms in the soil, but may differ in their impact on net N-mineralization. The hypothesis was tested that fungi are characterized by low microbial activity, but also low immobilization, and bacteria by high activity and high immobilization. A one-month

  7. Inactivation of dried bacteria and bacterial spores by means of gamma irradiation at high temperatures.

    Science.gov (United States)

    Emborg, C

    1974-05-01

    Dried preparations with Streptococcus faecium, strain A(2)1, and spores of Bacillus sphaericus, strain C(I)A, normally used for control of the microbiological efficiency of radiation sterilization plants and preparations with spores of Bacillus subtilis, normally used for control of sterilization by dry heat, formalin, and ethylene oxide, as well as similar preparations with Micrococcus radiodurans, strain R(1), and spores of Bacillus globigii (B. subtilis, var. niger) were gamma irradiated with dose rates from 16 to 70 krad/h at temperatures from 60 to 100 C. At 80 C the radiation response of the spore preparations was the same as at room temperature, whereas the radiation resistance of the preparations with the two vegetative strains was reduced. At 100 C the radiation response of preparations with spores of B. subtilis was unaffected by the high temperature, whereas at 16 and and 25 krad/h the radiation resistance of the radiation-resistant sporeformer B. sphaericus, strain C(I)A, was reduced to the level of radiation resistance of preparations with spores of B. subtilis. It is concluded that combinations of heat and gamma irradiation at the temperatures and dose rates tested may have very few practical applications in sterilization of medical equipment.

  8. Molecular Detecting of fungi and Bacteria in the ‎Blood of Patients With Genital System ‎Inflammatory Infection

    Directory of Open Access Journals (Sweden)

    Mohammad Ibrahim Khalil

    2017-12-01

    Full Text Available A PCR technique was used to detect fungi and bacteria in the blood of patients with inflammatory infection of genital system, three primer sets were used to detect E. Coli , Candida spp. and existence of other fungi  The results showed infection by both microorganisms. All patients had bacteria in the blood stream while 30 % of them had a Candida spp. and the same percentage of other fungi species in blood

  9. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  10. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  11. The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent

    NARCIS (Netherlands)

    Nazir, Rashid; Mazurier, Sylvie; Yang, Pu; Lemanceau, Philippe; van Elsas, Jan Dirk

    2017-01-01

    Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve

  12. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase.

    Science.gov (United States)

    Rodrigues-Silva, Caio; Miranda, Sandra M; Lopes, Filipe V S; Silva, Mário; Dezotti, Márcia; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P; Pinto, Eugénia

    2017-03-01

    In the last decade, environmental risks associated with wastewater treatment plants (WWTPs) have become a concern in the scientific community due to the absence of specific legislation governing the occupational exposure limits (OEL) for microorganisms present in indoor air. Thus, it is necessary to develop techniques to effectively inactivate microorganisms present in the air of WWTPs facilities. In the present work, ultraviolet light A radiation was used as inactivation tool. The microbial population was not visibly reduced in the bioaerosol by ultraviolet light A (UVA) photolysis. The UVA photocatalytic process for the inactivation of microorganisms (bacteria and fungi, ATCC strains and isolates from indoor air samples of a WWTP) using titanium dioxide (TiO 2 P25) and zinc oxide (ZnO) was tested in both liquid-phase and airborne conditions. In the slurry conditions at liquid phase, P25 showed a better performance in inactivation. For this reason, gas-phase assays were performed in a tubular photoreactor packed with cellulose acetate monolithic structures coated with P25. The survival rate of microorganisms under study decreased with the catalyst load and the UVA exposure time. Inactivation of fungi was slower than resistant bacteria, followed by Gram-positive bacteria and Gram-negative bacteria. Graphical abstract Inactivation of fungi and bacteria in gas phase by photocatalitic process performed in a tubular photoreactor packed with cellulose acetate monolith structures coated with TiO 2 .

  13. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture

    Science.gov (United States)

    Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.

    2018-04-01

    The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.

  14. Phytate Degradation by Fungi and Bacteria that Inhabit Sawdust and Coffee Residue Composts

    Science.gov (United States)

    Eida, Mohamed Fathallh; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting. PMID:23100024

  15. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  16. Effects of disinfectant fogging procedure on dust, ammonia concentration, aerobic bacteria and fungal spores in a farrowing-weaning room

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2014-09-01

    Full Text Available Introduction and Objective. In the last decades, large-scale swine production has led to intensive rearing systems in which air quality can be easily degraded by aerial contaminants that can pose a health risk to the pigs and farm workers. This study evaluated the effects of fogging disinfectant procedure on productive performance, ammonia and dust concentration, aerobic bacteria and fungal spores spreading in the farrowing–weaning room. Materials and Method. This trial was conducted in 2 identical farrowing-weaning rooms of a piggery. In both rooms, 30 pregnant sows were lodged in individual cages. At 75 days of age, the piglets were moved to the fattening room. In the treated room, with the birth of the first suckling-pig, the fogging disinfection with diluted Virkon S was applied once a day in the experimental room per 15 minutes at 11:00. The fogging disinfectant treatment was switched between rooms at the end of the first trial period. Temperature, relative humidity, dust (TSP-RF fractions and number of particles, ammonia concentration and aerial contaminants (enterococci, Micrococcaeae and fungal spores were monitored in both rooms. Results. Ammonia concentration reduction induced by fogging disinfection was estimated 18%, total suspended particles and the respirable fraction were significantly lower in the experimental room. Fungal spores resulted in a significant reduction by the fogging procedure, together with dust respirable fraction and fine particulate matter abatement. Conclusions. The fogging disinfection procedure improved air quality in the piggery, thereby enhancing workers and animals health.

  17. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  18. Radiosensibilisation of bacteria on beef minced by essential oils with special reference to the spores of Bacillus cereus ATCC 7004

    International Nuclear Information System (INIS)

    Ayari, Samia

    2007-01-01

    The radiosensitization of Bacillus Cereus ATCC 7004 spores was evaluated in the presence of thymol, thyme, D-L menthol, trans-cinnamaldehyde and eugenol in ground beef. Meat cattle minced (5 % fat) was inoculated with spores of Bacillus Cereus (10 5 - 10 6 CFU / g), and each compound was added separately at various concentrations. The antimicrobial potential was evaluated in unirradiated meat by determining the MIC in percentage (wt / wt) after 24 h of storage at 4± 1C. Results showed that the best antimicrobial compound was the trans-cinnamaldehyde with MIC of 1.47%, wt/wt. In presence of cinnamaldehyde, the addition of sodium pyrophosphate decahydrate (0.1%, wt/wt) increased significantly (p < 0.05) the relative sensitivity of Bacillus Cereus spores 2 times. However, the presence of ascorbic acid in the media reduced significantly (p < 0.05) the radiosensitivity of bacteria. The combined effect of gamma irradiation in presence of cinnamaldehyde, added with ascorbic acid or sodium pyrophosphate decahydrate, on the microbiological and physico-chemical characteristic of meat samples was evaluated at 2 kGy under air. The use of the active compounds with the irradiation reduced significantly (p < 0.05) the count of total bacteria with a concomitant effect in the extension periods of shelf life. The addition of the cinnamaldehyde induced a significant reduction (p < 0.05) in TVN and free amino acids of irradiated samples. In presence of ascorbic acid the thiobarbituric acid-reactive substances (TBARS) concentration was significantly reduced (P...0.05). A significant reduction (p < 0.05) of a* and C* of color values and a significant increase (p < 0.05 ) of b* value were obtained for the samples treated by the cinnamaldehyde. The application of bioactive films for the immobilization of the essential oils is a good alternate to check their stability during storage time. (Author). 155 refs

  19. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  20. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  1. Comparison of the interleukin-1β-inducing potency of allergenic spores from higher fungi (Basidiomycetes) in a cryopreserved human whole blood system

    Science.gov (United States)

    Rivera-Mariani, Félix E.; Vysyaraju, Kranthi; Negherbon, Jesse; Levetin, Estelle; Horner, W. Elliot; Hartung, Thomas; Breysse, Patrick N.

    2014-01-01

    Background Spores from basidiomycete fungi (basidiospores) are highly prevalent in the atmosphere of urban and rural settings. Studies have confirmed their potential to affect human health as allergens. Less is known about their potential to serve as stimuli of the innate immune system and induce pro-inflammatory reactions. Methods In this study, we evaluated the pro-inflammatory potential of spores from 11 allergenic gilled (Pleurotus ostreatus, Oudemansiella radicata, Armillaria tabescens, Coprinus micaceus, Pluteus cervinus, Chlorophyllum molybdites) and non-gilled (Pisolithus arhizus, Merulius tremullosus, Calvatia cyathiformis, Lycoperdon pyriforme, Boletus bicolor) basidiomycetes fungi based on their potency to induce the release of the pro-inflammatory cytokine interleukin (IL)-1β in a cryopreserved human whole blood system. In addition, the role of morphological features of the spores (surface area, shape, and pigmentation) were examined for their role in the spores’ interleukin (IL)-1β-including potency. Peripheral blood from healthy volunteers was collected, pooled, and cryopreserved. After stimulating the cryopreserved pooled blood with 106 to 103 basidiospores/ml, the concentration of IL-1β in culture supernatants was determined with ELISA. Results Basidiospores manifested concentration-dependent IL-1β-inducing potency, which was more noteworthy among basidiospores from gilled basidiomycetes. At higher concentrations of basidiospores, the IL-1β-inducing potency was able to be differentiated in the cryopreserved human whole blood system. Morphological features did not correlate with the IL-1β-inducing potency of the basidiospores, suggesting that non-morphological properties modulate the IL-1β-inducing potency. Conclusion Our data provides evidence of the pro-inflammatory potential of basidiospores, and the utility of cryopreserved human whole blood as a human-based in-vitro system to study the immune reactivity of allergenic basidiospores. PMID

  2. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.J.K.; Worrall, J.J. (State Univ. of New York, Syracuse, NY (United States). Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  3. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    International Nuclear Information System (INIS)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers

  4. Effects of inhaled fine dust on lung tissue changes and antibody response induced by spores of opportunistic fungi in goats.

    Science.gov (United States)

    Purdy, Charles W; Layton, Robert C; Straus, David C; Ayers, J R

    2008-04-01

    To investigate the effects of sterile fine dust aerosol inhalation on antibody responses and lung tissue changes induced by Mucor ramosissimus or Trichoderma viride spores following intratracheal inoculation in goats. 36 weanling Boer-Spanish goats. 6 goats were allocated to each of 2 M ramosissimus-inoculated groups, 2 T viride-inoculated groups, and 2 control (tent or pen) groups. One of each pair of sporetreated groups and the tent control group were exposed 7 times to sterilized fine feedyard dust (mean+/-SD particle diameter, dust. Goats received an IV challenge with equine RBCs to assess antibody responses to foreign antigens. Postmortem examinations were performed at study completion (day 68) to evaluate lung tissue lesions. 5 of 7 deaths occurred between days 18 and 45 and were attributed to fine dust exposures prior to fungal treatments. Fine dust inhalation induced similar lung lesions and precipitating antibodies among spore-treated goats. Following spore inoculations, dust-exposed goats had significantly more spores per gram of consolidated lung tissue than did their nonexposed counterparts. Fine dust inhalation appeared to decrease the ability of goats to successfully clear fungal spores from the lungs following intratracheal inoculation.

  5. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wender A.; Andrade, Carlos Kleber Z.; Napolitano, Hamilton B., E-mail: wender@unb.br, E-mail: ckleber@unb.br [Universidade de Brasilia (LaQMOS/UnB), DF (Brazil). Inst. de Quimica; Vencato, Ivo; Castro, Miriam R.C. de; Camargo, Ademir J. [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil). Ciencias Exatas e Tecnologicas; Lariucci, Carlito [Universidade Estadual de Goias (UEG), Goiania, GO (Brazil). Inst. de Fisica

    2013-01-15

    The present work describes the antibacterial and antifungal activities of several chalcones obtained by a straight Claisen-Schmidt aldol condensation determined by the minimal inhibitory concentration against different microorganisms (Gram-positive and Gram-negative bacteria and fungi). Solid state crystal structures of seven chalcones were determined by X-ray diffraction (XRD) analysis. Chemometric studies were carried out in order to identify a potential structure activity relationship. (author)

  6. Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion.

    Science.gov (United States)

    Mamet, Steven D; Lamb, Eric G; Piper, Candace L; Winsley, Tristrom; Siciliano, Steven D

    2017-05-01

    Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.

  7. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Directory of Open Access Journals (Sweden)

    Wietse de Boer

    Full Text Available Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2, whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  8. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi

    OpenAIRE

    Silva, Wender A.; Andrade, Carlos Kleber Z.; Napolitano, Hamilton B.; Vencato, Ivo; Lariucci, Carlito; Castro, Miriam. R. C. de; Camargo, Ademir J.

    2013-01-01

    The present work describes the antibacterial and antifungal activities of several chalcones obtained by a straight Claisen-Schmidt aldol condensation determined by the minimal inhibitory concentration against different microorganisms (Gram-positive and Gram-negative bacteria and fungi). Solid state crystal structures of seven chalcones were determined by X-ray diffraction (XRD) analysis. Chemometric studies were carried out in order to identify a potential structure-activity relationship. ...

  9. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi

    Science.gov (United States)

    de Boer, Wietse; Hundscheid, Maria P. J.; Klein Gunnewiek, Paulien J. A.; de Ridder-Duine, Annelies S.; Thion, Cecile; van Veen, Johannes A.; van der Wal, Annemieke

    2015-01-01

    Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum) on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge) in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2), whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro) antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria. PMID:26393509

  10. Aerobic bacteria and fungi from skin lesions of fish in Khartoum state

    Directory of Open Access Journals (Sweden)

    Walaa Hassan Ibrahim

    2016-12-01

    Conclusion: Fishes with skin lesions are harboring many pathogenic bacteria and fungi and may act as a source of zoonotic infections and can transmit several pathogens to workers in fish industry and consumers. Therefore, thorough and strict routine inspection of fish is recommended to ensure safety and that there are no serious risks to consumers. [J Adv Vet Anim Res 2016; 3(4.000: 375-385

  11. Fungi and bacteria inventory on soybean (Glycine max (L.) merill) planting media applied by local microorganisms

    Science.gov (United States)

    Akhsan, Ni'matuljannah; Vionita

    2017-02-01

    An experiment aimed to determine the effect of application of several types of local microorganisms (MOL) and the number of doses to the development of fungi and bacteria on soybean planting media, have been conducted in Samarinda for 3 (three) months. Factorial experiment arranged in a completely randomized design and repeated three times, was used in this experiment. The first factor was the type of MOL consisted of cow dung (m1), snails (m2), banana peel (m3) and bamboo roots (m4), and the second factor was the dose MOL zero mL (d0), 100 mL (d1), 200 mL (d2), 300 mL (d3), 400 mL (d4) analyzed with Anova and Least Significance Difference (LSD) at 5%. Fungi and bacteria contained in the local microorganisms (cow dung, snails, banana peel and bamboo root) are: fungus Aspergillus sp, Penicillium sp., Trichoderma sp., cellulotic and lignolitic bacteria. An increase in the type and amount of fungus is happened for some genus. The dominant bacteria in the planting medium is a gram-negative bacteria. Cow dung seemed the best source at the dosages level of 400 ml.

  12. Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms.

    Science.gov (United States)

    Coorevits, An; De Jonghe, Valerie; Vandroemme, Joachim; Reekmans, Rieka; Heyrman, Jeroen; Messens, Winy; De Vos, Paul; Heyndrickx, Marc

    2008-06-01

    Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples from five conventional and five organic dairy farms, sampled in late summer/autumn and in winter, were plated on a standard medium and two differential media, one screening for phospholipolytic and the other for proteolytic activity of bacteria. Almost 930 isolates were obtained of which 898 could be screened via fatty acid methyl ester analysis. Representative isolates were further analysed using 16S rRNA gene sequencing and (GTG)(5)-PCR. The majority of aerobic spore-formers in milk belonged to the genus Bacillus and showed at least 97% 16S rRNA gene sequence similarity with type strains of Bacillus licheniformis, Bacillus pumilus, Bacillus circulans, Bacillus subtilis and with type strains of species belonging to the Bacillus cereus group. About 7% of all isolates may belong to possibly new spore-forming taxa. Although the overall diversity of aerobic spore-forming bacteria in milk from organic vs. conventional dairy farms was highly similar, some differences between both were observed: (i) a relatively higher number of thermotolerant organisms in milk from conventional dairy farms compared to organic farms (41.2% vs. 25.9%), and (ii) a relatively higher number of B. cereus group organisms in milk from organic (81.3%) and Ureibacillus thermosphaericus in milk from conventional (85.7%) dairy farms. One of these differences, the higher occurrence of B. cereus group organisms in milk from organic dairy farms, may be linked to differences in housing strategy between the two types of dairy farming. However, no plausible clarification was found for

  13. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm......FOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA.   Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were...

  14. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  15. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  16. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  17. Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata

    Directory of Open Access Journals (Sweden)

    Anthony C Yannarell

    2011-06-01

    Full Text Available The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader-microbe interactions. Lespedeza cuneata (Dum. Cours. G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathetic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant.

  18. Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators

    Directory of Open Access Journals (Sweden)

    Sema Sandikci Altunatmaz

    2012-12-01

    Full Text Available The purpose of this study was to determine the microbiological air quality (psychrotrophic bacteria and airborne fungi and distribution of fungi in different types of ready-to-eat (RTE food-storage refrigerators (n=48 at selected retail stores in the city of Edirne, Turkey. Refrigerators were categorized according to the type of RTE food-storage: meat products, vegetables, desserts, or a mix of food types. Microbiological quality of air samples was evaluated by using a Mas-100 Eco Air Sampler. Four refrigerators (all containing meat products, 8.3% produced air samples with undetectable microorganisms. The highest detected mean value of airborne psychrotrophic bacteria and fungi was 82.3 CFU/m³ and 54.6 CFU/m³, respectively and were found in mixed-food refrigerators. The dominant airborne fungal genera found were Penicillium (29.0%, Aspergillus (12.0%, Mucor (9%, Cladosporium (8%, Botyrtis (7%, and Acremonium (6%. By definition, RTE food does not undergo a final treatment to ensure its safety prior to consumption. Therefore, ensuring a clean storage environment for these foods is important to prevent food-borne disease and other health risks.

  19. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    Science.gov (United States)

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  20. Variations of bacteria and fungi in PM2.5 in Beijing, China

    Science.gov (United States)

    Du, Pengrui; Du, Rui; Ren, Weishan; Lu, Zedong; Zhang, Yang; Fu, Pingqing

    2018-01-01

    Bacteria and fungi present in the airborne fine particulate matter (PM2.5) play important roles in the atmosphere and provide significant impacts on human health. However, variations in the species composition and community structure have not been well understood. In this study, we sampled PM2.5 in suburban Beijing and analyzed the bacterial and fungal composition during different seasons and at different air pollution levels using gene sequencing methods. The results showed that the species richness and diversity of bacterial communities displayed a downtrend with the aggravation of air pollution. Additionally, the bacterial communities in spring samples showed the highest species richness, with average richness estimators, ACE and Chao 1, up to 14,649 and 7608, respectively, followed by winter samples (7690 and 5031, respectively) and autumn samples (4368 and 3438, respectively), whereas summer samples exhibited the lowest average ACE and Chao 1 indexes (2916 and 1900, respectively). The species richness of fungal communities followed the same seasonal pattern. The community structure of bacteria and the species composition of fungi in PM2.5 showed significant seasonal variations. The dominant bacteria were Actinobacteria (33.89%), Proteobacteria (25.72%), Firmicutes (19.87%), Cyanobacteria/Chloroplast (15.34%), and Bacteroidetes (3.19%), and Ascomycota, with an average abundance of 74.68% of all sequences, were the most abundant fungi. At the genus level, as many as 791 bacterial genera and 517 fungal genera were identified in PM2.5. The results advance our understanding of the distribution and variation of airborne microorganisms in the metropolitan surrounding areas.

  1. Effects of polluting soil with cassava mill effluent on the bacteria and fungi populations of a soil cultivated with maize.

    Science.gov (United States)

    Ogboghodo, I A; Oluwafemi, A P; Ekeh, S M

    2006-05-01

    The study was carried out to investigate the effects of application of cassava mill effluent on bacteria and fungi types and population in a soil grown to maize (Zea Mays L.) Microbial populations were determined before pollution of soil with cassava mill effluent, six weeks after pollution with effluent and at the end of the experiment. Results obtained showed that bacteria and fungi populations increased with time as rates of pollution increased. It was also observed that some bacteria present in the soil at the beginning of the experiment and up to the sixth week after pollution with effluent became extinct at the end of the experiment.

  2. Microbiological method for radiation sterilization (III). Development of identification software of spore-forming bacteria by using BBL CRYSTAL GP identification kit

    International Nuclear Information System (INIS)

    Hironiwa, Takayuki; Yamamoto, Yoko; Koshikawa, Tomihiko

    2004-01-01

    The part III in this title series describes the development of software for identification of spore-forming bacteria using the commercially available BBL CRYSTAL GP Identification Kit (Becton, Dickinson and Co., Ltd.), which is essentially for identification of Gram positive bacteria and is not always suitable for the spore-former in the radiation sterilization of medical devices. Isolation and identification of a spore-forming bacterium have to be confirmed by phase-contrast microscopy. The bacteria cultured overnight are to be inoculated in the Kit and cultured for 18-24 hr at 35-37 deg C with the lid attached by substrates for identification. Here, 30 substrates and probability of positive reactions to the substrates have been tested for spore-formers to make the computer software for final identification. The system is possible to identify 13 spp. of Bacillus, 4 of Paenibacillus, 2 of Brevibaccilus and 1 of Virgibacillus, which are the usual bioburden. For possible misidentification, re-isolation of the bacterium, prolonged culture, concentrated inoculation and re-consideration for ranking of identification the software provides are necessary as well as other identification approaches. Thus, as described in this series, the radio-resistance of, and radiation dose for, the bioburden can be evaluated more easily than hitherto, with use of the kits in radiation sterilization. (N.I.)

  3. Effect of root exudates of various plants on composition of bacteria and fungi communities with special regard to pathogenic soil-borne fungi

    Directory of Open Access Journals (Sweden)

    Danuta Piętka

    2013-12-01

    Full Text Available The purpose of the studies conducted in the years 1996 - 1998 was to determine the composition of bacteria and fungi populations in the rhizosphere of winter wheat, spring wheat, soybean and potato, and in non-rhizosphere soil. Besides, the effect of root exudates of these plants on the formation of pathogenic fungi communities was established. The microbiological analysis showed that the greatest tolal number of bacteria was found in the rhizospheres of potato and soybean, and the lowest number in non-rhizosphere soil. The smallest total number of fungi was found in the rhizosphere of winter wheat, and the largest in the rhizosphere of soybean. Pathogenic fungi dominated in the rhizospheres of soybean and potato, while non-rhizosphere soil was the poorest in these microorganisms. Among the pathogenic fungi, Fusarium oxysporum, F.culmorum and F.solani were most frequently isolated. Soybean roots exudated the greatest amount of aminoacids, and acidic aminoacids, which have a positive effect on the development of phytopathogens, dominated in their content. On the other hand, the best quantitative and qualitative composition of aminoacids was found out in the root exudates of winter wheat, since they conlained big amounts of alkaline and aromatic aminoacids.

  4. Bacteria and fungi in day-old turkeys vary among companies, collection periods, and breeder flocks.

    Science.gov (United States)

    Smith, A H; Rehberger, T G

    2018-04-01

    Microbial colonization of the intestinal tract of commercial poultry is highly variable, likely due to the fact that poults and chicks are hatched and raised without exposure to adult birds and their microbiota. In industrial poultry production, it is hypothesized that most of the microbiota is obtained through horizontal transmission from the environment and very little by maternal transmission. The initial gut microbiota will therefore differ between flocks and companies based on environmental conditions at the hatchery. Day-old poults were collected from the hatchery of 2 companies at 3 different time points to monitor the initial colonizing microbiota by sequencing amplicons of marker genes for bacteria, lactic acid bacteria (LAB), fungi, and archaea. Bacterial colonizers were distinct by company (pseudo-F 38.7, P ≤ 0.05) with the predominant bacteria at Company A being clostridia, specifically Clostridium celatum group, C. paraputrificum, and C. tertium. Predominant bacteria at Company B were Enterobacteriaceae, belonging to 2 different groups, one that included Escherichia; Shigella and Salmonella and the other Klebsiella; Enterobacter; and others. The predominant LAB at both companies were Enterococcus faecalis and E. gallinarum, confirmed by sequencing the 16S ribosomal RNA (rRNA) gene of colonies picked from lactobacilli agar plate counts. The predominant fungi were Aspergillus niger and Saccharomyces cerevisiae, with Candida sake or Alterneria sp. in some samples of Company A. Archaeal sequences were detected only in a single poult from Company B. The initial gastrointestinal colonizers of poults vary across company and time, signifying a strong environmental effect on microbiota acquisition. There was an indication of maternal effects in certain breeder flocks from Company B. Further work is necessary to determine how this variability affects microbiota succession and impacts growth and production of the birds.

  5. Study of antimicrobial effect of novel Quaternary Ammonium Compounds on bacteria and fungi

    Directory of Open Access Journals (Sweden)

    Maryam Sadrnia

    2014-10-01

    Full Text Available Background: Quarterly Ammonium Compounds (QuAC are the more effective antimicrobial agents in medicine and industry. It needs to produce the new compounds with the wider spectrum and less toxicity, because of microbial resistance. Aim of this study was microbiological Evaluation of the new Quarterly Ammonium Compounds produced by Structural modifications on some bacteria, yeast and fungi. Material and Methods: 16 Quat salts were designed and made in Ethanol or Aceto Nitril. Minimum Inhibitory Concentration (MIC was determined by standard method on Nutrient Broth and Minimal agar culture media for bacteria , Potato Dextrose Agar (PDA for fungi and Nutrient Agar and Saboro Dextrose Agar (SDA for yeasts . Results: Compounds 2,7,8,9,12,13 has the more antimicrobial effect ( minimum of MIC. Furthermore, it was shown that MIC was unrelated to culture compounds. In yeast culture it must to increases the concentration in enriched media. Compounds 9,12 and 13 has the more antibacterial effect as well as antifungal effect. Conclusion: In comparison of structure of produced compounds and results of the study, it was revealed that radical R3 has the most important role in antimicrobial properties of Quats and it could to be substitute any suitable group related to increasing anti microbial effects.

  6. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    Science.gov (United States)

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  7. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest.

    Science.gov (United States)

    Maddela, N R; Masabanda, M; Leiva-Mora, M

    2015-01-01

    Isolating new diesel-oil-degrading microorganisms from crude-oil contaminated sites and evaluating their degradation capacities are vitally important in the remediation of oil-polluted environments and crude-oil exploitation. In this research, new hydrocarbon-degrading bacteria and fungi were isolated from the crude-oil contaminated soil of the oil-fields in the Amazon rainforest of north-east Ecuador by using a soil enrichment technique. Degradation analysis was tracked by gas chromatography and a flame ionization detector. Under laboratory conditions, maximum degradability of the total n-alkanes reached up to 77.34 and 62.62 removal ratios after 30 days of incubation for the evaporated diesel oil by fungi (isolate-1) and bacteria (isolate-1), respectively. The 16S/18S rDNA sequence analysis indicated that the microorganisms were most closely (99-100%) related to Bacillus cereus (isolate-1), Bacillus thuringiensis (isolate-2), Geomyces pannorum (isolate-1), and Geomyces sp. (isolate-2). Therefore, these strains enable the degradation of hydrocarbons as the sole carbon source, and these findings will benefit these strains in the remediation of oil-polluted environments and oil exploitation.

  9. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  10. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Lanfranco, Luisa; Fiorilli, Valentina; Venice, Francesco; Bonfante, Paola

    2017-12-22

    Strigolactones (SLs) first evolved as regulators of simple developmental processes in very ancient plant lineages, and then assumed new roles to sustain the increasing biological complexity of land plants. Their versatility is also shown by the fact that during evolution they have been exploited, once released in the rhizosphere, as a communication system towards plant-interacting organisms even belonging to different kingdoms. Here, we reviewed the impact of SLs on soil microbes, paying particular attention to arbuscular mycorrhizal fungi (AMF). SLs induce several responses in AMF, including spore germination, hyphal branching, mitochondrial metabolism, transcriptional reprogramming, and production of chitin oligosaccharides which, in turn, stimulate early symbiotic responses in the host plant. In the specific case study of the AMF Gigaspora margarita, SLs are also perceived, directly or indirectly, by the well-characterized population of endobacteria, with an increase of bacterial divisions and the activation of specific transcriptional responses. The dynamics of SLs during AM root colonization were also surveyed. Although not essential for the establishment of this mutualistic association, SLs act as positive regulators as they are relevant to achieve the full extent of colonization. This possibly occurs through a complex crosstalk with other hormones such as auxin, abscisic acid, and gibberellins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ - Brazil

    OpenAIRE

    Souchie, Edson L.; Saggin-Júnior, Orivaldo J.; Silva, Eliane M.R.; Campello, Eduardo F.C.; Azcón, Rosario; Barea, Jose M.

    2006-01-01

    Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi, were evaluated in two different ecosystems. Samplings taken from two areas of Atlantic forest, in Paraty - RJ, Brazil, one with a secondary forest and the other with a grass pasture were studied. Four growth media: GL (glucose and yeast extract), GES (glucose, soil extract, KNO3, CaCl2, MgSO4, NaCl, FeEDTA and micronutrients solution), GAGES (glucose, soil extract, arabinose, glycerol, CaCl2, MgSO4 and NaCl) and G...

  12. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination.

    Science.gov (United States)

    Doll, Etienne V; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from shelf life is influenced only to a minor extent by raw-milk-associated factors. In contrast, recontamination with spores, particularly from the B. cereus complex, seems to occur. To enhance milk quality throughout the entire shelf life, improved plant sanitation and disinfection that target the elimination of spores are necessary.

  13. Evaluation of sanitizers efficiency over spore forming bacteria isolated from whole UHT milk

    Directory of Open Access Journals (Sweden)

    Edite Andrade Costa

    2017-03-01

    Full Text Available It is known that sporulated bacteria produce proteolytic and lipolytic thermoresistant enzymes associated with technological problems such as off-flavors, age gelation and bitter taste in milk and dairy products. Preventive measures to avoid contamination of milk must be taken in consideration, e.g., the employment of a certain type of sanitizing agent, its conditions of use, concentration, contact time and temperature. The aim of this work was to evaluate the sanitation efficiency of workers of the dairy industry in relation to sporulated bacteria isolated from UHT milk. The suspension test was used to evaluate the efficiency of solutions of sodium hypocholite, biguanide, peracetic acid and hydrogen peroxide against 18 strains of Bacillus sp. isolated from whole UHT milk. Although the biguanide resulted in significant decimal reduction, none of the sanitizing agents studied was effective under the evaluated conditions. The average decimal reduction values obtained were below 5 log cycles (99.999%. The effectiveness of the sanitizing agent is a primary factor in order to control the contaminations within the dairy industry. Thus, it is essential to define the ideal conditions of use of these agents.

  14. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk

    Directory of Open Access Journals (Sweden)

    Jose Carlos Ribeiro Junior

    2016-10-01

    Full Text Available The spore-forming microbiota is mainly responsible for the deterioration of pasteurized milk with long shelf life in the United States. The identification of these microorganisms, using molecular tools, is of particular importance for the maintenance of the quality of milk. However, these molecular techniques are not only costly but also labor-intensive and time-consuming. The aim of this study was to compare the efficiency of boiling in conjunction with four other methods for the genomic DNA extraction of sporulated bacteria with proteolytic and lipolytic potential isolated from raw milk in the states of Paraná and Maranhão, Brazil. Protocols based on cellular lysis by enzymatic digestion, phenolic extraction, microwave-heating, as well as the use of guanidine isothiocyanate were used. This study proposes a method involving simple boiling for the extraction of genomic DNA from these microorganisms. Variations in the quality and yield of the extracted DNA among these methods were observed. However, both the cell lysis protocol by enzymatic digestion (commercial kit and the simple boiling method proposed in this study yielded sufficient DNA for successfully carrying out the Polymerase Chain Reaction (PCR of the rpoB and 16S rRNA genes for all 11 strains of microorganisms tested. Other protocols failed to yield sufficient quantity and quality of DNA from all microorganisms tested, since only a few strains have showed positive results by PCR, thereby hindering the search for new microorganisms. Thus, the simple boiling method for DNA extraction from sporulated bacteria in spoiled milk showed the same efficacy as that of the commercial kit. Moreover, the method is inexpensive, easy to perform, and much less time-consuming.

  15. Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria.

    Science.gov (United States)

    Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili

    2016-09-01

    Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.

  16. Antimicrobial Activity of Pigments Extracted from Rhodotorula glutinis Against Some Bacteria and Fungi

    Directory of Open Access Journals (Sweden)

    Mahmoud Yolmeh

    2016-12-01

    Full Text Available Background Nowadays hazards of synthetic additives and preservatives have been identified, so researchers are looking to a natural and safe alternative for them. The aim of this study was to evaluate antimicrobial effect of carotenoids of Rhodotorula glutinis on the some pathogenic bacteria and fungi. Methods This experimental study was done in Gorgan University of Agriculture and Natural Resources. After cultivating R. glutinis in 50 mL YPG broth at 30°C for overnight, cells were harvested by centrifugation at 10,000 rpm for 10 minutes and were washed three times with distilled water. Cells were ruptured 3 times with 12 mL of acetone and broken using homogenizer. Then the suspension was centrifuged and the supernatant collected. The supernatant (contain pigments was powdered using freeze-dryer. Antimicrobial activity was evaluated by disc diffusion method and the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC was determined by using the agar dilution method. Results Giving the results, carotenoids of R. glutinis was effective on the growth of all the tested bacteria, so that Bacillus cereus and Salmonella enteritidis were the lowest and highest sensitivity to this pigment, respectively. The highest MIC and MBC among the tested bacteria were observed for S. enteritidis and Escherichia coli, respectively; whereas MBC was not observed for S. enteritidis at concentrations of the tested pigment. Conclusions Gram-positive bacteria were more sensitive than Gram-negative bacteria against the antimicrobial activity of pigments of R. glutinis. According to the results, pigments of R. glutinis can be used as an inhibitor of bacterial growth.

  17. [REGULATING EFFECT OF ASSOCIATIVE MICROBIOTA ON THE RHYTHMS OF BIOLOGICAL PROPERTIES OF FUNGI AND BACTERIA].

    Science.gov (United States)

    Timokhina, T Kh; Bukharin, O V; Nikolenko, M V; Paromova, Ya I; Perunova, N B

    2015-01-01

    Study the effect of exometabolites of associative microbiota on circadian dynamics of functional parameters, that reflect pathogenic and persistence properties of fungi and bacteria. Clinical isolates of Candida albicans, isolated-from intestine of healthy individuals and patients with candidosis, as well as clinical isolates and museum ATCC strains Staphylococcus. aureus 25923, Escherichia coli 35218 and Pseudomonas aeruginosa 27853 were taken for study of proliferative, adhesive, catalase, protease, phospholipase, hemolytic, anti-lysozyme, biofilm-forming activity. The results were treated statistically. C. albicans isolates, isolated from healthy individuals were revealed to be indifferent to the effect of bacterial metabolites. Chrono-infrastructure of biological properties of fungi altered under the effect of microbiota metabolites. Hospital isolates of S. aureus, E. coli and P. aeruginosa displayed a relative stability of physiological properties against the effect of bacterial-fungal metabolites as opposed to museum strains. The alterations of chrono-infrastructure of biological rhythms of microorganisms by bacterial-fungal metabolites of associants reflect the intensity of the biological system, that is inevitable during the process of formation of inter-microbial interactions.

  18. A survey of fungi and some indicator bacteria in chlorinated water of indoor public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Aho, R.; Hirn, J.

    1981-01-01

    Fifty-four water samples, of volume 500 ml, originating from six public indoor fresh water swimming pools were examined for the presence of fungi and some indicator bacteria by a membrane-filter method. Sabouraud-dextrose agar and selective Candida albicans-medium were used for isolation and identification of fungi. In all but one of the samples the free chlorine content was above 0.40 mg/l. No Candida albicans were detected. Molds and unidentified yeasts were isolated from 29 of the samples. The following species were recorded: Acremonium spp., ALternaria sp., Aspergillus spp., Candida guilliermondii, Chaetomium sp., Cladosporium spp., Clasterosporium sp., Fusarium spp., Geotrichium sp., Penicillium spp., Petriellidium boydii and Phoma spp. Their occurrence was sporadic, each species mostly appearing as single colonies only, with a maximum of 5 colonies. Bacterial growth was noticed in 15 samples, but only in the sample of low free chlorine content did this reach significant proportions. The study indicates that the standard of chlorination is, at least in general, an adequate measure against fungal contamination of swimming pool water. However, the spectrum of mold species encountered encourages a further search for possible indicator species among these organisms.

  19. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition.

    Science.gov (United States)

    Purahong, Witoon; Wubet, Tesfaye; Lentendu, Guillaume; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Hofrichter, Martin; Krüger, Dirk; Buscot, François

    2016-08-01

    Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (R = 0.76, P kingdom co-occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross-kingdom functional succession. © 2016 John Wiley & Sons Ltd.

  20. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro microplants

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Vitorino

    2013-01-01

    Full Text Available Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro microplants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in microplants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were overexpressed only when the microplant was treated with endophytic fungi.

  1. Aqueous Extracts of Wild Mushrooms Show Antimicrobial and Antiadhesion Activities against Bacteria and Fungi.

    Science.gov (United States)

    Klančnik, Anja; Megušar, Polona; Sterniša, Meta; Jeršek, Barbara; Bucar, Franz; Smole Možina, Sonja; Kos, Janko; Sabotič, Jerica

    2017-12-01

    Mushrooms represent promising sources of novel bioactive compounds and can be applied as innovative strategies to control microbial contamination and infection via the food chain. We characterized aqueous extracts from 21 wild basidiomycete mushrooms and the cultivated oyster mushroom, Pleurotus ostreatus, as putative sources of antimicrobial and antiadhesive compounds. Broth microdilutions and adhesion to a polystyrene surface were evaluated on Gram-positive and Gram-negative bacteria and on fungi. The aqueous extracts tested showed antimicrobial and antiadhesive activities against these microorganisms. Biochemical analyses of the P. ostreatus extract indicated the involvement of several compounds with different molecular masses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  3. Genus Distribution of Bacteria and Fungi Associated with Keratitis in a Large Eye Center Located in Southern China.

    Science.gov (United States)

    Lin, Lixia; Lan, Weizhong; Lou, Bingsheng; Ke, Hongmin; Yang, Yuanzhe; Lin, Xiaofeng; Liang, Lingyi

    2017-04-01

    To investigate the genus distribution of bacteria and fungi associated with keratitis in a large eye center located in Southern China and to compare the results with existing data from other areas in China. All results of corneal microbiological examinations from 2009 to 2013 of patients who had been clinically diagnosed with bacterial or fungal keratitis were obtained chronologically and anonymously from the microbiology database at Zhongshan Ophthalmic Center. Smear/culture data were reviewed and analyzed. Antibiotic resistance of the harvested bacteria was also evaluated. Of 2973 samples, the microbial detection rate was 46.05%; in which 759 eyes (25.5%) were positive for bacteria, 796 eyes (26.8%) were positive for fungi, and 186 eyes (6.3%) were co-infected with both fungi and bacteria. The most common type of bacteria isolated was Staphylococcus epidermidis (31.9%), followed by Pseudomonas aeruginosa (12.4%). The most common type of fungus was Fusarium species (29.3%), followed by Aspergillus species (24.1%). For the bacteria harvested, mean antibiotic resistance was chloromycetin (34.6%), cephalosporins (20.0%), fluoroquinolones (18.6%), and aminoglycosides (10.5%). The genus distribution of organisms detected in keratitis cases in the largest eye center located in Southern China differs from those in other areas in China. In Southern China during the time period studied, S. epidermidis and Fusarium sp. were the most common pathogens of infectious keratitis. Monitoring the changing trend of pathogens as well as antibiotic resistance are warranted.

  4. The effectiveness of post-culture liquids of antagonistic bacteria in the protection of soybean from soil-borne fungi

    Directory of Open Access Journals (Sweden)

    Elżbieta Patkowska

    2012-12-01

    Full Text Available The objective of the paper was to determine the effectiveness of post-culture liquids of Bacillus sp. Bsch 19 and Pseudomonas sp. Psch 16 in the protection of soybean from soil-borne fungi. The use of post-culture liquids of those bacteria in seed dressing positively affected the number, healthiness and yielding of soybean plants. The plants were mainly infected by Fusarium spp., Phoma exigua var. exigua, Rhizoctonia solani and Sclerotinia sclerotiorum. Those fungi were isolated much more rarely from the plants in combinations with the use of post-culture liquids of antagonistic bacteria as compared with the plants from the control combination, i.e. without seed dressing. A reverse relation was found for the occurrence of saprophytic fungi from the genera of Gliocladium, Penicillium and Trichoderma

  5. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Dong, Ke; Go, Rusea; Adams, Jonathan M

    2016-08-01

    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

  6. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  7. [Infections of finger and toe nails due to fungi and bacteria].

    Science.gov (United States)

    Nenoff, P; Paasch, U; Handrick, W

    2014-04-01

    Infections of the finger and the toe nails are most frequently caused by fungi, primarily dermatophytes. Causative agents of tinea unguium are mostly anthropophilic dermatophytes. Both in Germany, and worldwide, Trichophyton rubrum represents the main important causative agent of onychomycoses. Yeasts are isolated from fungal nail infections, both paronychia and onychomycosis far more often than generally expected. This can represent either saprophytic colonization as well as acute or chronic infection of the nail organ. The main yeasts causing nail infections are Candida parapsilosis, and Candida guilliermondii; Candida albicans is only in third place. Onychomycosis due to molds, or so called non-dermatophyte molds (NDM), are being increasingly detected. Molds as cause of an onychomycosis are considered as emerging pathogens. Fusarium species are the most common cause of NDM onychomycosis; however, rare molds like Onychocola canadensis may be found. Bacterial infections of the nails are caused by gram negative bacteria, usually Pseudomonas aeruginosa (recognizable because of green or black coloration of the nails) but also Klebsiella spp. and gram positive bacteria like Staphylococcus aureus. Treatment of onychomycosis includes application of topical antifungal agents (amorolfine, ciclopirox). If more than 50 % of the nail plate is affected or if more than three out of ten nails are affected by the fungal infection, oral treatment using terbinafine (in case of dermatophyte infection), fluconazole (for yeast infections), or alternatively itraconazole are recommended. Bacterial infections are treated topically with antiseptic agents (octenidine), and in some cases with topical antibiotics (nadifloxacin, gentamicin). Pseudomonas infections of the nail organ are treated by ciprofloxacin; other bacteria are treated according to the results of culture and sensitivity testing.

  8. On the reaction of some bacteria and fungi on coal tar creosote. Zur Verhalten einiger Bakterien und Pilze gegenueber Steinkohlenteeroel

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, O.; Dittberner, D.; Faix, O. (Universitaet Hamburg, Hamburg (Germany). Ordinariat fuer Holzbiologie)

    1991-01-01

    To contribute to the waste management of wood preservatives, the biodegradability of coal tar creosote by bacteria and fungi has been investigated. Microorganisms comprised 24 bacterial strains and 31 fungi from different systematic and ecological groups as well as isolates from contaminated soils. Based on countings of viable cells, the experiments with various nutrient media, methods of cultivation, preservative concentrations, and organic solvents yielded some bacteria which could grow in the presence of creosote: {ital Aeromonas hydrophila}, {ital Flavobacterium} sp., {ital Pseudomonas arvilla}, {ital P. fluorescens}, and {ital P. putida}. The white-rot fungi {ital Bjerkandera adusta}, {ital Heterobasidion annosum}, {ital Hirschioporus abietinus}, {ital Lentinula edodes}, {ital Peniophora gigantea}, {ital Pleurotus ostreatus}, {ital Schizophyllum commune}, and {ital Trametes versicolor}, the brown-rot fungus {ital Lentinus lepideus}, the staining fungi {ital Ceratocystis piceae} and {ital Stereum sanguinolentum}, and the moulds {ital Paecilomyces variotii} and {ital Trichoderma viride} also grew with creosote. To prepare samples for IR-measurements, continuous extraction of creosote from the nutrient liquid by percolation with methylene chloride was suitable. However, the IR-spectra of creosote did not show any measurable changes after incubation with 16 bacterial strains and 6 fungi. 42 refs., 2 figs., 4 tabs.

  9. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    Science.gov (United States)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  10. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse.

    Science.gov (United States)

    Thilsing, Trine; Madsen, Anne Mette; Basinas, Ioannis; Schlünssen, Vivi; Tendal, Kira; Bælum, Jesper

    2015-03-01

    Greenhouse workers are exposed to dust, endotoxin, fungi, and bacteria potentially causing airway inflammation as well as systemic symptoms. Knowledge about determinants of exposure is a prerequisite for efficient prevention through knowledge-based reduction in exposure. The objective of this study was to assess the occupational exposure in a flower greenhouse and to investigate the impact of work tasks on the intensity and variability in exposure. Seventy-six personal full-shift exposure measurements were performed on 38 employees in a Danish flower greenhouse producing Campanula, Lavandula, Rhipsalideae, and Helleborus. The samples were gravimetrically analysed for inhalable dust. Endotoxin was assessed by the Limulus Amoebocyte Lysate test and culture-based quantification of bacteria and fungi was performed. Information on the performed tasks during sampling was extracted from the greenhouse electronic task logging system. Associations between log-transformed exposure outcomes, season, and work tasks were examined in linear mixed-effects regression with worker identity as random effect. Measured concentrations ranged between 0.04 and 2.41mg m(-3) for inhalable dust and between 0.84 and 1097 EU m(-3) for endotoxin exposure, with the highest mean levels measured during Lavandula and Campanula handling, respectively. Personal exposure to fungi ranged between 1.8×10(2) and 3.4×10(6) colony-forming units (CFU) m(-3) and to bacteria between 1.6×10(1) and 4.2×10(5) CFU m(-3). Exposure to dust, endotoxin, fungi, and bacteria differed between seasons. Packing Lavandula, sticking, potting, and grading Rhipsalideae, and all examined tasks related to Campanula production except sticking increased dust exposure. Endotoxin exposure was increased during sticking Campanula and pinching or packing Rhipsalideae, and fungi exposure was elevated by subtasks performed in the research and development area for Campanula, and by potting, packing/dumping Campanula. Sticking and

  11. Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal

    Energy Technology Data Exchange (ETDEWEB)

    L. Gonsalvesh; S.P. Marinov; M. Stefanova; Y. Yurum; A.G. Dumanli; G. Dinler-Doganay; N. Kolankaya; M. Sam; R. Carleer; G. Reggers; E. Thijssen; J. Yperman [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Organic Chemistry

    2008-09-15

    One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of biodesulphurization on the treated solid products. Subbituminous high sulphur coal from 'Pirin' basin (Bulgaria) was selected as a high sulphur containing sample. Different types of microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with three types of fungi: 'Trametes Versicolor' - ATCC No. 200801, 'Phanerochaeta Chrysosporium' - ME446, Pleurotus Sajor-Caju and one Mixed Culture of bacteria - ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria and consecutive reduction by 13% for organic sulphur (Sorg) decrease with 'Phanerochaeta Chrysosporium' and 'Trametes Versicolor' were achieved. To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled 'on-line' with mass spectrometry (AP-TPR/MS), on-line with potentiometry (AP-TPR/pot) and by the 'off-line' AP-TPR/GC/MS analysis was used. The need of applying different atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance, oxygen bomb combustion followed by ion chromatography was used. 28 refs., 9 figs., 4 tabs.

  12. Mechanisms of action of fungi and bacteria used as biofertilizers in agricultural soils : a systematic review

    Directory of Open Access Journals (Sweden)

    Sara Paulina Restrepo-Correa

    2017-05-01

    Full Text Available Phosphorus, nitrogen, iron and potassium are some compounds necessary for plant growth and development; chemical fertilizers used to increase concentration significantly affect the environment and soil ecosystems. According to the scientific literature, microorganisms with biofertilizer potential have demonstrated various mechanisms of action to solubilize these compounds and thus meet the requirements of plants. This systematic review collects scientific information that describes the mechanisms of action of microbial fertilizers in agricultural soils, published between 2004 and 2014, in three different databases; ScienceDirect, SpringerLink and Scopus,using the search path (biofertilizer AND (bacteria OR fungi AND (effect OR action OR mechanism. After using different inclusion and exclusion criteria, the search displayed a total of 63 original articles, including six unindexed documents. As a result of the systematic review, it indicates that the production of various organic acids allows soil acidification, facilitating absorption of elements. It was also observed that solubilization of P is the most described mechanism, by obtaining a solubilizing of 726.5 mg/L of P due to P. pseudoalcaligenes

  13. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  14. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    Science.gov (United States)

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Antimicrobial activity of broccoli (Brassica oleracea var. italica) cultivar Avenger against pathogenic bacteria, phytopathogenic filamentous fungi and yeast.

    Science.gov (United States)

    Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E

    2018-01-01

    The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.

  16. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    Energy Technology Data Exchange (ETDEWEB)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  17. Comparison of phenanthrene removal by Aspergillus niger ATC 16404 (filamentous fungi) and Pseudomonas putida KT2442 (bacteria) in enriched nutrient-liquid medium

    Science.gov (United States)

    Hamzah, N.; Kamil, N. A. F. M.; Singhal, N.; Padhye, L.; Swift, S.

    2018-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) is one of the persistent and carcinogenic pollutants that needs to be eliminated from the environment. The study on degradation of PAHs by bacteria is thoroughly discussed in literature. Many strains of bacteria were chosen in order to eliminate the PAHs compound in the environment. However, there are less study on the filamentous fungi although fungi appears to be an abundant population and as dominant group in PAHs contaminated soil habitats [1], [2]. This study was conducted to determine and compare the Phenanthrene (PHE) removal by fungi and bacteria in excessive nutrient-liquid culture. Then, the survival for both strains was investigated in the presence of PHE and finally, the analysis on the fungi-PHE interaction was carried out. In condition of excessive nutrient, the removal of PHE was evaluated for fungi and bacteria in batch experiment for 5 days. PHE removal for A.niger and P.putida were found to be 97% and 20% respectively after 5 days. The presence of PHE was negatively inhibits the grow of the bacteria and the fungus. The PHE uptake mechanism for A.niger was observed to be a passive transport mechanism with 45 μg per g fungus dry weight within 24 hr of incubation. As a conclusion, filamentous fungi have the potent role in the removal of PHE as well as bacteria but depending on the strains and the condition of the environment. Fungi is known to co-metabolize the PHE meanwhile, PHE can be used as sole carbon for bacteria. This preliminary result is significant in understanding the bacteria-fungi-PHE interaction to enhance the degradation of PAHs for co-culture study in the future.

  18. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities

    OpenAIRE

    Rojas-Jiménez, Keilor; Hernández, Myriam

    2015-01-01

    The guts of beetle larvae constitute a complex system where relationships among fungi, bacteria, and the insect host occur. In this study, we collected larvae of five families of wood-feeding Coleoptera in tropical forests of Costa Rica, isolated fungi and bacteria from their intestinal tracts, and determined the presence of five different pathways for lignocellulolytic activity. The fungal isolates were assigned to three phyla, 16 orders, 24 families, and 40 genera; Trichoderma was the most ...

  19. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  20. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    Science.gov (United States)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  1. ARBUSCULAR MYCORRHIZA FUNGI AS AN INDICATOR OF SOIL FERTILITY

    Directory of Open Access Journals (Sweden)

    Muhammad Akhid Syibli

    2014-02-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are ubiquitous organism that forms association with the root of most terrestrial plants. AMF association also influence soil fertility through the enhancement of chemical, biological and physical content. In this study, we enumerated AMF spores from rhizosphere of Tithonia difersivolia as an indicator of soil fertility. The results showed that the most fertile soil had the highest AMF spores density. This research has confirmed that AMF has high interaction with organic carbon, organic matter, total phosphorus, cation exchange capacity, water level, soil fungi and soil bacteria. Partial regression analysis revealed the mathematic equation for their interaction. This equation used the abundant of AMF spores as an indicator for chemical, biological and physical fertility of the soil.

  2. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread.

    Science.gov (United States)

    Valerio, F; De Bellis, P; Di Biase, M; Lonigro, S L; Giussani, B; Visconti, A; Lavermicocca, P; Sisto, A

    2012-06-01

    This study examines the diversity of spore-forming bacteria isolated from raw materials/bread using molecular methods along with a rapid and innovative technology, the FT-NIR spectroscopy. Microbiological analysis showed that 23% of semolina and 42% of other raw materials (including grain, brewer yeast, improvers) contained more than 100 spores/g and more than 50% of each kind of sample was contaminated at a level ranging from 1 to 100 spores/g. A high bacterial diversity characterized raw materials. In total 176 isolates were collected and characterized: 13 bacterial species belonging to Bacillus (10) and Paenibacillus (3) genera were identified by sequencing of 16S rRNA, gyrA or gyrB genes. The two closely related species Bacillus amyloliquefaciens (strain N45.1) and Bacillus subtilis (strain S63) were also analyzed by the spectroscopic technique FT-NIR. This analysis gave clear discrimination between the strains in the score plot obtained by the PCA and allowed to identify the spectral region 5600-4000 cm(-1) as the information-rich region for discrimination. B. amyloliquefaciens, possibly misidentified as B. subtilis in previous studies, was recognized as the most frequent species, found also in ropy bread. Moreover, the screening test for rope production indicated that mainly B. amyloliquefaciens, together with B. subtilis and Bacillus pumilus, could cause spoilage in bread, even if the last two species were represented by a low number of isolates. The Bacillus cereus group and Bacillus megaterium showed a lower percentage (30-70%) of isolates potentially able to cause the rope, but considering the high number of B. cereus group isolates detected in this study, this bacterial group should also be considered important in rope spoilage. In conclusion, results demonstrate that raw materials used to produce bread represent a rich source of spore-forming bacteria, therefore their microbiological quality should be monitored before use. Moreover, this study

  3. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    Directory of Open Access Journals (Sweden)

    Gina María Hernández-Ruiz

    2017-01-01

    Full Text Available Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of this study was to summarize the fungi and bacteria involved in bioremediation of the main organophos-phorus pesticides used in agricultural soils through a systematic review of the scientific literature, in order to provide useful information for conducting further studies. Scientific information was obtained ResumoOs organofosforados são um tipo de praguicidas amplamente utilizados no setor agrícola para o controle de pragas. Dado que estes são compostos químicos altamente tóxicos, o uso excessivo destes há causado grande deterioro nos solos cultiváveis, assim como graves danos contra os ecossistemas e na saúde humana. A biorremediação surge como uma alternativa para transformar os praguicidas em compostos mais simples e pouco contaminantes mediante o uso do potencial metabólico dos micro-rganismos. Pelo anterior, o objetivo desta pesquisa foi descrever os fungos e bactérias envolvidos na biorremediação dos principais praguicidas organo-fosforados empregados em solos agrícolas por meio de uma revisão sistemática da literatura científica, com o fim de aportar informação útil para a through the use of databases such as ScienceDirect and Springer Link and unindexed information was also gathered from Google Scholar, as a result of this study, it was found that the most studied organophosphate pesticide is chlorpyrifos (Toxicity category III and microorganisms most commonly used in the bioremediation of organophosphate pesticides belongs to the genera Serratia, Bacillus and Pseudomonas. It is

  4. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    Science.gov (United States)

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  5. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse

    DEFF Research Database (Denmark)

    Thilsing, T.; Madsen, A. M.; Basinas, I.

    2015-01-01

    ). Exposure to dust, endotoxin, fungi, and bacteria differed between seasons. Packing Lavandula, sticking, potting, and grading Rhipsalideae, and all examined tasks related to Campanula production except sticking increased dust exposure. Endotoxin exposure was increased during sticking Campanula and pinching...... exposure limit of 90 EU m(-3) was exceeded in 30% of the samples, which may have health implications for the employees. Exposure levels were found to vary depending on the tasks performed, and thereby results can be used to direct task-based initiatives to reduce workplace exposures....

  6. Direct quantitation of fatty acids present in bacteria and fungi: stability of the cyclopropane ring to chlorotrimethylsilane.

    Science.gov (United States)

    Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon

    2008-07-09

    The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.

  7. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    Science.gov (United States)

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This

  8. [Analysis of bacterial colonization associated with Gigaspora margarita spores by green fluorescence protein (GFP) marked technology].

    Science.gov (United States)

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Zhu, Honghui

    2009-05-01

    We analyzed bacterial colonization associated with spores of arbuscular mycorrhizal fungi (AMF) Gigaspora margarita, to indicate their ecological niche, and to provide information for further researches on their populations or functions. Six bacteria strains (Peanibacillus sp. M060106-1, Peanibacillus sp. M061122-2, Peanibacillus sp. M061122-6, Bacillus sp. M061122-4, Bacillus sp. M061122-10 and Brevibacillus sp. M061122-12) isolated from G. margarita spores were tagged with green fluorescence protein (GFP) using the carrier plasmid pNF8 (gfp-mut1). We analyzed the ecological niche and population dynamics of tagged strains on G. margarita under different conditions by using fluorescent microscope and/or plate counts. Four strains (M060106-1, M061122-6, M061122-10 and M061122-12) were tagged with GFP, showing high plasmid stability. These tagged strains possessed the basic characteristics identical to their original strains and, hence, were fit for short-term study of environmental colonization. All four GFP-tagged strains colonized the spore wall of G. margarita, and M061122-6 and M061122-12 further colonized the fungal hyphae. Under different pH conditions,the population dynamic of each GFP-tagged strain on the spores showed the same trend, i.e. first increased and then decreased, and the effects on the population size varied with different pH value. GFP-tagged strains colonized the spores of low viability more easily than those of high viability, and the population dynamic on the spores of high viability was different for each tagged strain. The isolated bacteria associated with G. margarita spores can re-colonize the fungal spores, whereas their colonizing ability depends on their characteristics and environmental factors. These data contributes to the further understanding of populations and functions of AMF-associated bacteria.

  9. Profile Of Bacteria And Fungi On Money Coins | Kuria | East African ...

    African Journals Online (AJOL)

    Objectives: To determine the quantity and quality of bacterial and fungi on money coins and to identify those that could pose a public health risk. Design: Random sampling of coins from subjects within predetermined categories. Setting: Westlands division of Nairobi Metropolitan province. Subjects: Twenty-shilling coin ...

  10. Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria.

    Science.gov (United States)

    Hedengren-Olcott, Marika; Olcott, Michael C; Mooney, Duane T; Ekengren, Sophia; Geller, Bruce L; Taylor, Barbara J

    2004-05-14

    The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.

  11. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications

    Directory of Open Access Journals (Sweden)

    Ghosh IN

    2013-12-01

    nanoform in combination with essential oil component cinnamaldehyde can be effectively used for controlling the spore-forming bacterial species.Keywords: antibacterial activity, bacterial food spoilage, erythrocyte toxicity, essential oil, in vitro, synergy, toxin producing spore-forming bacteria

  12. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures

    Directory of Open Access Journals (Sweden)

    Elslahi Randa H.

    2014-03-01

    Full Text Available Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21-240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti, non-symbiotic nitrogen fixers (Azospirillum braziliense or potassium solibilizers (Bacillus circulans, given that the fungicide is applied within the range of the recommended field dose.

  13. Identification of non-pseudomonad bacteria from fruit bodies of wild agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii.

    Science.gov (United States)

    Tsukamoto, Takanori; Murata, Hitoshi; Shirata, Akira

    2002-10-01

    Bacterial isolates from wild Agaricales fungi detoxified tolaasin, the inducer of brown blotch disease of cultivated mushrooms produced by Pseudomonas tolaasii. Mycetocola tolaasinivorans and Mycetocola lacteus were associated with fruit bodies of wild Pleurotus ostreatus and wild Lepista nuda, respectively. Tolaasin-detoxifying bacteria belonging to other genera were found in various wild mushrooms. An Acinetobacter sp. was isolated from fruit bodies of Tricholoma matsutake, Bacillus pumilus was isolated from Coprinus disseminatus, and Sphingobacterium multivorum was isolated from Clitocybe clavipes. A Pedobacter sp., which seemed not be identifiable as any known bacterial species, was isolated from a Clitocybe sp. Tolaasin-detoxifying bacteria identified thus far were attached to the surface of mycelia rather than residing within the fungal cells. M. tolaasinivorans, M. lacteus, B. pumilus, the Pedobacter sp., and S. multivorum efficiently detoxified tolaasin and strongly suppressed brown blotch development in cultivated P. ostreatus and Agaricus bisporus in vitro, but the Acinetobacter sp. did so less efficiently. These bacteria may be useful for the elucidation of mechanisms involved in tolaasin-detoxification, and may become biological control agents of mushroom disease.

  14. Speculations on niches occupied by fungi in the sea with relation to bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.

    living tissues of the seagrass Zostera and causes the wasting disease (Short et al 1987). Unicellular bacteria are not capable of substantially penetrating solid substrata and growing inside. Even the burrowing bacteria in wood (Mouzouras et al 1988... in the sea as parasites of living organisms and on dead organic matter (Jones 1976; Kohlmeyer and Kohlmeyer 1979; Moss 1986a), their importance inth~processes in the sea has still not been sufficiently ev.aluated. Authors of standard works on marine...

  15. Inhibition of in vitro growth of soil-borne pathogens by compost-inhabiting indigenous bacteria and fungi

    International Nuclear Information System (INIS)

    Ramzan, N.; Noreen, N.; Shahzad, S.

    2014-01-01

    During the present studies, compost-inhabiting microorganisms including 44 fungi and 15 bacteria isolated from different compost samples were evaluated for their in vitro efficacy against soil-borne pathogens viz., Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani, and Sclerotium rolfsii. Compost inhabiting microbes like Trichoderma harzianum, T. virens, Bacillus cereus, B. pumilus, B. subtilis, Micrococcus varians and Pseudomonas fluorescens were found to inhibit all the test pathogens. Acrophialophora fusispora and Penicillium citrinum reduced the mycelial growth of all the test pathogens except Sclerotium rolfsii. Bacillus licheniformis and Bacillus megaterium showed biocontrol activity against all the pathogens except Rhizoctonia solani. Trichoderma harzianum parasitized mycelia of all the tested pathogens and produced coiling around the mycelium. (author)

  16. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East.

    Science.gov (United States)

    Niazi, Sadegh; Hassanvand, Mohammad Sadegh; Mahvi, Amir Hossein; Nabizadeh, Ramin; Alimohammadi, Mahmood; Nabavi, Samira; Faridi, Sasan; Dehghani, Asghar; Hoseini, Mohammad; Moradi-Joo, Mohammad; Mokamel, Adel; Kashani, Homa; Yarali, Navid; Yunesian, Masud

    2015-10-01

    Bioaerosol concentration was measured in wastewater treatment units in south of Tehran, the largest wastewater treatment plant in the Middle East. Active sampling was carried out around four operational units and a point as background. The results showed that the aeration tank with an average of 1016 CFU/m(3) in winter and 1973 CFU/m(3) in summer had the greatest effect on emission of bacterial bioaerosols. In addition, primary treatment had the highest impact on fungal emission. Among the bacteria, Micrococcus spp. showed the widest emission in the winter, and Bacillus spp. was dominant in summer. Furthermore, fungi such as Penicillium spp. and Cladosporium spp. were the dominant types in the seasons. Overall, significant relationship was observed between meteorological parameters and the concentration of bacterial and fungal aerosols.

  17. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil.

    Science.gov (United States)

    Morawe, Mareen; Hoeke, Henrike; Wissenbach, Dirk K; Lentendu, Guillaume; Wubet, Tesfaye; Kröber, Eileen; Kolb, Steffen

    2017-01-01

    Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [ 13 C 1 ]-methanol was supplemented) and combined substrate conditions ([ 12 C 1 ]-methanol and alternative multi-carbon [ 13 C u ]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae ( Bacteria ) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae -affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria , we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to

  18. Differences in composition of honey samples and their impact on the antimicrobial activities against drug multiresistant bacteria and pathogenic fungi.

    Science.gov (United States)

    AL-Waili, Noori; Al Ghamdi, Ahmad; Ansari, Mohammad Javed; Al-Attal, Yehya; Al-Mubarak, Aarif; Salom, Khelod

    2013-05-01

    Antibiotic multiresistant microbes represent a challenging problem. Because honey has a potent antibacterial property, the antimicrobial effects of different honey samples against multiresistant pathogens and their compositions were investigated. Five honey samples were used: Talah, Dhahian, Sumra-1, Sidr, and Sumra-2. Samples were analyzed to determine chemical composition such as fructose, glucose, sucrose, pH, total flavonoids, total phenolics, hydrogen peroxide concentration, minerals and trace elements. Antimicrobial activities of the samples against 17 (16 were multiresistant) human pathogenic bacteria and three types of fungi were studied. Specimens of the isolates were cultured into 10 mL of 10-100% (volume/volume) honey diluted in broth. Microbial growth was assessed on a solid plate media after 24 h and 72 h incubation. The composition of honey samples varied considerably. Sumra 1 and 2 contained the highest level of flavonoids and phenolics and the lowest level of hydrogen peroxide, whereas Dhahian honey contained the highest level of hydrogen peroxide. Sixteen pathogens were antibiotic multiresistant. A single dose of each honey sample inhibited all the pathogens tested after 24 h and 72 h incubation. The most sensitive pathogens were Aspergillus nidulans, Salmonella typhimurum and Staphylococcus epidermidis (S. epidermidis). Although there was no statistically significant difference in the effectiveness of honey samples, the most effective honey against bacteria was Talah and against fungi were Dhahian and Sumra-2. Various honey samples collected from different geographical areas and plant origins showed almost similar antimicrobial activities against multiresistant pathogens despite considerable variation in their composition. Honey may represent an alternative candidate to be tested as part of management of drug multiresistant pathogens. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil

    Directory of Open Access Journals (Sweden)

    Mareen Morawe

    2017-07-01

    Full Text Available Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented to (i identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany, (ii assess their substrate range in the soil environment, and (iii evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose, and a lignin-derived aromatic compound (vanillic acid. An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to

  20. Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1996-01-01

    and Gerdemann, were used. Bacterial numbers (direct and viable count) and activities (thymidine incorporation) were highest in the root compartment, but were not affected by the AM mycelium after 30 days of plant growth. The soil was stored after harvest for 16 d at 13°C to study the effect of disconnected......) pattern. The bacteria specific PLFAs cy17:0 and cy19:0 increased in both experiments in the root compartments. The PLFAs 15:0 and 17:0, which are usually considered to be bacteria specific, also increased due to the presence of roots, but it was shown that these fatty acids were present in aseptically...... grown cucumber roots, and thus not bacteria specific. No bacterial PLFAs were affected by the presence of mycorrhiza....

  1. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  2. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent

    Science.gov (United States)

    Nazir, Rashid; Mazurier, Sylvie; Yang, Pu; Lemanceau, Philippe; van Elsas, Jan Dirk

    2017-01-01

    Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements. PMID:28197129

  3. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress

    Directory of Open Access Journals (Sweden)

    Abeer Hashem

    2016-07-01

    Full Text Available Microbes living symbiotically in plant tissues mutually cooperate with each other by providing nutrients for proliferation of the partner organism and have a beneficial effect on plant growth. However, few studies thus far have examined the interactive effect of endophytic bacteria and arbuscular mycorrhizal fungi (AMF in hostile conditions and their potential to improve plant stress tolerance. In this study, we investigated how the synergistic interactions of endophytic bacteria and AMF affect plant growth, nodulation, nutrient acquisition and stress tolerance of Acacia gerrardii under salt stress. Plant growth varied between the treatments with both single inoculants and was higher in plants inoculated with the endophytic B. subtilis strain than with AMF. Co-inoculated A. gerrardii had a significantly greater shoot and root dry weight, nodule number, and leghemoglobin content than those inoculated with AMF or B. subtilis alone under salt stress. The endophytic B. subtilis could alleviate the adverse effect of salt on AMF colonization. The differences in nitrate and nitrite reductase and nitrogenase activities between uninoculated plants and those inoculated with AMF and B. subtilis together under stress were significant. Both inoculation treatments, either B. subtilis alone or combined with AMF, enhanced the N, P, K, Mg and Ca contents and phosphatase activities in salt-stressed A. gerrardii tissues and reduced Na and Cl concentration, thereby protecting salt-stressed plants from ionic and osmotic stress-induced changes. In conclusion, our results indicate that endophytic bacteria and AMF contribute to a tripartite mutualistic symbiosis in A. gerrardii and are coordinately involved in the plant adaptation to salt stress tolerance.Key words: AMF, endophyte, Acacia gerrardii, salinity, nutrition

  4. The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

    Directory of Open Access Journals (Sweden)

    R. Iannone

    2011-02-01

    Full Text Available Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For water droplets containing a Cladosporium spore surface area of ~217 μm2 (equivalent to ~5 spores with average diameters of 3.2 μm , 1% of the droplets froze by −28.5 °C and 10% froze by –30.1 °C. However, there was a strong dependence on freezing temperature with the spore surface area of Cladosporium within a given droplet. Mean freezing temperatures for droplets containing 1–5 spores are expected to be approximately −35.1 ± 2.3 °C (1σ S. D.. Atmospheric ice nucleation on spores of Cladosporium sp., or other spores with similar surface properties, thus do not appear to explain recent atmospheric measurements showing that biological particles participate as atmospheric ice nuclei. The poor ice nucleation ability of Cladosporium sp. may be attributed to the surface which is coated with hydrophobins (a class of hydrophobic proteins that appear to be widespread in filamentous fungi. Given the ubiquity of hydrophobins on spore surfaces, the current study may be applicable to many fungal species of atmospheric importance.

  5. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis.

    Science.gov (United States)

    Li, Lei; Yang, Min; Luo, Jun; Qu, Qing; Chen, Ying; Liang, Lianming; Zhang, Keqin

    2016-11-01

    In soil, nematode-trapping fungi and bacteria often share microhabitats and interact with each other, but effects of fungus-associated bacteria on its trap formation are underestimated. We have ascertained the presence of Stenotrophomonas and Rhizobium genera associated with A. oligospora GJ-1. After A. oligospora GJ-1 without associated bacteria (cured Arthrobotrys) was co-cultivated with Stenotrophomonas and its supernatant extract, microscopic study of hyphae from co-cultivation indicated that bacterial biofilm formation on hyphae was related to trap formation in fungi and Stenotrophomonas supernatant extract. Four diketopiperazines (DKPs) were purified from Stenotrophomonas supernatant extract that could not induce traps in the cured Arthrobotrys. When cured Arthrobotrys was cultured with Stenotrophomonas and one of DKPs, polar attachment, bacterial biofilms on hyphae and trap formation in fungi were observed. After cured Arthrobotrys with bacterial biofilms was consecutively transferred several times on nutrient poor medium, trap formation disappeared with the disappearance of bacterial biofilms on hyphae. DKPs could facilitate chemotaxis of Stenotrophomonas towards fungal extract which was suggested to contribute to bacterial biofilms on hyphae. Furthermore, when cured Arthrobotrys was cultured with Stenotrophomonas and DKPs in soil, trap formation in fungi and bacterial biofilms on hyphae were also observed, and the fungal activity against nematode was enhanced. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea.

    Science.gov (United States)

    Adebanjo, A; Bankole, S A

    2004-01-01

    The efficacy of some fungal and bacterial isolates obtained from cowpea phylloplane in inhibiting the in vitro and in vivo growth of Colletotrichum lindemuthianum, causal agent of anthracnose of cowpea was investigated. Inhibition of growth of the pathogen with production of zones of inhibition was observed for Aspergillus flavus, A. ochraceus, Penicillium aurantiogriseum, Bacillus subtilis-BS21, B. subtilis-BS22 and B. subtilis-BS23. Inhibition of growth on contact was recorded for A. niger while Trichoderma viride-TH14 and T. viride-TH31hyperparasitized the pathogen. The two isolates of T. viride and all tested bacteria significantly reduced seedling infection from anthracnose infested seeds in pot experiments. Spray application of T. viride-TH31 on inoculated cowpea plants in the field effectively suppressed the incidence and severity of anthracnose disease, and significantly increased yield over the control. The antagonist was more effective when applied twice weekly than once in a week.

  7. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  8. Comparative evaluation of three impactor samplers for measuring airborne bacteria and fungi concentrations.

    Science.gov (United States)

    Méheust, Delphine; Gangneux, Jean-Pierre; Cann, Pierre Le

    2013-01-01

    Portable microbial samplers are useful for detecting microorganisms in the air. However, limited data are available on their performance when sampling airborne biological agents in a routine practice. We compared bacterial and fungal concentrations obtained in field conditions using three impactor samplers with different designs (AES Chemunex Sampl'Air, bioMérieux Air Ideal, and Sartorius AirPort MD8/BACTair). The linearity of mold collection was tested in the range of 100 L to 1000 L, and all the devices had a correlation coefficient higher than 0.95. For optimal comparison of the samplers, we performed experiments in different hospital rooms with varying levels of air biocontamination. Each sampling procedure was repeated to assess reproducibility. No significant difference between the samplers was observed for the mold concentrations on Sabouraud agar, whereas Sampl'Air collected significantly more bacteria on tryptic soy agar than Air Ideal or BACTair at one of the sites. Impactor location in the room was nevertheless associated with the variability observed with the three samplers at the highest microbial concentration levels. On the basis of their performance, autonomy and simplicity of use, these three impactors are suitable for routine indoor evaluation of microbial air contamination.

  9. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  10. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  11. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    Science.gov (United States)

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Directory of Open Access Journals (Sweden)

    A. Helin

    2017-11-01

    Full Text Available Primary biological aerosol particles (PBAPs are ubiquitous in the atmosphere and constitute ∼ 30 % of atmospheric aerosol particle mass in sizes  > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples (< 1.0, 1–2.5, 2.5–10 and  > 10 µm were collected in boreal forest (Hyytiälä, Finland during a 9-month period covering all seasons and analysed for free amino acids (FAAs, DNA concentration and microorganism (bacteria, Pseudomonas and fungi. Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  13. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  14. Isolation and Characterization of Cryptococcus neoformans Spores Reveal a Critical Role for Capsule Biosynthesis Genes in Spore Biogenesis▿

    Science.gov (United States)

    Botts, Michael R.; Giles, Steven S.; Gates, Marcellene A.; Kozel, Thomas R.; Hull, Christina M.

    2009-01-01

    Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts. PMID:19181873

  15. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing

    OpenAIRE

    Núñez, Andrés; Amo de Paz, Guillermo; Ferencova, Zuzana; Rastrojo, Alberto; Guantes, Raúl; García, Ana M.; Alcamí, Antonio; Gutiérrez-Bustillo, A. Montserrat; Moreno, Diego A.

    2017-01-01

    Pollen, fungi, and bacteria are the main microscopic biological entities present in outdoor air, causing allergy symptoms and disease transmission and having a significant role in atmosphere dynamics. Despite their relevance, a method for monitoring simultaneously these biological particles in metropolitan environments has not yet been developed. Here, we assessed the use of the Hirst-type spore trap to characterize the global airborne biota by high-throughput DNA sequencing, selecting region...

  16. Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores.

    Science.gov (United States)

    Bianciotto, V; Genre, A; Jargeat, P; Lumini, E; Bécard, G; Bonfante, P

    2004-06-01

    Arbuscular mycorrhizal (AM) fungi living in symbiotic association with the roots of vascular plants have also been shown to host endocellular rod-shaped bacteria. Based on their ribosomal sequences, these endobacteria have recently been identified as a new taxon, Candidatus Glomeribacter gigasporarum. In order to investigate the cytoplasmic stability of the endobacteria in their fungal host and their transmission during AM fungal reproduction (asexual), a system based on transformed carrot roots and single-spore inocula of Gigaspora margarita was used. Under these in vitro sterile conditions, with no risk of horizontal contamination, the propagation of endobacteria could be monitored, and it was shown, by using primers designed for both 16S and 23S ribosomal DNAs, to occur through several vegetative spore generations (SG0 to SG4). A method of confocal microscopy for quantifying the density of endobacteria in spore cytoplasm was designed and applied; endobacteria were consistently found in all of the spore generations, although their number rapidly decreased from SG0 to SG4. The study demonstrates that a vertical transmission of endobacteria takes place through the fungal vegetative generations (sporulation) of an AM fungus, indicating that active bacterial proliferation occurs in the coenocytic mycelium of the fungus, and suggests that these bacteria are obligate endocellular components of their AM fungal host.

  17. Spore Preparation Protocol for Enrichment of Clostridia from Murine Intestine.

    Science.gov (United States)

    Velazquez, Eric M; Rivera-Chávez, Fabian; Bäumler, Andreas J

    2017-05-20

    In recent years, many spore-forming commensal Clostridia found in the gut have been discovered to promote host physiology, immune development, and protection against infections. We provide a detailed protocol for rapid enrichment of spore-forming bacteria from murine intestine. Briefly, contents from the intestinal cecum are collected aerobically, diluted and finally treated with chloroform to enrich for Clostridia spores.

  18. Adaptation of the spore discharge mechanism in the basidiomycota.

    Directory of Open Access Journals (Sweden)

    Jessica L Stolze-Rybczynski

    Full Text Available Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1-2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously.In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance.This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology.

  19. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: synthesizing effects of microbial community structure using the Fungi and Bacteria (FAB) model. (Invited)

    Science.gov (United States)

    Averill, C.; Hawkes, C. V.; Waring, B. G.

    2013-12-01

    Most biogeochemical models of soil carbon and nitrogen cycling include a simplified representation of the soil microbial community as a single pool, despite good evidence that shifts in the composition or relative abundance of microbial taxa can affect process rates. Incorporating a more realistic depiction of the microbial community in these models may increase their predictive accuracy, but this must be balanced against the feasibility of modeling the enormous diversity present in soil. We propose that explicitly including two major microbial functional groups with distinct physiologies, fungi and bacteria, will improve model predictions. To this end, we created the fungi and bacteria (FAB) model, building off previous enzyme-driven biogeochemical models that explicitly represent microbial physiology. We compared this model to a complementary biogeochemical model that does not include microbial community structure (';single-pool'). We also performed a cross-ecosystem meta-analysis of fungi-to-bacteria ratios to determine if model predictions of community structure matched empirical data. There were large differences in process rates and pool sizes between the single-pool and FAB models. In the FAB model, inorganic N pools were reduced by 5-95% depending on the soil C:N ratio due to bacterial immobilization of fungal mineralization products. This nitrogen subsidy also increased microbial biomass at some C:N ratios. Although there were changes in some components of respiration, particularly overflow respiration, there was no net effect of community structure on total respiration fluxes. The FAB model predicted a breakpoint in the relationship between the ratio of fungi to bacteria and soil C:N, after which the fungi-to-bacteria ratio should begin to increase. Break-point analysis of the meta-analysis data set revealed a consistent pattern and matched the slope of the change in F:B with soil C:N, but not the precise breakpoint. We argue that including microbial

  20. Oligo-DNA custom macroarray for monitoring major pathogenic and non-pathogenic fungi and bacteria in the phyllosphere of apple trees.

    Directory of Open Access Journals (Sweden)

    Ying-Hong He

    Full Text Available BACKGROUND: To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. METHODS AND FINDINGS: First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. CONCLUSIONS: The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in

  1. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria.

    Science.gov (United States)

    Wang, Wenfeng; Cao, Lixiang; Tan, Hongming; Zhang, Renduo

    2016-11-01

    The aim of this study was to investigate the effects of single and mixed culture of denitrifying fungi, bacteria, and actinobacteria on nitrogen removal and N 2 O emission in treatment of wastewater. Denitrifying endophytes of Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 isolated from rice plants were utilized for treatment of synthetic wastewater containing nitrate and nitrite. Experiments were conducted under shaking and static conditions. Results showed that under the static condition, more than 97 % of nitrate removal efficiencies were reached in all the treatments containing B2. The nitrate removal rates within the first 12 h in the treatments of B2, B2+A9, B2+F3, and B2+A9+F3 were 7.3, 9.8, 11, and 11 mg L -1  h -1 , respectively. Under the shaking condition, 100 % of nitrite was removed in all the treatments containing B2. The presence of A9 and F3 with B2 increased the nitrite removal rates under both the shaking and static conditions. Compared to the B2 system, the mixed systems of B2+A9, B2+F3, and B2+A9+F3 reduced N 2 O emission (78.4 vs. 19.4, 1.80, and 0.03 μM in 4 weeks, respectively). Our results suggested that B2 is an important strain that enhances nitrogen removal from wastewater. Mixed cultures of B2 with A9 and F3 can remove more nitrate and nitrite from wastewater and reduce nitrite accumulation and N 2 O emission in the denitrification process.

  2. Ultraviolet-Resistant Bacterial Spores

    Science.gov (United States)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  3. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...

  4. Lyophilized spore dispenser

    Science.gov (United States)

    Jessup, A. D. (Inventor)

    1973-01-01

    A lyophilized spore dispenser is provided which produces a finely divided, monoparticulate cloud of bacterial spores. The spores are contained within a tightly sealed chamber, and a turbulator orifice connected to an air supply source provides a jet of air which stirs up the spores and causes the spores to be suspended in eddy currents within the chamber. This air jet also produces a positive pressure within the chamber which forces the spores out of an injection orifice.

  5. Growth, Survival, and Death of Bacteria and Fungi Following Wet-up of Seasonally Dried Soil Revealed by Heavy Water Stable Isotope Probing

    Science.gov (United States)

    Blazewicz, S.; Nuccio, E. E.; Lim, H.; Schwartz, E.; Brodie, E.; Firestone, M.

    2013-12-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown due to the technical difficulties associated with such measurements. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR and high throughput sequencing of bacterial 16S rRNA genes to characterize taxonomic composition of bacteria and to describe new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Total microbial abundance revealed little change throughout the 7-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49 and 52% respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi with average growth rates of 2.3 x 108 bacterial 16S rRNA gene copies gdw-1 h-1 and 4.3 x 107 fungal ITS copies gdw-1 h-1. While bacteria and fungi differed in their mortality and survival characteristics during the 7-day incubation, mortality that occurred within the first 3 hours was similar with 25 and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding 5 months) or during the rapid change in water-potential due to wet-up, generates a significant pool of available C that likely contributes to the large pulse in CO2 associated with wet-up. Sequential bacterial growth patterns observed at the phylum and order levels suggest that an ecologically coherent response was observable at coarse taxonomic levels with

  6. Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta Museum, Xi'an, China, during the "Oct. 1" gold week period of 2006.

    Science.gov (United States)

    Chen, Yi-Ping; Cui, Ying; Dong, Jun-Gang

    2010-02-01

    To stimulate the national economy, a so-called "gold week" comprising May Day and National Day has been put in force by the government, and the first golden-week holiday began on October 1, 1999. Statistical data show that about 15,000 visitors were received each day by Emperor Qin's Terra-Cotta Museum during just such a gold week period. To evaluate the effects of tourism on indoor air, airborne samples were collected by the sedimentation plate method for 5 min during the "Oct. 1" gold week period of 2006, and both composition and changes of airborne bacteria and fungi in indoor/outdoor air in the museums were investigated. Airborne microbes were simultaneously collected by means of gravitational sedimentation on open Petri dishes. Three parallel samples were collected at the same time each day, and samples were subsequently incubated in the lab. Microbiology media were prepared before each experiment by a professional laboratory. Concentrations were calculated and presented as average data of colony-forming units per cubic meter of air (CFU/m(3)). The results show that (1) 13 bacterial genera and eight genera of fungi were identified from indoor and outdoor air at Emperor Qin's Terra-Cotta Museum during "Oct. 1" gold week in 2006. The bacterial groups occupied 61%, the fungi groups occupied 36%, and others occupied 3% of the total number of isolated microorganism genera. (2) As for the comparison of indoor and outdoor samples, the average concentrations of fungi were higher during the afternoon (13:00) than for the morning (09:00). The average concentrations of bacteria in indoor air were higher during the afternoon (13:00) than for the morning (9:00), and in outdoor air, they were lower during the afternoon (13:00) than for the morning (9:00). (3) The average concentrations of five dominant groups of bacteria and three dominant groups of fungi were higher during the afternoon (13:00) than for the morning (9:00) in the indoor air, but the average concentrations

  7. Combined Field Inoculations ofPseudomonasBacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance.

    Science.gov (United States)

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G A; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C J; Keel, Christoph J; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas , mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  8. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    Directory of Open Access Journals (Sweden)

    Nicola Imperiali

    2017-10-01

    Full Text Available In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF, and entomopathogenic nematodes (EPN, were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy

  9. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    Science.gov (United States)

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S. Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G. A.; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C. J.; Keel, Christoph J.; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  10. Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina

    NARCIS (Netherlands)

    Gaag, van der M.; Debets, A.J.M.; Oosterhof, J.; Slakhorst, S.M.; Thijssen, J.A.G.M.; Hoekstra, R.F.

    2000-01-01

    In fungi, meiotic drive is observed as spore killing. In the secondarily homothallic ascomycete Podospora anserina it is characterized by the abortion of two of the four spores in the ascus. We have identified seven different types of meiotic drive elements (Spore killers). Among 99 isolates from

  11. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  12. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains.

    Science.gov (United States)

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R

    2015-02-01

    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants.

    Science.gov (United States)

    Cáceres, A; López, B; González, S; Berger, I; Tada, I; Maki, J

    1998-10-01

    Extracts were prepared from 13 native plants used for the treatment of protozoal infections. Activity against bacteria and fungi was demonstrated by dilution procedures; Trypanosoma cruzi was evaluated in vitro against epimastigote and trypomastigotes and in vivo against trypomastigotes. In active extracts, toxicity was evaluated by Artemia salina nauplii, oral acute toxicity (1-5 g/kg) and oral and intraperitoneal subacute toxicity in mice (500 mg/kg). From the plants screened, six showed activity (Petiveria alliacea and Tridax procumbens. Toxicity studies showed that extracts from S. americanum are toxic to A. salina (aqueous, 160 ppm). None showed acute or oral toxicity to mice; S. americanum showed intraperitoneal subacute toxicity.

  14. Ocorrência de bactérias diazotróficas e fungos micorrízicos arbusculares na cultura da mandioca Occurrence of diazotrophic bacteria and arbuscular mycorrhizal fungi on the cassava crop

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    1999-07-01

    Full Text Available Este trabalho teve como objetivo avaliar a ocorrência, isolar e identificar fungos micorrízicos arbusculares associados à cultura da mandioca (Manihot esculenta. Amostras de solo rizosférico e de várias partes da planta (raízes, tubérculos, manivas e folhas de locais nos Estados do Rio de Janeiro, São Paulo e Paraná, foram inoculadas nos meios LGI-P, NFb-malato e NFb-GOC, avaliando-se o número mais provável de células e a atividade de redução de acetileno. Bactérias diazotróficas foram isoladas de todas as partes da planta, com exceção das folhas, sendo identificadas como Klebsiella sp., Azospirillum lipoferum e uma bactéria denominada "E", provavelmente pertencente ao gênero Burkholderia. A Bactéria E acumulou de 7,63 mg a 14,84 mg de N/g de C em meio semi-sólido, isento de N, e conseguiu manter a capacidade de fixação biológica de N, mesmo após uma dezena de repicagens consecutivas. A colonização micorrízica variou de 31% a 69%, e a densidade de esporos de 10 a 384 esporos/100 mL de solo, predominando as espécies Entrophospora colombiana e Acaulospora scrobiculata no Rio de Janeiro, A. scrobiculata e Scutellospora heterogama no Paraná e em Piracicaba (São Paulo e A. appendicula e S. pellucida em Campinas (São Paulo.This study was performed to evaluate the occurrence and to isolate and identify diazotrophic bacteria and arbuscular mycorrhizal fungi associated with the cassava (Manihot esculenta crop. Samples from rhizospherical soil, roots, tubers, stems and leaves from several localities of the States of Rio de Janeiro, São Paulo and Paraná, in Brazil, were inoculated in three media specific for diazotrophic associative bacteria, LGI-P, NFb-malate and NFb-GOC, evaluating the most probable number of cells and the acetylene-reducing activity. Diazotrophic bacteria were detected in all plant parts except for the leaves, and were identified as Klebsiella sp., Azospirillum lipoferum and a bacterium called "E

  15. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  16. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities.

    Science.gov (United States)

    Rojas-Jiménez, Keilor; Hernández, Myriam

    2015-01-01

    The guts of beetle larvae constitute a complex system where relationships among fungi, bacteria, and the insect host occur. In this study, we collected larvae of five families of wood-feeding Coleoptera in tropical forests of Costa Rica, isolated fungi and bacteria from their intestinal tracts, and determined the presence of five different pathways for lignocellulolytic activity. The fungal isolates were assigned to three phyla, 16 orders, 24 families, and 40 genera; Trichoderma was the most abundant genus, detected in all insect families and at all sites. The bacterial isolates were assigned to five phyla, 13 orders, 22 families, and 35 genera; Bacillus, Serratia, and Pseudomonas were the dominant genera, present in all the Coleopteran families. Positive results for activities related to degradation of wood components were determined in 65% and 48% of the fungal and bacterial genera, respectively. Our results showed that both the fungal and bacterial populations were highly diverse in terms of number of species and their phylogenetic composition, although the structure of the microbial communities varied with insect host family and the surrounding environment. The recurrent identification of some lignocellulolytic-positive inhabitants suggests that particular microbial groups play important roles in providing nutritional needs for the Coleopteran host.

  17. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities

    Directory of Open Access Journals (Sweden)

    Keilor Rojas-Jiménez

    2015-01-01

    Full Text Available The guts of beetle larvae constitute a complex system where relationships among fungi, bacteria, and the insect host occur. In this study, we collected larvae of five families of wood-feeding Coleoptera in tropical forests of Costa Rica, isolated fungi and bacteria from their intestinal tracts, and determined the presence of five different pathways for lignocellulolytic activity. The fungal isolates were assigned to three phyla, 16 orders, 24 families, and 40 genera; Trichoderma was the most abundant genus, detected in all insect families and at all sites. The bacterial isolates were assigned to five phyla, 13 orders, 22 families, and 35 genera; Bacillus, Serratia, and Pseudomonas were the dominant genera, present in all the Coleopteran families. Positive results for activities related to degradation of wood components were determined in 65% and 48% of the fungal and bacterial genera, respectively. Our results showed that both the fungal and bacterial populations were highly diverse in terms of number of species and their phylogenetic composition, although the structure of the microbial communities varied with insect host family and the surrounding environment. The recurrent identification of some lignocellulolytic-positive inhabitants suggests that particular microbial groups play important roles in providing nutritional needs for the Coleopteran host.

  18. Ultraviolet germicidal irradiation inactivation of airborne fungal spores and bacteria in upper-room air and HVAC in-duct configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kujundzic, E.; Hernandez, M. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental and Architectural Engineering; Miller, S.L. [Colorado Univ., Boulder, CO (United States). Dept. of Mechanical Engineering

    2007-01-15

    This article presented an evaluation of the efficiency of ultraviolet germicidal irradiation (UVGI) for inactivating airborne fungal spores and bacterial vegetative cells under 3 configurations, namely intrinsic, upper-room air, and in-duct. Several experiments were conducted in a pilot-scale chamber fitted with 4 corner ultraviolet lamps that irradiated the entire chamber; a full-scale room fitted with a UVGI system that irradiated the top 30 cm of the room; and, the supply air duct of a heating ventilation and air-conditioning (HVAC) system. Fungal spores and vegetative cells of bacterium were aerosolized regularly such that their numbers and physiologic state were comparable both with and without the UVGI lamps operating. The article provided information on the materials and methods used including the experimental facilities (pilot-scale chamber, full-scale room, and in-duct UVGI system and ductwork) as well as the methods used for the three experimental studies. It also discussed the bioaerosol generation and sampling and quantification. These included culturing and direct microscopy. UV fluence rate was described. Last, the the results, discussion and conclusions from the studies were presented. It was shown that increasing the air stream velocity through the supply air duct reduces the residence time of bioaerosol being exposed to in-duct UVGI. 36 refs., 3 figs.

  19. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.

    > and can reach fresh habitats. It has been recently reported that spores of Aspergillus sydowii are croTied from the Saharan deserts across the Atlantic Ocean during dust storm!) to the Carihhean islands and cause aspergillosis disease in seafan~(87). Fungi... hand, heat shock pre treatment increased barotolerance in S. cerevisiae (strain IFO-0224) cells, indicating that hydrostatic pressure and high temperature may have the same physiological effects on this yeast (31). Heat shock treatment also prevented...

  20. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  1. Atrazine, chlorpyrifos, and iprodione effect on the biodiversity of bacteria, actinomycetes, and fungi in a pilot biopurification system with a green cover.

    Science.gov (United States)

    Elgueta, Sebastian; Correa, Arturo; Campo, Marco; Gallardo, Felipe; Karpouzas, Dimitrios; Diez, Maria Cristina

    2017-09-02

    The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg -1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.

  2. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Dungait, Jennifer A.J.; Bol, Roland

    2014-01-01

    t is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifacto......t is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year.......e. incorporated 13 Cin all treatments, whereas fungi had minor or no glycine derived 13 C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO 2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G + bacteria, in an ecosystem subjected...

  3. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Balestrini, Raffaella; Ott, Thomas; Güther, Mike; Bonfante, Paola; Udvardi, Michael K; De Tullio, Mario C

    2012-10-01

    Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. The effects of various land reclamation scenarios on the succession of soil Bacteria, Archaea, and fungi over the short and long term

    Directory of Open Access Journals (Sweden)

    Junjian eLi

    2016-03-01

    Full Text Available Ecological restoration of mining areas has mainly focused on the succession dynamics of vegetation and the fate of microbial communities remains poorly understood. We examined changes in soil characteristics and plant and microbial communities with increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level, Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative abundance within bacteria, archaea, and fungi, respectively. Partial regressions and canonical correspondence analysis demonstrated that vegetation played a major role in bacterial and archaeal diversity and assemblies, and soil characteristics, especially nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation indicated that bacterial and archaeal communities showed synergistic succession with plants; whereas, fungal communities showed no such pattern. Overall, our data suggest that there are different drivers of bacterial, archaeal and fungal succession during secondary succession in a reclaimed open mine.

  5. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker

    NARCIS (Netherlands)

    Pandey, R.; ter Beek, A.; Vischer, N.O.E.; Smelt, J.P.P.M.; Brul, S.; Manders, E.M.M.

    2013-01-01

    Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more

  6. Caracterización morfológica y genética de las ectomicorrizas formadas entre Pinus montezumae y los hongos presentes en los bancos de esporas en la Faja Volcánica Transmexicana Morphologic and genetic characterization of ectomycorrhizae formed by Pinus montezumae and spore bank fungi in the Transmexican Volcanic Belt

    Directory of Open Access Journals (Sweden)

    Roberto Garibay-Orijel

    2013-03-01

    Full Text Available Los hongos ectomicorrízicos son indispensables para el establecimiento y funcionamiento de los bosques templados. Algunos de ellos tienen esporas u otros propágulos resistentes y longevos; éstos se acumulan en el suelo forestal formando bancos de propágulos que constituyen la fuente de inóculo más importante después de disturbios severos. En este trabajo caracterizamos morfológica y genéticamente las ectomicorrizas formadas entre Pinus montezumae y los hongos presentes en los bancos de esporas de la Faja Volcánica Transmexicana. Las micorrizas se obtuvieron por medio de un bioensayo del suelo de 8 de los volcanes más representativos, con plántulas de P. montezumae cultivadas durante 7 meses. La identidad taxonómica de los hongos se obtuvo por la similitud genética de la región de los ITS. Se presentan las descripciones de 27 ectomicorrizas; de éstas, 20 no habían sido publicadas previamente. Geopora sp., Hebeloma helodes, H. leucosarx, Peziza sp. 1, P. aff. ostracoderma, Pezizaceae sp. 1, sp. 2, sp. 4, Pulvinula constellatio, Sebacina sp. 1, sp. 2, Sordariales sp. 1, sp. 2 y Tuber separans, no se habían encontrado en bancos de propágulos. Estas especies podrían usarse para reforestar con plantas y hongos endémicos, lo que aumentaría la sobrevivencia, pues ambos simbiontes estarían adaptados a las condiciones ambientales locales.Ectomycorrhizal fungi are keystone in temperate forest establishment and functioning. Some of them have resistant and long living spores and propagules. These use to accumulate in soil, forming the so-called spore banks, which are the main inoculum resource after an intense disturbance. In this paper, we provide the morphological and genetic characterization of ectomycorrhizae formed by Pinus montezumae and the spore bank fungi from the Transmexican Volcanic Belt. We made a bioassay with P. montezumae and soil from 9 of the most representative volcanoes. Mycorrhizae were dissected after 7 months of

  7. Chemical constituents of Helichrysum italicum (Roth G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans

    Directory of Open Access Journals (Sweden)

    Bouzid Djihane

    2017-07-01

    Full Text Available The aerial parts of Helichrysum italicum (Roth G. Don were subjected to hydrodistillation to obtain essential oils which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry and tested for antimicrobial activity against 12 bacteria, two yeasts and four fungi by agar diffusion method. The essential oil yielded 0.44% (v/w and 67 compounds accounting for 99.24% of the oil were identified with a high content of oxygenated sesquiterpenes (61.42%. The most oxygenated sesquiterpene compounds were α-Cedrene (13.61%, α-Curcumene (11.41%, Geranyl acetate (10.05%, Limonene (6.07%, Nerol (5.04%, Neryl acetate (4.91% and α-Pinene (3.78%. The antimicrobial activity of the essential oil was assayed by using the disk diffusion method on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Micrococcus luteus ATCC 4698, Klebsiella pneumonia ATCC 4352, Enterococcus cereus ATCC 2035, Bacillus cereus ATCC 10876, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis ATCC 9372, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 49452, Proteus mirabilis ATCC 35659, Listeria monocytogenes ATCC 15313 and yeasts Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763 and fungi, Fusarium solani var. coeruleum, Aspergillus niger, Alternaria alternata, Ascochyta rabiei. H. italicum inhibited the growth of all the tested microorganisms except three bacteria, E. coli ATCC 25922, K. pneumonia ATCC 4352 and L. monocytogenes ATCC 15313. The most sensitive bacterium was E. cereus ATCC 2035 with minimum inhibitory and bactericidal concentrations of 0.79 μg ml−1. A minimum fungistatic and fungicide concentration of 6.325 μg ml−1 and 12.65 μg ml−1 respectively was obtained with C. albicans ATCC 10231 and S. cerevisiae ATCC 9763. However the four fungi were more resistant with fungistatic minimum concentration ranging from 6.325 μg ml−1 to 50.6 μg ml−1 and a fungicide minimum

  8. Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Vosátka, Miroslav; Hršelová, Hana; Čatská, Vlasta; Chvátalová, Irena; Jansa, Jan

    2002-01-01

    Roč. 25, č. 6 (2002), s. 1341-1358 ISSN 0190-4167 R&D Projects: GA ČR GA502/94/0834; GA MŠk 926125 Keywords : dual * inoculation * bacteria Subject RIV: EE - Microbiology, Virology Impact factor: 0.593, year: 2002

  9. Bacterial Spores in Food : Survival, Emergence, and Outgrowth

    NARCIS (Netherlands)

    Wells-Bennik, Marjon H J; Eijlander, Robyn T; den Besten, Heidy M W; Berendsen, Erwin M; Warda, Alicja K; Krawczyk, Antonina O; Nierop Groot, Masja N; Xiao, Yinghua; Zwietering, Marcel H; Kuipers, Oscar P; Abee, Tjakko

    2016-01-01

    Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types

  10. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to

  11. Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply

    NARCIS (Netherlands)

    Cohen, A.; Distel, B.; van Deursen, A.; Breure, A. M.; van Andel, J. G.

    1985-01-01

    A mineral salts medium containing 1% (w/v) glucose providing carbon-limited growth conditions was subjected to anaerobic acidogenesis by mixed populations of bacteria in chemostat cultures. The formation of butyrate was shown to be dependent on the presence of saccharolytic anaerobic sporeformers in

  12. Detecting bacterial spores in soup manufacturing

    NARCIS (Netherlands)

    van Zuijlen, A.C.M.; Oomes, S.J.C.M.; Vos, P.; Brul, S.

    2009-01-01

    Spores from mesophilic aerobic sporeforming bacteria (Bacillus) are sometimes able to survive the thermal process of commercial sterile products and sporadically cause spoilage or food poisoning. Because of an increasing demand for more fresh products, ideally the processing temperatures should be

  13. Modeling to control spores in raw milk

    NARCIS (Netherlands)

    Vissers, M.

    2007-01-01

    A modeling approach was used to identify measures at the farm that reduce transmission of microorganisms to raw milk. Butyric acid bacteria (BAB) and Bacillus cereus were used as case-studies. Minimizing the concentration of BAB spores in raw milk is important to prevent late-blowing of Gouda-type

  14. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  15. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  16. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  17. Mucosal delivery of antigens using adsorption to bacterial spores.

    Science.gov (United States)

    Huang, Jen-Min; Hong, Huynh A; Van Tong, Hoang; Hoang, Tran H; Brisson, Alain; Cutting, Simon M

    2010-01-22

    The development of new-generation vaccines has followed a number of strategic avenues including the use of live recombinant bacteria. Of these, the use of genetically engineered bacterial spores has been shown to offer promise as both a mucosal as well as a heat-stable vaccine delivery system. Spores of the genus Bacillus are currently in widespread use as probiotics enabling a case to be made for their safety. In this work we have discovered that the negatively charged and hydrophobic surface layer of spores provides a suitable platform for adsorption of protein antigens. Binding can be promoted under conditions of low pH and requires a potent combination of electrostatic and hydrophobic interactions between spore and immunogen. Using appropriately adsorbed spores we have shown that mice immunised mucosally can be protected against challenge with tetanus toxin, Clostridium perfringens alpha toxin and could survive challenge with anthrax toxin. In some cases protection is actually greater than using a recombinant vaccine. Remarkably, killed or inactivated spores appear equally effective as live spores. The spore appears to present a bound antigen in its native conformation promoting a cellular (T(h)1-biased) response coupled with a strong antibody response. Spores then, should be considered as mucosal adjuvants, most similar to particulate adjuvants, by enhancing responses against soluble antigens. The broad spectrum of immune responses elicited coupled with the attendant benefits of safety suggest that spore adsorption could be appropriate for improving the immunogenicity of some vaccines as well as the delivery of biotherapeutic molecules.

  18. Advances in the study of genetic diversity of arbuscular mycorrhizal fungi

    OpenAIRE

    Yanpeng Liu; Bokyoon Sohn; Miaoyan Wang; Guoyong Jiang; Runjin Liu

    2008-01-01

    Arbuscular mycorrhizal (AM) fungi are obligate symbiotic endophytes which have not been cultured in vitro. The life cycle of AM fungi can be completed only when the mycorrhiza forms between the fungi and plant roots. There are more than 200 genetically-diverse species of AM fungi belonging to Glomeromycota in the Kingdom Fungi. It is well documented that surprisingly high genetic variability exists between and within species, and even in a single spore of AM fungi. We summarize recent advance...

  19. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi

    Science.gov (United States)

    Jayaseelan, C.; Rahuman, A. Abdul; Kirthi, A. Vishnu; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K. V. Bhaskara

    2012-05-01

    In the present work, we describe a low-cost, unreported and simple procedure for biosynthesis of zinc oxide nanoparticles (ZnO NPs) using reproducible bacteria, Aeromonas hydrophila as eco-friendly reducing and capping agent. UV-vis spectroscopy, XRD, FTIR, AFM, NC-AFM and FESEM with EDX analyses were performed to ascertain the formation and characterization of ZnO NPs. The synthesized ZnO NPs were characterized by a peak at 374 nm in the UV-vis spectrum. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical, oval with an average size of 57.72 nm. Synthesized ZnO NPs showed the XRD peaks at 31.75°, 34.37°, 47.60°, 56.52°, 66.02° and 75.16° were identified as (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 1 2) and (2 02 ) reflections, respectively. Rietveld analysis to the X-ray data indicated that ZnO NPs have hexagonal unit cell at crystalline level. The size and topological structure of the ZnO NPs was measured by NC-AFM. The morphological characterization of synthesized nanoparticles was analyzed by FESEM and chemical composition by EDX. The antibacterial and antifungal activity was ended with corresponding well diffusion and minimum inhibitory concentration. The maximum zone of inhibition was observed in the ZnO NPs (25 μg/mL) against Pseudomonas aeruginosa (22 ± 1.8 mm) and Aspergillus flavus (19 ± 1.0 mm). Bacteria-mediated ZnO NPs were synthesized and proved to be a good novel antimicrobial material for the first time in this study.

  20. Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2003-01-01

    Deep-rooting trees in agroforestry systems may promote distribution of spores of arbuscular mycorrhizal fungi (AMF) at deeper soil levels. We investigated the vertical distribution of AMF spores in Oxisols under agroforestry and monocultural (unshaded) coffee systems in on-farm experiments (

  1. Reconstructing the early evolution of the fungi using a six gene phylogeny

    NARCIS (Netherlands)

    James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; Lumbsch, H.T.; Rauhut, A.; Reeb, V.; Arnold, A.E.; Amtoft, A.; Stajich, J.E.; Hosaka, K.; Sung, G.H.; Johnson, D.; O'Rourke, B.; Binder, M.; Curtis, J.M.; Slot, J.C.; Wang, Z.; Wilson, A.W.; Schüßler, A.; Longcore, J.E.; O'Donnell, K.; Mozley-Standridge, S.; Porter, D.; Letcher, P.M.; Powell, M.J.; Taylor, J.W.; White, M.M.; Griffith, G.W.; Davies, D.R.; Sugiyama, J.; Rossman, A.Y.; Rogers, J.D.; Pfister, D.H.; Hewitt, D.; Hansen, K.; Hambleton, S.; Shoemaker, R.A.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Spotts, R.A.; Serdani, M.; Crous, P.W.; Hughes, K.W.; Matsuura, K.; Langer, E.; Langer, G.; Untereiner, W.A.; Lücking, R.; Büdel, B.; Geiser, D.M.; Aptroot, A.; Diederich, P.; Schmitt, I.; Schultz, M.; Yahr, R.; Hibbett, D.S.; Lutzoni, F.; McLaughlin, D.J.; Spatafora, J.W.; Vilgalys, R.

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore

  2. Reconstructing the early evolution of Fungi using a six-gene phylogeny

    NARCIS (Netherlands)

    James, Timothy Y; Kauff, Frank; Schoch, Conrad L; Matheny, P Brandon; Hofstetter, Valérie; Cox, Cymon J; Celio, Gail; Gueidan, Cécile; Fraker, Emily; Miadlikowska, Jolanta; Lumbsch, H Thorsten; Rauhut, Alexandra; Reeb, Valérie; Arnold, A Elizabeth; Amtoft, Anja; Stajich, Jason E; Hosaka, Kentaro; Sung, Gi-Ho; Johnson, Desiree; O'Rourke, Ben; Crockett, Michael; Binder, Manfred; Curtis, Judd M; Slot, Jason C; Wang, Zheng; Wilson, Andrew W; Schüssler, Arthur; Longcore, Joyce E; O'Donnell, Kerry; Mozley-Standridge, Sharon; Porter, David; Letcher, Peter M; Powell, Martha J; Taylor, John W; White, Merlin M; Griffith, Gareth W; Davies, David R; Humber, Richard A; Morton, Joseph B; Sugiyama, Junta; Rossman, Amy Y; Rogers, Jack D; Pfister, Don H; Hewitt, David; Hansen, Karen; Hambleton, Sarah; Shoemaker, Robert A; Kohlmeyer, Jan; Volkmann-Kohlmeyer, Brigitte; Spotts, Robert A; Serdani, Maryna; Crous, Pedro W; Hughes, Karen W; Matsuura, Kenji; Langer, Ewald; Langer, Gitta; Untereiner, Wendy A; Lücking, Robert; Büdel, Burkhard; Geiser, David M; Aptroot, André; Diederich, Paul; Schmitt, Imke; Schultz, Matthias; Yahr, Rebecca; Hibbett, David S; Lutzoni, François; McLaughlin, David J; Spatafora, Joseph W; Vilgalys, Rytas

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore

  3. Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand.

    Science.gov (United States)

    Abou-Hussein, A A; Linert, Wolfgang

    2015-04-15

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, (1)H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, (1)H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  5. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  6. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    Science.gov (United States)

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  7. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães

    2017-01-01

    The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    Science.gov (United States)

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  9. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Science.gov (United States)

    Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru

    The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  10. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D. and Qing dynasties (1636-1912 A.D. and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  11. Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists.

    Science.gov (United States)

    Aguileta, Gabriela; Refrégier, Guislaine; Yockteng, Roxana; Fournier, Elisabeth; Giraud, Tatiana

    2009-07-01

    The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions.

  12. Arbuscular mycorrhizal fungi and their influencing factors for aegiceras corniculatum and acanthus ilicifolius in southern china

    International Nuclear Information System (INIS)

    Hu, W.; Wu, Y.; Xin, G.

    2015-01-01

    Our study aimed to explore Arbuscular mycorrhizal fungi (AMF) colonization and spore density for Aegiceras corniculatum and Acanthus ilicifolius across five mangrove ecosystems in southern China, focusing mainly on the relationships between AMF and biotic/abiotic factors. Soil physicochemical properties and seawater salinity, as well as the numbers of culturable soil microbes (bacteria, fungi and actinmycetes) were measured to analyze their potential effects on AMF colonization. The results showed that AMF were very common for both plant species in the investigated mangrove ecosystems, and hyphae were the dominant structures for both species. Total AMF colonization rates (TC%) ranged from 0.33% to 36.50%, while the average TC% for A. ilicifolius (13.47%) was slightly higher than for A. corniculatum (9.47%). The average spore density for A. corniculatum was 49.0 spores per 25g air dried soil, and 51.7 for A. ilicifolius. Soil physicochemical analysis showed that soil in mangroves was with high moisture and organic matter content, slightly acidic pH, low levels of total and available P and high levels of N content. Microbial counting experiment recorded high microorganism numbers in mangroves. Data analysis revealed that soil available P content and seawater salinity may be important factors influencing AMF in mangroves. The two mangrove species showed different correlations with microbial numbers, which may illustrate that host plant is a key factor influencing AMF and other microbes. (author)

  13. High fungal spore burden with predominance of Aspergillus in hospital air of a tertiary care hospital in Chandigarh

    Directory of Open Access Journals (Sweden)

    S M Rudramurthy

    2016-01-01

    Full Text Available The prevalence of fungal spores in the hospital air is essential to understand the hospital-acquired fungal infections. Air conditioners (ACs used in hospitals may either reduce spores in air or be colonised by fungi and aid in its dissemination. The present study was conducted to assess the fungal spore burden in AC and non-AC areas. We found a high fungal spore count in air irrespective of whether the area was AC or non-AC. The most predominant species isolated were Aspergillus flavus and Aspergillus fumigatus. Such high concentrations of pathogenic fungi in air may predispose individuals to develop disease.

  14. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Directory of Open Access Journals (Sweden)

    Kevin eEgan

    2016-04-01

    Full Text Available Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB. Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural, approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable

  15. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  16. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  17. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    Science.gov (United States)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  18. Anthrax surrogate spores are destroyed by PDT mediated by phenothiazinium dyes

    Science.gov (United States)

    Demidova, Tatiana N.; Hamblin, Michael R.

    2005-04-01

    Some Gram-positive bacteria (including the causative agent of anthrax - Bacillus anthracis) survive conditions of stress and starvation by producing dormant stage spores. The spore"s multilayered capsule consists of inner and outer membranes, cortex, proteinaceous spore coat, and in some species an exosporium. These outer layers enclose dehydrated and condensed DNA, saturated with small, acid-soluble proteins. These protective structures make spores highly resistant to damage by heat, radiation, and commonly employed anti-bacterial agents. Previously Bacillus spores have been shown to be resistant to photodynamic inactivation (PDI) using dyes and light that easily destroy the corresponding vegetative bacteria, but recently we have discovered that they are susceptible to PDI. Photoinactivation, however, is only possible if phenothiazinium dyes are used. Dimethylmethylene blue, methylene blue, new methylene blue and toluidine blue O are all effective photosensitizers. Alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin and benzoporphyrin derivative are ineffective against spores even though they can easily kill vegetative cells. Spores of B. cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, while B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores and for which conventional sporicides would have unacceptable tissue toxicity.

  19. MicroRNA844-Guided Downregulation of Cytidinephosphate Diacylglycerol Synthase3 (CDS3) mRNA Affects the Response of Arabidopsis thaliana to Bacteria and Fungi.

    Science.gov (United States)

    Lee, Hwa Jung; Park, Young Ju; Kwak, Kyung Jin; Kim, Donghyun; Park, June Hyun; Lim, Jae Yun; Shin, Chanseok; Yang, Kwang-Yeol; Kang, Hunseung

    2015-08-01

    Despite the fact that a large number of miRNA sequences have been determined in diverse plant species, reports demonstrating the functional roles of miRNAs in the plant response to pathogens are severely limited. Here, Arabidopsis thaliana miRNA844 (miR844) was investigated for its functional role in the defense response to diverse pathogens. Transgenic Arabidopsis plants overexpressing miR844 (35S::miR844) displayed much more severe disease symptoms than the wild-type plants when challenged with the bacterium Pseudomonas syringae pv. tomato DC3000 or the fungus Botrytis cinerea. By contrast, a loss-of-function mir844 mutant showed an enhanced resistance against the pathogens. Although no cleavage was observed at the predicted cleavage site of the putative target mRNA, cytidinephosphate diacylglycerol synthase3 (CDS3), cleavage was observed at 6, 12, 21, or 52 bases upstream of the predicted cleavage site of CDS3 mRNA, and the level of CDS3 mRNA was downregulated by the overexpression of miR844, implying that miR844 influences CDS3 transcript level. To further confirm that the miR844-mediated defense response was due to the decrease in CDS3 mRNA level, the disease response of a CDS3 loss-of-function mutant was analyzed upon pathogen challenge. Increased susceptibility of both cds3 mutant and 35S::miR844 plants to pathogens confirmed that miR844 affected the defense response by downregulating CDS3 mRNA. The expression of miR844 was decreased, and the CDS3 transcript level increased upon pathogen challenge. Taken together, these results provide evidence that downregulation of miR844 and a concomitant increase in CDS3 expression is a defensive response of Arabidopsis to bacteria and fungi.

  20. Mysterious Mycorrhizae? A Field Trip & Classroom Experiment to Demystify the Symbioses Formed between Plants & Fungi

    Science.gov (United States)

    Johnson, Nancy C.; Chaudhary, V. Bala; Hoeksema, Jason D.; Moore, John C.; Pringle, Anne; Umbanhowar, James A.; Wilson, Gail W. T.

    2009-01-01

    Biology curricula cover fungi in units on bacteria, protists, and primitive plants, but fungi are more closely related to animals than to bacteria or plants. Like animals, fungi are heterotrophs and cannot create their own food; but, like plants, fungi have cell walls, and are for the most part immobile. Most species of fungi have a filamentous…

  1. Use of the Signature Fatty Acid 16:1ω5 as a Tool to Determine the Distribution of Arbuscular Mycorrhizal Fungi in Soil

    Directory of Open Access Journals (Sweden)

    Christopher Ngosong

    2012-01-01

    Full Text Available Biomass estimation of arbuscular mycorrhiza (AM fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.

  2. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    Science.gov (United States)

    2013-02-01

    13/2011 22.00 Keren K. Griffiths, Jingqiao Zhang, Ann E. Cowan, Ji Yu, Peter Setlow. Germination proteins in the inner membrane of dormant Bacillus...that this technique can be used to rapidly identify single airborne particles or bacteria collected on a slide and to monitor germination dynamics of...the environment of dipicolinic acid in the core of superdormant spores is different from that in dormant spores [J. Bacteriol., 191, 5584 (2009

  3. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    Science.gov (United States)

    2012-11-01

    Spores of Bacillus species are metabolically dormant and ex-tremely resistant to a wide variety of agents (38). As a conse- quence, these spores can...permeability barrier in dormant spores, the coat is a permeability barrier to large mole- cules (18, 20). Thus, it is possible that there are special...type and gerP spore germina- tion. Almost all bacteria have an alanine racemase activity essen- tial for the generation of the D-alanine needed for

  4. Sexual selection in fungi.

    Science.gov (United States)

    Nieuwenhuis, B P S; Aanen, D K

    2012-12-01

    The significance of sexual selection, the component of natural selection associated with variation in mating success, is well established for the evolution of animals and plants, but not for the evolution of fungi. Even though fungi do not have separate sexes, most filamentous fungi mate in a hermaphroditic fashion, with distinct sex roles, that is, investment in large gametes (female role) and fertilization by other small gametes (male role). Fungi compete to fertilize, analogous to 'male-male' competition, whereas they can be selective when being fertilized, analogous to female choice. Mating types, which determine genetic compatibility among fungal gametes, are important for sexual selection in two respects. First, genes at the mating-type loci regulate different aspects of mating and thus can be subject to sexual selection. Second, for sexual selection, not only the two sexes (or sex roles) but also the mating types can form the classes, the members of which compete for access to members of the other class. This is significant if mating-type gene products are costly, thus signalling genetic quality according to Zahavi's handicap principle. We propose that sexual selection explains various fungal characteristics such as the observed high redundancy of pheromones at the B mating-type locus of Agaricomycotina, the occurrence of multiple types of spores in Ascomycotina or the strong pheromone signalling in yeasts. Furthermore, we argue that fungi are good model systems to experimentally study fundamental aspects of sexual selection, due to their fast generation times and high diversity of life cycles and mating systems. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Isolation and Identification of Air Borne Fungal Spores and Fragments in Buildings within Usmanu Danfodiyo University Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Shinkafi Sa’adatu Aliyu

    2014-07-01

    Full Text Available Abstract - Indoor air contains a complex mixture of microorganisms, microorganism fragments, and by products such as molds, bacteria, endotoxins, mycotoxins, and volatile microbial organic compounds. Airborne fungi and bacteria can be toxic, allergenic and/or infectious. A research was conducted to determine the number and types of airborne fungal spores in Buildings of Usmanu Danfodiyo University Sokoto, Nigeria. Five (5 areas were chosen within the University for the Survey, these were student Hostel, Staff Quarters, Botanical garden, Microbiology laboratory and city campus of Usmanu Danfodiyo University. . A total number of fifteen (15 petri dishes containing potato dextrose agar each were vertically placed in each sampler and exposed at end of each height and site for 10 and 20 minutes respectively.  A total of thirteen (13 different fungal specie were identified namely; Aspergillus niger, A. flavus, A fumigates, A. ustus, A. terreus, Fusarium solani, F. oxysporum, Alterneria altenata, Rhizopus oryzae,  R. stolonifer, Helminthosporum sp., Penicillum candidum and Absedia corymbifera. Aspergillus niger had the highest frequency of occurrence of (14.9%, Helminthosporus species had the least frequency of occurrence of (1.5%. Conclusively it was observed that the concentration of fungal spores was high in the upper surface than the ground level at the time of the survey.

  6. Fifth international fungus spore conference

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  7. Significance of air humidity and air velocity for fungal spore release into the air

    Science.gov (United States)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  8. CHARACTERIZATION OF PHYTOPATHOGENIC FUNGI, BACTERIA, NEMATODES AND VIRUSES IN FOUR COMMERCIAL VARIETIES OF HELICONIA (Heliconia sp. CARACTERIZACIÓN DE HONGOS, BACTERIAS, NEMÁTODOS Y VIRUS FITOPATÓGENOS EN CUATRO VARIEDADES COMERCIALES DE HELICONIA (Heliconia sp.

    Directory of Open Access Journals (Sweden)

    Nathali López Cardona

    2012-06-01

    Full Text Available Abstract. Analysis of 914 samples of roots, rhizomes, pseudostems, inflorescences and leaves of four commercial varieties of heliconia, cultivated at the municipality of Chinchiná-Caldas (Colombia, allowed to identify five genera of plant pathogenic fungi (Rhizoctonia, Fusarium, Colletotrichum, Helminthosporium and Curvularia, three genera of plant pathogenic bacteria (Ralstonia, Pseudomonas and Erwinia, two species of viruses (Banana streak virus (BSV, Badnavirus, and Cucumber mosaic virus (CMV, Cucumovirus,, and seven genera of plant parasitic nematodes (Helicotylenchus, Tylenchus, Meloidogyne, Ditylenchus, Aphelenchoides, Pratylenchus, and Radopholus. Of these, Fusarium sp., affecting pseudostems, Pseudomonas sp., affecting leaves and inflorescences, and the plant parasitic nematodes Ditylenchus sp., Aphelenchoides sp., Pratylenchus sp. and Radopholus sp., are new records in the heliconia production in Colombia . The most limiting diseases corresponded to leaf blight, caused by Helminthosporium sp.; the bacterioses, caused by Pseudomonas sp.; the spotted stems, caused by Fusarium sp.; and soft rot of the pseudostems, caused by Erwinia sp. The pathogenicity tests demonstrated that Colletotrichum sp. and Phoma sp. are not pathogenic in leaves; while Fusarium sp., inoculated in pseudostems, Helminthosporium sp. and Pseudomonas sp., inoculated in leaves, and Colletotrichum sp. and Pseudomonas sp., inoculated in inflorescences, had incidence values of 83.3, 86.6, 93.3, 100.0 and 100.0%, respectively.Resumen. El análisis de 914 muestras de raíces, rizomas, pseudotallos, inflorescencias y hojas de cuatro variedades comerciales de heliconia, cultivadas en el municipio de Chinchiná-Caldas (Colombia, permitieron identificar cinco géneros de hongos fitopatógenos (Rhizoctonia, Fusarium, Colletotrichum, Helminthosporium y Curvularia, tres géneros de bacterias fitopatógenas (Ralstonia, Pseudomonas y Erwinia, dos especies de virus (Banana streak

  9. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    Science.gov (United States)

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  10. Water behavior in bacterial spores by deuterium NMR spectroscopy.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Johnson, Karen; Thomas, Kieth J; Middaugh, Amy N; Garimella, Ravindranath; Powell, Douglas R; Vaishampayan, Parag A; Rice, Charles V

    2014-07-31

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium-hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water.

  11. Infrared signatures to discriminate viability of autoclaved Bacillus spores

    Science.gov (United States)

    Schneider, Matthew D. W.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-11-01

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available. Spores are also resistant to many chemicals as well as changes in heat or pH; such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case of B. anthracis. Thus, having rapid analytical methods to determine a spore's viability after attempts to clean a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify the viable vs. the autoclaved (dead) spores.

  12. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    Science.gov (United States)

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  13. Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Gregory J. Fischer

    2017-05-01

    Full Text Available The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS to germling (GL and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of programmed spore germination. Overexpression of loxB (OE::loxB increases germination with rapid advance to the GL stage. However, deletion of loxB (ΔloxB or its signal peptide only delays progression to the SS stage in the presence of arachidonic acid (AA; no delay is observed in minimal media. This delay is remediated by the addition of the oxygenated AA oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE that is a product of human Alox5. We propose that A. fumigatus acquisition of LoxB (found in few fungi enhances germination rates in polyunsaturated fatty acid-rich environments.

  14. Interação entre fungos micorrízicos arbusculares e bactérias diazotróficas em trigo Interaction between arbuscular mycorrhizal fungi and diazotrophic bacteria in wheat plants

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2007-11-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da inoculação de dois novos isolados de bactérias diazotróficas endofíticas e da interação destas bactérias com fungos micorrízicos arbusculares (FMAs, na cultura do trigo. Foi realizado um experimento em casa de vegetação, com dois isolados de bactérias diazotróficas endofíticas, IAC11HT (Achromobacter insolitus e IAC12HT (Zoogloea ramigera, e dois FMAs (Glomus sp. e Acaulospora sp.. Houve efeito sinérgico da co-inoculação na colonização das raízes por bactérias diazotróficas, com o emprego do FMA do gênero Acaulospora. As plantas associadas a Glomus, na presença dos isolados bacterianos, apresentaram maior crescimento, acúmulo e aproveitamento dos nutrientes do que as plantas colonizadas por Acaulospora sp., entretanto, não superaram os tratamentos em que as bactérias e os fungos foram inoculados isoladamente. Apesar de não ter havido efeito benéfico da co-inoculação FMA-bactéria diazotrófica sobre a maioria dos parâmetros avaliados, essas novas bactérias propiciaram o dobro de crescimento, acúmulo e aproveitamento do N e P em plantas de trigo.The aim of this work was to evaluate the inoculation effect of two new endophytic diazotrophic bacteria and the interaction between arbuscular mycorrhizal fungi (AMF and these bacteria on wheat plants. The experiment was carried out in a greenhouse with the two strains of diazotrophic bacteria, IAC11HT (Achromobacter insolitus and IAC12HT (Zoogloea ramigera, and two AMF (Glomus sp. and Acaulospora sp.. There was synergistic effect of the co-inoculation on root colonization by diazotrophic bacteria with the AMF of the genus Acaulospora. The plants colonized by Glomus associated to bacterial strains showed higher growth, accumulation and exploitation of the nutrients than plants colonized by Acaulospora sp., however, this effect did not surpass the treatments in which bacteria and fungi were inoculated separately. Although

  15. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells.

    Science.gov (United States)

    Talukdar, Prabhat K; Udompijitkul, Pathima; Hossain, Ashfaque; Sarker, Mahfuzur R

    2017-01-01

    Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. Copyright © 2016 American Society for Microbiology.

  16. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance.

    Science.gov (United States)

    Loshon, Charles A; Wahome, Paul G; Maciejewski, Mark W; Setlow, Peter

    2006-04-01

    Bacteria of various Bacillus species are able to grow in media with very high osmotic strength in part due to the accumulation of low-molecular-weight osmolytes such as glycine betaine (GB). Cells of Bacillus species grown in rich and minimal media contained low levels of GB, but GB levels were 4- to 60-fold higher in cells grown in media with high salt. GB levels in Bacillus subtilis cells grown in minimal medium were increased approximately 7-fold by GB in the medium and 60-fold by GB plus high salt. GB was present in spores of Bacillus species prepared in media with or without high salt but at lower levels than in comparable growing cells. With spores prepared in media with high salt, GB levels were highest in B. subtilis spores and > or =20-fold lower in B. cereus and B. megaterium spores. Although GB levels in B. subtilis spores were elevated 15- to 30-fold by GB plus high salt in sporulation media, GB levels did not affect spore resistance. GB levels were similar in wild-type B. subtilis spores and spores that lacked major small, acid-soluble spore proteins but were much lower in spores that lacked dipicolinic acid.

  17. A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration

    NARCIS (Netherlands)

    Membre, J.M.; Amezquita, A.; Bassett, J.; Giavedoni, P.; Blackburn, W.; Gorris, L.G.M.

    2006-01-01

    The survival of spore-forming bacteria is linked to the safety and stability of refrigerated processed foods of extended durability (REPFEDs). A probabilistic modeling approach was used to assess the prevalence and concentration of Bacillus cereus spores surviving heat treatment for a semiliquid

  18. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  19. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  20. Development and fine structure of sclerotia and spores of the actinomycete Chainia olivacea.

    Science.gov (United States)

    Sharples, G P; Williams, S T

    1976-01-01

    Sclerotia and spores of Chainia olivacea were studied by transmission and scanning electron microscopy. Sclerotia formed by repeated branching of several hyphea. Branch tips were delimited by septa and increased in size, becoming filled with lipid-like inclusions. In mautre sclerotia, empty cells and intra-hyphal growth were observed. An electron-dense fibrillar material was deposited between hyphae and on the sclerotium surface. The similarities between these and the sclerotia of certain fungi are discussed. Spores were formed in a manner similar to that in Streptomyces species. Large inter-sporal pads were formed during ingrowth of the septa delimiting the spores.

  1. Dry season and diurnal surveys of phylloplane fungi of Hevea brasiliensis in Nigeria

    OpenAIRE

    J. A. Okhuoya; C. O. Ahweyevu

    2014-01-01

    Monthly and diurnal variation of phylloplane fungi of rubber (Hevea brasiliensis) leaves were studied over a period of four months in the dry season, using two culturing methods. Composite fungal population was the highest in April and the lowest in February. Serial dilution method recorded the higher number of fungal spores than ballistospore method. Mature leaves were found to have more fungal spores than premature and young leaves. Spore concentration on the leaves showed diurnal periodici...

  2. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    User

    Bc-repetitive extragenic palindromic polymerase chain reaction (Bc-Rep PCR) analysis was conducted on seven Bacillus thuringiensis isolates accessed from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and on five local isolates of entomopathogenic spore- forming bacteria.

  3. Spore Proteomics: The Past, Present and the Future

    NARCIS (Netherlands)

    Abhyankar, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2014-01-01

    Endospores are metabolically dormant, multi-layered cellular structures formed by Gram positive bacteria belonging to the genera Bacillus, Clostridium and related organisms. Their external layers are composed of proteins which in part play a role in resistance behaviour of spores to varied chemical

  4. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    Bc-repetitive extragenic palindromic polymerase chain reaction (Bc-Rep PCR) analysis was conducted on seven Bacillus thuringiensis isolates accessed from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and on five local isolates of entomopathogenic spore-forming bacteria.

  5. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  6. Diurnal variations of airborne fungal spores concentration in the town and rural area

    Directory of Open Access Journals (Sweden)

    Idalia Kasprzyk

    2012-12-01

    Full Text Available Airborne fungal spores were monitored in 2001-2002 in Rzeszów (town and its neighborhood. The aim of investigations was to ascertain if there were differences in diurnal variations of airborne fungal spores concentration between town and rural area. The sampling was carried out using volumetric method. Traps were located at the same heights - app. 12 m. Airborne spores were sampled continuously. Microscopical slides were prepared for each day. Analysis was carried out on one longitudinal band of 48 mm long divided into 24 segments corresponding following hours of day. The results were expressed as mean number of fungal spores per cubic meter per 24 hours. For this survey, five geni of allergenic fungi were selected: Alternaria, Botrytis, Cladosporium, Epicoccum, Ganoderma. The concentrations of their airborne spores were high or very high. It was calculated theoretical day, where the hourly count was the percentage mean of number of spores at that time every chosen day without rainfall from 2001 and 2001 years. The diurnal periodicity of Alternaria, Cladosporium, Epicoccum and Ganoderma showed one peak, while Botrytis two. Anamorphic spores peaked in the afternoon, while their minima occurred in the morning. The highest concentrations of Ganoderma basidiospores were at down or at night, but minima during the day. There were no clear differences in the peak values between two studied sites. The results indicate that maximum concentrations of all spores generally occurred a few hour earlier in the rural area than in the town. Probably, in the rural area airborne spores came from many local sources and their diurnal periodicity reflected rhythm of spore liberation. Towns are characterized by specific microclimate with higher temperature and wind blowing to the centre. In Rzeszów fungal spores could be transported outside and carried out by wind from distant sources. This study showed, among others, that habitat conditions are an important factors

  7. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  8. Radiation sensitivity of food decay fungi

    International Nuclear Information System (INIS)

    Chang, H.G.; Lee, B.H.

    1980-01-01

    Five species of food decay fungi, Aspergillus flavus, Asp. uiger, Penicillium sp., Botrytis cinerea and Rhizopus stolonifer, were examined for their radiosensitivity in several suspension media. Asp. flavus, Asp. niger and Penicillium sp. have almost the same sensitivity toward gamma rays, with D value in the range of 30 to 35 K rad, whereas Botrytis cinerea has a D value of approximately 55 K rad and Rhizopus stolonifer, the most resistant fungus studied, has a D value of approximately 100 K rad. Dry spores of Asp. flavus showed a considerable increase in their radioresistance when compared with spores irradiated in water. Asp. flavus and Penicillium sp. spores irradiated in citrate buffer at pH 3-7 showed almost no change in their radiosensitivity with pH, but Botrytis cinerea spores showed a distinct decrease in their radioresistance at pH 6 and 7. Penicillium sp. spores irradiated in sucrose solutions showed no significant change in their radioresistance. Botrytis cinerea spores displayed a higher radioresistance when they were irradiated in sucrose solution than in water. (author)

  9. Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide.

    Science.gov (United States)

    Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Heiser, Matt; Khanna, Neeraj; Vaishampayan, Parag; Rice, Charles V

    2015-01-01

    Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus subtilis ATCC 6051. Viability was determined via CFU measurement after exposure. Chlorine dioxide demonstrated efficacy towards sterilization of spores of B. pumilus SAFR-032 equivalent or better than exposure to hydrogen peroxide. These results indicate efficacy of chlorine dioxide delivered through a stabilized chlorine dioxide product as a means of sterilization of peroxide- and UV-resistant spores.

  10. Infrared Signatures to Discriminate Viability of Autoclaved Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Matthew D.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-10-06

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available, being resistant to many chemicals as well as changes in heat or pH. Such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case with B. anthracis. Thus, rapid analysis to determine a spore's viability in a given environment or after attempts to sterilize a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify viable vs. autoclaved (dead) B. subtilis and B. atrophaeus bacterial spores.

  11. Fungi from the Lower Carboniferous of central France

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, T.N.; Galtier, J.; Axsmith, B.J. (Ohio State University, Columbus, OH (United States). Dept. of Plant Biology)

    1994-09-01

    Chlamydospores and sporocarps (Roannaisia bivitilis gen. et sp. nov.) are described from late Visean permineralized plant material collected from the Roannais area of central France. Chlamydospores are slightly elongate and several show a short segment of the hyphal attachment. Each chlamydospore contains a thin-walled spore; mycoparasites appear to be present in some spores. Also present in the peat matrix are spherical sporocarps up to 600[mu]m in diameter. The wall is constructed of two layers of interwoven, non-septate, irregularly-branched hyphae. The sporocarp lumen contains a single, multilayered spore. The systematic affinities of both fungi are discussed.

  12. Mass production of entomopathogenic fungi using agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Similarly carrot, jack seeds and ladies finger also supported good growth and sporulation of all the three tested fungi. Coconut water supported maximum growth and sporulation. Key words: Entomopathogenic fungi, mass production, agricultural products. INTRODUCTION. Biopesticides based on bacteria, ...

  13. Changes in concentration of Alternaria and Cladosporium spores during summer storms

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2013-09-01

    Fungal spores are known to cause allergic sensitization. Recent studies reported a strong association between asthma symptoms and thunderstorms that could be explained by an increase in airborne fungal spore concentrations. Just before and during thunderstorms the values of meteorological parameters rapidly change. Therefore, the goal of this study was to create a predictive model for hourly concentrations of atmospheric Alternaria and Cladosporium spores on days with summer storms in Szczecin (Poland) based on meteorological conditions. For this study we have chosen all days of June, July and August (2004-2009) with convective thunderstorms. There were statistically significant relationships between spore concentration and meteorological parameters: positive for air temperature and ozone content while negative for relative humidity. In general, before a thunderstorm, air temperature and ozone concentration increased, which was accompanied by a considerable increase in spore concentration. During and after a storm, relative humidity increased while both air temperature ozone concentration along with spore concentrations decreased. Artificial neural networks (ANN) were used to assess forecasting possibilities. Good performance of ANN models in this study suggest that it is possible to predict spore concentrations from meteorological variables 2 h in advance and, thus, warn people with spore-related asthma symptoms about the increasing abundance of airborne fungi on days with storms.

  14. How do fungi measure wind speed?

    Science.gov (United States)

    Roper, Marcus; Tomasek, Michael; Lin, Yuxi; Dressaire, Emilie

    2017-11-01

    For successful dispersal, a fungus must push its spores through the boundary layer of nearly still air that clings to it. Some spores pass through this boundary layer by being forcibly ejected. But many spores and fungi have no mechanism for active ejection, and must be carried away passively by the wind. To facilitate dispersal, the spores are borne on the top of aerial structures. Regulating the height of these aerial structures is an engineering challenge; too long and the structures will collapse under their own weight; too short, and they may not reach high enough to cross the boundary layer. A fungus therefore benefits by knowing the wind speed (and therefore the boundary layer thickness). How does it make this measurement? I will show that the model filamentous fungus Neurospora crassa uses water evaporation rate to accurately measure wind speed. In addition to showing that fungi control and optimize even passive mechanisms for dispersal, our findings highlight the importance of physical conditions in controlling fungal growth and behavior.

  15. IncP-1 and PromA group plasmids are major providers of horizontal gene transfer capacities across bacteria in the mycosphere of different soil fungi

    NARCIS (Netherlands)

    Zhang, Miaozhi; Visser, Sander; Pereira e Silva, Michele C.; van Elsas, Jan Dirk

    Plasmids of the IncP-1 beta group have been found to be important carriers of accessory genes that enhance the ecological fitness of bacteria, whereas plasmids of the PromA group are key agents of horizontal gene transfer in particular soil settings. However, there is still a paucity of knowledge

  16. Fungi isolated in school buildings

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdys

    2013-12-01

    Full Text Available The aim of the study was to determine the species composition of fungi occurring on wall surfaces and in the air in school buildings. Fungi isolated from the air using the sedimentation method and from the walls using the surface swab technique constituted the study material. Types of finish materials on wall surfaces were identified and used in the analysis. Samples were collected in selected areas in two schools: classrooms, corridors, men's toilets and women's toilets, cloakrooms, sports changing rooms and shower. Examinations were conducted in May 2005 after the heating season was over. Fungi were incubated on Czapek-Dox medium at three parallel temperatures: 25, 37 and 40°C, for at least three weeks. A total of 379 isolates of fungi belonging to 32 genera of moulds, yeasts and yeast-like fungi were obtained from 321 samples in the school environment. The following genera were isolated most frequently: Aspergillus, Penicillium and Cladosporium. Of the 72 determined species, Cladosporium herbarum, Aspergillus fumigatus and Penicillium chrysogenum occurred most frequently in the school buildings. Wall surfaces were characterised by an increased prevalence of mycobiota in comparison with the air in the buildings, with a slightly greater species diversity. A certain species specificity for rough and smooth wall surfaces was demonstrated. Fungi of the genera Cladosporium and Emericella with large spores adhered better to smooth surfaces while those of the genus Aspergillus with smaller conidia adhered better to rough surfaces. The application of three incubation temperatures helped provide a fuller picture of the mycobiota in the school environment.

  17. Importance of saprotrophic freshwater fungi for pollen degradation.

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    Full Text Available Fungi and bacteria are the major organic matter (OM decomposers in aquatic ecosystems. While bacteria are regarded as primary mineralizers in the pelagic zone of lakes and oceans, fungi dominate OM decomposition in streams and wetlands. Recent findings indicate that fungal communities are also active in lakes, but little is known about their diversity and interactions with bacteria. Therefore, the decomposer niche overlap of saprotrophic fungi and bacteria was studied on pollen (as a seasonally recurring source of fine particulate OM by performing microcosm experiments with three different lake types. Special emphasis was placed on analysis of fungal community composition and diversity. We hypothesized that (I pollen select for small saprotrophic fungi and at the same time for typical particle-associated bacteria; (II fungal communities form specific free-living and attached sub-communities in each lake type; (III the ratio between fungi or bacteria on pollen is controlled by the lake's chemistry. Bacteria-to-fungi ratios were determined by quantitative PCR (qPCR, and bacterial and fungal diversity were studied by clone libraries and denaturing gradient gel electrophoresis (DGGE fingerprints. A protease assay was used to identify functional differences between treatments. For generalization, systematic differences in bacteria-to-fungi ratios were analyzed with a dataset from the nearby Baltic Sea rivers. High abundances of Chytridiomycota as well as occurrences of Cryptomycota and yeast-like fungi confirm the decomposer niche overlap of saprotrophic fungi and bacteria on pollen. As hypothesized, microbial communities consistently differed between the lake types and exhibited functional differences. Bacteria-to-fungi ratios correlated well with parameters such as organic carbon and pH. The importance of dissolved organic carbon and nitrogen for bacteria-to-fungi ratios was supported by the Baltic Sea river dataset. Our findings highlight the fact

  18. Influence of PGPR Bacteria and Arbuscular Mycorrhizal Fungi on Growth and some Physiological Parameters of Onopordon acanthium in a Cd-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    MirHassan Rasouli-Sadaghiani

    2017-02-01

    Full Text Available Introduction: Heavy metals (HMs are serious threat for environment due to their dangerous effects. These metals as contaminants that can be accumulated in soil and after absorption by plants, finally will be found in food chains. Cadmium (Cd is one of the dangerous HMs that threats the health of plants, living organisms and human. Physicochemical remediation methods may cause large changes in different characteristics of soils . Recently environmental-friendly strategies including phytoremediation have been emphasized by researchers. Phytoremediation that refers to the use of plants and their assistance with microorganisms for remediation of contaminated soils is an effective and low cost method for reclamation of heavy metals polluted soils. The most important limitation of phytoremediation is low availability of heavy metals and sensitivity of plants to contamination. There are evidences that soil microbes can help to overcome these limitations through several ways. Plant growth promoting rhizobacteria (PGPR and arbuscular mycorrhizal fungi (AMF are known to enhance plant growth and survival in heavy metal contaminated soils through different mechanisms including producing promoting metabolites, auxin, siderophore and antibiotics. In this study the role of some strains of PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa and AMF (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum, on uptake and accumulation of Cd, Fe, Zn and Cu as well as some physiological properties of Onopordon (Onopordon acanthium L were evaluated. Materials and Methods:This study was carried out under greenhouse condition as a factorial experiment based on a randomized complete block design with two factors including Cd concentration (four levels and microbial treatment (three levels in three replications. Consequently, a soil was selected and spiked uniformly with different concentrations of

  19. Spore production in Paecilomyces lilacinus (Thom.) samson strains on agro-industrial residues

    OpenAIRE

    Robl, Diogo; Sung, Letizia B.; Novakovich, Jo?o Henrique; Marangoni, Paulo R.D.; Zawadneak, Maria Aparecida C.; Dalzoto, Patricia R.; Gabardo, Juarez; Pimentel, Ida Chapaval

    2009-01-01

    Paecilomyces lilacinus has potential for pests control. We aimed to analyze mycelial growth and spore production in P. lilacinus strains in several agro-industrial residues and commercial media. This study suggests alternative nutrient sources for fungi production and that the biotechnological potential of agro-industrial refuses could be employed in byproducts development.

  20. Airborne pollen and spore survey in relation to allergy and plant ...

    African Journals Online (AJOL)

    Airborne bio-particles of allergic significance were recorded at a height of 15m in Nsukka during September 1999 – February 2000. Spores of fungi and pollen grains, which are important part of the exposure that may lead to allergic discomfort and plant diseases, dominated the particles. Other primary sources of the allergic ...

  1. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture

    NARCIS (Netherlands)

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger

  2. Reduction of Clostridium sporogenes spore outgrowth in natural sausage casings using nisin.

    Science.gov (United States)

    Wijnker, J J; Weerts, E A W S; Breukink, E J; Houben, J H; Lipman, L J A

    2011-08-01

    Preservation of natural sausage casings using dry salt or saturated brine is regarded as sufficient to inactivate vegetative pathogenic non-spore-forming bacteria present on the casings. Although the outgrowth of bacterial spores is prevented by salt or saturated brine preservation, these spores will remain present and develop into vegetative cells when conditions are more favourable. To prevent subsequent outgrowth additional preservation measures should be implemented. In the experiments described the use of nisin was evaluated to reduce outgrowth of spores in desalinated casings. The bacteriocin nisin was chosen because of its known efficacy against spore-forming bacteria and their spores in various foodstuffs. Clostridium spore suspensions (Clostridium sporogenes, ATCC 3584) were used in two concentrations to inoculate three nisin concentrations (10, 50, 100 μg/mL) in water containing gamma-irradiated casings. Additionally, the binding of nisin to casings, using (14)C-labeled nisin Z and subsequent availability of nisin were evaluated. Results demonstrate that nisin is partly reversibly bound to casings and can reduce the outgrowth of Clostridium spores in the model used by approximately 1 log(10) (90%). However, the biological relevance of these results needs to be determined further by conducting industrial trials before any recommendation can be made on the practical implementation of nisin in the preservation of natural sausage casings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Antifungal Activity of Narceine Methyl Ester and Narceine Isolated from Corydalis longipes Against Some Phytopathogenic Fungi.

    Science.gov (United States)

    Chowdhury, Dibyendu; Maurya, S; Pandey, M B; Pandey, V B; Sarma, B K; Singh, U P

    2005-12-01

    Narceine methyl ester and narceine are potent alkaloids which were isolated from Corydalis longipes were found effective in vitro at very low concentration, i.e., 100~500 ppm against spore germination of some test plant pathogenic fungi (Alternaria solani, A. tagetica, Cercospora abelmoschi, Curvularia maculans, Erysiphe cichoracearum, E. pisi, Fusarium udum, Helminthosporium oryzae, H. penniseti, Ustilago cynodontis). Among the test, phytopathogens the spores of F. udum, C. maculans and H. penniseti were highly sensitive at 200 ppm. However, spores of E. pisi, A. solani and A. tagetica were less sensitive at low concentration followed by other test fungi. Most of the fungi showed zero or nearly zero percent spore germination at 400 and 500 ppm.

  4. and fungi

    African Journals Online (AJOL)

    User

    2012-05-15

    May 15, 2012 ... protein extracts from wild mushroom fungi and native plant species against hospital pathogens. J. Pharma. Phytotherap. 2: 103-107. Hu M, McClements D, Decker E (2003). Lipid oxidation in corn oil-in- water emulsions stabilized by casein, whey protein isolate, and soy protein isolate, J. Agric. Food Chem.

  5. A mobile genetic element profoundly increases heat resistance of bacterial spores.

    Science.gov (United States)

    Berendsen, Erwin M; Boekhorst, Jos; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2016-11-01

    Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely. It is not known which of the factors attributed to spore resistance confer very high-level heat resistance. Here, we provide conclusive evidence that in Bacillus subtilis, this is due to the presence of a mobile genetic element (Tn1546-like) carrying five predicted operons, one of which contains genes that encode homologs of SpoVAC, SpoVAD and SpoVAEb and four other genes encoding proteins with unknown functions. This operon, named spoVA 2mob , confers high-level heat resistance to spores. Deletion of spoVA 2mob in a B. subtilis strain carrying Tn1546 renders heat-sensitive spores while transfer of spoVA 2mob into B. subtilis 168 yields highly heat-resistant spores. On the basis of the genetic conservation of different spoVA operons among spore-forming species of Bacillaceae, we propose an evolutionary scenario for the emergence of extremely heat-resistant spores in B. subtilis, B. licheniformis and B. amyloliquefaciens. This discovery opens up avenues for improved detection and control of spore-forming bacteria able to produce highly heat-resistant spores.

  6. Airway inflammation among compost workers exposed to actinomycetes spores.

    Science.gov (United States)

    Heldal, Kari Kulvik; Madsø, Lene; Eduard, Wijnand

    2015-01-01

    To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20) and five reactor plants (n=27). Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR). The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. The levels of endotoxins (median 3 EU/m(3), range 0-730 EU/m(3)) and actinomycetes spores (median 0.2 × 10(6) spores/m(3), range 0-590 × 10(6) spores/m(3)) were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1-16, OR 6.1, 95% CI 1.5-25, respectively, pactinomycetes spores/m3, and FEV1/FVC% decreased cross shift (b=-3.2, SE=1.5%, pactinomycetes spores which was associated with work related cough symptoms and work-shift lung function decrease.

  7. Spore Coat Architecture of Clostridium novyi-NT spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  8. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  9. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  10. DNA capturing machinery through spore-displayed proteins.

    Science.gov (United States)

    Park, T J; Lee, S J; Pan, J-G; Jung, H-C; Park, J Y; Park, J P; Lee, S Y

    2011-10-01

    The purpose of this study was to develop a general method for the facile development of a new DNA biosensor which utilizes streptavidin-displayed spores as a molecular machinery. Fluorescence spectroscopy was used as a monitoring tool for the streptavidin displayed on the surface of Bacillus thuringiensis spores and as a diagnosis method for DNA detection. As a proof-of-concept, four pathogenic bacteria including Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumonia were used for the detection of pathogenic species. In addition, a set of mutant variants of Wilson's disease were also used for the detection of single nucleotide polymorphism (SNP) in this system. This strategy, utilizing streptavidin-displayed spores, is capable of capturing DNA targets for the detection of pathogenic bacteria and for mutation analysis in Wilson's disease. This approach could be useful as a simple platform for developing sensitive spore-based biosensors for any desired DNA targets in diagnostic applications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Mushroom's spore size and time of fruiting are strongly related: is moisture important?

    Science.gov (United States)

    Kauserud, Håvard; Heegaard, Einar; Halvorsen, Rune; Boddy, Lynne; Høiland, Klaus; Stenseth, Nils Chr

    2011-04-23

    Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.

  12. Feasibility of flotation concentration of fungal spores as a method to identify toxigenic mushrooms

    Directory of Open Access Journals (Sweden)

    Bazzle LJ

    2014-12-01

    97.5% of trials. The most common spore shapes observed were globose, spiked, elliptical, smooth and reticulate. Conclusion: Flotation can concentrate mushroom spores; however, false negative results can occur. Spore morphology could not be used to differentiate species of mushroom-forming fungi since the spore shape and surface characteristics seen in the present study were often observed with multiple species of mushroom-forming fungi. Keywords: gastrointestinal contents, mushroom spore identification, mushroom toxicity, Amanita spp.

  13. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    Science.gov (United States)

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants.

    Science.gov (United States)

    Boya P, Cristopher A; Fernández-Marín, Hermógenes; Mejía, Luis C; Spadafora, Carmenza; Dorrestein, Pieter C; Gutiérrez, Marcelino

    2017-07-17

    The fungus-growing ant-microbe symbiosis is an ideal system to study chemistry-based microbial interactions due to the wealth of microbial interactions described, and the lack of information on the molecules involved therein. In this study, we employed a combination of MALDI imaging mass spectrometry (MALDI-IMS) and MS/MS molecular networking to study chemistry-based microbial interactions in this system. MALDI IMS was used to visualize the distribution of antimicrobials at the inhibition zone between bacteria associated to the ant Acromyrmex echinatior and the fungal pathogen Escovopsis sp. MS/MS molecular networking was used for the dereplication of compounds found at the inhibition zones. We identified the antibiotics actinomycins D, X2 and X 0β , produced by the bacterium Streptomyces CBR38; and the macrolides elaiophylin, efomycin A and efomycin G, produced by the bacterium Streptomyces CBR53.These metabolites were found at the inhibition zones using MALDI IMS and were identified using MS/MS molecular networking. Additionally, three shearinines D, F, and J produced by the fungal pathogen Escovopsis TZ49 were detected. This is the first report of elaiophylins, actinomycin X 0β and shearinines in the fungus-growing ant symbiotic system. These results suggest a secondary prophylactic use of these antibiotics by A. echinatior because of their permanent production by the bacteria.

  15. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan

    Science.gov (United States)

    Ho, Hsiao-Man; Rao, Carol Y.; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Liu, Chi-Ming; Chao, H. Jasmine

    Characteristics and determinants of ambient aeroallergens are of much concern in recent years because of the apparent health impacts of allergens. Yet relatively little is known about the complex behaviors of ambient aeroallergens. To address this issue, we monitored ambient fungal spores in Hualien, Taiwan from 1993-1996 to examine the compositions and temporal variations of fungi, and to evaluate possible determinants. We used a Burkard seven-day volumetric spore trap to collect daily fungal spores. Air pollutants, meteorological factors, and Asian dust events were included in the statistical analyses to predict fungal levels. We found that the most dominant fungal categories were ascospores, followed by Cladosporium and Aspergillus/Penicillium. The majority of the fungal categories had significant diurnal and seasonal variations. Total fungi, Cladosporium, Ganoderma, Arthrinium/Papularia, Cercospora, Periconia, Alternaria, Botrytis, and PM 10 had significantly higher concentrations ( p<0.05) during the period affected by Asian dust events. In multiple regression models, we found that temperature was consistently and positively associated with fungal concentrations. Other factors correlated with fungal concentrations included ozone, particulate matters with an aerodynamic diameter less than 10 μm (PM 10), relative humidity, rainfall, atmospheric pressure, total hydrocarbons, carbon monoxide, nitrogen dioxide, and sulfur dioxide. Most of the fungal categories had higher levels in 1994 than in 1995-96, probably due to urbanization of the study area. In this study, we demonstrated complicated interrelationships between fungi and air pollution/meteorological factors. In addition, long-range transport of air pollutants contributed significantly to local aeroallergen levels. Future studies should examine the health impacts of aeroallergens, as well as the synergistic/antagonistic effects of weather, and local and global-scale air pollutions.

  16. Live cell imaging of germination and outgrowth of individual bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker.

    Directory of Open Access Journals (Sweden)

    Rachna Pandey

    Full Text Available Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program "SporeTracker" allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less and fewer grew out (48.4% less after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased and the distribution and average of the duration of germination itself (increased. However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.

  17. Discrimination of Spore-Forming Bacilli Using spoIVA

    Science.gov (United States)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  18. Self-healing concrete by use of microencapsulated bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.Y. [Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, TechnologieparkZwijnaarde 904, B-9052 Ghent (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Soens, H. [Devan Chemicals NV, Klein Frankrijk 18, 9600 Ronse (Belgium); Verstraete, W. [Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); De Belie, N., E-mail: nele.debelie@ugent.be [Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, TechnologieparkZwijnaarde 904, B-9052 Ghent (Belgium)

    2014-02-15

    Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall water permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.

  19. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Identification of Endophytic Fungi of Medicinal Herbs of Lauraceae and Rutaceae with Antimicrobial Property

    Directory of Open Access Journals (Sweden)

    Min-Yuan Ho

    2012-09-01

    Full Text Available This study was conducted to determine taxonomical features and antimicrobial activities of 156 isolates of endophytic fungi collected from twigs of medicinal plants of Lauraceae (67 isolates and Rutaceae (89 isolates in central and northern Taiwan. The 156 isolates of fungi were classified into 35 genera in 19 families based on morphological characteristics of mycelia and asexual/sexual spores, as well as molecular phylogenetic analysis of rDNA LSU D1/D2 and ITS regions. The most common endophytes were in the taxa of Colletotrichum, Guignardia, Hypoxylon, Nigrospora, Phomopsis and Xylaria, and the most common hosts were Citrus and Zanthoxylum of Rutaceae and Cinnamomum of Lauraceae. Molecular phylogenetic analysis showed that xylariaceous isolates could be separated into Xylaria and Hypoxylon groups based on rDNA of LSU D1/D2 and ITS regions. Four isolates of endophytic fungi including Lasmenia sp. isolate CB10, Ophioceras tenuisporum isolate CI02, Xylaria cubensis isolate LA04 and Cyanodermella sp. isolate TR09 were tested for antimicrobial activities using a dual culture method and Lasmenia sp. isolate CB10 and Cyanodermella sp. isolate TR09 showed better antimicrobial activity against 12 plant pathogens including 9 fungi and 3 bacteria. Spraying Chinese cabbage (Brassica rapa plants with culture filtrates of the endophytic fungus Lasmenia sp. isolate CB10 significantly reduced severity of anthracnose of Chinese cabbage caused by Colletotrichum higginsianum under greenhouse conditions. This study suggests that the Lasmenia sp. isolate CB10 may be of potential for management of anthracnose of Chinese cabbage.

  1. Survivorship in micro fungi and crustacean resting stages during ultraviolet (UV) and vacuum land testing of EXPOSE unit

    Science.gov (United States)

    Alekseev, Victor; Alekseev, Victor; Novikova, Nataliya; Sychev, Vladimir; Levinskikh, Margarita; Deshevaya, Elena; Brancelj, Anton; Malyavin, Stanislav

    Dormancy protects animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years. This phenomenon is perspective for space researches on interplanetary quarantine within space missions. Direct experiments in open space supported in principle the fact of survivorship of bacteria and fungi spores in open space during long time experiments (Novikova et al. 2007). The rate of survivorship in long-term mission was low but enough to conclude that biological invasion to Mars is a real danger. The possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it dormant stages (spores) of primitive fungi Aspergillus versicolor, Aspergillus sydowii, Penicillium expansum, and Penicillium aurantiogriseum derived from ISS environment were used in the land EXPOSE imitation of outside space station UV and vacuum conditions. Survivorship in resting eggs of some crustaceans with dried (cladoceran Daphnia magna, fair-shrimp Streptocephalus torvicornis and ostracode Eucypris ornate from hemi desert Caspian area) and wet diapause state (copepod Mixodiaptomus tatricus from the Tatra mountains, altitude 1510 m) was tested also. The total UV dose of 9,1x10 to the 4th KJ/m2 during this imitation was accomplished with a SOL 2000 sun simulator lamp. The final vacuum value achieved during EST was 10 to the minus 6 Pa. Temperature during the experiment fluctuated in the range 19-25 o C. Micro fungi showed a high level of survivorship in samples treated with UV samples varied from 95 till 100 Supported by RFBR grant 07-04-00006.

  2. Filamentous fungi: the indeterminate lifestyle and microbial ecology.

    Science.gov (United States)

    Klein, D A; Paschke, M W

    2004-04-01

    The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be

  3. Biology of flower-infecting fungi.

    Science.gov (United States)

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  4. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    Science.gov (United States)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  5. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger.

    Science.gov (United States)

    Murdoch, L E; McKenzie, K; Maclean, M; Macgregor, S J; Anderson, J G

    2013-01-01

    This study assessed the effects of high-intensity violet light on selected yeast and mould fungi. Cell suspensions of Saccharomyces cerevisiae, Candida albicans, and dormant and germinating spores (conidia) of the mould Aspergillus niger were exposed to high-intensity narrow band violet light with peak output at 405 nm generated from a light-emitting diode (LED) array. All three fungal species were inactivated by the 405-nm light without a requirement for addition of exogenous photosensitiser chemicals. Of the fungal species tested, S. cerevisiae was most sensitive and dormant conidia of A. niger were most resistant to 405-nm light exposure. Five-log10 colony forming units per millilitre (CFU ml(-1)) reductions of the tested species required exposure doses of 288 J cm(-2) for S. cerevisiae, 576 J cm(-2) for C. albicans, and a much higher value of 2.3 kJ cm(-2) for dormant conidia of A. niger. During germination, A. niger conidia became more sensitive to 405-nm light exposure and sensitivity increased as germination progressed over an 8 h test period. Light exposure under aerobic and anaerobic conditions, together with results obtained using ascorbic acid as a scavenger of reactive oxygen species, revealed that 405-nm light inactivation in fungi involved an oxygen-dependent mechanism, as previously described in bacteria. The inactivation results achieved with yeast cells and fungal spores together with operational advantages associated with the use of a visible (nonultraviolet (UV)) light source highlight the potential of 405-nm light for fungal decontamination applications. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome.

    Science.gov (United States)

    Kearns, Patrick J; Fischer, Sarah; Fernández-Beaskoetxea, Saioa; Gabor, Caitlin R; Bosch, Jaime; Bowen, Jennifer L; Tlusty, Michael F; Woodhams, Douglas C

    2017-01-01

    Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd ) is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads ( Altyes obstetricans ), to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs ( Dendrobates sp.). Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd . The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community), than did bacteria (~10%) and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

  7. Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome

    Directory of Open Access Journals (Sweden)

    Patrick J. Kearns

    2017-12-01

    Full Text Available Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads (Altyes obstetricans, to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs (Dendrobates sp.. Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd. The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community, than did bacteria (~10% and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

  8. Recovery of fermented inulin fiber by lactic acid bacteria (LAB) from inulin hydrolysate using fungi inulinase enzymes of Scopulariopsis sp.-CBS1 and class of Deuteromycetes-CBS4 as cholesterol binder

    Science.gov (United States)

    Susilowati, Agustine; Melanie, Hakiki; Maryati, Yati; Aspiyanto

    2017-01-01

    Fermentation of Lactobacillus Acid Bacteria (LAB) which are mixtures of Lactobacillus acidophilus, Bifidobacteriumbifidum, Lactobacillus bulgaricus and Streptococcus thermophillus on hydrolysate as a result of inulin hydrolysis using inulinase enzymes obtained from endophytic fungi ofScopulariopsis sp.-CBS1 (inulin hydrolysate of S) and Class of Deuteromycetes-CBS4 (inulin hydrolysate of D) generate potential fermented inulin fiber as cholesterol binder. Fermentation process was conducted under concentrations of inulin hydrolysate 50% (w/v), LAB 15% (v/v) and skim milk 12.5% (w/v) at room temperature and 40°C for 0, 12, 24, 36 and 48 hours, respectively. Result of experimental work showed that longer time of LAB fermentation increased total acids, TPC and CBC at pH 2, but decreased total sugar, reducing, IDF, SDF, CBC pH 2 and CBC pH 7. Based on Cholesterol Binding Capacity (CBC), optimization of fermentation process on inulin hydrolysate of S was achieved by combining treatment at 40°C for 24 hours resulted in CBC pH 2 of 19.11 mg/g TDF and inulin hydrolysate of D was achieved by fermentation at 40 °C for 48 hours resulted in CBC pH 2 of 24.28 mg/g TDF. Inulin hydrolysate of class of Deutrymecetes CBS4 fermented by LAB had better functional property as cholesterol binder than that inulin hydrolysate of S fermented by LAB. This is due to cholesterol binder and cholesterol derivatives as a result of degradation of LAB on digestive system (stomach) when compared to higher colon under optimal process condition.

  9. Solubilização de fosfatos em meios sólido e líquido por bactérias e fungos do solo Phosphate solubilization in solid and liquid media by soil bacteria and fungi

    Directory of Open Access Journals (Sweden)

    Edson Luiz Souchie

    2005-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade e a eficiência de solubilização de CaHPO4, AlPO4 e apatita de Araxá em meio sólido, e de AlPO4 e apatita de Araxá em meio líquido, por fungos (Aspergillus e bactérias (Enterobacteriaceae do solo. Em meio sólido, todos solubilizaram CaHPO4, nenhum solubilizou apatita de Araxá e apenas o isolado de fungo FSF 7 solubilizou AlPO4. Em meio líquido, todos solubilizaram AlPO4 e apatita de Araxá. A seleção de solubilizadores deve ser feita com a quantificação do potencial de solubilização em meio líquido.The objective of this work was to evaluate the ability and efficiency of solubilization of CaHPO4, AlPO4 and Araxá apatite in solid medium, and AlPO4 and Araxá apatite in liquid medium. Soil P-solubilizing fungi (Aspergillus and P-solubilizing bacteria (Enterobacteriaceae were tested. In solid medium, all isolates solubilized CaHPO4, not any isolate solubilized Araxá apatite, and one fungus isolate (PSF 7 solubilized AlPO4. In liquid medium, all isolates solubilized AlPO4 and Araxá apatite. Screening of P-solubilizing microorganisms must be done by quantifying their potential of phosphate solubilization in liquid growth medium.

  10. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    International Nuclear Information System (INIS)

    Grinn-Gofron, Agnieszka; Strzelczak, Agnieszka; Wolski, Tomasz

    2011-01-01

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  11. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    Energy Technology Data Exchange (ETDEWEB)

    Grinn-Gofron, Agnieszka, E-mail: agofr@univ.szczecin.p [Department of Plant Taxonomy and Phytogeography, Faculty of Natural Science, University of Szczecin, Waska 13 Street, 71-415 Szczecin (Poland); Strzelczak, Agnieszka [Department of Food Process Engineering, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin (Poland); Wolski, Tomasz [Physical Oceanography Laboratory, University of Szczecin (Poland)

    2011-02-15

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  12. Updates on Clostridium difficile spore biology.

    Science.gov (United States)

    Gil, Fernando; Lagos-Moraga, Sebastián; Calderón-Romero, Paulina; Pizarro-Guajardo, Marjorie; Paredes-Sabja, Daniel

    2017-06-01

    Clostridium difficile is a Gram-positive, anaerobic spore former, and an important nosocomial pathogenic bacterium. C. difficile spores are the morphotype of transmission and recurrence of the disease. The formation of C. difficile spores and their subsequent germination are essential processes during the infection. Recent in vitro and in vivo work has shed light on how spores are formed and the timing of in vivo sporulation in a mouse model. Advances have also been made in our understanding of the machineries involved in spore germination, and how antibiotic-induced dysbiosis affects the metabolism of bile salts and thus impacts C. difficile germination in vivo. Studies have also attempted to identify how C. difficile spores interact with the host's intestinal mucosa. Spore resistance has also been revisited by several groups highlighting the extreme resistance of this morphotype to traditional food processing regimes and disinfectants used in clinical settings. Therefore, the aim of this review is to summarize recent advances on spore formation/germination in vitro and in vivo, spore-host interactions, and spore resistance that contribute to our knowledge of the role of C. difficile spores in the infectious process. Copyright © 2017. Published by Elsevier Ltd.

  13. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  14. Dry season and diurnal surveys of phylloplane fungi of Hevea brasiliensis in Nigeria

    Directory of Open Access Journals (Sweden)

    J. A. Okhuoya

    2014-08-01

    Full Text Available Monthly and diurnal variation of phylloplane fungi of rubber (Hevea brasiliensis leaves were studied over a period of four months in the dry season, using two culturing methods. Composite fungal population was the highest in April and the lowest in February. Serial dilution method recorded the higher number of fungal spores than ballistospore method. Mature leaves were found to have more fungal spores than premature and young leaves. Spore concentration on the leaves showed diurnal periodicity, with peak period of spores between 12-18 hr. Rubber leaves outside the plantation, had more spores on their surfaces than those shaded by the plantation canopy. The factors responsible for these observations were discussed.

  15. 14C Analysis of protein extracts from Bacillus spores.

    Science.gov (United States)

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Longitudinal assessment of dairy farm management practices associated with the presence of psychrotolerant Bacillales spores in bulk tank milk on 10 New York State dairy farms

    NARCIS (Netherlands)

    Masiello, S. N.; Kent, D.V.; Martin, N. H.; Schukken, Y. H.; Wiedmann, M.; Boor, K. J.

    2017-01-01

    The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized

  17. Airway inflammation among compost workers exposed to actinomycetes spores

    Directory of Open Access Journals (Sweden)

    Kari Kulvik Heldal

    2015-05-01

    Full Text Available Objectives. To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Materials and method. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20 and five reactor plants (n=27. Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR. The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. Results. The levels of endotoxins (median 3 EU/m[sup]3[/sup] , range 0–730 EU/m[sup]3[/sup] and actinomycetes spores (median 0.2 × 10[sup]6[/sup] spores/m[sup]3[/sup] , range 0–590 × 10[sup]6[/sup] spores/m[sup]3[/sup] were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1–16, OR 6.1, 95% CI 1.5–25, respectively, p<0.05 among workers exposed to 0.02–0.3 × 10[sup]6[/sup] actinomycetes spores/m 3 , and FEV1/FVC% decreased cross shift (b=–3.2, SE=1.5%, p<0.01. Effects were weaker in the highest exposed group, but these workers used respiratory protection, frequently limiting their actual exposure. No relationships were found between exposure and pneumoprotein concentrations. Conclusions. The major agent in the aerosol generated at compost plants was actinomycetes spores which was associated with work related cough symptoms and work

  18. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  19. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  20. Spore liberation in mosses revisited.

    Science.gov (United States)

    Gallenmüller, Friederike; Langer, Max; Poppinga, Simon; Kassemeyer, Hanns-Heinz; Speck, Thomas

    2018-02-01

    The ability to perform hygroscopic movements has evolved in many plant lineages and relates to a multitude of different functions such as seed burial, flower protection or regulation of diaspore release. In most mosses, spore release is controlled by hygroscopic movements of the peristome teeth and also of the spore capsule. Our study presents, for the first time, temporally and spatially well-resolved kinematic analyses of these complex shape changes in response to humidity conditions and provides insights into the sophisticated functional morphology and anatomy of the peristome teeth. In Brachythecium populeum the outer teeth of the peristome perform particularly complex hygroscopic movements during hydration and desiccation. Hydration induces fast inward dipping followed by partial re-straightening of the teeth. In their final shape, wet teeth close the capsule. During desiccation, the teeth perform an outward flicking followed by a re-straightening which opens the capsule. We present a kinematic analysis of these shape changes and of the underlying functional anatomy of the teeth. These teeth are shown to be composed of two layers which show longitudinal gradients in their material composition, structure and geometry. We hypothesize that these gradients result in (i) differences in swelling/shrinking capacity and velocity between the two layers composing the teeth, and in (ii) a gradient of velocity of swelling and shrinking from the tip to the base of the teeth. We propose these processes explain the observed movements regulating capsule opening or closing. This hypothesis is corroborated by experiments with isolated layers of peristome teeth. During hydration and desiccation, changes to the shape and mass of the whole spore capsule accompany the opening and closing. Results are discussed in relation to their significance for humidity-based regulation of spore release.

  1. What we know about arbuscular mycorhizal fungi and associated ...

    African Journals Online (AJOL)

    Mycorrhizal fungi are common soil microorganisms and are well known for their symbiotic association with the roots of host plants. The soil is a complex environment harbouring a wide diversity of microorganisms. The interaction between soil bacteria and arbuscular mycorrhizal fungi has been shown in several studies to ...

  2. Absence of Fungal Spore Internalization by Bronchial Epithelium in Mouse Models Evidenced by a New Bioimaging Approach and Transmission Electronic Microscopy.

    Science.gov (United States)

    Rammaert, Blandine; Jouvion, Grégory; de Chaumont, Fabrice; Garcia-Hermoso, Dea; Szczepaniak, Claire; Renaudat, Charlotte; Olivo-Marin, Jean-Christophe; Chrétien, Fabrice; Dromer, Françoise; Bretagne, Stéphane

    2015-09-01

    Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. A Sensitive Method for Examining Whole Cell Biochemical Composition in Single Cells of Filamentous Fungi using Synchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konstantin,J.; Gough, K.; Julian, R.; Kaminskyj, S.

    2008-01-01

    Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids at about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.

  4. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Science.gov (United States)

    Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume

    2006-01-01

    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 −13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107

  5. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  6. Aerobiology of the built environment: Synergy between Legionella and fungi.

    Science.gov (United States)

    Alum, Absar; Isaacs, Galahad Zachariah

    2016-09-02

    The modern built environment (BE) design creates unique ecological niches ideal for the survival and mutual interaction of microbial communities. This investigation focused on the synergistic relations between Legionella and the fungal species commonly found in BEs and the impact of these synergistic relationships on the survival and transmission of Legionella. A field study was conducted to identify the types and concentrations of fungi in BEs. The fungal isolates purified from BEs were cocultured with Legionella to study their synergistic association. Cocultured Legionella cells were aerosolized in an air-tight chamber to evaluate the efficacy of ultraviolet (UV) to inactivate these cells. Aspergillus, Alternaria, and Cladosporium were the most common fungi detected in samples that tested positive for Legionella. After coculturing, Legionella cells were detected inside fungal hyphae. The microscopic observations of Legionella internalization in fungal hyphae were confirmed by molecular analyses. UV disinfection of the aerosolized Legionella cells that were cocultured with fungi indicated that fungal spores and propagules act as a shield against UV radiation. The shield effect of fungal spores on Legionella cells was quantified at >2.5 log10. This study provides the first evidence, to our knowledge, of Legionella cell presence inside fungi detected in an indoor environment. This symbiotic relationship with fungi results in longer survival of Legionella under ambient conditions and provides protection against UV rays. Copyright © 2016. Published by Elsevier Inc.

  7. Physiological characteristics of fungi associated with dairy products

    DEFF Research Database (Denmark)

    Haasum, Iben

    Knowledge about physiological characteristics of food-borne fungi is important in understanding how the environment affects colonization of different foods and feeds. The response of a fungus to changes in the environment will, however, depend on the stage of the life cycle or the physiological...... mode of the mycelium. Germination of spores is a key event in the fungal life cycle giving rise to colonization by a growing mycelium. Understanding of the factors controlling germination are of major importance as no infection of food-stuffs will occur if spores do not germinate. Food spoilage...... and production of mycotoxins and other secondary metabolites represent two other areas of great concern in relation to food spoilage, which might be controlled by different regulation mechanisms. Detailed as well as more general information on behaviour of fungi in relation to important growth controlling...

  8. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  9. Monitoring of fungal spores in the indoor air of preschool institution facilities in Novi Sad

    Directory of Open Access Journals (Sweden)

    Novaković Milana S.

    2013-01-01

    Full Text Available Fungal spores can cause a range of health problems in humans such as respiratory diseases and mycotoxicoses. Since children are the most vulnerable, the presence of fungal spores in the facilities of preschool and school institutions should be investigated readily. In order to estimate air contamination by fungal spores, air sampling was conducted in eight facilities of the preschool institution in Novi Sad during February and March, 2007. Sedimentation plate method was used for the detection of viable fungal spores, mostly being members of subdv. Deuteromycota (Fungi imperfecti. In 32 samples a total of 148 colonies were developed, among which five genera were identified: Penicillium, Cladosporium, Aspergillus, Alternaria and Acremonium while non-sporulating fungal colonies were labeled as sterile mycelia. Most frequently recorded genera were Penicillium with 46 colonies and Cladosporium with 44 colonies. The genera Aspergillus and Alternaria were represented with 3 colonies each and Acremonium with only 1 colony. The greatest number of colonies emerged in the samples from the day care facilities “Vendi” (58 colonies and “Panda” (49 colonies. Most diverse samples were obtained from the day care center “Zvončica”, with presence of all identified genera. These results showed notable presence of fungal spores in the indoor air of Preschool institution facilities and indicated the need for further, more complete seasonal research. Obtained information is considered useful for the evaluation of potential mycofactors that endanger health of children. [Projekat Ministarstva nauke Republike Srbije, br. III43002

  10. Mimicry in plant-parasitic fungi.

    Science.gov (United States)

    Ngugi, Henry K; Scherm, Harald

    2006-04-01

    Mimicry is the close resemblance of one living organism (the mimic) to another (the model), leading to misidentification by a third organism (the operator). Similar to other organism groups, certain species of plant-parasitic fungi are known to engage in mimetic relationships, thereby increasing their fitness. In some cases, fungal infection can lead to the formation of flower mimics (pseudo flowers) that attract insect pollinators via visual and/or olfactory cues; these insects then either transmit fungal gametes to accomplish outcrossing (e.g. in some heterothallic rust fungi belonging to the genera Puccinia and Uromyces) or vector infectious spores to healthy plants, thereby spreading disease (e.g. in the anther smut fungus Microbotryum violaceum and the mummy berry pathogen Monilinia vaccinii-corymbosi). In what is termed aggressive mimicry, some specialized plant-parasitic fungi are able to mimic host structures or host molecules to gain access to resources. An example is M. vaccinii-corymbosi, whose conidia and germ tubes, respectively, mimic host pollen grains and pollen tubes anatomically and physiologically, allowing the pathogen to gain entry into the host's ovary via stigma and style. We review these and other examples of mimicry by plant-parasitic fungi and some of the mechanisms, signals, and evolutionary implications.

  11. Arbuscular mycorrhizal fungi (Glomales, Zygomycota of the Bledowska Desert, Poland

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-01-01

    Full Text Available The occurrence of arbuscular mycorrhizal fungi (AMF; Glomales, Zygomycetes associated with plants growing in sand dune soils of the Blędowska Desert, Poland, was investigated in 1995-1997. A total of 134 mixtures of soils and roots were sampled. The mixtures represented 26 plant species in 14 families and one unrecognized plant. Spores of AMF were found in 118 soil-root mixtures. The AMF spore populations comprised 20 described species of the genera Acaulospora, Gigaspora, Glomus and Scutellospora, as well as two undescribed morphospecies of the genus Glomus. The AMF most frequently occurring in the field-collected soils were members of the genus Scutellospora The AMF spore populations comprised 20 described species in the genera Acaulospora, Gigaspora, Glomus and Scutellospora, as well as two undescribed morpho-species of the genus Glomus. The fungal species most frequently and numerously found was Scutellospora armeniaca. The fungi relatively frequently present also were A. rugosa, A. lacunosa, G. aggregatum, an undescribed Glomus 142 and Sc. dipurpurescens. The overall spore abundance of AMF averaged 69.1 and ranged from 0 to 837 in 100 g dry soil. The highest abundance of spores occurred among roots of the families Cupressaceae, followed by the Rosaceae, Asteraceae and Poaceae. Of the plant species investigated two and more times, most spores harboured Juniperus communis. The overall average species richness was 2.4 and ranged from 0 to 6 in 100 g dry soil. Of the plant species sampled at lest two times, the highest average species diversity was found in the root zone of Salix arenaria. The plant species that hosted the highest overall number of species of AMF was Festuca rubra. Trap pot cultures with soilroot mixtures collected in 1997 revealed 10 species of AMF that were not found in field soils sampled in the same year. This suggests that a great part of AMF of Błędowska Desert is represented by rarely or non-sporulating species.

  12. Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference

    OpenAIRE

    França,André Cabral; Freitas,Ana Flávia de; Santos,Edson Aparecido dos; Grazziotti,Paulo Henrique; Andrade Júnior,Valter Carvalho de

    2016-01-01

    ABSTRACT Mycorrhizae provide several benefits to coffee plants. This study evaluated whether these benefits influence the damage caused by the Bidens pilosa competition with coffee seedlings. A randomized blocks design was used, with treatments established in a 2 x 3 factorial scheme (presence and absence of B. pilosa interference in non-inoculated control or plants inoculated with either Claroideoglomus etunicatum or Dentiscutata heterogama). Coffee seedlings were inoculated with fungi spore...

  13. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Ferencova, Zuzana; Rastrojo, Alberto; Guantes, Raúl; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2017-07-01

    Pollen, fungi, and bacteria are the main microscopic biological entities present in outdoor air, causing allergy symptoms and disease transmission and having a significant role in atmosphere dynamics. Despite their relevance, a method for monitoring simultaneously these biological particles in metropolitan environments has not yet been developed. Here, we assessed the use of the Hirst-type spore trap to characterize the global airborne biota by high-throughput DNA sequencing, selecting regions of the 16S rRNA gene and internal transcribed spacer for the taxonomic assignment. We showed that aerobiological communities are well represented by this approach. The operational taxonomic units (OTUs) of two traps working synchronically compiled >87% of the total relative abundance for bacterial diversity collected in each sampler, >89% for fungi, and >97% for pollen. We found a good correspondence between traditional characterization by microscopy and genetic identification, obtaining more-accurate taxonomic assignments and detecting a greater diversity using the latter. We also demonstrated that DNA sequencing accurately detects differences in biodiversity between samples. We concluded that high-throughput DNA sequencing applied to aerobiological samples obtained with Hirst spore traps provides reliable results and can be easily implemented for monitoring prokaryotic and eukaryotic entities present in the air of urban areas. IMPORTANCE Detection, monitoring, and characterization of the wide diversity of biological entities present in the air are difficult tasks that require time and expertise in different disciplines. We have evaluated the use of the Hirst spore trap (an instrument broadly employed in aerobiological studies) to detect and identify these organisms by DNA-based analyses. Our results showed a consistent collection of DNA and a good concordance with traditional methods for identification, suggesting that these devices can be used as a tool for continuous

  14. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  15. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white

    Science.gov (United States)

    Thermal pasteurization used by the egg industry for controlling vegetative cells of pathogens is ineffective for destroying endospores. There is a strong need in the agri-industries to develop effective intervention strategies to eliminate the possible bioterrorism threat from spore forming bacteria...

  16. Abiotic and microbiotic factors controlling biofilm formation of thermophilic spore formers.

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.; Metselaar, K.I.; de Boer, W.P.H.; Roeselers, G.; Moezelaar, R.; Nierop Groot, M.N.; Montijn, R.; Abee, T.; Kort, R.

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon

  17. Long-Distance Dispersal of Fungi.

    Science.gov (United States)

    Golan, Jacob J; Pringle, Anne

    2017-07-01

    Dispersal is a fundamental biological process, operating at multiple temporal and spatial scales. Despite an increasing understanding of fungal biodiversity, most research on fungal dispersal focuses on only a small fraction of species. Thus, any discussion of the dispersal dynamics of fungi as a whole is problematic. While abundant morphological and biogeographic data are available for hundreds of species, researchers have yet to integrate this information into a unifying paradigm of fungal dispersal, especially in the context of long-distance dispersal (LDD). Fungal LDD is mediated by multiple vectors, including meteorological phenomena (e.g., wind and precipitation), plants (e.g., seeds and senesced leaves), animals (e.g., fur, feathers, and gut microbiomes), and in many cases humans. In addition, fungal LDD is shaped by both physical constraints on travel and the ability of spores to survive harsh environments. Finally, fungal LDD is commonly measured in different ways, including by direct capture of spores, genetic comparisons of disconnected populations, and statistical modeling and simulations of dispersal data. To unify perspectives on fungal LDD, we propose a synthetic three-part definition that includes (i) an identification of the source population and a measure of the concentration of source inoculum and (ii) a measured and/or modeled dispersal kernel. With this information, LDD is defined as (iii) the distance found within the dispersal kernel beyond which only 1% of spores travel.

  18. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis.

    Science.gov (United States)

    Chen, Huayou; Ullah, Jawad; Jia, Jinru

    2017-01-01

    Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of Clostridium and Bacillus are spore formers, but the most suitable choice for display is Bacillus subtilis because, according to the WHO, it is safe to humans and considered as "GRAS" (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein. © 2017 S. Karger AG, Basel.

  19. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  20. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  1. Biofilms from a Brazilian water distribution system include filamentous fungi.

    Science.gov (United States)

    Siqueira, V M; Oliveira, H M B; Santos, C; Paterson, R R M; Gusmão, N B; Lima, N

    2013-03-01

    Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4',6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.

  2. Spore attachment and extracellular mucilage of aquatic hyphomycetes.

    Science.gov (United States)

    Au, D W; Jones, E B; Moss, S T

    1996-01-01

    Stages in conidiun attachment to surfaces of Lemmoniera aquatica and Mycocentrospora filiformis (freshwater Hyphomycetes) were studied at the light microscope and scanning and transmission electron microscope levels. Sigmoid conidia of M. filiformis attach by pre-existing conidial mucilage at the spore pole and at a point along the conidial body. Tetraradiate conidia of L. aquatica attach by the thigmotropic release of mucilage at the tips of the three "arms";. Germination in both species is followed by the production of germ tubes, germ hyphae and appressoria. The chemical composition of the mucilage involved in attachment was determined by enzymatic studies and lectin-gold cytochemical studies. The major component was found to be acidic poly-saccharide, comprising mainly ß-1, 3-glucan, N-acetyl-D-glucosamine and N-acetyl-neuraminic acid. Variation in mucilage composition exists between the two species, among different structures of the same species, and on different regions of the same structure. This indicates that mucilage producton in the two species is a dynamic process.The ability to secure rapid spore attachment, often in turbulent condition, would be a competitive advantage to these saprobic fungi in the colonization of substrata.

  3. New species of ice nucleating fungi in soil and air

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and

  4. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    Science.gov (United States)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled

  5. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie

    , the spore forming Bacillus licheniformis 421 and the non-spore forming Pseudomonas putida K12, were used. The core plugs were Stevns Klint outcrop with initial permeability at 2-4 mD. The results revealed that bacteria were able to penetrate and to be transported through the chalk. Furthermore, a higher...... number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment with B. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow...

  6. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    Science.gov (United States)

    2015-07-01

    Ag2O samples show high amounts of Ag0.55Al0.35. Of the metal ions, silver exhibits the highest toxicity for microorganisms and the least toxicity to...Of the metal ions, silver typically exhibits the highest toxicity for microorganisms and the least toxicity to animal cells depending on the system...of metallic and metal oxide sponges , Nature Mater. 2: 386-390 (2003). 14. B. C. Tappan,* M. H. Huynh, M. A. Hiskey, D. E. Chavez, E. P. Luther, J. T

  7. Incidence of spore-forming bacteria in unsweetened evaporated ...

    African Journals Online (AJOL)

    brand C, to 0.54x105 for brand B and 1.67x105 for brand A. The organisms isolated from the three brands were identified as Bacillus cereus, Bacillus licheniformis, Bacillus coagulans, Bacillus stearothermophilus, Bacillus subtilis and Clostridium perfringens, with B. subtilis having the highest frequency of occurrence ...

  8. Mosquitocidal toxins of spore forming bacteria: recent advancement ...

    African Journals Online (AJOL)

    Mosquito borne diseases form a major component of vector borne diseases from all over the world. Several control strategies have been adopted to control diseases transmitted by mosquitoes. The discovery of highly potential bacteriocides like Bacillus sphaericus (Bs) and Bacillus thuringiensis subsp. israelensis (Bti) have ...

  9. arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross. River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  10. Arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  11. New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands

    Science.gov (United States)

    Orson K. Miller; D. Jean Lodge; Timothy J. Baroni

    2000-01-01

    A report of putative ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Island in the Greater Antilles includes four species of Amanita, three of which are new species; two Lactarius, one is new, and two species of Boletus, one new. In addition, new distribution records of Phlebopus beniensis, Russula littoralis, Lactarius ferrugineus, a new small spored...

  12. Validated modified Lycopodium spore method development for ...

    African Journals Online (AJOL)

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of ...

  13. Bacillus subtilis Spore Inner Membrane Proteome

    NARCIS (Netherlands)

    Zheng, L.; Abhyankar, W.; Ouwerling, N.; Dekker, H.L.; van Veen, H.; van der Wel, N.N.; Roseboom, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2016-01-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to

  14. What can spores do for us?

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2003-01-01

    Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of

  15. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  16. Ptaquiloside in bracken spores from Britain.

    Science.gov (United States)

    Rasmussen, Lars Holm; Schmidt, Bjørn; Sheffield, Elizabeth

    2013-03-01

    Secondary metabolites from bracken fern (Pteridium aquilinum (L.) Kuhn) are suspected of causing cancer in humans. The main carcinogen is the highly water-soluble norsesquiterpene glucoside ptaquiloside, which may be ingested by humans through food, e.g. via contaminated water, meat or milk. It has been postulated that carcinogens could also be ingested through breathing air containing bracken spores. Ptaquiloside has not previously been identified in bracken spores. The aim of the study was to determine whether ptaquiloside is present in bracken spores, and if so, to estimate its content in a collection of spores from Britain. Ptaquiloside was present in all samples, with a maximum of 29 μg g(-1), which is very low compared to other parts of the fern. Considering the low abundance of spores in breathing air under normal conditions, this exposure route is likely to be secondary to milk or drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A Gompertz regression model for fern spores germination

    Directory of Open Access Journals (Sweden)

    Gabriel y Galán, Jose María

    2015-06-01

    Full Text Available Germination is one of the most important biological processes for both seed and spore plants, also for fungi. At present, mathematical models of germination have been developed in fungi, bryophytes and several plant species. However, ferns are the only group whose germination has never been modelled. In this work we develop a regression model of the germination of fern spores. We have found that for Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei and Polypodium feuillei species the Gompertz growth model describe satisfactorily cumulative germination. An important result is that regression parameters are independent of fern species and the model is not affected by intraspecific variation. Our results show that the Gompertz curve represents a general germination model for all the non-green spore leptosporangiate ferns, including in the paper a discussion about the physiological and ecological meaning of the model.La germinación es uno de los procesos biológicos más relevantes tanto para las plantas con esporas, como para las plantas con semillas y los hongos. Hasta el momento, se han desarrollado modelos de germinación para hongos, briofitos y diversas especies de espermatófitos. Los helechos son el único grupo de plantas cuya germinación nunca ha sido modelizada. En este trabajo se desarrolla un modelo de regresión para explicar la germinación de las esporas de helechos. Observamos que para las especies Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei y Polypodium feuillei el modelo de crecimiento de Gompertz describe satisfactoriamente la germinación acumulativa. Un importante resultado es que los parámetros de la regresión son independientes de la especie y que el modelo no está afectado por variación intraespecífica. Por lo tanto, los resultados del trabajo muestran que la curva de Gompertz puede representar un modelo general para todos los helechos leptosporangiados

  18. Susceptibility of food-contaminating Penicillium genus fungi to some preservatives and disinfectants.

    Science.gov (United States)

    Levinskaite, Loreta

    2012-01-01

    Microscopic fungi are able to contaminate and deteriorate various food products and can subsequently cause health problems. Long usage of the same preservatives and disinfectants against spoilage fungi may lead to the development of fungal resistance to those chemicals. The objective of this study was to investigate the susceptibility of 3 Penicillium genus fungi, isolated from foodstuffs, to organic acid preservatives and some disinfectants, taking into consideration 2 aspects of their development: spore germination and mycelial growth. Susceptibility of Penicillium spinulosum, P. expansum and P. verruculosum to the preservatives, namely benzoic acid, sodium lactate, potassium sorbate, as well as disinfectants such as Topax DD, Suma Bac D10, Biowash and F210 Hygisept, was investigated. The biocides were used at concentrations of 0.1, 1.0 and 10%. Of the preservatives, benzoic acid and potassium sorbate showed the best inhibition, both on spore germination and mycelial growth. Benzoic acid at a concentration of a 0.1% reduced spore germination by 33-55%, and mycelial growth by 54-97%, whereas at 1% the inhibition was 74-85% and 97-100%, respectively. The effect of the disinfectants at a concentration of 0.1% on spore germination was 25-84% and on colonial growth 68-97%, while at 1.0% the reduction in spore germination reached 53-91% and the inhibition of growth 89-100%. In most cases, the same concentrations added to the media showed higher inhibitory effect on mycelial growth than on spore germination. It was noticed that the fungi responded rather unevenly towards the biocides, showing individual susceptibility.

  19. Evaluation of some physical and chemical treatments for inactivating microsporidian spores isolated from fish.

    Science.gov (United States)

    Leiro, José M; Piazzon, Carla; Domínguez, Berta; Mallo, Natalia; Lamas, Jesús

    2012-05-15

    Microsporidia are a large diverse group of intracellular parasites now considered as fungi. They are particularly prevalent in fish and are recognized as important opportunistic parasites in humans. Although the mode of transmission of microsporidia has not been fully clarified, the consumption and manipulation of infected fish may be a risk factor for humans. Comparative analysis of rDNA sequence revealed that the microsporidians used in the present study had 99-100% identity with anglerfish microsporidians of the genus Spraguea and very low identity with microsporidians that infect humans. Microsporidian spores were exposed to different physical and chemical treatments: freezing at -20°C for 24-78 h, heating at 60°C for 5-15 min, microwaving at 700 W, 2.45 GHz for 15-60s, and treatment with ethanol at concentrations of between 1 and 70% for 15 min. The viability of the spores after each treatment was evaluated by two methods: a) haemocytometer counts, measuring the extrusion of the polar filament in control and treated spores, and b) a fluorometric method, testing the membrane integrity by propidium iodide exclusion. The results of both methods were concordant. Spores were inactivated by freezing at -20°C for more than 48 h, by heating to 60°C for 10 min and by microwaving at 750 W, for 20s. Exposure to 70% ethanol for 15 min also inactivated microsporidian spores. The results suggest that both freezing and heating are effective treatments for destroying microsporidian spores in European white anglerfish, and that 70% ethanol could be used by fish processors to disinfect their hands and the utensils used in processing fish. The fluorometric method can be used as an alternative to haemocytometer counts in disinfection studies aimed at establishing strategies for inactivating and reducing the viability and the potential infectivity of microsporidians present in fish or in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  1. Methods to preserve potentially toxigenic fungi.

    Science.gov (United States)

    Guimarães, Lucas Costa; Fernandes, Ana Paula; Chalfoun, Sara Maria; Batista, Luís Roberto

    2014-01-01

    Microorganisms are a source of many high-value compounds which are useful to every living being, such as humans, plants and animals. Since the process of isolating and improving a microorganism can be lengthy and expensive, preserving the obtained characteristic is of paramount importance, so the process does not need to be repeated. Fungi are eukaryotic, achlorophyllous, heterotrophic organisms, usually filamentous, absorb their food, can be either macro or microscopic, propagate themselves by means of spores and store glycogen as a source of storage. Fungi, while infesting food, may produce toxic substances such as mycotoxins. The great genetic diversity of the Kingdom Fungi renders the preservation of fungal cultures for many years relevant. Several international reference mycological culture collections are maintained in many countries. The methodologies that are most fit for preserving microorganisms for extended periods are based on lowering the metabolism until it reaches a stage of artificial dormancy. The goal of this study was to analyze three methods for potentially toxigenic fungal conservation (Castellani's, continuous subculture and lyophilization) and to identify the best among them.

  2. Methods to preserve potentially toxigenic fungi

    Directory of Open Access Journals (Sweden)

    Lucas Costa Guimarães

    2014-01-01

    Full Text Available Microorganisms are a source of many high-value compounds which are useful to every living being, such as humans, plants and animals. Since the process of isolating and improving a microorganism can be lengthy and expensive, preserving the obtained characteristic is of paramount importance, so the process does not need to be repeated. Fungi are eukaryotic, achlorophyllous, heterotrophic organisms, usually filamentous, absorb their food, can be either macro or microscopic, propagate themselves by means of spores and store glycogen as a source of storage. Fungi, while infesting food, may produce toxic substances such as mycotoxins. The great genetic diversity of the Kingdom Fungi renders the preservation of fungal cultures for many years relevant. Several international reference mycological culture collections are maintained in many countries. The methodologies that are most fit for preserving microorganisms for extended periods are based on lowering the metabolism until it reaches a stage of artificial dormancy . The goal of this study was to analyze three methods for potentially toxigenic fungal conservation (Castellani's, continuous subculture and lyophilization and to identify the best among them.

  3. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  4. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  5. Antimicrobial activity of Mucuna pruriens on selected bacteria ...

    African Journals Online (AJOL)

    ... negative and spore forming microorganisms and fungi. The methanol extract of M. pruriens showed broad-spectrum antimicrobial activity against all the tested microorganisms except Candida albicans. The results obtained in the study shows that M. pruriens extract can be a potential surce of natural antimicrobial agent.

  6. Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P.

    2015-01-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  7. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  9. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging.

    Science.gov (United States)

    Xu Zhou, Ke; Li, Nan; Christie, Graham; Wilson, D Ian

    2017-11-01

    The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food-borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning-in-place procedures. Spore-forming bacteria are a concern to the food industry because they have the potential to cause food-borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning-in-place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  10. Development of bioprocess for high density cultivation yield of the probiotic Bacillus coagulans and its spores

    Directory of Open Access Journals (Sweden)

    Kavita R. Pandey

    2016-09-01

    Full Text Available Bacillus coagulans is a spore forming lactic acid bacterium. Spore forming bacteria, have been extensively studied and commercialized as probiotics. Probiotics are produced by fermentation technology. There is a limitation to biomass produced by conventional modes of fermentation. With the great demand generated by range of probiotic products, biomass is becoming very valuable for several pharmaceutical, dairy and probiotic companies. Thus, there is a need to develop high cell density cultivation processes for enhanced biomass accumulation. The bioprocess development was carried out in 6.6 L bench top lab scale fermentor. Four different cultivation strategies were employed to develop a bioprocess for higher growth and sporulation efficiencies of probiotic B. coagulans. Batch fermentation of B. coagulans yielded 18 g L-1 biomass (as against 8.0 g L-1 productivity in shake flask with 60% spore efficiency. Fed-batch cultivation was carried out for glucose, which yielded 25 g L-1 of biomass. C/N ratio was very crucial in achieving higher spore titres. Maximum biomass yield recorded was 30 g L-1, corresponding to 3.8 × 1011 cells mL-1 with 81% of cells in sporulated stage. The yield represents increment of 85 times the productivity and 158 times the spore titres relative to the highest reported values for high density cultivation of B. coagulans.

  11. Sensitivity of thermally treated Bacillus subtilis spores to subsequent irradiation

    International Nuclear Information System (INIS)

    Mostafa, S.A.; El-Zawahry, Y.A.; Awny, N.M.

    1986-01-01

    B. subtilis spores exposed to thermal treatment at 70 or 80 0 C for 1 hr were more sensitive to subsequent radiation exposure than non-heated spores. Deactivation of previously heated spores by increasing dose of 0-radiation followed an exponential function while, for non-heated spores a shoulder followed by exponential deactivation was noticed. Combined heat-radiation treatment exhibited a synergistic effect on spore deactivation at low irradiation doses, while at high irradiation doses, the effect was more or less additive. Added values of spore injury was higher for B. subtilis spores that received heat and radiation separately than the observed injury for spores that received combined treatment (heat followed by radiation). Results of spore deactivation and injury due to heat followed by radiation treatment are discussed in comparison to those of spores that received radiation-heat sequence

  12. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  13. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  14. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  15. Terpenoids from Endophytic Fungi

    Directory of Open Access Journals (Sweden)

    Jucimar Jorgeane de Souza

    2011-12-01

    Full Text Available This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.

  16. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    Science.gov (United States)

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.

  17. Qualitative Analysis of Indoor and Outdoor Airborne Fungi in Cowshed

    Directory of Open Access Journals (Sweden)

    R. Pavan

    2014-01-01

    Full Text Available Air pollution is one of the most serious problems to human health. Fungi are the causal agents for different diseases in animals, plants, and human beings. Otomycosis, chronic bronchitis, emphysema, asthma, allergy, and systemic mycosis are among the fungal diseases caused. The present study was conducted to analyze the monthly incidence of airborne fungi, seasonal variation, and influence of meteorological parameters in indoor and outdoor fungi of cowshed at Hesaraghatta village, Bangalore. An aeromycological survey of indoor and outdoor area of cowshed at Hesaraghatta village in Bangalore city was carried out using the Andersen two-stage sampler onto a petri dish containing malt extract agar from January 2011 to December 2011. Altogether, 29 species belonging to 13 genera from indoor and 26 species belonging to 12 genera were recorded from outdoor environment of the cowshed; the dominant fungal species identified were Cladosporium sp., Aspergillus sp., and Alternaria alternata. Seasonal occurrence of fungal spores in both indoor and outdoor of the cowshed revealed that maximum spores were recorded in summer season followed by winter and rainy season.

  18. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    Hauser, P.M.; Karamata, D.

    1992-01-01

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  19. Fusarium toxins and fungi associated with handling of grain on eight Finnish farms

    Science.gov (United States)

    Lappalainen, Sanna; Nikulin, Marjo; Berg, Seija; Parikka, Päivi; Hintikka, Eeva-Liisa; Pasanen, Anna-Liisa

    Farmers' exposure to airborne dust, fungi and possibly also to Fusarium toxins during the drying and milling of grain and feeding of cattle was studied on eight Finnish farms. Airborne viable and total spores were collected on polycarbonate filters. Spore concentrations and fungal flora were determined by cultivation and epifluorescence microscope counting. Eighteen airborne dust samples were taken on glass-fiber filters with a high-volume sampler, and biological toxicity was tested from those samples. In toxic dust samples, Fusarium toxins were analyzed with a gas chromatography-mass spectroscopy. Fungi and Fusarium toxins were also analyzed in ten grain samples collected from the farms during the air sampling. Yeasts, as well as species of Cladosporium, Penicillium, Aspergillus, Absidia and Fusarium occurred in the air at all three stages of grain handling. Airborne spore concentrations ranged from 103 to 10 6 cfu m -3 for viable fungi and from 10 5 to 10 7 spores m -3 for total spores; airborne dust concentrations varied from 0.04 to 81.1 mg m -3. Low deoxynivalenol concentrations (3 and 20 ng m -3) were found in two air samples collected during milling. Fusarium spp. were identified in eight grain samples, and DON concentrations of 0.004-11 mg kg -1 were detected in all samples analyzed. Although any conclusion on Finnish farmers' exposure to mycotoxins cannot be done on the basis of this small data, it can be assumed that toxigenic fungi and Fusarium toxins may occur in the air and inhalation exposure of farmers to Fusarium toxins is possible in agricultural environment.

  20. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    Science.gov (United States)

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules. © 2015 IUMS.

  1. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    Science.gov (United States)

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this

  2. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, R.T.; Abee, T.; Kuipers, O.P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  3. Bacterial spores in food : how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Abee, Tjakko; Kuipers, Oscar P.

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  4. Bacillus cereus spore damage recovery and diversity in spore germination and carbohydrate utilisation

    NARCIS (Netherlands)

    Warda, Alicja K.

    2016-01-01

    Bacterial spores are extremely robust survival vehicles that are highly resistant towards environmental stress conditions including heat, UV radiation and other stresses commonly applied during food production and preservation. Spores, including those of the toxin-producing food-borne human pathogen

  5. Bacillus cereus spore damage recovery and diversity in spore germination and carbohydrate utilisation

    NARCIS (Netherlands)

    Warda, Alicja K.

    2016-01-01

    Bacterial spores are extremely robust survival vehicles that are highly resistant towards environmental stress conditions including heat, UV radiation and other stresses commonly applied during food production and preservation. Spores, including those of the toxin-producing food-borne human

  6. Characterization of Bacillus sporothermodurans IC4 spores; putative indicator microorganism for optimisation of thermal processes in food sterilisation

    NARCIS (Netherlands)

    van Zuijlen, A.; Periago, P.M.; Amézquita, A.; Palop, A.; Brul, S.; Fernández, P.S.

    2010-01-01

    Spore-forming bacteria with high heat resistance increasingly challenge industrial sterilisation processes in foods. To ensure stability of manufactured foods, generally worst case scenarios are applied often leading to unwanted over processing of foods. This means bigger requirements of energy and

  7. Taxonomy of Allergenic Fungi.

    Science.gov (United States)

    Levetin, Estelle; Horner, W Elliott; Scott, James A

    2016-01-01

    The Kingdom Fungi contains diverse eukaryotic organisms including yeasts, molds, mushrooms, bracket fungi, plant rusts, smuts, and puffballs. Fungi have a complex metabolism that differs from animals and plants. They secrete enzymes into their surroundings and absorb the breakdown products of enzyme action. Some of these enzymes are well-known allergens. The phylogenetic relationships among fungi were unclear until recently because classification was based on the sexual state morphology. Fungi lacking an obvious sexual stage were assigned to the artificial, now-obsolete category, "Deuteromycetes" or "Fungi Imperfecti." During the last 20 years, DNA sequencing has resolved 8 fungal phyla, 3 of which contain most genera associated with important aeroallergens: Zygomycota, Ascomycota, and Basidiomycota. Advances in fungal classification have required name changes for some familiar taxa. Because of regulatory constraints, many fungal allergen extracts retain obsolete names. A major benefit from this reorganization is that specific immunoglobulin E (IgE) levels in individuals sensitized to fungi appear to closely match fungal phylogenetic relationships. This close relationship between molecular fungal systematics and IgE sensitization provides an opportunity to systematically look at cross-reactivity and permits representatives from each taxon to serve as a proxy for IgE to the group. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Patents on Endophytic Fungi.

    Science.gov (United States)

    Gokhale, M; Gupta, D; Gupta, U; Faraz, R; Sandhu, S S

    2017-01-01

    Endophytic fungi are taxonomically and ecologically heterogeneous group of organisms, mainly belonging to the Ascomycotina and Deuteromycotina. Endophytes usually produce the enzymes necessary for the colonization of plant tissues. Endophytes are able to utilize components of plant cells without disturbing host metabolism, which is confirmed by isozyme analysis and studies on substrate utilization. The patents related to enzymes and metabolites produced by endophytic fungi are associated with their ecological significance. Application of metabolites and growth promoting factors produced from endophytic fungi, in the pharmaceutical and agricultural industries, is now well established. The patents on secretion of extracellular enzymes in vitro by endophytic fungi needed for cell wall degradation, support the hypothesis that fungal endophytes represent a group of organisms specialized to live within plant tissue. This review presents the patents granted on different aspects of endophytic fungi for the last 11 years. This expresses the scenario and impact of these patents regarding significance in human society. In the last few years, research and inventions regarding the different aspects of endophytic fungi beneficial for host plant as well as for human beings have been carried out, which is supported by the increasing number of patents granted on endophytic fungi. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Identification of entomopathogenic fungi

    Science.gov (United States)

    This chapter provides essential assistance for the identification of the most important genera (and main species) of fungal pathogens affecting insects, mites, and spiders. The key allows identifications regardless of which major spore types might be present with the specimen. The phylogenetic affi...

  10. The Cooperative and Interdependent Roles of GerA, GerK, and Ynd in Germination of Bacillus licheniformis Spores.

    Science.gov (United States)

    Borch-Pedersen, Kristina; Lindbäck, Toril; Madslien, Elisabeth H; Kidd, Shani W; O'Sullivan, Kristin; Granum, Per Einar; Aspholm, Marina

    2016-07-15

    When nutrients are scarce, Bacillus species form metabolically dormant and extremely resistant spores that enable survival over long periods of time under conditions not permitting growth. The presence of specific nutrients triggers spore germination through interaction with germinant receptors located in the spore's inner membrane. Bacillus licheniformis is a biotechnologically important species, but it is also associated with food spoilage and food-borne disease. The B. licheniformis ATCC 14580/DSM13 genome exhibits three gerA family operons (gerA, gerK, and ynd) encoding germinant receptors. We show that spores of B. licheniformis germinate efficiently in response to a range of different single l-amino acid germinants, in addition to a weak germination response seen with d-glucose. Mutational analyses revealed that the GerA and Ynd germination receptors function cooperatively in triggering an efficient germination response with single l-amino acid germinants, whereas the GerK germination receptor is essential for germination with d-glucose. Mutant spores expressing only GerA and GerK or only Ynd and GerK show reduced or severely impaired germination responses, respectively, with single l-amino acid germinants. Neither GerA nor Ynd could function alone in stimulating spore germination. Together, these results functionally characterize the germination receptor operons present in B. licheniformis We demonstrate the overlapping germinant recognition patterns of the GerA and Ynd germination receptors and the cooperative functionalities between GerA, Ynd, and GerK in inducing germination. To ensure safe food production and durable foods, there is an obvious need for more knowledge on spore-forming bacteria. It is the process of spore germination that ultimately leads to food spoilage and food poisoning. Bacillus licheniformis is a biotechnologically important species that is also associated with food spoilage and food-borne disease. Despite its importance, the

  11. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    International Nuclear Information System (INIS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-01-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine

  12. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Pantoya, M. L. [Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  13. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions.

    Science.gov (United States)

    Cabral, João P S

    2010-09-15

    Microbiological analysis of atmospheres witnessed substantial technical improvements in the 1940s to 1960s. May's cascade impactor and Hirst's spore trap allowed the counting of total cells but had limited capacity for identification of the spores. Bourdillon's sampler enabled the counting of cultivable fungi and their identification. A great step forward was given with the Andersen's six-stage impactor, which allowed discrimination of particles by size, counting of cultivable cells, and species identification. This period also witnessed the development of impingers, namely, the AGI-30 described by Malligo and Idoine, and the three-stage model designed by K. R. May. The 1990s to 2000s witnessed innovative discoveries on the biology of indoor fungi. Work carried out in several laboratories showed that indoor fungi can release groups of spores, individual spores and fungal fragments, and produce volatile organic compounds and mycotoxins. Integrating all findings a holistic interpretation emerged for the sick building syndrome. Healthy houses and buildings, with low indoor humidity, display no appreciable indoor fungal growth, and outdoor Cladosporium dominates. On the contrary, in sick houses and buildings, high indoor humidity allows fungal growth (mainly of Penicillium and Aspergillus), with concomitant release of conidia and fragments into the atmosphere. The intoxication probably results from a chronic exposure to volatile organic compounds and mycotoxins produced by Penicillium, Aspergillus, and Stachybotrys. Very clean atmospheres are difficult to study by conventional methods. However, some of these atmospheres, namely, those of hospital rooms, should be monitored. Sedimentary sampling, chemical methods applied to impinger's collection liquid, and selected molecular methods can be useful in this context. It was concluded that fungi can be useful indicators of indoor air quality and that it is important to deepen the studies of indoor atmospheres in order to

  14. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    Science.gov (United States)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  15. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    Science.gov (United States)

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  16. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.

    2012-11-01

    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  17. Role of DNA repair in Bacillus subtilis spore resistance.

    OpenAIRE

    Setlow, B; Setlow, P

    1996-01-01

    Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore ou...

  18. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  19. Pigments in Thermophilic fungi

    OpenAIRE

    Somasundaram, T; Rao, Sanjay SR; Maheshwari, R

    1986-01-01

    UV and visible absorption spectra of thermophilic fungi were obtained by photoacoustic spectroscopy. Based on these data as well as on the chem. properties and IR spectra, it is suggested that the pigments may be hydroxylated polycyclic quinones.

  20. Adaptive Immunity to Fungi

    Science.gov (United States)

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  1. Maarja Unduski 'Fungi'

    Index Scriptorium Estoniae

    1999-01-01

    24. nov.-st Linnagaleriis Tallinnas Maarja Unduski kolmas isiknäitus 'Fungi'. Eksponeeritud hiigelseened ja rida värviliste lehtedega ramatuid, mille kaante valmistamisel on autor esmakordselt kasutanud ka lõuendit ja paberreljeefi.

  2. Manglicolous fungi from India

    Digital Repository Service at National Institute of Oceanography (India)

    Chinnaraj, S.; Untawale, A.G.

    This paper deals with nine Ascomycetous fungi viz. Rhizophila marina Hyde et Jones, Trematosphaeria striatispora Hyde, Lineolata rhizophorae (Kohlm. et. Kohlm.) Kohlm. et. Volkm.-Kohlm., Caryosporella rhizophorae Kohlm., Passeriniella savoryellopsis...

  3. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  4. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation.

    Science.gov (United States)

    Sun, Xue-Guang; Bonfante, Paola; Tang, Ming

    2015-12-01

    Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Fungal spores in four catholic churches in the metropolitan area of Monterrey, Nuevo León State, Mexico – First study

    Directory of Open Access Journals (Sweden)

    Alejandra Rocha Estrada

    2015-05-01

    Full Text Available Introduction. About 500,000 species of fungi have been described to-date, although an estimated between 1 – 1.5 million species may occur. They have a wide distribution in nature, contributing to the decomposition of organic matter and playing a part in the biogeochemical cycles of major nutrients. A small number are considered pathogens of animals and plants. There is ample historical evidence that certain types of allergies are associated with fungi; exposure to fungal allergens occurs in both outdoor and indoor spaces. Many indoor allergens are the same as those found outside buildings, entering through windows and doors, ventilation systems, or through cracks or other fissures in the walls. Objective. To determine the diversity and abundance of fungal spores inside four churches in the metropolitan area of Monterrey city in Mexico. Materials and methods. The study was carried out from July 2009 – January 2010 using a Hirst type volumetric collector (Burkard Manufacturing Co Ltd. Results. A total of 31,629 spores from 54 taxa were registered in the four churches. The building that showed the highest amount of spores was the Santa Catarina Mártir Church with 12,766 spores, followed by Cristo Rey with 7,155 and Nuestra Señora del Roble with 6,887. Regularly high concentrations of spores were recorded from 14:00 – 20:00 hours. The highest concentration value was observed at the church of Santa Catarina Mártir at 16:00 hours with 1153 spores/m 3 air. Conclusions. The most abundant spores in the four churches studied corresponded to Cladosporium, the [i]Aspergillus/Penicillium complex[/i], [i]Coprinus[/i], [i]Ganoderma[/i], [i]Curvularia and Ustilago[/i].

  7. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem.

    Science.gov (United States)

    Geetha, N; Preseetha, M; Hari, K; Santhalakshmi, G; Bai, K Subadra

    2012-07-01

    In the present study, the interactions of entomopathogenic fungi viz., Beauveria bassiana, Beauveria brongniartii and Metarhizium anisopliae among themselves and three other opportunistic soil fungi from the sugarcane ecosystem namely, Fusarium saachari, Aspergillus sp. and Penecillium sp. were assayed in vivo against Galleria mellonella larvae. The tested fungi were co-applied on IV instar G. mellonella @ 1 x 10(7) ml(-1), in combinations of two, at the interval of 24 hrs either preceding or succeeding each otherto assess their efficacy and sporulation rates. Results showed that often mortality rates did not correspond to the spore harvest of the mortality agent and presence of other fungus may be antagonistic. The efficacy of B. bassiana (90%) and B. brongniartii (100%) was not enhanced further but was negatively affected in most combinations with other fungi. In case of M. anisopliae compatibility was higher, resulting in higher mortality by application of B. bassiana before (100%) or after (83.3%) M. anisopliae than when it was applied alone (70%). During sporulation, B. bassiana faced the most intense competition from M. anisopliae (2.75 x 10(6) larva(-1)) and enhancement due to F sacchari irrespective of sequence of application. In case of B. brongniartii, sporulation was lowest in the combination of B. brongniartiipreceding M. anisopliae (1.83 x10(6) larva(-1)) and B. brongniartii succeeding B. bassiana (1.58 x 10(6) larva(-1)). Of all fungi tested, except F sacchari (65.33 x 10(6) larva(-1)) all the other species affected sporulation of M. ansiopliae with the least in treatment of B. bassiana application following M. anisopliae. Similar kind of interaction was observed during sporulation of soil fungi when combined with entomopathogenic fungi, though individually they could not cause mortality of larvae.

  8. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  9. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  10. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  11. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    Science.gov (United States)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  12. Potential sources of airborne Alternaria spp. spores in South-west Spain.

    Science.gov (United States)

    Fernández-Rodríguez, Santiago; Sadyś, Magdalena; Smith, Matt; Tormo-Molina, Rafael; Skjøth, Carsten Ambelas; Maya-Manzano, José María; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela

    2015-11-15

    Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of the most important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (>100 s m(-3)) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis show that, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW-W; and (2) NW-NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula. Published by Elsevier B.V.

  13. Characterization of a spore-specific protein of the Bacillus cereus group.

    Science.gov (United States)

    From, Cecilie; van der Voort, Menno; Abee, Tjakko; Granum, Per Einar

    2012-06-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function of the gene in this group of bacteria. Quantitative PCR revealed that bc1245 is transcribed late in sporulation (upon formation of phase-bright spores) and at the same time as the mother cell-specific transcription factor σ(K) . The σ(K) regulon includes structural components of the spore (such as coat proteins), and it is therefore plausible that bc1245 might encode a structural outer spore protein. This was confirmed by detection of BC1245 in exosporium extracts from B. cereus by immunoblotting against BC1245 antiserum. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis.

    Science.gov (United States)

    Ricca, Ezio; Baccigalupi, Loredana; Cangiano, Giuseppina; De Felice, Maurilio; Isticato, Rachele

    2014-08-12

    Development of mucosal vaccines strongly relies on an efficient delivery system and, over the years, a variety of approaches based on phages, bacteria or synthetic nanoparticles have been proposed to display and deliver antigens. The spore of Bacillus subtilis displaying heterologous antigens has also been considered as a mucosal vaccine vehicle, and shown able to conjugate some advantages of live microrganisms with some of synthetic nanoparticles. Here we review the use of non-recombinant spores of B. subtilis as a delivery system for mucosal immunizations. The non-recombinant display is based on the adsorption of heterologous molecules on the spore surface without the need of genetic manipulations, thus avoiding all concerns about the use and environmental release of genetically modified microorganisms. In addition, adsorbed molecules are stabilized and protected by the interaction with the spore, suggesting that this system could reduce the rapid degradation of the antigen, often observed with other delivery systems and identified as a major drawback of mucosal vaccines.

  15. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores.

    Science.gov (United States)

    de Boer, Paulo; Caspers, Martien; Sanders, Jan-Willem; Kemperman, Robèr; Wijman, Janneke; Lommerse, Gijs; Roeselers, Guus; Montijn, Roy; Abee, Tjakko; Kort, Remco

    2015-01-01

    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon sequencing for quantification of bacterial spores in a canned food matrix and for monitoring the outgrowth of spoilage microbiota in a ready-to-eat food matrix. The detection limit of bar-coded 16S rRNA amplicon sequencing was determined for the number of bacterial spores in a canned food matrix. Analysis of samples from a canned food matrix spiked with a mixture of equinumerous spores from the thermophiles, Geobacillus stearothermophilus and Geobacillus thermoglucosidans, and the mesophiles, Bacillus sporothermodurans, Bacillus cereus, and Bacillus subtilis, led to the detection of these spores with an average limit of 2 × 10(2) spores ml(-1). The data were normalized by setting the number of sequences resulting from DNA of an inactivated bacterial species, present in the matrix at the same concentration in all samples, to a fixed value for quantitative sample-to-sample comparisons. The 16S rRNA amplicon sequencing method was also employed to monitor population dynamics in a ready-to-eat rice meal, incubated over a period of 12 days at 7 °C. The most predominant outgrowth was observed by the genera Leuconostoc, Bacillus, and Paenibacillus. Analysis of meals pre-treated with weak acids showed inhibition of outgrowth of these three genera. The specificity of the amplicon synthesis was improved by the design of oligonucleotides that minimize the amplification of 16S rRNA genes from chloroplasts originating from plant-based material present in the food. This study shows that the composition of complex spoilage populations, including bacterial spores, can be monitored in complex food matrices by bar-coded amplicon sequencing in a quantitative manner. In order to allow sample

  16. Fifth international fungus spore conference. [Abstracts]: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  17. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    Science.gov (United States)

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

  18. Ecology of fungi in the denitrification zones of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S.

    The microbial process, denitrification was considered to be an inherent character of a few specialized groups of bacteria. But recently, the involvement of micro-eukaryotes such as fungi and foraminiferans are reported (Takaya et al., 2002; Risgaard...

  19. [Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants].

    Science.gov (United States)

    Ma, Lei-Meng; Wang, Peng-Teng; Wang, Shu-Guang

    2014-01-01

    In order to provide information for elucidating effect of flooding on the formation and function of AM in wetland plants, three AM fungi (Glomus intraradices, Glomus versiforme, Glomus etunicatum) were used to investigate the effects of flooding time length on their colonization in cattail (Typha orientalis) and rice (Oryza sativa L. ). The results showed that the mycorrhizal colonization rate (MCR) presented downtrend with increasing flooding time length. In cattail, MCR of the fungus F3 was higher than those of fungi F1 and F2, but no significant difference in MCR was found between fungi F1 and F2. In rice, the MCRs of fungi F2 and F3 were higher than that of E1. In both plants, the proportional frequency of hyphae was the highest while the proportional frequency of arbuscules and vesicles was very low in all treatments, indicating that hyphal colonization was the main route for AM formation. The proportional frequency of hyphae in cattail increased with the flooding time length, but no significant trend was observed in rice plant. The proportional frequency of arhuscules decreased with the increase of flooding time, and was the highest in the treatment without flooding (treatment IV). The number of spores produced by AM fungi increased with increasing flooding time, and reached the highest in the treatment of long time flooding (treatment I). In the same treatment, the fungus F3 produced more spores than fungi F1 and F2. Changes in wet weight of the two plants showed that AM could increase cattail growth under flooding, hut little effect on rice growth was found. It is concluded that flooding time length significantly affected the mycorrhizal colonization rate and the proportional frequency of colonization. AM could enhance the growth of wetland plant, but this depends on the mycorrhizal dependence of host plant on AM fungi. Therefore, flooding time length should be considered in the inoculation of wetland plants with AM fungi.

  20. Geraniol biotransformation-pathway in spores of Penicillium digitatum

    NARCIS (Netherlands)

    Wolken, W.A.M.; Werf, M.J. van der

    2001-01-01

    Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel

  1. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  2. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  3. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  4. Detection and identification of xerophilic fungi in Belgian chocolate confectionery factories.

    Science.gov (United States)

    De Clercq, Nikki; Van Coillie, Els; Van Pamel, Els; De Meulenaer, Bruno; Devlieghere, Frank; Vlaemynck, Geertrui

    2015-04-01

    Chocolate confectionery fillings are generally regarded as microbiologically stable. The stability of these fillings is largely due to the general practice of adding either alcohol or preservatives. Consumer demands are now stimulating producers to move away from adding alcohol or other preservatives to their confectionery fillings and instead to search for innovative formulations. Such changes in composition can influence the shelf life of the product and may lead to spoilage by xerophilic fungi. The aim of this study was to test whether the production environment of Belgian chocolate confectionery factories and common ingredients of chocolate confectioneries could be potential sources of contamination with xerophilic fungal species. In the factory environment, the general and strictly xerophilic fungal spore load was determined using an RCS Air Sampler device in combination with DG18 and MY50G medium, respectively. Four basic ingredients of chocolate confectionery fillings were also examined for fungal spore levels using a direct plating technique. Detected fungi were identified to species level by a combination of morphological characterization and sequence analysis. Results indicated a general fungal spore load in the range of 50-250 colony forming units per cubic meter of air (CFU/m(3) air) and a more strict xerophilic spore load below 50 CFU/m(3) air. These results indicate rather low levels of fungal spores present in the factory environment. The most prevalent fungi in the factory environment were identified as Penicillium spp., particularly Penicillium brevicompactum. Examination of the basic ingredients of confectionery fillings revealed nuts to be the most likely potential source of direct contamination. In nuts, the most prevalent fungal species identified were Eurotium, particularly Eurotium repens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pollen and spore monitoring in the world.

    Science.gov (United States)

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the monitoring of biological particles up to the current level employed for non-biological components.

  6. On some white-spored Geoglossaceae

    NARCIS (Netherlands)

    Maas Geesteranus, R.A.

    1964-01-01

    Some genera of Geoglossaceae, characterized by colourless spores and positive iodine reaction of the ascus pore, are compared with respect to the structure of the stipe. Ochroglossum is reduced to the synonymy of Microglossum. Mitrula is regarded as a monotypic genus. The generic name Heyderia is

  7. Paleozoic in situ spores and pollen. Lycopsida

    Czech Academy of Sciences Publication Activity Database

    Bek, Jiří

    2017-01-01

    Roč. 296, 1/6 (2017), s. 1-111 ISSN 0375-0299 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : in situ spores * reproductive organs * Lycopsida * Paleozoic Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.333, year: 2016

  8. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  10. Second messenger - Sensing riboswitches in bacteria.

    Science.gov (United States)

    Ramesh, Arati

    2015-12-01

    Signal sensing in bacteria has traditionally been attributed to protein-based factors. It is however becoming increasingly clear that bacteria also exploit RNAs to serve this role. This review discusses how key developmental processes in bacteria, such as community formation, choice of a sessile versus motile lifestyle, or vegetative growth versus dormant spore formation may be governed by signal sensing RNAs. The signaling molecules that affect these processes, the RNAs that sense these molecules and the underlying molecular basis for specific signal-response are discussed here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...display a currently valid OMB control number. 1. REPORT DATE 02 OCT 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inhibiting...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a

  12. Fungi transporting by sowing seed material of herbs

    Directory of Open Access Journals (Sweden)

    Zofia Machowicz-Stefaniak

    2013-12-01

    Full Text Available Sowing seed material of33 species of herbs obtained in 1997-1999 from the Herb Seed-Testing Station, in Bydgoszcz were examined. Fungi were isolated using the method of artificial cultures on the mineral medium. Sixty seeds superficially disinfected and sixty undisinfected seeds were taken from each sample. Obtained single-spore cultures of the fungi grown on malt-agar or on standard medium were identified up to the species level. Fungi species belonging to the genus Fusarium were identified on the PDA and SNA, Aspergillus spp. and Penicillium spp. on the malt-agar and Czapek-Dox and Phoma spp. on the malt-agar, oat-meal-agar and cherry-agar. Mycological analyses showed that the superficial disinfection of seeds reduced by three times the number of isolates obtained. The fungi most frequently isolated from both the inside and the outside seed tissues were Botrytis cinerea, Phoma exigua var. exigua and species of Alternaria, Epicoccum, Fusarium, Penicillium, Phyllosticta, Rhizopus, Trichothecium.

  13. Rare species of fungi parasiting on algae. II. Parasites of Desmidiaceae

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available Investigations carried out on the Desmidiaceae revealed the following species of fungi parasitizing on desmids: Myzocytium megastomum, Lagenidium closterii, Ancylistes closterii and Rhizophydium globosum. Legenidium closterii is new in Poland. It is the first information of this species as a parasite on the algae from the genus Tetmemorus. Figures of sporangia of Rhizophydium globosum on Euastrum ansatum, Cosmarium botrytis, C. pseudamoenum and a resting spore on Staurastrum punctulatum are the first graphic documentation of this species.

  14. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    OpenAIRE

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomas...

  15. Immunity against fungi

    Science.gov (United States)

    Lionakis, Michail S.; Iliev, Iliyan D.; Hohl, Tobias M.

    2017-01-01

    Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi. PMID:28570272

  16. Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP

    International Nuclear Information System (INIS)

    Pallon, J.; Wallander, H.; Hammer, E.; Arteaga Marrero, N.; Auzelyte, V.; Elfman, M.; Kristiansson, P.; Nilsson, C.; Olsson, P.A.; Wegden, M.

    2007-01-01

    The nuclear microprobe (NMP) technique using PIXE for elemental analysis and STIM on/off axis for parallel mass density normalization has proven successful to investigate possible interactions between minerals and ectomycorrhizal (EM) mycelia that form symbiotic associations with forest trees. The ability for the EM to make elements biologically available from minerals and soil were compared in field studies and in laboratory experiments, and molecular analysis (PCR-RFLP) was used to identify ectomycorrhizal species from the field samplings. EM rhizomorphs associated with apatite in laboratory systems and in mesh bags incubated in forest ecosystems contained larger amounts of Ca than similar rhizomorphs connected to acid-washed sand. EM mycelium produced in mesh bags had a capacity to mobilize P from apatite-amended sand and a high concentration of K in some rhizomorphs suggests that these fungi are good accumulators of K and may have a significant role in transporting K to trees. Spores formed by arbuscular mycorrhizal (AM) fungi in laboratory cultures were compared with spores formed in saline soils in Tunisia in Northern Africa. We found lower concentrations of P and higher concentrations of Cl in the spores collected from the field than in the spores collected from laboratory cultures. For the case of laboratory cultures, the distribution of e.g. P and K was found to be clearly correlated

  17. Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP

    Science.gov (United States)

    Pallon, J.; Wallander, H.; Hammer, E.; Arteaga Marrero, N.; Auzelyte, V.; Elfman, M.; Kristiansson, P.; Nilsson, C.; Olsson, P. A.; Wegdén, M.

    2007-07-01

    The nuclear microprobe (NMP) technique using PIXE for elemental analysis and STIM on/off axis for parallel mass density normalization has proven successful to investigate possible interactions between minerals and ectomycorrhizal (EM) mycelia that form symbiotic associations with forest trees. The ability for the EM to make elements biologically available from minerals and soil were compared in field studies and in laboratory experiments, and molecular analysis (PCR-RFLP) was used to identify ectomycorrhizal species from the field samplings. EM rhizomorphs associated with apatite in laboratory systems and in mesh bags incubated in forest ecosystems contained larger amounts of Ca than similar rhizomorphs connected to acid-washed sand. EM mycelium produced in mesh bags had a capacity to mobilize P from apatite-amended sand and a high concentration of K in some rhizomorphs suggests that these fungi are good accumulators of K and may have a significant role in transporting K to trees. Spores formed by arbuscular mycorrhizal (AM) fungi in laboratory cultures were compared with spores formed in saline soils in Tunisia in Northern Africa. We found lower concentrations of P and higher concentrations of Cl in the spores collected from the field than in the spores collected from laboratory cultures. For the case of laboratory cultures, the distribution of e.g. P and K was found to be clearly correlated.

  18. Exploration of unique relation among industrial fungi by statistical analysis

    Directory of Open Access Journals (Sweden)

    Asma Siddique

    2012-12-01

    Full Text Available This work was carried out to explore the relation among thermophilic cellulolytic fungi, which are of industrialimportance. There was no report found about the genetic relationship of fungi, which are used to produce industrial enzymes.So the aim of the study was to observe the similarity among different cellulolytic fungi on genetic level, which will providethe background to understand the correlation among cellulase producing systems of these fungi. Eleven (11 fungi werestudied for genetic diversity using the Random Amplified Polymorphic DNA (RAPD a PCR based molecular marker system.In this regard twenty universal decamers used for RAPD resulted in 1527 numbers of bands observed during comparison ofall wild strains. Maximum polymorphism was generated with GLA-07. Average numbers of bands per 20 primers were 65-72.An Interesting feature of the study was the similarity of Humicola insolens with Torula thermophile, more than with theother members of the Humicola family. This genetic pattern affects the physical structure of the fungi. Spores of Torulathermophila are more related to Humicola insolens than to its own family. Similarity between the two was found to be 57.8%,whereas between Humicola lanuginosa (Thermomysis lanuginosus and Humicola grisea it was 57.3%. Apart from this,similarity between Talaromyces dupontii and Rhizomucor pusillus was 51.5%. Least similarity was found in Rhizomucorpusillus and Humicola grisea, which was 18.7% and Chaetomium thermophile and Sporotrichum thermophile, which was18.3%. Genetic similarity matrix was constructed on the basis of Nei and Li’s index.

  19. Chapter 4: Genetic Identification of Fungi Involved in Wood Decay

    Science.gov (United States)

    Grant Kirker

    2014-01-01

    Wood decay is a complex process that involves contributions from molds, bacteria, decay fungi, and often insects. The first step in the accurate diagnosis of decay is identification of the causal agents, but wood decay in the strictest sense (white and brown rot) is caused by cryptic fungal species that are very difficult to identify using traditional methods. Genetic...

  20. Viability of Clostridium sporogenes spores after CaO hygienization of meat waste

    Directory of Open Access Journals (Sweden)

    Justyna Bauza-Kaszewska

    2014-09-01

    Full Text Available The occurrence of the pathogenic species [i]C. perfringens[/i] and [i]C. botulinum spores[/i] in animal by-products poses a potential epidemiological hazard. Strong entero- and neurotoxins produced by these bacteria adversely affect human health. To inactivate pathogens present in animal by-products, waste must be subjected to various methods of sanitization. The aim of the presented study was to estimate the effect of different doses of CaO on the viability of spores [i] Clostridium sporogenes[/i] in meat wastes category 3. During the research, two doses of burnt lime were added to the poultry mince meat and meat mixed with swine blood contaminated with [i]Clostridium sporogenes[/i] spore suspension. Half of the samples collected for microbiological analyses were buffered to achieve the pH level ~7, the other were examined without pH neutralization. To estimate the spore number, 10-fold dilution series in peptone water was prepared and heat-treated at 80 °C for 10 min. After cooling-down, one milliliter of each dilution was pour-plated onto DRCM medium solidified with agar. Statistical analysis were performed using the Statistica software. Application of 70% CaO caused complete inactivation of [i]Clostridium spores[/i] in meat wastes after 48 hours. The highest temperature achieved during the experiment was 67 °C. Rapid alkalization of the biomass resulted in increasing pH to values exceeding 12. The effect of liming was not dependent on the meat wastes composition nor CaO dose. The experiment proved the efficiency of liming as a method of animal by-products sanitization. Application of the obtained results may help reduce the epidemiological risk and ensure safety to people handling meat wastes at each stage of their processing and utilization.

  1. [Bacterial spore--a new vaccine vehicle--a review].

    Science.gov (United States)

    Wang, Yanchun; Zhang, Zhaoshan

    2008-03-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties. Spores of the genus Bacillus have been used for a long time as probiotics for oral bacteriotherapy both in humans and animals. Recently, genetically modified B. subtilis spores and B. anthracis spores have been used as indestructible delivery vehicles for vaccine antigens. They were used as vaccine vehicles or spore vaccine for oral immunization against tetanus and anthrax, and the results were very exciting. Unlike many second generation vaccine systems currently under development, bacterial spores offer heat stability and the flexibility for genetic manipulation. At the same time, they can elicit mucosal immune response by oral and nasal administration. This review focuses on the use of recombinant spores as vaccine delivery vehicles.

  2. Fungi that Infect Humans.

    Science.gov (United States)

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  3. Fun with Fungi.

    Science.gov (United States)

    McLure, John W.

    1993-01-01

    Describes hands-on activities with fungi that may provoke the curiosity of early adolescents and increase their enjoyment and understanding of a vast, important portion of botany. Some of the activities may be conducted during the winter months when most fieldwork ceases. (PR)

  4. Senescence in Fungi

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Senescence in Fungi. Anthony Deepak D'souza Ramesh Maheshwari. General Article Volume 7 Issue 3 March 2002 pp 51-55. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/03/0051-0055 ...

  5. Senescence in Fungi

    Indian Academy of Sciences (India)

    Fungi are non-photosynthetic, filamentous organisms (Box 1). The filaments or the hyphae are branched and divided into segments by transverse walls or septa. The growth of the hypha is restricted to its tip, which grows linearly by the apical addi- tion of new cell wall material. The hyphal tip perpetuates itself.

  6. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    Science.gov (United States)

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  7. Bats Increase the Number of Cultivable Airborne Fungi in the "Nietoperek" Bat Reserve in Western Poland.

    Science.gov (United States)

    Kokurewicz, Tomasz; Ogórek, Rafał; Pusz, Wojciech; Matkowski, Krzysztof

    2016-07-01

    The "Nietoperek" bat reserve located in Western Poland is one of the largest bat hibernation sites in the European Union with nearly 38,000 bats from 12 species. Nietoperek is part of a built underground fortification system from WWII. The aims of the study were (1) to determine the fungal species composition and changes during hibernation season in relation to bat number and microclimatic conditions and (2) evaluate the potential threat of fungi for bat assemblages and humans visiting the complex. Airborne fungi were collected in the beginning, middle and end of hibernation period (9 November 2013 and 17 January and 15 March 2014) in 12 study sites, one outside and 11 inside the complex. Ambient temperature (T a) and relative humidity (RH) were measured by the use of data loggers, and species composition of bats was recorded from the study sites. The collision method (Air Ideal 3P) sampler was used to detect 34 species of airborne fungi including Pseudogymnoascus destructans (Pd). The density of airborne fungi isolated from the outdoor air samples varied from 102 to 242 CFU/1 m(3) of air and from 12 to 1198 CFU in the underground air samples. There was a positive relationship between number of bats and the concentration of fungi. The concentration of airborne fungi increased with the increase of bats number. Analysis of other possible ways of spore transport to the underground indicated that the number of bats was the primary factor determining the number of fungal spores in that hibernation site. Microclimatic conditions where Pd was found (median 8.7 °C, min-max 6.1-9.9 °C and 100 %, min-max 77.5-100.0 %) were preferred by hibernating Myotis myotis and Myotis daubentonii; therefore, these species are most probably especially prone to infection by this fungi species. The spores of fungi found in the underground can be pathogenic for humans and animals, especially for immunocompromised persons, even though their concentrations did not exceed limits and

  8. Philatelic Mycology: Families of Fungi

    NARCIS (Netherlands)

    Marasas, W.F.O.; Marasas, H.M.; Wingfield, M.J.; Crous, P.W.

    2014-01-01

    Philately, the study of postage stamps, and mycology, the study of fungi, are seldom connected by those that practice these very different activities. When associated, philatelic mycology would be considered as the study of fungi on stamps. The Fungi touch every aspect of our daily lives, most

  9. Mechanisms of humic substances degradation by fungi

    Science.gov (United States)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  10. Effect of Physicochemical Characteristics of Soil on Population Density of Arbuscular Mycorrhizal Fungi in the Roots of Grapevine in Urmia

    Directory of Open Access Journals (Sweden)

    A. Mahdavi Bileh Savar

    2015-01-01

    Full Text Available Relationship of is one of the most useful interactions in terrestrial ecosystems that its positive effects on growth, physiology and ecology of different plants has been documented. This study investigated the relationship between important physicochemical characteristics of soils such as pH, electrical conductivity (EC, soil texture, organic carbon percentage, soil potassium percentage and the amount of accessible phosphorus with population of mycorrhizal fungi. After dividing the study region into four areas, 43 samples of soil were collected. The results of statistical analysis on physico-chemical characteristics of soil and their relation with population density of spores of arbuscular mycorrhizal fungi showed that there was a negative correlation between electrical conductivity (EC, pH, clay percent, and percent of soil available phosphorus, potassium percent, and percentage of organic carbon with the mean number of fungi. There were positive correlations between silt and sand percentages and mean number of spores present in the soil. Based on the coefficien of determination and based on study conditions, the best model for the rhizosphere was found tobe the one in wich available phosphorus percent of soil was the independent variable, and mean population of fungi as the dependant variable. The correlation between available phosphorus percent in soil samples with average fungi population density negative (P<0/05, but there was not a meaningful correlation between other traits and population density of fungi

  11. Bacillus cereus spore formation, structure and germination

    NARCIS (Netherlands)

    Vries, de Y.P.

    2006-01-01

    Bacterial spores arespecializeddifferentiated celltypes for

  12. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gong

    Full Text Available Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR. However, it is not entirely clear if "endogenous" bacteria (e.g., spores in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the "exogenous" bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain. The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.

  13. Spore membrane(s) as the site of damage within heated Clostridium perfringens spores.

    Science.gov (United States)

    Flowers, R S; Adams, D M

    1976-02-01

    Clostridium perfringens spores were injured by ultrahigh-temperature treatment at 105 C for 5 min. Injury was manifested as an increased sensitivity to polymyxin and neomycin. Since many of the survivors could not germinate normally the ultrahigh-temperature-treated spores were sensitized to and germinated by lysozyme. Polymyxin reportedly acts upon the cell membrane. Neomycin may inhibit protein synthesis and has surface-active properties. Injured spores were increasingly sensitive to known surface-active agents, sodium lauryl sulfate, sodium deoxycholate, and Roccal, a quaternary ammonium compound. Injured spores sensitive to polymyxin and neomycin also were osmotically fragile and died during outgrowth in a liquid medium unless the medium was supplemented with 20% sucrose, 10% dextran, or 10% polyvinylpyrrolidone. The results suggested that a spore structure destined to become cell membrane or cell wall was the site of injury. Repair of injury during outgrowth in the presence of protein, deoxyribonucleic acid, ribonucleic acid and cell wall synthesis inhibitors was consistent with this hypothesis.

  14. Bryophyte spore germinability is inhibited by peatland substrates

    Science.gov (United States)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  15. Fungal inhibitory lactic acid bacteria

    OpenAIRE

    Ström, Katrin

    2005-01-01

    Lactic acid bacteria (LAB) are microorganisms that have been used for centuries to prepare and improve storage of food and for ensiling of different crops for animal feed. This thesis explores the possibility of using LAB to inhibit growth of spoilage fungi in food and feed products. LAB isolates, collected from plant material or dairy products, were screened for antifungal activity in a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity wa...

  16. Endophytic Fungi: A Reservoir of Antibacterials

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Deshmukh

    2015-01-01

    Full Text Available Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the undeveloped countries of the world. The most important microorganisms that have seen a geometric rise in are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relavent to the problem. New, very specific and effective antibiotics are needed but also at the affordable price!!!. Herculean task for researcher all over the world. In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda that has been effective as ‘handed down data’ in family generations. May need a second, third and more in-depth investigations?

  17. Endophytic fungi: a reservoir of antibacterials

    Science.gov (United States)

    Deshmukh, Sunil K.; Verekar, Shilpa A.; Bhave, Sarita V.

    2015-01-01

    Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as “handed down data” in family generations. May need a second, third and more “in-depth investigations?” PMID:25620957

  18. No evidence for a Ganoderma spore dispersal mutualism in an obligate spore-feeding beetle Zearagytodes maculifer.

    Science.gov (United States)

    Kadowaki, Kohmei; Leschen, Richard A B; Beggs, Jacqueline R

    2011-08-01

    The role of spore dispersal mutualism remains equivocal in many fungus-insect assemblages. We tested experimentally whether an obligate spore-feeding beetle Zearagytodes maculifer has a mutualistic relationship with its host bracket fungus Ganoderma cf. applanatum via spore dispersal. We asked three specific questions: (1) whether or not Ganoderma spore germination rate is increased via beetle digestive activity and (2) is dependent on temperature and sporocarp identity. Spore germination rates were examined in 2×3×2 factorial experiments (spores consumed by beetles or not×temperature 20, 25, and 30°C×two independent pairs of sporocarp-beetle populations) replicated five times in an array of 60 experimental cultures. Analysis showed that consumption by beetles significantly reduced germination rate of Ganoderma spores. The effect of temperature was modulated by the effect of individual sporocarp, and was overridden by beetle feeding. Microscopic analysis revealed that spores from beetle faecal pellets exhibited extensive damage to their thin outer walls (pellicles) and thick inner walls, as well as significant loss of cytoplasm, while control spores were intact. The overall evidence argued against our spore dispersal mutualism hypothesis, suggesting that Z. maculifer can potentially exert a negative, if vanishingly small, fitness effect on its host fungus G. cf. applanatum. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Endophytic fungi in elms

    OpenAIRE

    Blumenstein, Kathrin

    2015-01-01

    Integrated pest management calls for new biocontrol solutions in management of forest diseases. Endophytic fungi that are commonly found in tree tissue may have potential in biocontrol. However, the links between endophyte status and disease tolerance are still unclear, and we know little about the mechanisms by which the endophytes can influence tree pathogens. The first goal of the thesis was to compare the endophyte status in elm (Ulmus spp.) trees with low vs. high susceptibility t...

  20. The Role of Fungi in the Etiology of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julián Benito-León

    2017-10-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV, though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF, first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.

  1. Nuclear movement in fungi.

    Science.gov (United States)

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  2. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  3. Large-scale diversity patterns in spore communities of Arbuscular mycorrhizal fungi [Chapter 2

    Science.gov (United States)

    Javier Alvarez-Sanchez; Nancy C. Johnson; Anita Antoninka; V. Bala Chaudhary; Matthew K. Lau; Suzanne M. Owen; Patricia Gauadarrama; Silvia. Castillo

    2010-01-01

    Surprising little is known about the factors controlling Arbuscular Mycorrhizal (AM) fungal diversity and distribution patterns. A better understanding of these factors is necessary before mycorrhizas can be effectively managed for their benefits in ecosystem restoration and agriculture. The goal of this chapter is to examine the relationships between AM fungal...

  4. The scope for nuclear selection within Termitomyces fungi associated with fungus-growing termites is limited.

    Science.gov (United States)

    Nobre, Tania; Koopmanschap, Bertha; Baars, Johan J P; Sonnenberg, Anton S M; Aanen, Duur K

    2014-06-05

    We investigate the scope for selection at the level of nuclei within fungal individuals (mycelia) of the mutualistic Termitomyces cultivated by fungus-growing termites. Whereas in most basidiomycete fungi the number and kind of nuclei is strictly regulated to be two per cell, in Termitomyces mycelia the number of nuclei per cell is highly variable. We hypothesised that natural selection on these fungi not only occurs between mycelia, but also at the level of nuclei within the mycelium. We test this hypothesis using in vitro tests with five nuclear haplotypes of a Termitomyces species. First, we studied the transition from a mixture of five homokaryons (mycelia with identical nuclei) each with a different nuclear haplotype to heterokaryons (mycelia with genetically different nuclei). In vitro cultivation of this mixture for multiple asexual transfers led to the formation of multiple heterokaryotic mycelia, and a reduction of mycelial diversity over time. All heterokaryotic mycelia contained exactly two types of nucleus. The success of a heterokaryon during in vitro cultivation was mainly determined by spore production and to a lesser extent by mycelial growth rate. Second, heterokaryons invariably produced more spores than homokaryons implying that homokaryons will be outcompeted. Third, no homokaryotic 'escapes' from a heterokaryon via the formation of homokaryotic spores were found, despite extensive spore genotyping. Fourth, in contrast to most studied basidiomycete fungi, in Termitomyces sp. no nuclear migration occurs during mating, limiting the scope for nuclear competition within the mycelium. Our experiments demonstrate that in this species of Termitomyces the scope for selection at the level of the nucleus within an established mycelium is limited. Although 'mate choice' of a particular nuclear haplotype is possible during mating, we infer that selection primarily occurs between mycelia with two types of nucleus (heterokaryons).

  5. Use of an electronic nose for the early detection and differentiation between spoilage fungi.

    Science.gov (United States)

    Keshri, G; Magan, N; Voysey, P

    1998-11-01

    Six spoilage fungi (four Eurotium species, a Penicillium sp. and Wallemia sebi) were grown as spore lawn surface cultures at 0.95 water activity and 25 degrees C. Prior to and during visible growth (24 and 48, and 72 h), single cultures were enclosed in polyethylene bags, the head space was sampled with an electronic nose unit, consisting of 14 polymer sensors, and the data analysed. There was good replication between volatile patterns of the same species and using principal component, discriminant function and cluster analyses it was possible to differentiate between the agar blanks, three Eurotium spp., the Penicillium sp. and W. sebi during microscopic growth for the first time. This suggests that there is potential for the early detection of the activity of spoilage fungi in general, as well as possible differentiation between related xerophilic spoilage fungi, by detection of the patterns of volatile odours produced using an electronic nose system.

  6. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  7. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  8. Chitinolytic activity in viable spores of encephalitozoon species

    OpenAIRE

    Schottelius,J; Hünger,F; Schüler,Th; Gonçalves da Costa,SC

    2000-01-01

    By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80°C for 10 min or at 55°C for 20 min the spores were loosing the chitinolytic ac...

  9. Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland-key factors in drawing up trial guidelines for aeromycological monitoring.

    Science.gov (United States)

    Pusz, Wojciech; Weber, Ryszard; Dancewicz, Andrzej; Kita, Włodzimierz

    2017-09-27

    The aim of the study was to identify fungal spores, in particular plant pathogenic fungi, occurring in the air in selected mountain ranges. The results revealed not only the array of fungal species migrating with air currents from the Czech Republic and Slovakia but also how the season of the year affects the distribution of spores. Such studies may lay a foundation for future aeromycological monitoring, in accordance with the requirements for integrated plant protection. Aeromycological research was carried out between 2013 and 2016 at 3-month intervals in mountainous areas along the southern borders of Poland: the Bieszczady, the Pieniny, the Giant Mountains (Karkonosze) and the Babia Góra Massif. The research relied on impact method employing Air Ideal 3P sampler, which, by drawing in atmospheric air, also collects fungal spores. Regardless of altitudinal zonation, the changing weather conditions appeared to be the main reason for the variations in the number of the fungal spores under study in those years.

  10. Outdoor fungi and child asthma health service attendances.

    Science.gov (United States)

    Tham, Rachel; Dharmage, Shyamali C; Taylor, Philip E; Katelaris, Constance H; Vicendese, Don; Abramson, Michael J; Erbas, Bircan

    2014-08-01

    Asthma is a significant global public health issue. Severe asthma exacerbations can be triggered by environmental factors and require medical care from health services. Although it is known that fungal exposure may lead to allergic sensitization, little is understood about its impact on asthma exacerbations. This review aims to examine whether outdoor fungi play a significant role in child asthma exacerbations. Systematic search of seven electronic databases and hand searching for peer-reviewed studies published in English, up to 31 August 2013. Inclusion criteria were study population aged asthma, attended a health service; outdoor fungi exposur