WorldWideScience

Sample records for spontaneous fission rate

  1. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the ...

  2. Using neutron angular anisotropy information to dynamically determine the ratio of the (α,n) rate to spontaneous fission rate for coincidence counting applications

    Science.gov (United States)

    Holewa, L.; Charlton, W.; Miller, E.; Pozzi, S.

    2013-02-01

    Typically, when neutron coincidence or multiplicity counting is performed, there are three unknowns: the sample mass, the leakage self-multiplication, and the ratio of the (α,n) rate of the source to the spontaneous fission rate. For a given counting time, the strength of the source or the detector efficiency must be sufficiently high for the singles, doubles, and triples count rates to represent statistically meaningful quantities. Often, the strength of the source and the allotted counting time are such that only the singles and doubles count rates are statistically meaningful. In this latter case, the ratio of (α,n) to the spontaneous fission must be estimated through some other means. With a simulated (α,n) rate, the two equations related to the singles and doubles count rates can be used to determine the sample mass. In order to determine the ratio of (α,n) to spontaneous fission rate of the source, the isotopic composition of the sample as well as the light element impurities inside the source must be known. Ideally, there would be a way to dynamically determine the (α,n) rate of the source from count rate information. In this paper, it is shown that the (α,n) rate of the source can be determined by using information about the ratio of the number of coincident neutrons at 180° to the number at 90°. By using this information, the three aforementioned unknowns can be dynamically determined through the sole use of singles and doubles count rates.

  3. Spontaneous fission of the heaviest elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  4. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    collaborators [1,2]. The importance of deformed valleys in the potential energy surfaces. (PES) is that they provide the most favoured fission channels for the decay of superheavy nuclei. For the dynamics study, one has to introduce the influence of mass tensor. We use the results from pairing calculations for the occupation ...

  5. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    2015-08-02

    Aug 2, 2015 ... The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped ...

  6. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    2015-08-02

    Aug 2, 2015 ... ... nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential.

  7. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  8. Neutron angular distribution in plutonium-240 spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2016-09-11

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.

  9. Spontaneous fission of neutron-rich superheavy nuclei

    International Nuclear Information System (INIS)

    Gherghiescu, R.A.

    1997-01-01

    Neutron-rich isotopes of the superheavy elements 112, 114, and 116 have been studied for neutron numbers 184, 186, and 188. The spontaneous fission life-time calculations have been performed within the WKB method. Large values have been obtained due to the proton-shell closure 114. The maximum of the fission lifetime occurs for the double-magic superheavy nucleus (114,184). (author)

  10. Neutron angular distribution in plutonium-240 spontaneous fission

    Science.gov (United States)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  11. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  12. Study of spontaneous fission lifetimes using nuclear density functional theory

    Directory of Open Access Journals (Sweden)

    Sadhukhan Jhilam

    2013-12-01

    Full Text Available The spontaneous fission lifetimes have been studied microscopically by minimizing the collective action integral in a two-dimensional collective space of quadrupole moments (Q20, Q22 representing elongation and triaxiality. The microscopic collective potential and inertia tensor are obtained by solving the self-consistent Hartree-Fock-Bogoliubov (HFB equations with the Skyrme energy density functional and mixed pairing interaction. The mass tensor is computed within the perturbative Adiabatic Time-Dependent HFB (ATDHFB approach in the cranking approximation. The dynamic fission trajectories have been obtained by minimizing the collective action using two different numerical techniques. The values of spontaneous fission lifetimes obtained in this way are compared with the static results.

  13. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  14. Measurement of the fission yields of selected prompt and decay fission product gamma-rays of spontaneously fissioning 252Cf and 244Cm

    International Nuclear Information System (INIS)

    Reber, E.L.; Gehrke, R.J.; Aryaeinejad, R.; Hartwell, J.K.

    2005-01-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected γ -rays emitted by the spontaneously fissioning isotopes 252 Cf and 244 Cm. The measured γ-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of England and Rider, those γ-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of England and Rider. For those γ-rays whose production is dominated by direct (independent) yield, the ratio of γ-rays per spontaneous fission is reported. The γ-ray yield can be compared to the independent yield values of England and Rider when 100% of the direct feeding passes through the γ-ray. In those cases where both cumulative and independent yields contribute to the observed γ-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed. (author)

  15. Evaluation of mass distribution data from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Liu Tingjin

    2003-01-01

    The mass distribution data of 252 Cf spontaneous fission were evaluated based on 7 sets of available experimental data. The measured data were corrected for the standards and γ intensity used by using the new evaluated ones. The errors were made necessary adjusting. The evaluated experimental data were fitted with spline function without any restriction and with symmetric restriction. These two sets of fit data were recommended as reference data of the mass distribution of 252 Cf spontaneous fission. The errors of the recommended data were considerably reduced comparing with the measured ones. The light and heavy peaks are not completely symmetric. Also there are fine structures on the right side of the light peak at A=109-111 and left side of the heavy peak at A=137-139. These should be paid attention and studied further. (author)

  16. Microscopic description of the competition between spontaneous fission and α -decay in neutron-rich Ra, U and Pu nuclei

    International Nuclear Information System (INIS)

    Rodríguez-Guzmán, R; Robledo, L M

    2017-01-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in Ra, U and Pu nuclei with neutron number 144 ≤ N ≤ 176. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the spontaneous fission half-lives. We also pay attention to isomeric states along the considered fission paths. Alpha decay half-lives have also been computed using a parametrization of the Viola-Seaborg formula. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation a robust trend is obtained indicating, that with increasing neutron number fission dominates over α -decay. Our results also suggest that a dynamical treatment of pairing correlations is required within the microscopic studies of the fission process in heavy nuclear systems. (paper)

  17. High energy γ rays from 252Cf spontaneous fission

    Science.gov (United States)

    Hofman, D. J.; Back, B. B.; Montoya, C. P.; Schadmand, S.; Varma, R.; Paul, P.

    1993-03-01

    The spontaneous fission decay of 252Cf has been analyzed in a statistical model with emphasis on describing recently reported high energy γ-ray spectra. An enhanced γ emission in the range from 3 to 10 MeV which is observed for nearly symmetric mass splits is readily understood as a result of the different fragment excitation energies. The model includes a viscous motion to the scission point with the possibility of prescission γ emission. It was found that even with saddle-to-scission times of τscneutron multiplicities, prescission γ rays are overwhelmed by fragment γ rays. Thus, the recently reported strong angular anisotropy of γ rays in the range Eγ=8-12 MeV is unexplained within the present understanding of the fission process.

  18. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    Zamyatnin, Yu.S.; Kroshkin, N.I.; Korostylev, V.A.; Nefedov, V.N.; Ryazanov, D.K.; Starostov, B.I.; Semenov, A.F.

    1976-01-01

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252 Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252 Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252 Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  19. Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126

    Science.gov (United States)

    Manjunatha, H. C.; Sowmya, N.

    2018-01-01

    Super heavy nuclei may decay through the different decay modes such as spontaneous fission, ternary fission and cluster decay. There is a need to study the different decay modes such as spontaneous fission, ternary fission and cluster decay of super heavy nuclei. We studied the spontaneous fission, ternary fission and cluster decay of predicted isotopes of super heavy nuclei for Z = 126 and compared with that of alpha decay. This enables to study the competition between spontaneous fission, ternary fission, cluster decay and alpha decay in the super heavy nuclei of Z = 126. The comparison of half lives for different decay modes reveals that alpha decay is having smaller half lives than the other studied decay modes. A detailed study of branching ratio of alpha decay with respect to other decay modes also confirms that alpha decay is most dominant decay mode for the super heavy nuclei 318126, 319126, 320126 and 323-326126 and hence these nuclei can be detected through the alpha decay mode only.

  20. Maximum permissible concentration (MPC) values for spontaneously fissioning radionuclides

    International Nuclear Information System (INIS)

    Ford, M.R.; Snyder, W.S.; Dillman, L.T.; Watson, S.B.

    1976-01-01

    The radiation hazards involved in handling certain of the transuranic nuclides that exhibit spontaneous fission as a mode of decay were reaccessed using recent advances in dosimetry and metabolic modeling. Maximum permissible concentration (MPC) values in air and water for occupational exposure (168 hr/week) were calculated for 244 Pu, 246 Cm, 248 Cm, 250 Cf, 252 Cf, 254 Cf, /sup 254m/Es, 255 Es, 254 Fm, and 256 Fm. The half-lives, branching ratios, and principal modes of decay of the parent-daughter members down to a member that makes a negligible contribution to the dose are given, and all daughters that make a significant contribution to the dose to body organs following inhalation or ingestion are included in the calculations. Dose commitments for body organs are also given

  1. Characterization of the LISOL laser ion source using spontaneous fission of 252Cf

    OpenAIRE

    Kudryavtsev, Yuri; Cocolios, Thomas Elias; Gentens, Johnny; Ivanov, Oleg; Huyse, Marc; Pauwels, Dieter; Sawicka, Maria; Sonoda, Tetsu; Van den Bergh, Paul; Van Duppen, Piet

    2008-01-01

    A spontaneous fission Californium-252 source was placed inside a gas cell in order to characterize the LISOL laser ion source. The fission products from 252Cf are thermalized and neutralized in the plasma created by energetic particles. Two-step selective laser ionization is applied to produce purified beams of radioactive isotopes. The survival of fission products in a single charge state has been studied in argon as a buffer gas for different elements.

  2. Characterization of the LISOL laser ion source using spontaneous fission of 252Cf

    Science.gov (United States)

    Kudryavtsev, Yu.; Cocolios, T. E.; Gentens, J.; Ivanov, O.; Huyse, M.; Pauwels, D.; Sawicka, M.; Sonoda, T.; Van den Bergh, P.; Van Duppen, P.

    2008-10-01

    A spontaneous fission Californium-252 source was placed inside a gas cell in order to characterize the LISOL laser ion source. The fission products from 252Cf are thermalized and neutralized in the plasma created by energetic particles. Two-step selective laser ionization is applied to produce purified beams of radioactive isotopes. The survival of fission products in a single charge state has been studied in argon as a buffer gas for different elements.

  3. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass

  4. Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)

    1998-10-01

    Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}

  5. Spontaneous fission half-lives of heavy and superheavy nuclei within a generalized liquid drop model

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiaojun [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhang, Hongfei, E-mail: zhanghongfei@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Royer, G. [Laboratoire Subatech, UMR: IN2P3/CNRS-Université-Ecole des Mines, 4 rue A. Kastler, 44 Nantes (France); Li, Junqing [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2013-05-15

    We systematically calculate the spontaneous fission half-lives for heavy and superheavy nuclei between U and Fl isotopes. The spontaneous fission process is studied within the semi-empirical WKB approximation. The potential barrier is obtained using a generalized liquid drop model, taking into account the nuclear proximity, the mass asymmetry, the phenomenological pairing correction, and the microscopic shell correction. Macroscopic inertial-mass function has been employed for the calculation of the fission half-life. The results reproduce rather well the experimental data. Relatively long half-lives are predicted for many unknown nuclei, sufficient to detect them if synthesized in a laboratory.

  6. The measurement of prompt neutron spectrum in spontaneous fission of {sup 244}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Batenkov, O.I.; Boykov, G.S.; Drapchinsky, L.V.; Majorov, M.Ju.; Trenkin, V.A. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    Under the Program of Measurements of Prompt Fission Neutron Spectra of Minor Actinides for Transmutation Purposes the integral neutron spectrum in spontaneous fission of {sup 244}Cm has been measured by the time-of-flight method in the energy range of 0.1-15 MeV relative to the standard neutron spectrum in {sup 252}Cf spontaneous fission. Essential attention was paid to revealing of possible systematic errors. It is shown, that the {sup 244}Cm spectrum shape may be well described by using Mannhart evaluation with appropriate parameter of Maxwell temperature T{sub M} = 1.37 MeV. (author)

  7. Competition between α-decay and spontaneous fission for superheavy nuclei

    Science.gov (United States)

    Bao, X. J.; Guo, S. Q.; Zhang, H. F.; Xing, Y. Z.; Dong, J. M.; Li, J. Q.

    2015-08-01

    The α-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) and Royer’s analytical formula (2000 J. Phys. G: Nucl. Part. Phys. 26 1149). The good agreement with the experimental data indicates the UFM and the analytical formula are useful tools to investigate these α-decays. A modified formula is proposed for determining the spontaneous fission half-lives based on Swiatecki’s formula, including the microscopic shell correction and isospin effect.The spontaneous fission half-lives for heavy and SHN in regions from Th to Fl are calculated systematically. Experimental data are well reproduced by the modified Swiatecki formula. The competition between α-decay and spontaneous fission is analyzed in detail and the decay modes are predicted for the unknown cases.

  8. Improved calculation of the prompt fission neutron spectrum from the spontaneous fission of /sup 252/Cf: Preliminary results

    International Nuclear Information System (INIS)

    Madland, D.G.

    1988-01-01

    An improved calculation is presented for the prompt fission neutron spectrum N(E) from the spontaneous fission of /sup 252/Cf. In this calculation the fission-spectrum model of Madland and Nix is used, but with several improvements leading to a physically more accurate representation of the spectrum. Specifically, the contributions to N(E) from the entire fission-fragment mass and charge distributions will be calculated instead of calculating on the basis of a seven- point approximation to the peaks of these distributions as has been done in the past. Therefore, values of the energy release in fission, fission-fragment kinetic energy, and compound nucleus cross section for the inverse process will be considered on a point-by-point basis over the fragment yield distributions instead of considering averages of these quantities over the peaks of the distributions. Preliminary results will be presented and compared with a measurement, an earlier calculation, and a recent evaluation of the spectrum. 14 refs., 4 figs

  9. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  10. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    OpenAIRE

    Kopatch Yuri; Chietera Andreina; Stuttgé Louise; Gönnenwein Friedrich; Mutterer Manfred; Gagarski Alexei; Guseva Irina; Dorvaux Olivier; Hanappe Francis; Hambsch Franz-Josef

    2017-01-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis ...

  11. Prompt gamma-ray multiplicity distributions in spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Varma, R.; Mehta, G.K.; Choudhury, R.K.; Kapoor, S.S.; Nayak, B.K.; Ramamurthy, V.S.

    1991-01-01

    The mean and the standard deviation of the prompt gamma-ray multiplicity distribution in spontaneous fission of 252 Cf have been measured as a function of the charge ratio of the fission fragment pairs. While the variation of the mean multiplicity as a function of charge ratio is found to be nearly structureless, the standard deviation exhibits considerable variations. A statistical model analysis of the data was carried out to determine the contribution of the initial spin distribution widths of the fission fragments to the observed standard deviation of the gamma-ray multiplicity distribution

  12. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  13. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    Science.gov (United States)

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  14. Study of the shielding for spontaneous fission sources of Californium-252

    International Nuclear Information System (INIS)

    Davila R, I.

    1991-06-01

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  15. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  16. Dispersions and correlations of the distributions of products of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.

    1982-01-01

    We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made

  17. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1978-01-01

    The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt

  18. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    Science.gov (United States)

    Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef

    2017-09-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  19. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    Directory of Open Access Journals (Sweden)

    Kopatch Yuri

    2017-01-01

    Full Text Available An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  20. Multiplicity and correlated energy of gamma rays emitted in the spontaneous fission of Californium-252

    International Nuclear Information System (INIS)

    Brunson, G.S. Jr.

    1982-06-01

    An array of eight high-speed plastic scintillation detectors has been used to infer a mathematical model for the emission multipliciy of prompt gammas in the spontaneous fission of 252 Cf. Exceptional time resolution and coincidence capability permitted the separation of gammas from fast neutrons over a flight path of approximately 10 cm. About 20 different distribution models were tested. The average energy of the prompt gammas is inversely related to the number emitted; however, this inverse relationship is not strong and the total gamma energy does increase with increasing gamma number. An extension of the experiment incorporated a lithium-drifted germanium gamma spectrometer that resolved nearly 100 discrete gammas associated with fission. Of these gammas, some were preferentially associated with fission in which few gammas were emitted. Certain others were more frequent when many gammas were emitted. Results are presented

  1. Spontaneous-fission half-lives for even nuclei with Z> or =92

    International Nuclear Information System (INIS)

    Randrup, J.; Larsson, S.E.; Moller, P.; Nilsson, S.G.; Pomorski, K.; Sobiczewski, A.

    1976-01-01

    The spontaneous-fission process for doubly even nuclei with Z> or =92 is studied in a semiempirical WKB framework. One-dimensional fission barrier potentials are established from theoretical deformation-energy surfaces based on the droplet model and the modified-oscillator model. The effects of axial asymmetry as well as reflection asymmetry have been taken into account. Macroscopic (irrotational flow) inertial-mass functions and, alternatively, microscopic (cranking model) inertial mass parameters have been employed for the calculation of the fission half-lives. With one over-all normalization parameter it is possible to fit the experimental half-lives to within a factor of 20 on the average. The resulting effective inertial-mass functions are used to estimate the stability of the transactinide elements. Only minor differences with previous estimates for the r process and superheavy nuclei are encountered

  2. Study of ternary and quaternary spontaneous fission of 252Cf with the NESSI detector

    International Nuclear Information System (INIS)

    Tishchenko, V.G.; Jahnke, U.; Herbach, C.M.; Hilscher, D.

    2002-11-01

    Ternary and quaternary spontaneous decay of 252 Cf was studied with the NESSI detector, a combination of two 4π detectors for charged particles, neutrons and γ-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt γ-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission. (orig.)

  3. Correlated spins of complementary fragment pairs in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Dagnall, P. J.; Durell, J. L.; Freeman, S. J.; Leddy, M.; Phillips, W. R.; Roach, A. A.; Smith, J. F.

    1999-01-01

    A study of the γ-ray decay of low-lying excited states in fragments produced in the spontaneous fission of 252 Cf has revealed a significant correlation between the angles of emission of the 2 1 + →0 1 + transitions of complementary fragment pairs. Calculations of the amount of dealignment that is needed to reproduce the measured a 2 values, and a comparison with the results of previous fragment-γ angular distribution measurements, suggests that at scission there may be significant population of m≠0 substates associated with the projection of the fragment spin vector on the fission axis. Fragments from the spontaneous fission of 248 Cm emit 2 1 + →0 1 + γ rays that show markedly reduced interfragment correlations, suggesting that either a larger role is played by the relative angular momentum of the fragments, or that the dealignment introduced by the neutron emission and statistical γ decay to the 2 1 + state is larger in 248 Cm than 252 Cf fission. (c) 1999 The American Physical Society

  4. Extensions to COGEND for ENDF/B-V output of spontaneous fission decay data

    International Nuclear Information System (INIS)

    Tobias, A.

    1978-06-01

    The computer code COGEND, used to produce ENDF/B-IV or -V format nuclear decay scheme data, has been modified in order to extend its range of application. Details are given of the additional facilities which permit the handling of spontaneous fission decay data including any associated continuous spectra. In order to accommodate these additional features it is necessary to increase the core region by 4 kilobytes. (author)

  5. SOURCES 4A: A Code for Calculating (alpha,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.

    1999-09-01

    SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.

  6. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  7. 252Cf spontaneous prompt fission neutron spectrum measured at 0 degree and 180 degree relative to the fragment motion

    International Nuclear Information System (INIS)

    Bao Shanglian; Liu Jinquan; Batenkov, O.I.; Blinov, M.V.; Smirnov, S.N.

    1994-09-01

    The 252 Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of 'forward' and 'backward' for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process

  8. Spontaneous fission Vs alpha decay of superheavy nuclei with reduced uncertainty of Qα

    International Nuclear Information System (INIS)

    Santhosh Kumar, S.; Victor Babu, A.; Preetha, P.

    2015-01-01

    In recent experiments, α-decay has been indispensable for the identification of new nuclides. Because the experimentalists have to evaluate the values of the α-decay half-lives, during the experimental design, it is quite important and necessary to investigate the α decay of SHN theoretically. Besides the role of shell effects in the stability of SHN, the α-decay or spontaneous fission(SF) took important role. SHN with atomic number beyond 110 predominantly undergo sequential α-decay and long α-decay chains usually terminate by the SF. In experiment the measurement is mainly α- decay Q values and half-lives, while the major goal of the theory is to predict the half-lives to serve the experimental design. Q-value, one of the crucial quantity for a quantitative prediction of decay half-life, affects strongly the calculation of the half-life due to the exponential law, i.e., α- decay rates exhibit an exponential dependence (Geigger-Nuttall) on emission energy. Therefore it is extremely important and necessary to obtain an accurate theoretical Q-value in a reliable half life prediction during the experimental design

  9. Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths

    Science.gov (United States)

    Sharma, Kanishka; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2018-04-01

    Based on the collective clusterization approach, we have extended our earlier study on α-decay, exotic cluster-decay, and heavy particle radioactivity, to the phenomenon of spontaneous fission (SF) in the ground-state (g.s.) decays of even mass 234-246Pu parents. The calculations for the SF half-lives of these Pu-isotopes have been made within the framework of preformed cluster model (PCM), both for spherical as well as β2-deformed choices of shapes, and a comparison is made with the relevant available experimental data, which prefer spherical shapes. The importance of the orientation degree of freedom (hot compact or cold elongated configurations) is also explored. Next, in order to look for the exclusive role of heavy-ion induced fission, the dynamics of 6He + 238U reaction forming 244Pu* is studied over the center of mass energy range of E c . m . = 15.0- 28.8MeV, using the dynamical cluster-decay model (DCM), an extension of the PCM with temperature T- and angular momentum ℓ-effects included. The β2-deformed fragments of 244Pu* in the mass range A2 = 106- 113 (plus their complementary heavy fragments), corresponding to asymmetric fission peaks, are found contributing towards the fission cross-section. Finally, the potential energy surfaces and barrier modification effects are presented for the relative comparison of spontaneous and the heavy-ion induced fission processes. Both are found to behave similar with respect to the probable emission of fragments and hence point out to the shell closure property of the decay fragments.

  10. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  11. Spontaneous fission of superheavy nuclei in a macroscopic-microscopic model

    International Nuclear Information System (INIS)

    Lojewski, Z.

    2012-01-01

    A systematic study of spontaneous fission half-lives of superheavy nuclei in the framework of the macroscopic-microscopic method was performed. The macroscopic-microscopic calculations of the half-lives consist in determining the collective potential energy V which splits into microscopic and smooth average macroscopic parts as well as into a nucleus mass tensor of the nucleus undergoing the fission process. The microscopic part of the energy is calculated using the single-particle Woods-Saxon potential with a universal set of parameters. Two models of the residual pairing interaction were studied. In the first approach we used monopole pairing (with constant matrix elements G). In the second approximation the pairing matrix elements were calculated with ?-force and are state dependent. As the macroscopic part of collective energy we examined four different macroscopic models of nuclear energy: Myers - Swiatecki liquid drop, Droplet expansion, Yukawa-plus-Exponential and the Lublin-Strasbourg Drop model. The analysis covers a wide range of even-even superheavy nuclei from Z = 100 to Z = 126. The calculations of spontaneous fission half-lives were performed by means of a WKB approximation, in the multi-dimensional dynamical-programming method within parameters describe the shape of nuclei. The studies offer an opportunity of a comprehensive approach to a very interesting group of exotic heavier nuclei, which are currently investigated by experimenters

  12. Spontaneous Fission and alpha -Decay Half-Lives of Superheavy Nuclei in Different Macroscopic Energy Models

    CERN Document Server

    Lojewski, Z; Pomorski, K

    2003-01-01

    Spontaneous fission half-lives (T sub s sub f) of the heaviest nuclei are calculated in the macroscopic-microscopic approach based on the deformed Woods-Saxon potential. Four different models of the macroscopic energy are examined and their influence on the results is discussed. The calculations of (T sub s sub f) are performed within WKB approximation. Multi-dimensional dynamical-programming method (MDP) is applied to minimize the action integral in a 3-dimensional space of deformation parameters describing the nuclear shape (beta sub 2 ,beta sub 4 ,beta sub 6).

  13. Spectroscopy of neutron-rich nuclei populated in the spontaneous fission of 252Cf and 248Cm

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Durell, J. L.; Phillips, W. R.; Dagnall, P. J.; Freeman, S. J.; Leddy, M.; Roach, A. A.; Smith, J. F.

    1999-01-01

    In this paper we present research that has been carried out using the Euroball and Eurogam arrays to detect γ rays emitted from spontaneously fissioning 248 Cm and 252 Cf. The paper focuses on three sub-areas of current activity, namely, the measurement of yields of secondary fragment pairs, the measurement of state lifetimes at around spin 10, and recent measurements of g-factors of excited states in fission fragments. (c) 1999 American Institute of Physics

  14. Detailed study of the angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    OpenAIRE

    KOPATCH Y.; CHIETERA A.; STUTTGE L.; GOENNENWEIN F.; MUTTERER M.; GAGARSKI A.; GUSEVA I.; CHERNYSHEVA E; DORVAUX O; HAMBSCH Franz-Josef; HANAPPE F.; MEZENTSEVAH Z.; TELEZHNIKOVCH S.

    2015-01-01

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Mo...

  15. A spike of 4298Mo in yields of uranium spontaneous fission an extension of shell structure effect

    International Nuclear Information System (INIS)

    Masuda, Akimasa; Takahashi, Kazuya; Kawashima, Atsumichi.

    1993-01-01

    The investigations of the isotopic abundance ratios of molybdenum in zircon have shown that the molybdenum isotopic composition obtained reflects two effects: (1) spontaneous fission of 92 238 U contained in the zircon and (2) double beta decay of 40 96 Zr. Interestingly, however, the products due to the spontaneous fission appear to have a strange large excess (spike) of 42 98 Mo. It intrigues us that 92 minus 42 leaves 50, one of the outstanding magic numbers. It is suggested in the present communication that the strange spike of 42 98 Mo in question can result from a special type of spontaneous fission having essential bearings on the magic number 50 of protons and the 'magical' numbers 58 and 92 of neutrons. (author)

  16. Angular Correlations Between Fragment Spin and Prompt Neutron Evaporation in Spontaneous Fission of 252Cf: CORA-Demon Experiment

    Science.gov (United States)

    Prokhorova, E.; Gönnenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttgé, L.; Dorvaux, O.; Wollersheim, H.-J.

    2007-05-01

    A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.

  17. Pre-scission configuration of the tri-nuclear system at spontaneous ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Nasirov, A.K. [Joint Institute for Nuclear Research, BLTP, Dubna (Russian Federation); Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Tashkhodjaev, R.B. [Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Oertzen, W. von [Helmholtz-Zentrum Berlin, Berlin (Germany); Freie Universitaet, Fachbereich Physik, Berlin (Germany)

    2016-05-15

    The potential energy surface for the pre-scission configurations of tri-nuclear systems formed in the spontaneous ternary fission of {sup 252}Cf is calculated. The fission channel {sup 70}Ni+{sup 50}Ca+{sup 132}Sn is chosen as one of the more probable channels of true ternary fission of {sup 252}Cf. A study of the collinear arrangement of the reaction products for true ternary fission is the aim of this work. The results are presented as a function of the relative distance R{sub 12} between the centres of mass of {sup 70}Ni and {sup 132}Sn and the distance from the centre of mass of {sup 50}Ca, which is perpendicular to R{sub 12}. The results show that only for a particular range of the R{sub 12} values the collinear tripartion of the fissioning nucleus occurs. (orig.)

  18. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    Science.gov (United States)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  19. Spectroscopy of neutron-rich nuclei produced in the spontaneous fission of californium-252

    Science.gov (United States)

    Simon, Michael Wilhelm

    1999-10-01

    A new experimental technique has been developed for the spectroscopic investigation of the neutron-rich products of 252Cf(SF). The charged-particle detector CHICO was coupled to the Ge-detector array GAMMASPHERE and a thin fission source was used allowing the collection of high-statistics, high-fold γ-ray data in kinematic coincidence with the recoiling fission partners. The selectivity provided by this technique allows the γ-rays to be assigned unambiguously to the heavy or light fission partner. The added sensitivity allows many rotational bands to be extended to ~20 ħ, and a sensitivity to nuclei produced with a yield of 5 × 10-5 /fission was achieved by mass-gating the γ-ray spectra. The charged-particle detector CHICO was developed for this experiment and for studies utilizing other binary reactions, such as Coulomb excitation, transfer and fusion-fission reactions. The detector covers a total solid angle of 2.8 sr and has a time resolution of 500 ps, resulting in a mass resolution of Δm/m = 5% for beam experiments, or 8 mass units for spontaneous fission. This technique was used to set limits, in agreement with shell model predictions, on the E3 decay of the / - level in 135I. Rotational bands in 102,104,106,108Mo, 112Ru, 152,154,156 Nd, 156,158,160Sm were extended to higher spin. Band crossings were observed in the ground and γ-band in 104Mo. The γ-band of 112Ru shows continued tri-axial behavior at higher spin. The yrast rotational bands in 112,113,114,115,116 Pd were extended and rotational bands built on the low-lying isomeric levels in 113,115Pd were newly identified. The behavior of the observed band crossings in the ground and isomer bands of 113,115 Pd, when compared to the neighboring 111,113 Rh and cranked shell model calculations indicate that the predicted change from prolate to oblate shapes in the neutron-rich Pd does not occur before 116Pd. In a separate experiment, the lifetimes in 165Ho of the K=/ - ground band, up to spin / - ħ, and

  20. An SSNTD study of spontaneous fission fragments from the soil-gas samples of Bakreswar thermal springs

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Debasish; Ghose, Debasis; Sastri, R.C. E-mail: res@juphys.ernet.in

    2001-04-01

    During the course of investigations on the radon and stable gas migration around the hot spring zone at Bakreswar, Birbhum in India, it was noticed that CR-39 plastic detectors used for the detection of radon revealed tracks with much bigger diameters than usual for alpha particle tracks. Exposed CR-39 detectors etched adapting sequential etching technique confirmed the presence of bigger diameter tracks similar in nature to the tracks formed by spontaneous fission fragments. This paper presents the results of these observations along with the histogram plots of the track number versus track diameter that indicate an asymmetric distribution as was seen for mass distribution of spontaneous fission fragments.

  1. Fission rate sensitivities and fission fragment ranges for uranium and thorium-bearing materials irradiated with 252 Cf neutron source

    International Nuclear Information System (INIS)

    Moharram, B.M.

    2000-01-01

    The induced fission reactions of 235 U (n, f), 238 U (n,f) and 232 Th (n, f) based on the activation of natural uranium and thorium in samples with 252 Cf, neutron source, have been evaluated. The obtained results are the average of three samples from each test material (SRM 2710 Montana soil and Zirconia). The prepared samples have been configured in the so-called c ompensated - beam geometry i n which both gamma spectrometry jointly with solid state nuclear track detector techniques, revealed the fission rate sensitivity of 4.64 x 10 7 fission per gram per second per neutron (F.h 1 . S 1 .n 1 ), for zirconia as obtained by gamma activity arising from 134 I fission product (as a good monitor which is produced only from fissions), and the related value for SRM 2710 soil is 5.22 x 10 8 (F.g 1 S 1 .n 1 ). while the obtained values of the mean fission fragment ranges in SRM 2710 and zirconia as estimated from the fission track densities (by CR-39) and fission rates (by gamma spectrometry) are 3.97 x 10 3 g. cm 2 respectively which reveal good agreement with experiments and calculations done hitherto

  2. Differential angular distribution of prompt gamma rays from spontaneous fission of 252Cf

    Science.gov (United States)

    Skarsvåg, K.

    1980-08-01

    The differential angular distribution of prompt γ rays from spontaneous fission of 252Cf has been measured. The source was on a thick backing, and the measurements have been performed in forward and backward geometries. An NaI(Tl) crystal was used as a γ-ray detector, and the prompt neutrons from fission were rejected by time of flight. The total number of γ rays emitted within 12 ns after fission with energies greater than 0.114 MeV is 9.7 +/- 0.4 per fission, and the total γ-ray energy released is (7.0+/-0.3) MeV per fission. Results from earlier experiments that more γ rays are emitted from the light than from the heavy fragment group, are substantiated. The anisotropy A=I(0°)I(90°)-1 is small and even negative at low energies, reaches a maximum of about 25% at energies of about 0.50-0.65 MeV, and gets gradually smaller at higher energies. No significant difference in the anisotropy as measured with a nonmagnetic (Pt) and a magnetic (Ni) backing has been found. With the assumption that the angular momentum is aligned in a plane perpendicular to the direction of fission, the results can be consistently described within the statistical model in terms of pure dipole and quadrupole radiation with allowance for stretched E2 cascades from even-even fragments. It is concluded that the root mean square value of the primary angular momentum of the fragments is Jrms=(6.5+/-1.0)ℏ, the average angular momentum is decreasing 1.0ℏ per γ ray emitted, and the value of the spin cutoff parameter during γ-ray deexcitation of the fragments is σ=2.4+0.8-0.5. The dipole and the quadrupole components are about equally strong at high γ-ray energies, the dipole component predominates at low energies, and the quadrupole component at intermediate energies. Statistical dipole and quadrupole transitions (stretched for the last ones) account for 38% and 50% of the γ rays, respectively, and stretched E2 transitions in cascades from even-even fragments account for the remaining

  3. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  4. Measurement of 237Np fission rate ratio relative to 235U fission rate in cores with various thermal neutron spectrum at the Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Iwasaki, Tomohiko; Fujiwara, Daisuke; Kitada, Takanori; Kuroda, Mitsuo; Kohashi, Akio; Kato, Takeshi; Ikeuchi, Yoshitaka

    2000-01-01

    Integral measurements of 237 Np fission rate ratio relative to 235 U fission rate have been performed at Kyoto University Citrical Assembly. The fission rates have been measured using the back-to back type double fission chamber at five thermal cores with different H/ 235 U ratio so that the neutron spectra of the cores were systematically varied. The measured fission rate ratio per atom was 0.00439 to 0.0298, with a typical uncertainty of 2 to 3%. The measured data were compared with the calculated results using SRAC/TWOTRAN and MVP based on JENDL-3.2, which gave the averaged C/E values of 0.93 and 0.95, respectively. Obtained results of C/E using 237 Np cross sections from JENDL-3/2, ENDF/B-VI.5 and JEF2.2 show that the latter two gave smaller results than JENDL-3.2 by about 4%, which clearly reflects the discrepancy in the evaluated cross section among the libraries. This difference arises from both fast fission and resonance region. Although further improvement is recommended, 237 Np fission cross section in JENDL-3.2 is considered to be superior to those in the other libraries and can be adopted for use in design calculations for minor actinide transmutation system using thermal reactors with prediction precision of 237 Np fission rate with in 10%. (author)

  5. Study of ternary and quaternary spontaneous fission of sup 2 sup 5 sup 2 Cf with the NESSI detector

    CERN Document Server

    Tishchenko, V G; Hilscher, D; Jahnke, U

    2002-01-01

    Ternary and quaternary spontaneous decay of sup 2 sup 5 sup 2 Cf was studied with the NESSI detector, a combination of two 4 pi detectors for charged particles, neutrons and gamma-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt gamma-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission.

  6. Observation of new spontaneous fission activities from elements 100 to 105

    International Nuclear Information System (INIS)

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include 257 Rf(3.8 s, 14% SF), 258 Rf(13 ms), 259 Rf(approx. 3 s, 8% SF), 260 Rf(approx. 20 ms), and 262 Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 ( 260 104) was not observed. A difficulty exists in the interpretation that 260 Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV 18 O + 248 Cm, 88- to 100-MeV 15 N + 249 Bk, and 96-MeV 18 O + 249 Cf must be other nuclides due to their large production cross sections, or the cross sections for production of 260 Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in 258 Lr(4.5 s) to the SF emitter 258 No(1.2 ms) and an upper limit of 0.05% for SF branching in 254 No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s ( 18 O + 248 CM), indications of a approx. 47-s SF activity (75-MeV 12 C + 249 Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s ( 18 O + 249 Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier

  7. Formation and distribution of fragments in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas

    2017-12-01

    Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than

  8. The statistical model calculation of prompt neutron spectra from spontaneous fission of {sup 244}Cm and {sup 246}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)

    1997-03-01

    The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)

  9. Systematic study on the competition between α-decay and spontaneous fission of superheavy nuclei

    Science.gov (United States)

    Zhang, Y. L.; Wang, Y. Z.

    2017-10-01

    The competition between α-decay and spontaneous fission (SF) of Z = 112 isotopes are studied. The α-decay half-lives are estimated by the generalized liquid-drop model (GLDM) and several sets of analytic formulas. These formulas include the Royer formula, Viola-Seaborg semiempirical (VSS) formula and universal decay law (UDL). For the SF, its half-lives are calculated by using the Xu, Ren, Karpov and Santhosh formulas. It is shown that the predicted α-decay half-lives by different approaches are more or less identical. However, the SF half-lives are highly sensitive to models. To test the accuracies of different SF formulas, the half-lives of 56 even-even heavy nuclei are calculated by these formulas. By comparing with the experimental data, it is found that the Xu formula is the most accurate one to reproduce the experimental SF half-lives. This allows us to make a systematic prediction on the competition between α-decay and SF of even-even superheavy nuclei (SHN) with Z = 104- 120 by using the Xu formula and the above mentioned models on α-decay. The calculations suggest that 258,260104, 268-276110, 270-280112, 272-286114, 274-294116, 284-302118 and 292-308120 have smaller α-decay half-lives than those of SF. Thus these nuclei can be synthesized and identified via α-decay in the laboratory. In addition, it is observed that N = 162, 178, 184 and 196 may be the submagic or magic numbers. Finally, an extensive study on the possible α-decay chains for Z = 120 isotopes is performed. It is predicted that six sequential α-decay chains can be observed from 292-296120, four α-decay chains from 298120, three α-decay chains from 300,302120, two α-decay chains from 304,306120, and only one α-decay chain from 308120. These nuclei are the most likely candidates to be synthesized experimentally via α-decay in the near future.

  10. Study of scission shapes in spontaneous ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Singer, P.; Schwalm, D.; Thirolf, P.; Goennenwein, F.; Hesse, M.

    1995-06-01

    A new kinematic study on the ternary fission of 252 Cf has been conducted by registering prompt neutrons and fission γ rays coincidence with light charged particles (LCP) and fission fragments. The aim is to investigate changes in fragment deformation energy between the binary and ternary fission modes from measured prompt neutron angular distributions and multiplicities, and to explore the influence of light particle emission on the energy distribution, multiplicity and angular anisotropy of γ rays emitted during fragment de-excitation. The experiment was performed at the MPI Heidelberg using the Darmstadt-Heidelberg crystal ball spectrometer as γ-ray and neutron detector. Fragments were identified by a double-E measurement with an angular sensitive twin ionization chamber (IC). Light charged particles from fission were measured by ΔE-E telescopes composed of ΔE ICs and silicon PIN diodes. The telescopes enable to identify various LCPs which are emitted much more rarely than ternary α particles. The parameters of the experiment and the method of data analysis are described and first results presented. (orig.)

  11. He and Be ternary spontaneous fission of sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Ternary and binary fission studies of sup 2 sup 5 sup 2 Cf have been carried out by using the Gammasphere detector array with light charged particle (LCD) detectors. The relative sup 4 He and sup 5 He ternary fission yields were determined. The kinetic energies of the sup 5 He and sup 4 He ternary particles were found to be approximately 11 and 16 MeV, respectively. The sup 5 He particles contribute 10-20 % to the total observed alpha ternary yield. The data indicate that in nuclei with octupole deformations the population for the negative parity bands might be enhanced in the alpha ternary fission. >From LCP-gamma double gated spectra, neutron multiplicity distributions for alpha ternary fission pairs were measured. The average neutron multiplicity decreases about 0.7 AMU in going from the binary to alpha ternary fission in the approximately same mass splittings (104-146). From the analysis of the gamma-gamma matrix gated on the sup 1 sup 0 Be particles, the two fragment pairs of sup 1 sup 3 sup 8 Xe - sup 1...

  12. Study of the stability of the ground states and K-isomeric states of 250Fm and 254102 against spontaneous fission

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.; Lobanov, Yu.V.; Sagajdak, R.N.; Utenkov, V.K.; Kharitonov, Yu.P.; Shirokovskij, I.V.; Tret'yakova, S.P.; Oganessyan, Yu.Ts.

    1988-01-01

    By employing the 249 Cf( 4 He, 3n) and 208 Pb( 48 Ca,2n) reactions, experiments to study the stability against spontaneous fission of the nuclides 250 Fm and 254 102 as well as of the two-quasi-particle (2 q-p) K isomers 250 Fm (T 1/2 =1,8±0,1 s) and 254 102 (T 1/2 =0,28±0,04 s) have been performed. The groundstate spontaneous fission of the two nuclides has been discovered and the corresponding branching ratios b sf and partial half-lives T sf , respectively, have been determined to be: (6,9±1,0)x10 -5 , 0,83±0,15 yr for 250 Fm; (1,7±0,5)x10 -3 , (3,2±0,9)x10 4 s for 254 102. As a by-product of these studies, new data about cross sections of the 206,208 Pb( 48 Ca,xn) reactions have been obtained. Experiments designed to search for the spontaneous fission of the 2 q-p K-isometric states in 250 Fm and 254 102 have not revealed the effect in question. The lower limits of the ratios of the partial spontaneous fission half-lives for the 2 q-p K-isomeric states to those for the respective ground states, T * sf /T sf , have been established to be≥10 -1 for 250m Fm/ 250 Fm and ≥5x10 -3 for 254m 102/ 254 102. This means that the stability of the 2 q-p K-isomeric states in 250 Fm and 254 102 against spontaneous fission is practically not inferior to that of the ground states of these nuclei. In accord with the experimental findings, the theoretical estimates of T * sf /T sf made in the present paper show that, due to the influence of the specialization and blocking effects on the potential energy and the effective mass associated with fission, spontaneous fission from 2 q-p K-isomeric states cannot be facilitated but, on the contrary, should be essentially hindered compared with ground-state spontaneous fission

  13. Identification of new neutron-rich rare-earth nuclei produced in /sup 252/Cf spontaneous fission

    CERN Document Server

    Greenwood, R C; Gehrke, R J; Meikrantz, D H

    1981-01-01

    A program of systematic study of the decay properties of neutron-rich rare-earth nuclei with 30 sspontaneous fission, is currently underway using the Idaho ESOL (Elemental Separation On Line) Facility. The chemistry system used for the rare-earth elemental separations consists of two high-performance chromatography columns connected in series and coupled to the /sup 252 /Cf fission source via a helium gas-jet transport arrangement. The time delay for separation and initiation of gamma -ray counting with results which have been obtained to date with this system include the identification of a number of new neutron-rich rare-earth isotopes including /sup 155/Pm (t/sub 1/2/=48+or-4 s) and /sup 163/Gd (t/sub 1 /2/=68+or-3 s), in addition to 5.51 min /sup 158/Sm which was identified in an earlier series of experiments. (11 refs).

  14. Study of the shielding for spontaneous fission sources of Californium-252; Estudio de blindaje para fuentes de fision espontanea de Californio-252

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, I

    1991-06-15

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  15. Resolution of complex gamma spectra from triple-coincidence data Ba-Mo split in sup 2 sup 5 sup 2 Cf spontaneous fission

    CERN Document Server

    Wu, S C; Rasmussen, J O; Daniel, A V; Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Using triple-coincidence events of prompt fission gamma rays from spontaneous fission of sup 2 sup 5 sup 2 Cf, we made a new analysis of the yield matrix of coincident pairs of barium (Z=56) and molybdenum (Z=42) fission fragments. Branching from gamma-bands (K=2) and octupole-bands (K=0) were also measured. From this reanalysis the previously proposed 'extra-hot-fission mode' (8-10 neutrons evaporated) is much weaker than first reported. In this paper, we discuss in detail the methodology, including background subtraction for triple-coincidence data. The importance of minimal compression spectra allowing least-squares peak-fitting analysis is emphasized.

  16. Fragment angular momenta and descent dynamics in sup 2 sup 5 sup 2 Cf spontaneous fission

    CERN Document Server

    Popeko, J S; Ter-Akopian, G M

    2002-01-01

    Average angular momentum values of primary fission fragments as a function of neutron multiplicity and neutron-to-proton ratio were extracted for the first time for the Mo-Ba and Zr-Ce charge splittings of sup 2 sup 5 sup 2 Cf. The results are discussed in terms of the energy balance occurring at the scission point. For the first time we show that for large fragment elongation associated with larger numbers of evaporated neutrons (v sub t sub o sub t >=6), essentially only zero point bending oscillation takes places, i.e. T = 0 for this degree of freedom. For the major part of the fission events, with v sub t sub o sub t = 2-5, the banding oscillation is excited to a temperature of 2-3 MeV. Such a high bending temperature implies that the coupling between the collective and internal degrees of freedom is weak at the descent of the even-even nucleus of sup 2 sup 5 sup 2 Cf to the scission point. The dipole oscillations occurring at the descent take away some 2.5 - 3.0 MeV from the release energy. A correlation...

  17. Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes two procedures for the measurement of reaction rates by determining the amount of the fission product 140Ba produced by the non-threshold reactions 235U(n,f), 241Am(n,f), and 239Pu(n,f), and by the threshold reactions 238U(n,f), 237Np(n,f), and 232Th(n,f). 1.2 These reactions produce many fission products, among which is 140Ba, having a half-life of 12.752 days. 140Ba emits gamma rays of several energies; however, these are not easily detected in the presence of other fission products. Competing activity from other fission products requires that a chemical separation be employed or that the 140Ba activity be determined indirectly by counting its daughter product 140La. This test method describes both procedure (a), the nondestructive determination of 140Ba by the direct counting of 140La several days after irradiation, and procedure (b), the chemical separation of 140Ba and the subsequent counting of 140Ba or its daughter 140La. 1.3 With suitable techniques, fission neutron fl...

  18. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  19. Prompt Gamma-Ray Spectroscopy Studies in Neutron - Molybdenum, Ruthenium and Barium Isotopes from Californium -252 Spontaneous Fission.

    Science.gov (United States)

    Lu, Qi Hong

    1995-01-01

    Studies of the prompt gamma -rays emitted in the spontaneous fission of ^ {252}Cf with large gamma -ray detector arrays at Oak Ridge National Laboratory and Lawrence Berkeley National Laboratory were carried out. New levels were identified in ^ {108-112}Ru. Evidence for identical bands is observed in the ground bands of ^{108,110 }Ru--the lightest extended identical bands in neighboring even-even nuclei has been observed. The first observation of similar energy transitions out of gamma-vibrational levels from 3 ^{+} to 7^{+ } in those two isotopes is reported. Levels to 16^{+} in the ground band and to 9^{+} in the gamma-vibrational band in ^{112}Ru are presented. Calculations in a generalized collective model including rotation-vibration interaction can reproduce the level energies in the ground and gamma bands and the branching ratios out of the 4^{+} and 5^{+}252 }Cf SF is presented. Zero up to ten neutron emission channels are reported. This is the first report of 10 neutron emission. The 0, 7-9, and new 10 emission yields for Mo-Ba pairs are significantly larger than these yields reported previously for total ^{252 }Cf SF.

  20. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  1. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  2. Estimating spontaneous mutation rates at enzyme loci in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mukai, Terumi; Yamazaki, Tsuneyuki; Harada, Ko; Kusakabe, Shin-ichi

    1990-04-01

    Spontaneous mutations were accumulated for 1,620,826 allele-generations on chromosomes that originated from six stem second chromosomes of Drosophila melanogaster. Only null-electromorph mutations were detected. Band-electromorph mutations were not found. The average rate of null-electromorph mutations was 2.71 x 10 -5 per locus per generation. The 95% confidence interval (μ n ) was 1.97 x 10 -5 n -5 per locus per generation. The upper 95% confidence limit of the band-electromorph mutation rate (μ B ) was 2.28 x 10 -6 per locus per generation. It appeared that null mutations were induced by movable genetic elements and that the mutation rates were different from chromosome to chromosome. (author)

  3. Feasibility study of measuring the 238U fission rates by neutrons of 14 MeV in specifical experiment condition

    International Nuclear Information System (INIS)

    Wen Zhongwei

    2004-12-01

    Using uranium fission chambers of minitype slab in the case of 14 MeV neutrons penetrating through the special experiment model, the pure 238 U absolute fission rates are measured. Comparing the measurement results with and without reflect shell, the reflect coefficient of shell is gained. The calculate results are compared with experiment results, to prove the model calculate method and parameter. (author)

  4. Fission rate measurements in spent fuel via Gamma-Ray spectrometry of short-lived fission products induced in a zero power reactor - 071

    International Nuclear Information System (INIS)

    Krohnert, H.; Perret, G.; Murphy, M.F.; Chawla, R.

    2010-01-01

    A new measurement technique is being developed to determine fission rates in fresh and spent power reactor fuel following irradiation in a zero-power research reactor. The technique is required for the future experimental program LIFE'at'PROTEUS, one goal of the program being the investigation of power profiles across fresh and burnt fuel interfaces typical of a newly reloaded power reactor. In order to discriminate against the intrinsic activity of spent fuel, the approach described here uses high-energy γ-rays (above 2200 keV) emitted by freshly produced short-lived fission products. To demonstrate the feasibility of such a technique, fresh and spent UO 2 fuel samples with nominal burn-ups of 0, 36, 46 and 64 GWd/t were irradiated in the PROTEUS reactor and their γ-ray activities were recorded directly after the irradiations. For the first time, following irradiation in a zero-power research reactor, it was possible to compare the freshly induced short-lived γ-ray activity from spent fuel samples having high intrinsic γ-ray backgrounds with corresponding activities induced in fresh fuel. In this paper, first results of derived fission rate ratios between a fresh and a 36 GWd/t spent sample based on four high-energy peaks ( 142 La (2542 keV), 89 Rb (2570 keV), 138 Cs (2640 keV) and 95 Y (3576 keV)) are presented. The measured fission rate ratios from the various fission products agree within 1-2 standard deviations, the 1σ uncertainties being ∼2.5 - 4.5%. At the current state of analysis, calculated and measured fission rate ratios agree within 1-2σ, but a bias of about 4% could be observed. (authors)

  5. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  6. How much do we know about spontaneous human mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J.F. (Univ. of Wisconsin, Madison, WI (United States))

    1993-01-01

    The much larger number of cell divisions between zygote and sperm than between zygote and egg, the increased age of fathers of children with new dominant mutations, and the greater evolution rate of pseudogenes on the Y chromosome than of those on autosomes all point to a much higher mutation rate in human males than in females, as first pointed out by Haldane in his classical study of X-linked hemophilia. The age of the father is the main factor determining the human spontaneous mutation rate, and probably the total mutation rate. The total mutation rate in Drosophila males of genes causing minor reduction in viability is at least 0.4 per sperm and may be considerably higher. The great mutation load implied by a rate of [approx] 1 per zygote can be greatly ameliorated by quasi-transition selection. Corresponding data are not available for the human population. The evolution rate of pseudogenes in primates suggests some 10[sup 2] new mutations per zygote. Presumably the overwhelming majority of these are neutral, but even the approximate fraction is not known. Statistical evidence in Drosophilia shows that mutations with minor effects cause about the same heterozygous impairment of fitness as those that are lethal when homozygous. The magnitude of heterozygous effect is such that almost all mutant genes are eliminated as heterozygotes before ever becoming homozygous. Although quantitative data in the human species are lacking, anecdotal information supports the conclusion that partial dominance is the rule here as well. This suggests that if the human mutation rate were increased or decreased, the effects would be spread over a period of 50-100 generations. 31 refs., 3 figs., 2 tabs.

  7. Prompt Gamma-Ray Spectroscopy of Neutron-Rich Nuclides Produced in the Spontaneous Fission Process of CALIFORNIUM-252

    Science.gov (United States)

    Butler-Moore, S. Kyle

    Nuclear spectroscopy was performed on neutron -rich nuclides produced by the spontaneous fission process of ^{252}Cf. The data were taken with the Compton-suppressed Ge-detector spectrometer at the Holifield Heavy Ion Research Facility. The prompt gamma-ray transitions were isolated by using gamma-gamma and gamma-gamma -gamma coincidence techniques. Nine new states were observed in ^ {110}Ru, four of which constitute a gamma band structure up to J^pi = 7^+, and an additional J ^pi = 12^+ state which was assigned to the yrast band. The level scheme of ^{110}Ru is compared to ^{104}Ru and ^{192}Os, the latter of which shares with ^{110}Ru the distinction of having the lowest gamma-bandhead. Calculations with both the gamma-rigid triaxial nuclear model and the IBA O(6) Hamiltonian gave acceptable fits for the yrast band, but predicted a doublet clustering of states for the gamma-band, which was not observed experimentally. Studies of nuclei around doubly magic ^{132}Sn revealed for the first time energy levels of ^{136}Te and new high spin states in ^{134} Te, ^{138,140}Xe, and ^{140}Ba. The states in the yrast band of the N = 84 isotones ^ {136}Te, ^{138} Xe, and ^{140}Ba were determined up to 12^+, 12 ^+ and 8^+, respectively. The discovery of the 6^+ states provided an almost complete energy level systematics for the N = 84 isotones in the pseudo-spin f_{7/2 } shell. The energy levels of the isotopes ^{136}Te and ^{138}Xe were shown to exhibit remarkable similarities to the isotopes ^ {204}Po and ^{206 }Rn. This approximate symmetry was ascribed to the underlying shell model structure. Based upon the shell model calculations for ^{204 }Po, the 8^+, 10 ^+, and 12^+ states of ^{136}Te were hypothesized to involve core excitations of ^{134 }Sn. The higher spin states of the neutron-rich Pd isotopes ^{110,112,114}Pd were identified. Their moments of inertia exhibit backbending above spin 6^+. Cranked shell model calculations indicated that the backbendings observed at

  8. The rate of spontaneous mutations in human myeloid cells

    International Nuclear Information System (INIS)

    Araten, David J.; Krejci, Ondrej; DiTata, Kimberly; Wunderlich, Mark; Sanders, Katie J.; Zamechek, Leah; Mulloy, James C.

    2013-01-01

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10 −7 per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10 −7 (range ∼3.6–23 × 10 −7 ) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis

  9. Spontaneous sigh rates during sedentary activity: watching television vs reading.

    Science.gov (United States)

    Hark, William T; Thompson, William M; McLaughlin, Timothy E; Wheatley, Lisa M; Platts-Mills, Thomas A E

    2005-02-01

    Spontaneous sighs are thought to play an important role in preventing atelectasis and in regulating airway tone. Recent studies have provided a mechanism by which expansion of the lungs could cause relaxation of smooth muscle. To investigate breathing patterns during 2 forms of sedentary behavior: reading and watching television. Breathing patterns were monitored for 1 to 2 hours to document respiratory rates and sigh rates. Each participant was monitored while reading and while watching a movie on videotape. During the first experiment (17 controls), metabolic rates were also measured. In the second experiment (18 controls and 9 patients with mild-to-moderate asthma), only breathing patterns were monitored. There were no significant differences in respiratory or metabolic rates between the 2 activities. In contrast, in the first experiment, 13 of 17 controls had lower sigh rates while watching a videotape than while reading (P < .01). In the second experiment, the sigh rate was significantly lower overall while watching a videotape (mean, 13.7 sighs per hour; range, 1.8-26.0 sighs per hour) than while reading (mean, 19.3 sighs per hour; range, 7.7-30.0 sighs per hour) (P < .001). A similar decrease was observed in patients with asthma (P < .01). Given that many children and adults watch television for 5 or more hours per day, breathing patterns during this time may be relevant to lung function. Our results demonstrate that prolonged periods of watching a videotape are associated with lower sigh rates than while reading. Further research is needed to determine whether these changes are relevant to increased bronchial reactivity.

  10. High spin studies of neutron-rich nuclei produced in the spontaneous fission process of californium-252

    Science.gov (United States)

    Zhang, Xueqian

    2001-08-01

    From an experiment with GAMMMASPHERE and a 252Cf spontaneous fission source, high spin studies of several neutron-rich nuclei have been carried out. In the mass region A ~ 150, a new negative-parity band in 154Nd and new negative-parity levels in 152Nd were identified and the yrast bands were extended to 18+ in 154Nd and 20+ 152Nd in a triple gamma coincidence study. These new negative-parity bands are consistent with octupole vibrational mode rather than the stable octupole deformation seen in Ba and Ce nuclei. There is a constant difference as a function of spin between the J1 values for the negative-parity band in 152Nd and J1 for the similar negative-parity band in 154Nd, however, their J2 values are essentially identical above the 4 + state. These bands indicate a new kind of identical bands associated with an octupole vibrational mode. In mass region A ~ 110, we have observed new bands in 113,115,117,118 Pd up to moderately high spin. The newly identified negative-parity yrast band energy level systematics built on the / isomeric states fit smoothly with the known systematic for other Pd isotopes, and show a minimum excitation energy at N = 68 related to a mid-shell closure. These new negative- parity yrast bands indicate a first band crossing at ¢ω ~ 0.45 MeV, nearly identical to those seen in 109,111Pd, but significantly higher than those in the positive yrast parity bands in 113,115Pd and in the even-even Pd isotopes. We have interpreted the new negative-parity yrast bands as having band crossings from the alignment of a nh/ pair, and this suggests that 113,115,117Pd maintain a prolate shape. Additionally, we have observed two new bands in 113,115 Pd, which are tentatively assigned positive parity with band crossings about 0.25 and 0.32 MeV. These lower frequencies are consistent with a nh/ pair alignment. In the neutron-rich 118Pd, the first band crossing at a frequency of ¢ω ~ 0.29 MeV was observed in its yrast band. This band crossing frequency is

  11. Effects of meditation practice on spontaneous eyeblink rate.

    Science.gov (United States)

    Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine

    2016-05-01

    A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. © 2016 Society for Psychophysiological Research.

  12. Fission rate of nuclei at high excitation energy and emission of light particles

    International Nuclear Information System (INIS)

    Mersits, E.

    1991-10-01

    Light charged-particle emission has been measured for the reactions α + 238 U, 209 Bi, 232 Th at 118 MeV bombarding energies. The rate of particles detected in coincidence with fission fragments have been determined at high excitation energy. Modified precompound decay models and statistical models (program ALICE) have been used in an attempt to interpret the experimental data. The ratio of the level density parameter af/an was found to be 1.03 and 1.08, the temperature of neutron spectra was found to be 1.58 MeV and 1.33 MeV, for 238 U and 209 Bi, respectively. Analysing the experimental light-charged-particle spectra, there was no evidence for emission from the fission fragments which was in good agreement with calculations for the nucleus 209 Bi. On the other hand the theoretical emission spectra of 238 U predict great parts of such 'postfission' particles. Simplification in the model concerning the time of possible particle emission, that is, before the saddle-point and from the fragments, leads to the assumption of light particle emission between the saddle and the scission point

  13. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  14. HALF-LIVES OF LONG-LIVED α-DECAY, β-DECAY, ββ-DECAY AND SPONTANEOUS FISSION NUCLIDES

    International Nuclear Information System (INIS)

    HOLDEN, N.E.

    2001-01-01

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for a discussion session at the next meeting. These half-life values for long-lived nuclides include those due to various decay modes, α-decay, β-decay, electron capture decay, ββ-decay and spontaneous fission decay. This report is preliminary but will provide a quick overview of the extensive table of data on the recommendations from that review

  15. Effect of fission rate on the microstructure of coated UMo dispersion fuel

    Science.gov (United States)

    Leenaers, A.; Parthoens, Y.; Cornelis, G.; Kuzminov, V.; Koonen, E.; Van den Berghe, S.; Ye, B.; Hofman, G. L.; Schulthess, Jason

    2017-10-01

    Compared to previous irradiation experiments containing UMo/Al dispersion fuel plates, the SELENIUM irradiation experiment performed at the SCK·CEN BR2 reactor in 2012 showed an improved plate swelling behavior. However, in the high burn-up area of the plates a significant increase in meat thickness was still measured. The origin of this increase is currently not firmly established, but it is clear from the observed microstructure that the swelling rate still is too high for practical purposes and needs to be reduced. It was stipulated that the swelling occurred at the high burnup areas which are also the high power zones at beginning of life. For that reason, an experiment was proposed to investigate the influence of fission rate (i.e. power) on some of the observed phenomena. For this purpose, a sibling plate to a high power (BOL>470 W/cm2) SELENIUM plate was irradiated during four BR2 cycles. The SELENIUM 1a fuel plate was submitted to a local maximum heat flux below 350 W/cm2, throughout the full irradiation. At the end of the last cycle, the SELENIUM 1a fuel plate reached a maximum local burnup value of close to 75%235U compared to 70%235U for the SELENIUM high power plates. When comparing to the results on the SELENIUM plates, the non-destructive tests clearly show a continued linear swelling behavior of the low power irradiated fuel plate SELENIUM 1a in the high burn-up region. The influence of the fission rate is also evidenced in the microstructural examination of the fuel showing that there is no formation of interaction layer at the high burn-up region.

  16. Analysis of Fission Rate Distribution on BFS-75-1 Assembly

    International Nuclear Information System (INIS)

    Song, Hoon Song; Kim, Young In; Kim, Yeong Il

    2006-01-01

    As the second stage of critical experiment plan for developing the KALIMER core design, following the first stage critical experiment, BFS-73-1, an experimental program named BFS-75-1 was carried out and the comparison between calculation and experiment was performed. In case of BFS-75-1 critical experiment core, there exists actually a lot of heterogeneity because the core is composed of a lot of plate type pellet to simulate the reactor core instead of fuel pin used in the actual core. The core design is commonly performed on the homogenous model and differences with the actual core calculations scheme happen, so that the heterogeneity corrections are needed to correct these differences. In this paper, the calculation results on the fission reaction rate distribution which shows a lot of heterogeneity effect are shown. The calculated results with heterogeneity correction were compared with experiment data of BFS-75-1 critical assembly

  17. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  18. Fission properties of superheavy nuclei for r -process calculations

    Science.gov (United States)

    Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.

    2018-03-01

    We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.

  19. Development of a gas-jet coupled ISOL facility with a /sup 252/Cf spontaneous fission source

    CERN Document Server

    Greenwood, R C; Novick, V J

    1981-01-01

    A mass separator at the INEL has been successfully coupled on-line to a source of /sup 252/Cf fission products via a He-gas jet transport arrangement using solid aerosols of NaCl as activity carriers. Initial tests of the ISOL system on-line to an approximately 7 mu g /sup 252 /Cf source are conducted using gamma-ray spectroscopic measurements of the separated /sup 138,139/Cs, /sup 141,142/Ba and /sup 142/La activities. The measured transport efficiencies through the system of approximately 3% and approximately 0.3% for the Cs and Ba isotopes, respectively, are comparable with the results of earlier tests conducted at INEL with a hollow-cathode ion source alone coupled to the He-gas jet transport arrangement. Following these tests, a general survey of the mass-separated activities is conducted with the ISOL system on-line to an approximately 600 mu g source of /sup 252/Cf. Gross beta - gamma activity is measured for samples collected at 73 mass positions. Gamma-ray spectra are measured with a Ge(Li) detector ...

  20. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  1. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2018-01-01

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety of LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.

  2. Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles

    Science.gov (United States)

    Capo, M. A.; Mickle, R.

    1975-01-01

    A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

  3. Spontaneous mutation rate in Chinese hamster cell clones differing in UV-sensitivity

    International Nuclear Information System (INIS)

    Manuilova, E.S.; Bagrova, A.M.; Moskovskij Gosudarstvennyj Univ.

    1983-01-01

    The spontaneous rate of appearance of mutations to 6-mercaptopurine (6 MP) resistence in the cells of CHR2 and CHs2 clones dofferent in sensitivity to lethal and matagenous effect of UV-rays, is investigated. Increased UV-sensitivity of CHs2 clone is caused by the violation of postreplicative DNA reparation. It is established that the purity of spontaneously occuring mutations in both clones turns out to be similar, i.e. (1.5-1.8)x10 -5 for the cell pergeneration. It is shown that the effect of postreplicative DNA reparation in the cells of chinese hamster is not connected with the increase of spontaneous mutation ability. The problem on the possible role of reparation in the mechanism of appearance of spontaneous and induced mutations in the cells of Chinese hamster with increased UV-sensitivity is discussed

  4. Modeling aftershock rates using simulations of spontaneous earthquake nucleation on rate and state faults

    Science.gov (United States)

    Kaneko, Y.; Lapusta, N.

    2005-12-01

    Large earthquakes are followed by increased seismic activity, usually referred to as aftershock sequences, that decays to the background rate over time. The decay of aftershocks is well-described empirically by Omori's law. Dieterich (1994) proposed that Omori's law could result from perturbing, by static stress steps, a population of nucleation sites governed by laboratory-derived rate and state friction. He used one-degree-of-freedom spring-slider system to represent elastic interactions and made a simplified assumption about frictional behavior during nucleation. The model was further explored in a number of studies (i.e., Gomberg et al., 2000) and used to interpret observations (i.e., Toda et al., 1998). In this study, we explore the consequences of Dieterich's approach using models of faults embedded in elastic continuum, where the nucleation process can be more complicated than assumed in Dieterich's model. Our approach is different from previous studies of aftershock rates with rate and state friction in that here, nucleation processes are simulated as a part of spontaneously occurring earthquake sequences in continuum fault models. We use two 2D models of a vertical strike-slip fault, the depth-variable model (Rice, 1993; Lapusta at el., 2000) and the crustal-plane model (Myers et al., 1996). We find that nucleation processes in continuum models and the resulting aftershock rates are well-described by the model of Dieterich (1994) when Dieterich's assumption that the state variable of the rate and state friction law is significantly behind its steady-state value holds during the entire nucleation process. On the contrary, aftershock rates in models where the state variable assumption is violated for a significant portion of the nucleation process exhibit behavior different from Dieterich's model. The state variable assumption is significantly violated, and hence the aftershock rates are affected, when stress heterogeneities are present within the nucleation

  5. Assessment of baroreflex sensitivity from spontaneous oscillations of blood pressure and heart rate: proven clinical value?

    International Nuclear Information System (INIS)

    Pinna, Gian Domenico; Maestri, Roberto; La Rovere, Maria Teresa

    2015-01-01

    The baroreceptor-heart rate reflex (baroreflex sensitivity, BRS) is a key mechanism contributing to the neural regulation of the cardiovascular system. Several methods have been proposed so far to assess BRS by analyzing the spontaneous beat-to-beat fluctuations of arterial blood pressure and heart rate. These methods are inherently simple, non-invasive and low-cost. This study is an attempt to address the question of whether spontaneous baroreflex methods have proven to be of value in the clinical setting. In the first part of this article, we critically review most representative clinical studies using spontaneous BRS techniques either for risk stratification or treatment evaluation, these being major issues in the clinical management of the patients. In the second part, we address two important aspects of spontaneous BRS measurements: measurability and reliability. Estimation of BRS in the studies selected for the review was performed according to the sequence, transfer function, alpha-index and phase-rectified signal averaging method. Arterial blood pressure was recorded non-invasively during supine, short-term (<30 min) laboratory recordings. The conclusion from this review is that spontaneous BRS techniques have been shown to be of great value in clinical practice but further work is needed to confirm the validity of previous findings and to widen the field of clinical applications. Measurability and reliability can be a major issue in the measurement of spontaneous BRS, particularly in some patient populations like post-myocardial infarction and heart failure patents. Main causes of poor measurability are: non-sinus rhythm, a high rate of ectopic beats and the need for recorded time series of RR interval and arterial blood pressure to satisfy the constraints of the different BRS estimation algorithms. As for reliability, within-subject variability is rather high in the measurements of spontaneous BRS and, therefore, should be carefully taken into account

  6. Apatite fission track thermochronology and south east Australian landscape evolution: can exaggerated denudation rates be reconciled?

    International Nuclear Information System (INIS)

    Roach, I.C.

    1999-01-01

    Full text: Apatite fission track thermo chronology (AFTT) is a double-edged sword that can be used to both identify the absolute timing of major landscape-forming events and to estimate the amount of denudation that has occurred in a landscape. This powerful tool has added much to the debate of eastern Australian landscape evolution, particularly the origin and evolution of the Eastern Highlands. However, many authors can not reconcile estimates of the amount of denudation derived from AFTT with their own knowledge of the apparent stability of eastern Australian landscapes. Thus they regard the calculated denudation rates as being exaggerated. This difference in opinion comes about principally from the insistence of applying an upper crustal palaeogeotherm of 25-30 deg C km blanket-wise to all AFTT results. Recent thematic papers in the Australian Journal of Earth Sciences (Volume 46/2) related to eastern Australian landscape evolution highlight the differences of opinion. Kohn et al. (1999), in a paper relating to an AFTT study of the Kosciuszko massif, concluded that the landscape was controlled by two periods of accelerated denudation, one in the Late Permian-Early Triassic and the other in the mid-Cretaceous. They calculated that 2-2.5 km of material had been denuded from the massif since the mid-Cretaceous. Hill (1999) expressed an opposite viewpoint, describing residual landscapes of Mesozoic age existing in the same massif, indicating a much reduced denudation rate. van der Beek et al. (1999) discussed the need for more realistic models that compensate for the 'extreme temporal and spatial variability in denudation rates' possible within their own model. Particularly, they concluded that Late Mesozoic-Early Tertiary palaeogeotherms must have been higher than present. This knowledge is crucial to understanding Eastern Australian landscape evolution. A suite of mantle and lower crustal xenoliths has yielded a new palaeogeotherm for the Eocene-Oligocene Monaro

  7. Neutron emission anisotropy in fission

    OpenAIRE

    CHIETERA A.; STUTTGE L.; GOENNENWEIN F.; KOPATCH Y.; MUTTERER M.; GUSEVA I.; GAGARSKI A.; CHERNYSHEVA E; DORVAUX O; HAMBSCH Franz-Josef; HANAPPE F.; MEZENTSEVAH Z.; TELEZHNIKOVCH S.

    2015-01-01

    Experimental neutron angular distributions are investigated in the spontaneous fission process of 252Cf. The CORA experiment, presented in this paper, has the aim to study neutron angular correlations in order to elucidate the neutron emission mechanisms in the fission process. The experimental setup is composed by the CODIS fission chamber and the DEMON neutron multidetector. The development of a simulation toolkit based on GEANT4 and ROOT adopted as strategy to investigate the emission of t...

  8. Nonstressed antepartum heart-rate monitoring - implications of decelerations after spontaneous contractions

    NARCIS (Netherlands)

    Visser, G. H. A.; REDMAN, CWG; HUISJES, HJ; TURNBULL, AC

    1980-01-01

    Fetal outcome in 98 patients with spontaneous antepartum late decelerations was studied by combining the data of two obstetric departments. Heart rate variability was used to classify the different patterns into two categories: terminal and decelerative. In 14 of the 47 pregnancies in which a

  9. Transfer of spontaneously hatching or hatched blastocyst yields better pregnancy rates than expanded blastocyst transfer

    Directory of Open Access Journals (Sweden)

    Natachandra M Chimote

    2013-01-01

    Full Text Available Context: Blastocyst stage embryo transfer (ET has become routine practice in recent years. However, probably due to limitations of assisted hatching techniques, expanded blastocyst transfer (EBT is still the preferred mode. Inexplicably, not much consideration has been given to spontaneously hatching/hatched blastocyst transfer (SHBT. Aim: This study aimed to investigate developmental potential of spontaneously hatching/hatched blastocyst against EBT in in vitro fertilization (IVF cycles. Settings and Design: Prospective study of 146 women undergoing their first IVF- ET cycle. SUBJECTS AND Methods: On the basis of blastocyst status, women were classified into SHBT and EBT groups. Intracytoplasmic sperm injection cycles were excluded to remove male factor bias. Implantation rate (IR, clinical pregnancy rate, and live birth rate were the main outcome measures. Statistical Analysis: Graph-pad Prism 5 statistical package. Results: SHBT group showed significantly higher blastocyst formation rate (53.3 ± 17.5 vs. 43.1 ± 14.5%, P = 0.0098, top-quality blastocysts (71.8 vs. 53.7%, P = 0.0436, IR (43.6 vs. 27.9%, P = 0.0408, pregnancy rate (59.4 vs. 45.1%, P = 0.0173, and live birth rate (36.8 vs. 22.8%, P = 0.003 compared to EBT group. Multiple pregnancy rates remained comparable between the two groups. Implantation correlated strongly with top-quality blastocysts (Pearson, r = 0.4441 in SHBT group, while the correlation was nonsignificant in EBT group. Conclusion: Extending culture of expanded blastocysts by a few hours to allow transfer of spontaneously hatching/hatched blastocysts gives higher implantation and pregnancy rates with no added risk of multiple gestations. Spontaneously hatching/hatched blastocysts have a better potential to implant and develop into a positive pregnancy.

  10. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...

  11. Membrane fission by protein crowding.

    Science.gov (United States)

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  12. How variable is a spontaneous mutation rate in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Boesen, Jan J.B.; Niericker, Matthieu J.; Dieteren, Nicole; Simons, Jo W.I.M. (MGC-Dept. of Radiation Genetics and Chemical Mutagenesis, State Univ. of Leiden (Netherlands))

    1994-05-01

    The Luria-Delbrueck fluctuation analysis provides a method to estimate mutation rates and is commonly applied in somatic cell genetics and in cancer biology. We developed an assay for a Luria-Delbrueck fluctuation analysis using the mouse lymphoma cell line, GRSL13. As these cells grow in suspension, one can handle hundreds of parallel cultures using multiwell dishes and dispensers. This assay thereby allows not only an accurate determination of the mutation rate per cell generation but also makes it possible to determine at which time after seeding mutations take place. Using approx. 8000 parallel cultures it has been possible to test whether the mutation rate is constant during the assay. It has been found that the spontaneous mutation rate of GRSL13 cells decreases in the course of a fluctuation test from 2x10[sup -6] to about 2x10[sup -7]/cell/generation. It was shown that this increased replication fidelity may partly be caused by cell density: maintenance of cells at high cell density resulted in a spontaneous mutation rate of 0.7[+-]4.0x10[sup -7] compared to 4.0[+-]3.1x10[sup -7] for the standard protocol. In contrast, growing the cells at extremely low cell density resulted in an enhanced mutation rate of 7.7[+-]1.3x10[sup -7]. Thus altogether the mutation rate can vary from 2x10[sup -6] to 0.7x10[sup -7] (approx. 30-fold). These results show that the spontaneous mutation rate is not constant, but highly dependent on experimental conditions. As incomplete expression and metabolic cooperation cannot explain the findings, the data suggest that the fidelity of DNA replication is not fixed but open to variation. Hence, determination of replication infidelity in cultured cells needs rigorous standardization or/and application of controlled variation in culture conditions.

  13. Angular Momentum in Fission

    Science.gov (United States)

    Gönnenwein, F.; Bunakov, V.; Dorvaux, O.; Gagarski, A.; Guseva, I.; Hanappe, F.; Kadmensky, S.; von Kalben, J.; Khlebnikov, S.; Kinnard, V.; Kopatch, Yu.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Prokhorova, E.; Rubchenya, V.; Sillanpää, M.; Simpson, G.; Sokolov, V.; Soldner, T.; Stuttgé, L.; Tiourine, G.; Trzaska, W.; Tsekhanovich, I.; Wagemans, C.; Wollersheim, H.-J.; Zavarukhina, T.; Zimmer, O.

    2008-04-01

    Three novel experiments in spontaneous and thermal neutron induced fission all with a bearing on angular momentum in fission are reviewed. In the first experiment it was observed that, in the reaction 235U(n, f) with incident polarized cold neutrons, the nucleus undergoing scission is rotating. This was inferred from the shift in angular distributions of ternary particles being dependent on the orientation of neutron spin. In the second study the properties of the angular momentum of spherical fission fragments was investigated. Current theories trace the spin of fragments to their deformations allowing for collective rotational vibrations at scission. However, in particular the spherical 132Te isotope exhibits a large spin at variance with theory. Exploiting the specific properties of cold deformed fission it could be proven that, for 132Te, single particle excitations instead of collective modes are responsible for the large spin observed. In a third project a pilot study was exploring the possibility to search for an evaporation of neutrons from fragments being anisotropic in their own cm-system. Due to fragment spin this anisotropy is claimed since decades to exist. It was so far never observed. A scheme has been devised and tested were triple coincidences between a fragment and two neutrons are evaluated in a way to bring the cm-anisotropy into the foreground while getting rid of the kinematical anisotropy in the lab-system due to evaporation from moving fragments. The test was run for spontaneous fission of 252Cf.

  14. Determining the americium transmutation rate and fission rate by post-irradiation examination within the scope of the ECRIX-H experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lamontagne, J., E-mail: jerome.lamontagne@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Esbelin, E. [CEA, DEN, DRCP, Marcoule, F-30207 Bagnols-sur-Cèze (France); Béjaoui, S.; Pasquet, B. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Bourdot, P. [CEA, DEN, DER, Cadarache, F-13108 St. Paul Lez Durance (France); Bonnerot, J.M. [Commissariat à l’énergie atomique et aux énergies alternatives (CEA), DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France)

    2013-09-15

    The ECRIX-H experiment aims to assess the feasibility of transmuting americium micro-dispersed in an inert magnesia matrix under a locally moderated neutron flux in the Phénix reactor. A first set of examinations demonstrated that pellet behaviour was satisfactory with moderate swelling at the end of the irradiation. Additional post-irradiation examinations needed to be conducted to confirm the high transmutation rate so as to definitively conclude on the success of the ECRIX-H experiment. This article presents and discusses the results of these new examinations. They confirm the satisfactory behaviour of the MgO matrix not only during the basic irradiation but also during post-irradiation thermal transients. These examinations also provide additional information on the behaviour of fission products both in the americium-based particles and in the MgO matrix. These results particularly validate the transmutation rate predicted by the calculation codes using several different analytical techniques. The fission rate is also determined.

  15. Large social disparities in spontaneous preterm birth rates in transitional Russia.

    Science.gov (United States)

    Grjibovski, A M; Bygren, L O; Yngve, A; Sjöström, M

    2005-02-01

    This study estimated the effect of maternal sociodemographic, obstetric and lifestyle factors on the risk of spontaneous preterm birth in a Russian town. All women with singleton pregnancies registered at prenatal care centres in Severodvinsk in 1999 comprised the cohort for this study (n=1559). Analysis was based on spontaneous live singleton births at the maternity home (n=1103). Multivariable logistic regression was applied to quantify the effect of the studied factors on the risk of preterm birth. Differences in gestation duration were studied using multiple linear regression. In total, 5.6% of all spontaneous births were preterm. Increased risks of preterm delivery were found in women with lower levels of education and in students. Placental complications, stress and a history of fetal death in previous pregnancies were also associated with elevated risks for preterm delivery. Smoking, hypertension and multigravidity were associated with reduced length of pregnancy in metric form. In addition to medical risk factors, social factors are important determinants of preterm birth in transitional Russia. Large disparities in preterm birth rates may reflect the level of inequalities in transitional Russia. Social variations in pregnancy outcomes should be monitored.

  16. Accuracy of rate coding: When shorter time window and higher spontaneous activity help

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 022310. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-08066S; GA MŠk(CZ) 7AMB17AT048 Institutional support: RVO:67985823 Keywords : rate coding * observation window * spontaneous activity * Fisher information * perfect integrate- and -fire model * Wiener process Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.366, year: 2016

  17. Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores

    Directory of Open Access Journals (Sweden)

    Kochetkov Anatoly

    2017-01-01

    Full Text Available During the GUINEVERE FP6 European project (2006–2011, the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS and the ALFRED Lead Fast Reactor (LFR. Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.

  18. Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores

    Science.gov (United States)

    Kochetkov, Anatoly; Krása, Antonín; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente; Bianchini, Giancarlo; Fabrizio, Valentina; Carta, Mario; Firpo, Gabriele; Fridman, Emil; Sarotto, Massimo

    2017-09-01

    During the GUINEVERE FP6 European project (2006-2011), the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA) FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS) and the ALFRED Lead Fast Reactor (LFR). Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.

  19. Investigation of (n, 2n) reaction and fission rates in iron-shielded uranium samples bombarded by 14.9 MeV neutrons

    International Nuclear Information System (INIS)

    Shani, G.

    1976-01-01

    The effect of the thickness of iron shielding on the (n, 2n) reaction rate in a fusion reactor (hybrid) blanket is investigated. The results are compared with the fission rate-dependence. Samples of natural uranium are irradiated with 14 MeV neutrons, with iron slabs of various thickness between the neutron generator target and the samples. Both reactions are threshold reactions but the fact that the 238 U (n, 2n) reaction threshold is at 6 MeV and that of fission is at 2 MeV makes the ratio between the two very much geometry-dependent. Two geometrical effects take place, the 1/r 2 and the build-up. While the build-up affects the (n, 2n) reaction rate, the fission rate is affected more by the 1/r 2 effect. The reason is that both elastic and inelastic scattering end up with neutrons with energy above fission threshold, while only elastic scattering brings high energy neutrons to the sample and causes (n, 2n) reaction. A comparison is made with calculated results where the geometrical effects do not exist. (author)

  20. Is there a proportionality between the spontaneous and the X-ray-induction rates of mutations

    International Nuclear Information System (INIS)

    Shukla, P.T.; Sankaranarayanan, K.; Sobels, F.H.

    1979-01-01

    The X-ray induction of recessive visible specific locus mutations at 14 X-chromosome loci was studied in Drosophila melanogaster using the 'Maxy' technique. The X-ray exposure was 3000 R to 5 day-old males and the sampling of germ cells was restricted to mature spermatozoa. Presumptive mutant females recovered in the F 1 generation were tested for transmission, allelism, fertility and viability in males. A total of 128 mutations (115 completes and 13 mosaics including those that were male-viable as well as male-lethal) recovered among 38 898 female progeny were found to be transmitted. On the basis of the above frequency, the average mutation rate can be estimated as 7.8 X 10 -8 /locus/R; for mutations that were viable and fertile in males, the rate is 3.0 X 10 -8 /locus/R(49 mutations among 38 898 progeny). The frequency of mutations at the different loci encompassed a wide range: while no mutations were recovered at the raspberry and carnation loci, at others, the numbers ranged from 1 at echinus to 31 at garnet; in addition, the proportion of mutations that was male-viable was also different, depending on the locus. Schalet's extensive data on spontaneous mutations at 13 (of the 14 loci employed in the present study) loci permit an estimate of the spontaneous rate which is 6.1 X 10 -6 /locus (a total of 39 mutations among 490 000 progeny); for mutations that were viable and fertile in males, the rate is 3.0 X 10 -6 /locus (19 mutations among 490 000 progeny). The mutability of the different loci varied over a 9-fold range. (Auth.)

  1. 5He, 7He and 8Li (E=2.26 MeV) intermediate ternary particles in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Kopatch, Yu. N.; Goennenwein, F.

    2002-02-01

    The neutron-unstable odd-N isotopes 5 He, 7 He and 8 Li (in its excited state of E * = 2.26 MeV) were measured to show up as short-lived intermediate light-charged-particles (LCP) in ternary fission of 252 Cf. For the study a high-efficiency angular correlation measurement between neutrons, LCPs and main fission fragments has been performed. The evidence for the ternary 5 He and 7 He particles (lifetimes: 1 x 10 -21 s, and 4 x 10 -21 s, respectively) was disclosed from the measured angular distributions of their decay neutrons focused by the emission in flight towards the direction of motion of 4 He and 6 He ternary particles. Similarly, neutrons observed to be peaked around Li-particle motion could be attributed to the decay of the second excited state at E * = 2.26 MeV (lifetime: 2 x 10 -20 s) of 8 Li. The fractional yields of the intermediate 5 He and 7 He ternary fission modes relative to the ''true'' ternary 4 He and 6 He modes, respectively, were determined to be 0.21(5) for both cases. The mean energy of the 4 He residues resulting from the 5 He decay was determined to be 12.4(3) MeV, compared to 15.7(2) MeV for all ternary α-particles registered, and to 16.4(3) MeV for the true ternary α-particles. The mean energy of the 6 He residues from the 7 He decay is 11.0(15) MeV, compared to 12.3(5) MeV for all ternary 6 He particles. The population of 8 Li * was deduced to be 0.06(2) relative to Li ternary fission, and 0.33(20) relative to the yield of particle stable 8 Li. The perspective of using the observed intermediate LCPs for probing the ternary scission configuration in 252 Cf fission with the aid of trajectory calculations is briefly discussed. (orig.)

  2. Spontaneous mutation rate is a plastic trait associated with population density across domains of life.

    Science.gov (United States)

    Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G

    2017-08-01

    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.

  3. Spontaneous mutation rate is a plastic trait associated with population density across domains of life.

    Directory of Open Access Journals (Sweden)

    Rok Krašovec

    2017-08-01

    Full Text Available Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.

  4. Decreased spontaneous eye blink rates in chronic cannabis users: evidence for striatal cannabinoid-dopamine interactions.

    Directory of Open Access Journals (Sweden)

    Mikael A Kowal

    Full Text Available Chronic cannabis use has been shown to block long-term depression of GABA-glutamate synapses in the striatum, which is likely to reduce the extent to which endogenous cannabinoids modulate GABA- and glutamate-related neuronal activity. The current study aimed at investigating the effect of this process on striatal dopamine levels by studying the spontaneous eye blink rate (EBR, a clinical marker of dopamine level in the striatum. 25 adult regular cannabis users and 25 non-user controls matched for age, gender, race, and IQ were compared. Results show a significant reduction in EBR in chronic users as compared to non-users, suggesting an indirect detrimental effect of chronic cannabis use on striatal dopaminergic functioning. Additionally, EBR correlated negatively with years of cannabis exposure, monthly peak cannabis consumption, and lifetime cannabis consumption, pointing to a relationship between the degree of impairment of striatal dopaminergic transmission and cannabis consumption history.

  5. Mutation rate and spectrum of spontaneous mutations of deinococcus radiodurans under rifampin stress

    International Nuclear Information System (INIS)

    Hua Xiaoting; Wang Chao; Huang Lifen

    2010-01-01

    An rpoB/Rif r mutation analysis system has been developed from D. radiodurans based on the conservation of rpoB gene. To investigate the concentration effect of rifampin on the spontaneous mutation rate and spectrum of D. radiodurans, the mutation frequencies and rates of D. radiodurans were measured under a wide concentration range of 5∼50 μg /ml of rifampin. It was found that the mutation rate of the bacterium in 5μg /ml of rifampin was significantly higher than those in 25 and 50μg /ml rifampin. Rifampin had concentration-dependent effect not only on the mutation rate but also on the mutation spectrum. The different mutation spectrum under different concentration of rifampin suggested that D. radiodurans might change its anti-mutant strategy under reactive oxygen species (ROS) stress caused by low concentration of rifampin. It is speculated that D. radiodurans focuses on preventing base substitution mutation under low concentration of rifampin as ROS induces mainly oxidative base damage. (authors)

  6. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  7. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  8. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    viscosity in slowing down the diffusion rate in comparison to the decay rate without vis- cosity predicted by Bohr and ... revived Kramers' dynamical approach to understand nuclear fission at finite temperature and angular momentum. ... tor and (2) a compact seven-element array of BaF2 detectors. The fission fragments were.

  9. The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate.

    Directory of Open Access Journals (Sweden)

    Libertad García-Villada

    Full Text Available Riboviruses (RNA viruses without DNA replication intermediates are the most abundant pathogens infecting animals and plants. Only a few riboviral infections can be controlled with antiviral drugs, mainly because of the rapid appearance of resistance mutations. Little reliable information is available concerning i kinds and relative frequencies of mutations (the mutational spectrum, ii mode of genome replication and mutation accumulation, and iii rates of spontaneous mutation. To illuminate these issues, we developed a model in vivo system based on phage Qß infecting its natural host, Escherichia coli. The Qß RT gene encoding the Read-Through protein was used as a mutation reporter. To reduce uncertainties in mutation frequencies due to selection, the experimental Qß populations were established after a single cycle of infection and selection against RT(- mutants during phage growth was ameliorated by plasmid-based RT complementation in trans. The dynamics of Qß genome replication were confirmed to reflect the linear process of iterative copying (the stamping-machine mode. A total of 32 RT mutants were detected among 7,517 Qß isolates. Sequencing analysis of 45 RT mutations revealed a spectrum dominated by 39 transitions, plus 4 transversions and 2 indels. A clear template•primer mismatch bias was observed: A•C>C•A>U•G>G•U> transversion mismatches. The average mutation rate per base replication was ≈9.1×10(-6 for base substitutions and ≈2.3×10(-7 for indels. The estimated mutation rate per genome replication, μ(g, was ≈0.04 (or, per phage generation, ≈0.08, although secondary RT mutations arose during the growth of some RT mutants at a rate about 7-fold higher, signaling the possible impact of transitory bouts of hypermutation. These results are contrasted with those previously reported for other riboviruses to depict the current state of the art in riboviral mutagenesis.

  10. Rate of erosion and exhumation of crystalline rocks in the Hunza Karakoram defined by apatite fission track analysis

    Czech Academy of Sciences Publication Activity Database

    Kořínková, Dagmar; Svojtka, Martin; Kalvoda, J.

    2014-01-01

    Roč. 11, č. 3 (2014), s. 235-253 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : apatite fission-track analysis * erosion * exhumation of rocks * Karakoram Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.389, year: 2014

  11. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  12. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Witold Nazarewicz

    2003-01-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  13. High rate of hepatitis C virus (HCV) recurrence in HIV-infected individuals with spontaneous HCV RNA clearance

    NARCIS (Netherlands)

    Peters, L.; Mocroft, A.; Soriano, V.; Rockstroh, J. K.; Kirkby, N.; Reiss, P.; Katlama, C.; Zakharova, N.; Flisiak, R.; Lundgren, J. D.

    2014-01-01

    Following resolution of hepatitis C virus (HCV) infection, recurrence has been shown to occur in some persons with repeated exposure to HCV. We aimed to investigate the rate and factors associated with HCV RNA recurrence among HIV-1-infected patients with prior spontaneous HCV RNA clearance in the

  14. The (B)link Between Creativity and Dopamine: Spontaneous Eye Blink Rates Predict and Dissociate Divergent and Convergent Thinking

    Science.gov (United States)

    Chermahini, Soghra Akbari; Hommel, Bernhard

    2010-01-01

    Human creativity has been claimed to rely on the neurotransmitter dopamine, but evidence is still sparse. We studied whether individual performance (N=117) in divergent thinking (alternative uses task) and convergent thinking (remote association task) can be predicted by the individual spontaneous eye blink rate (EBR), a clinical marker of…

  15. Determining the americium transmutation rate and fission rate by post-irradiation examination within the scope of the ECRIX-H experiment

    Science.gov (United States)

    Lamontagne, J.; Pontillon, Y.; Esbelin, E.; Béjaoui, S.; Pasquet, B.; Bourdot, P.; Bonnerot, J. M.

    2013-09-01

    The ECRIX-H experiment aims to assess the feasibility of transmuting americium micro-dispersed in an inert magnesia matrix under a locally moderated neutron flux in the Phénix reactor. A first set of examinations demonstrated that pellet behaviour was satisfactory with moderate swelling at the end of the irradiation. Additional post-irradiation examinations needed to be conducted to confirm the high transmutation rate so as to definitively conclude on the success of the ECRIX-H experiment. This article presents and discusses the results of these new examinations. They confirm the satisfactory behaviour of the MgO matrix not only during the basic irradiation but also during post-irradiation thermal transients. These examinations also provide additional information on the behaviour of fission products both in the americium-based particles and in the MgO matrix. These results particularly validate the transmutation rate predicted by the calculation codes using several different analytical techniques. The fission rate is also determined. Moderate pellet swelling under irradiation (6.7 vol.%), while only 23% of the produced He and 4% of the fission gases were released from the fuel. No interaction between the pellets and the cladding. Formation of bubbles due to the precipitation of fission gases and He mainly in bubbles located inside the americium-based particles. These bubbles are the main cause of macroscopic swelling in the pellets. Well-crystallised structure of the MgO matrix which shows no amorphisation after irradiation despite the presence of fission products. The absence of any reaction of MgO with the americium-based phase, Formation of a PuO2-type crystalline phase from AmO1.62 particles following the Am transmutation process. A shielded electron probe micro-analyser (EPMA) 'CAMECA' Camebax equipped to collect and exploit the measurements using the 'SAMx' system. A Philips XL30 scanning electron microscope (SEM). Field acquisitions were performed thanks to

  16. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  17. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more.

    Science.gov (United States)

    Cohain, Judy Slome; Buxbaum, Rina E; Mankuta, David

    2017-12-22

    The purpose of this study was to quantify spontaneous first trimester miscarriage rates per woman among parous women. A vast amount of data has accumulated regarding miscarriage rates per recognized pregnancy as well as about recurrent miscarriage. This is the second study of miscarriage rates per woman in a parous population and the first study of recurrent and non-recurrent, spontaneous first trimester miscarriage rates per woman in a large parous population. Extraction of the following variables from all delivery room admissions from both Hadassah Medical Centers in Jerusalem Israel, 2004-2014: # of first trimester spontaneous miscarriages, # live births; # living children; age on admission, pre-pregnancy height and weight, any smoking this pregnancy, any alcohol or drug abuse this pregnancy, blood type, history of ectopic pregnancy, history of cesarean surgery (CS) and use of any fertility treatment(s). Among 53,479 different women admitted to labor and delivery ward, 43% of women reported having had 1 or more first trimester spontaneous miscarriages; 27% reported having had one, 10% two, 4% three, 1.3% four, 0.6% five and 0.05% reported having 6-16 spontaneous first trimester miscarriages. 18.5% had one or more first trimester miscarriages before their first live birth. Eighty-one percent of women with 11 or more living children experienced one or more first trimester miscarriages. First trimester miscarriage rates rose with increasing age, increasing parity, after previous ectopic pregnancy, after previous cesarean surgery, with any smoking during pregnancy and pre-pregnancy BMI ≥30. Miscarriages are common among parous women; 43% of parous women report having experienced one or more first trimester spontaneous miscarriages, rising to 81% among women with 11 or more living children. One in every 17 parous women have three or more miscarriages. Depending on her health, nutrition and lifestyle choices, even a 39 year old parous woman with a history of 3 or

  18. Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Smith, M. B.; Michl, Josef

    2010-01-01

    Roč. 110, č. 11 (2010), s. 6891-6936 ISSN 0009-2665 Grant - others:Department of Energy(US) DE- FG36 -08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  19. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  20. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  1. Fast-neutron-induced fission of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2017-01-01

    Full Text Available The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  2. Mass and Charge Distribution in Low-Energy Fission

    International Nuclear Information System (INIS)

    Wahl, A.C.

    1965-01-01

    The mass and charge distributions for thermal-neutron fission of U 235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U 235 that are discussed include thermal-neutron fission of U 233 and Pu 239 , spontaneous fission of Pu 240 and Cf 252 , 14-MeV neutron fission of U 235 and U 238 , 11-MeV proton fission of Ra 226 and 22-MeV deuteron fission of Bi 209 . (author) [fr

  3. Effect of longwall face advance rate on spontaneous heating process in the gob area - CFD modelling

    Czech Academy of Sciences Publication Activity Database

    Taraba, B.; Michalec, Zdeněk

    2011-01-01

    Roč. 90, č. 8 (2011), s. 2790-2797 ISSN 0016-2361 R&D Projects: GA ČR GA105/06/0630 Grant - others:GA ČR(CZ) GA105/08/1414 Institutional research plan: CEZ:AV0Z30860518 Keywords : coal oxidation * spontaneous heating * CFD modelling * Fluent Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 3.248, year: 2011 http://www.sciencedirect.com/science/article/pii/S0016236111001724

  4. New fission-neutron-spectrum representation for ENDF

    International Nuclear Information System (INIS)

    Madland, D.G.

    1982-04-01

    A new representation of the prompt fission neutron spectrum is proposed for use in the Evaluated Nuclear Data File (ENDF). The proposal is made because a new theory exists by which the spectrum can be accurately predicted as a function of the fissioning nucleus and its excitation energy. Thus, prompt fission neutron spectra can be calculated for cases where no measurements exist or where measurements are not possible. The mathematical formalism necessary for application of the new theory within ENDF is presented and discussed for neutron-induced fission and spontaneous fission. In the case of neutron-induced fission, expressions are given for the first-chance, second-chance, third-chance, and fourth-chance fission components of the spectrum together with that for the total spectrum. An ENDF format is proposed for the new fission spectrum representation, and an example of the use of the format is given

  5. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  6. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  7. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  8. Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in Caenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size.

    Science.gov (United States)

    Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali

    2017-06-01

    Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Monte carlo sampling of fission multiplicity.

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J. S. (John S.)

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  10. High rate of hepatitis C virus (HCV) recurrence in HIV-infected individuals with spontaneous HCV RNA clearance

    DEFF Research Database (Denmark)

    Peters, L; Mocroft, A; Soriano, V

    2014-01-01

    OBJECTIVES: Following resolution of hepatitis C virus (HCV) infection, recurrence has been shown to occur in some persons with repeated exposure to HCV. We aimed to investigate the rate and factors associated with HCV RNA recurrence among HIV-1-infected patients with prior spontaneous HCV RNA...... clearance in the EuroSIDA cohort. METHODS: All HIV-infected patients with documented prior spontaneous HCV clearance, and at least one subsequently collected plasma sample, were examined. The last sample was tested for HCV RNA and those with HCV RNA ≥ 615 IU/mL were defined as having HCV recurrence...... less likely to have HCV RNA recurrence, whereas IDUs were over 6 times more likely to have HCV RNA recurrence compared with non-IDUs (OR 6.58; 95% CI 1.48-29.28; P = 0.013). CONCLUSIONS: Around 1 in 5 HIV-infected patients with prior spontaneous HCV RNA clearance had detectable HCV RNA during follow...

  11. Capture and Fission rate of 232-Th, 238-U, 237-Np and 239-Pu from spallation neutrons in a huge block of lead.

    CERN Document Server

    Vlachoudis, Vasilis

    2000-01-01

    The study is centered on the research of the incineration possibility of nuclear waste, by the association of a particle accelerator with a multiplying medium of neutrons, in the project "Energy Amplifier" of C. Rubbia. It consists of the experimental determination of the rates of capture and fission of certain elements (232-Th, 238-U, 237-Np and 239-Pu) subjected to a fluence of fast spallation neutrons. These neutrons are produced by the interaction of high kinetic energy protons (several GeV) provided by the CERN-PS accelerator, on a large lead solid volume. The measurement techniques used in this work, are based on the activation of elements in the lead volume and the subsequent gamma spectroscopy of the activated elements, and also by the detection of fission fragment traces. The development, of a Monte Carlo code makes it possible, on one hand, to better understand the relevant processes, and on the other hand, to validate the code, by comparison with measurements, for the design and the construction of...

  12. Comment on anomalous dispersion and scattering rates for multiphonon spontaneous decay in He II

    Science.gov (United States)

    Haavasoja, T.; Narayanamurti, V.; Chin, M. A.

    1984-10-01

    We report on new measurements of the spontaneous decay threshold energy E c for high-frequency phonon propagation in He II at saturated vapor pressure at T=0.1 K. Superconducting tin tunnel generators and aluminum tunnel detectors were used in this study. The measurements show that the mean free path becomes much larger than the propagation length of 1.1 mm for a value of E c =9.8±0.15 K. This agrees with the value originally reported ( E c =9.5±0.4 K) by Dynes and Narayanamurti using aluminum tunnel generators, but is shown to correspond to the point where the phase velocity equals the sound velocity, when the phonons become stable, as first proposed by Pitayevski and Levinson. Evidence for n-phonon decay at energies lower than E c is presented for n≳2 with a short mean free path (neutron data due to Donnelly, Donnelly, and Hills.

  13. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  14. Success and spontaneous pregnancy rates following systemic methotrexate versus laparoscopic surgery for tubal pregnancies: A randomized trial

    DEFF Research Database (Denmark)

    Krag Moeller, Lars Bo; Moeller, Charlotte; Thomsen, Sten Grove

    2009-01-01

    . A total of 106 women diagnosed with ectopic pregnancy (EP). Methods. Between March 1997 and September 2000, 1,265 women were diagnosed with EP, 395 (31%) were eligible, 109 (9%) were randomized of whom 106 had an EP. The study was originally powered to a sample size of 422 patients. The women were......, subsequent intrauterine, and recurrent ectopic pregnancies. Results. The success rates were 74% following MTX treatment and 87% after surgery (n.s.); the subsequent spontaneous intrauterine pregnancy rate was 73% after MTX and 62% after surgery; and the EP rate was 9.6% after MTX and 17.3% following surgery......Objective. To determine which treatment should be offered to women with a non-ruptured tubal pregnancy: a single dose of methotrexate (MTX) or laparoscopic surgery. Design. Prospective, randomized, open multicenter study. Setting. Seven Danish departments of obstetrics and gynecology. Sample...

  15. The effects of MSH2 deficiency on spontaneous and radiation-induced mutation rates in the mouse germline

    International Nuclear Information System (INIS)

    Burr, Karen L-A.; Duyn-Goedhart, Annemarie van; Hickenbotham, Peter; Monger, Karen; Buul, Paul P.W. van; Dubrova, Yuri E.

    2007-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2 -/- males were significantly higher than those in isogenic wild-type (Msh2 +/+ ) and heterozygous (Msh2 +/- ) mice. In contrast, the irradiated Msh2 -/- mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2 +/+ and Msh2 +/- animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes

  16. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1982-07-01

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  17. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1983-08-01

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  18. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  19. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup

    Science.gov (United States)

    Viswanathan, U. K.; Sah, D. N.; Rath, B. N.; Anantharaman, S.

    2009-08-01

    Fuel pins of a Pressurised Heavy Water Reactor (PHWR) fuel bundle discharged from Narora Atomic Power Station unit #1 after attaining a fuel burnup of 7528 MWd/tU have been subjected to two types of studies, namely (i) puncture test to estimate extent of fission gas release and internal pressure in the fuel pin and (ii) localized heating of the irradiated fuel pin to measure the creep rate of the cladding in temperature range 800 °C-900 °C. The fission gas release in the fuel pins from the outer ring of the bundle was found to be about 8%. However, only marginal release was found in fuel pins from the middle ring and the central fuel pin. The internal gas pressure in the outer fuel pin was measured to be 0.55 ± 0.05 MPa at room temperature. In-cell isothermal heating of a small portion of the outer fuel pins was carried out at 800 °C, 850 °C and 900 °C for 10 min and the increase in diameter of the fuel pin was measured after heat treatment. Creep rates of the cladding obtained from the measurement of the diameter change of the cladding due to heating at 800 °C, 850 °C and 900 °C were found respectively to be 2.4 × 10 -5 s -1, 24.6 × 10 -5 s -1 and 45.6 × 10 -5 s -1.

  20. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  1. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    Lammer, M.

    1994-06-01

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  2. Progress in fission product nuclear data. No. 13

    International Nuclear Information System (INIS)

    Lammer, M.

    1990-11-01

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  3. Ultrafast modification of the spontaneous decay rate by plasmonic nanostructures: a step toward manipulation of a single atom

    International Nuclear Information System (INIS)

    Zavareian, N

    2014-01-01

    A controllable method for modifying spontaneous emission of an electric dipole located in close proximity to a plasmonic nanostructure is proposed. The nanostructure constructed of two triangular nanowires, in the form of a dimer, on a substrate in which the gallium film on the micrometer scale is the main layer. The results illustrate that phase transition of the gallium film from the α-crystalline to liquid phase leads to variation of the spectrum of radiative and nonradiative decay rates of the dipole where such a transition depends on parameters of the dipole, e.g. position, orientation and emission wavelength as well as on the nanostructure, e.g. shape and size of the dimer and also properties of the substrate. On the other hand, it is found that during phase transition modification of nanostructure resonances is negligible while the radiative decay rate changes. (letter)

  4. Second international conference on dynamical aspects of nuclear fission. Programme and abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain 37 abstracts and short communications dealing with the fission of heavy nuclei. The fission is induced by neutrons or by reactions of heavy ions, or occurs spontaneously. Included are both theoretical and experimental studies. Particular attention was paid to the description of the fission mechanism and kinematics (fragments, neutrons, light ions). (S.P.)

  5. Spontaneous abortion rate and advanced maternal age: Consequences for prenatal diagnosis

    NARCIS (Netherlands)

    T.E. Cohen-Overbeek (Titia); W.C.J. Hop (Wim); M.E.M. Den Ouden; L. Pijpers (Leendert); M.G. Jahoda (M.); J.W. Wladimiroff (Juriy)

    1990-01-01

    markdownabstractAbstract Maternal age related and procedure-related fetal abortion rates were studied in 384 women aged 36 and over scheduled for transabdominal chorionic villus sampling (TA-CVS) at 12-14 weeks of gestation. The pre-TA-CVS abortion rate within 30 days of intake (at 6-10 weeks of

  6. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  7. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  8. VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES

    Science.gov (United States)

    Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...

  9. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  10. Craving Ravens: Individual ‘haa’ Call Rates at Feeding Sites as Cues to Personality and Levels of Fission-Fusion Dynamics?

    Directory of Open Access Journals (Sweden)

    Georgine Szipl

    2014-08-01

    Full Text Available Common ravens aggregate in large non-breeder flocks for roosting and foraging until they achieve the status of territorial breeders. When discovering food, they produce far-reaching yells or ‘haa’ calls, which attract conspecifics. Due to the high levels of fission-fusion dynamics in non-breeders’ flocks, assemblies of feeding ravens were long thought to represent anonymous aggregations. Yet, non-breeders vary in their degree of vagrancy, and ‘haa’ calls convey individually distinct acoustic features, which are perceived by conspecifics. These findings give rise to the assumption that raven societies are based on differential social relationships on an individual level. We investigated the occurrence of ‘haa’ calling and individual call rates in a group of individually marked free-ranging ravens. Calling mainly occurred in subadult and adult females, which showed low levels of vagrancy. Call rates differed significantly between individuals and with residency status, and were correlated with calling frequency and landing frequency. Local ravens called more often and at higher rates, and were less likely to land at the feeding site than vagrant birds. The results are discussed with respect to individual degrees of vagrancy, which may have an impact on social knowledge and communication in this species.

  11. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates.

    Science.gov (United States)

    Xia, Yan; Li, Ming; Charubin, Kamil; Liu, Ying; Heberle, Frederick A; Katsaras, John; Jing, Benxin; Zhu, Yingxi; Nieh, Mu-Ping

    2015-12-01

    We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.

  12. Fundamental limitations in spontaneous emission rate of single-photon sources

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Khurgin, Jacob B.

    2016-01-01

    The rate of single-photon generation by quantum emitters (QEs) can be enhanced by placing a QE inside a resonant structure. This structure can represent an all-dielectric micro-resonator or waveguide and thus be characterized by ultra-low loss and dimensions on the order of wavelength. Or it can ...

  13. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension.

    Science.gov (United States)

    Iliescu, Radu; Tudorancea, Ionut; Irwin, Eric D; Lohmeier, Thomas E

    2013-10-01

    The sensitivity of baroreflex control of heart rate is depressed in subjects with obesity hypertension, which increases the risk for cardiac arrhythmias. The mechanisms are not fully known, and there are no therapies to improve this dysfunction. To determine the cardiovascular dynamic effects of progressive increases in body weight leading to obesity and hypertension in dogs fed a high-fat diet, 24-h continuous recordings of spontaneous fluctuations in blood pressure and heart rate were analyzed in the time and frequency domains. Furthermore, we investigated whether autonomic mechanisms stimulated by chronic baroreflex activation and renal denervation-current therapies in patients with resistant hypertension, who are commonly obese-restore cardiovascular dynamic control. Increases in body weight to ∼150% of control led to a gradual increase in mean arterial pressure to 17 ± 3 mmHg above control (100 ± 2 mmHg) after 4 wk on the high-fat diet. In contrast to the gradual increase in arterial pressure, tachycardia, attenuated chronotropic baroreflex responses, and reduced heart rate variability were manifest within 1-4 days on high-fat intake, reaching 130 ± 4 beats per minute (bpm) (control = 86 ± 3 bpm) and ∼45% and baroreflex activation and renal denervation abolished the hypertension. However, only baroreflex activation effectively attenuated the tachycardia and restored cardiac baroreflex sensitivity and heart rate variability. These findings suggest that baroreflex activation therapy may reduce the risk factors for cardiac arrhythmias as well as lower arterial pressure.

  14. Cross Time-Frequency Analysis for Combining Information of Several Sources: Application to Estimation of Spontaneous Respiratory Rate from Photoplethysmography

    Science.gov (United States)

    Peláez-Coca, M. D.; Orini, M.; Lázaro, J.; Bailón, R.; Gil, E.

    2013-01-01

    A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG) signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error {0.00; 0.98} mHz ({0.00; 0.31}%) and the interquartile range error {4.88; 6.59} mHz ({1.60; 1.92}%). The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration. PMID:24363777

  15. Cross Time-Frequency Analysis for Combining Information of Several Sources: Application to Estimation of Spontaneous Respiratory Rate from Photoplethysmography

    Directory of Open Access Journals (Sweden)

    M. D. Peláez-Coca

    2013-01-01

    Full Text Available A methodology that combines information from several nonstationary biological signals is presented. This methodology is based on time-frequency coherence, that quantifies the similarity of two signals in the time-frequency domain. A cross time-frequency analysis method, based on quadratic time-frequency distribution, has been used for combining information of several nonstationary biomedical signals. In order to evaluate this methodology, the respiratory rate from the photoplethysmographic (PPG signal is estimated. The respiration provokes simultaneous changes in the pulse interval, amplitude, and width of the PPG signal. This suggests that the combination of information from these sources will improve the accuracy of the estimation of the respiratory rate. Another target of this paper is to implement an algorithm which provides a robust estimation. Therefore, respiratory rate was estimated only in those intervals where the features extracted from the PPG signals are linearly coupled. In 38 spontaneous breathing subjects, among which 7 were characterized by a respiratory rate lower than 0.15 Hz, this methodology provided accurate estimates, with the median error {0.00; 0.98} mHz ({0.00; 0.31}% and the interquartile range error {4.88; 6.59} mHz ({1.60; 1.92}%. The estimation error of the presented methodology was largely lower than the estimation error obtained without combining different PPG features related to respiration.

  16. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  17. Mutation Rates, Spectra, and Genome-Wide Distribution of Spontaneous Mutations in Mismatch Repair Deficient Yeast

    Science.gov (United States)

    Lang, Gregory I.; Parsons, Lance; Gammie, Alison E.

    2013-01-01

    DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells. PMID:23821616

  18. A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion-fission hybrid reactor

    Science.gov (United States)

    Feng, Song; Liu, Rong; Lu, Xinxin; Yang, Yiwei; Xu, Kun; Wang, Mei; Zhu, Tonghua; Jiang, Li; Qin, Jianguo; Jiang, Jieqiong; Han, Zijie; Lai, Caifeng; Wen, Zhongwei

    2016-03-01

    The 239Pu production rate is important data in neutronics design for a natural uranium blanket of a fusion-fission hybrid reactor, and the accuracy and reliability should be validated by integral experiments. The distribution of 239Pu production rates in a subcritical natural uranium blanket mock-up was obtained for the first time with a D-T neutron generator by using an activation technique. Natural uranium foils were placed in different spatial locations of the mock-up, the counts of 277.6 keV γ-rays emitted from 239Np generated by 238U capture reaction were measured by an HPGe γ spectrometer, and the self-absorption of natural uranium foils was corrected. The experiment was analyzed using the Super Monte Carlo neutron transport code SuperMC2.0 with recent nuclear data of 238U from the ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0u2, JEFF-3.2 and CENDL-3.1 libraries. Calculation results with the JEFF-3.2 library agree with the experimental ones best, and they agree within the experimental uncertainty in general with the average ratios of calculation results to experimental results (C/E) in the range of 0.93 to 1.01.

  19. Systematics of measured fission half lives of even even superheavy nuclei

    International Nuclear Information System (INIS)

    Bhagwat, A.; Gupta, M.; Gambhir, Y.K.

    2011-01-01

    The production and study of superheavy nuclei is of current interest. Elements upto Z = 118 have been produced so far, and their decay properties have been studied in detail. In the shell stabilised superheavy region, spontaneous fission competes with decay and must be taken into account as an important decay mode. Therefore, the study of fission becomes particularly important in the context of the formation and survival of the superheavy nuclei. A fully microscopic description of the fission phenomenon and hence the fission half lives, though highly desirable, is far from being realised due to the extreme complexity of the fission process. Hence a phenomenological description of the fission process is attempted here

  20. A multiple parallel-plate avalanche counter for fission-fragment detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y., E-mail: wu24@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 9455 (United States); Henderson, R.A. [Lawrence Livermore National Laboratory, Livermore, CA 9455 (United States); Haight, R.C.; Lee, H.Y.; Taddeucci, T.N. [Los Alamos National Laboratory, Los Alamos, MN 87545 (United States); Bucher, B.; Chyzh, A. [Lawrence Livermore National Laboratory, Livermore, CA 9455 (United States); Devlin, M.; Fotiades, N. [Los Alamos National Laboratory, Los Alamos, MN 87545 (United States); Kwan, E. [Lawrence Livermore National Laboratory, Livermore, CA 9455 (United States); National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); O’Donnell, J.M.; Perdue, B.A.; Ullmann, J.L. [Los Alamos National Laboratory, Los Alamos, MN 87545 (United States)

    2015-09-11

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of {sup 235}U and {sup 239}Pu with a total mass near 100 mg each and the spontaneous fission of {sup 252}Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  1. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  2. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  3. Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal

    Science.gov (United States)

    Zhong, Yongchun; Yue, Zhounan; Wong, George K. L.; Xi, Yan Yan; Hsu, Yuk Fan; Djurišić, Aleksandra B.; Dong, Jian-Wen; Chen, Wen-Jie; Wong, Kam Sing

    2010-11-01

    ZnO photonic crystal (PC) with face-center-cube type structure is fabricated by electrodeposition using holographic lithographically made organic (SU-8) template. Photonic band gap effect (reflection peak and transmission dip in infrared spectral region) is clearly seen. Observation of strong enhancement and blueshift of the emission peak (from 383.8 to 378.8 nm), shortening of the exciton photoluminescence lifetime (from 88 to 34 ps), and reduction in amplified spontaneous emission threshold of ZnO PC compared to that of the reference nonstructured electrodeposited ZnO showed clear evidence of PC structure affecting the ZnO exciton emission.

  4. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure

    Directory of Open Access Journals (Sweden)

    Q.-N. Yu

    2017-08-01

    Full Text Available In this paper, an experimental approach to acquiring true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure is described. This method is based on a single edge-emitting laser chip with simple sample processing. The photoluminescence spectra are measured at both facets of the edge-emitting device and transformed to the spontaneous emission rate following the theory described here. The unusual double peaks appearing in the spontaneous emission rate spectra are observed for the InGaAs/GaAs quantum-well structure. The result is analyzed in terms of Indium-rich island and Model-Solid theories. The proposed method is suitable for electrically-pumped quantum-well laser structures, as well.

  5. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  6. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Directory of Open Access Journals (Sweden)

    Khryachkov Vitaly

    2018-01-01

    Full Text Available Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  7. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  8. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    Zhao Yunlong; Wu Zhaohui; Xia Yuliang

    1996-01-01

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB 1 and UB 2 . An established new method σ·Φ ρ d /b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO 3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  9. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    sphere was surrounded by enriched uranium 235 U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor k eff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237 Np fission cross section by the n-TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235 U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the ν-bar of 237 Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237 Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n-TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237 Np. (author)

  10. Nuclear data for neutron emission in the fission process

    International Nuclear Information System (INIS)

    Ganesan, S.

    1991-11-01

    This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239 Pu and 235 U, and related problems. Refs figs and tabs

  11. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  12. Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers

    International Nuclear Information System (INIS)

    Elstad, Maja; Walløe, Lars

    2015-01-01

    Cardiovascular oscillations exist in many different variables and may give important diagnostic and prognostic information in patients. Variability in cardiac stroke volume (SVV) is used in clinical practice for diagnosis of hypovolemia, but currently is limited to patients on mechanical ventilation. We investigated if SVV and heart rate variability (HRV) could detect central hypovolemia in spontaneously breathing humans: We also compared cardiovascular variability during spontaneous breathing with supported mechanical ventilation.Ten subjects underwent simulated central hypovolemia by lower body negative pressure (LBNP) with >10% reduction of cardiac stroke volume. The subjects breathed spontaneously and with supported mechanical ventilation. Heart rate, respiratory frequency and mean arterial blood pressure were measured. Stroke volume (SV) was estimated by ModelFlow (Finometer). Respiratory SVV was calculated by: 1) SVV% = (SVmax − SVmin)/SVmean during one respiratory cycle, 2) SVIntegral from the power spectra (Fourier transform) at 0.15–0.4 Hz and 3) SVV-norm = (√SVIntegral)/SVmean. HRV was calculated by the same methods.During spontaneous breathing two measures of SVV and all three measures of HRV were reduced during hypovolemia compared to baseline. During spontaneous breathing SVIntegral and HRV% were best to detect hypovolemia (area under receiver operating curve 0.81). HRV% ≤ 11% and SVIntegral ≤ 12 ml 2 differentiated between hypovolemia and baseline during spontaneous breathing.During supported mechanical ventilation, none of the three measures of SVV changed and two of the HRV measures were reduced during hypovolemia. Neither measures of SVV nor HRV were classified as a good detector of hypovolemia.We conclude that HRV% and SVIntegral detect hypovolemia during spontaneous breathing and both are candidates for further clinical testing. (paper)

  13. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  14. A method to measure prompt fission neutron spectrum using gamma multiplicity tagging

    Energy Technology Data Exchange (ETDEWEB)

    Blain, E., E-mail: blaine2@rpi.edu; Daskalakis, A.; Block, R.C.; Barry, D.; Danon, Y.

    2016-01-01

    In order to improve on current prompt fission neutron spectrum measurements, a gamma multiplicity tagging method was developed at the Rensselaer Polytechnic Institute Gearttner Linear Accelerator Center. This method involves using a coincidence requirement on an array of BaF{sub 2} gamma detectors to determine the timing of a fission event. This allows for much larger fission samples to be used due to the higher penetrability of gammas compared to fission fragments. Additionally, since the method relies on gammas as opposed to fission fragments, the effects of the low level discriminator, used in fission chambers to eliminate alpha events, are not seen. A {sup 252}Cf fission chamber was constructed in order to determine the viability of this method as well as the efficiency when compared to a fission chamber. The implemented multiple gamma tagging method was found to accurately reproduce the prompt fission neutron spectrum for the spontaneous fission of {sup 252}Cf and to detect 30% of fission events. - Highlights: • A method measuring prompt fission neutron spectrum using gamma rays was proposed. • The method tags fission as reliably as a fission chamber and with better timing. • The gamma tag method shows good agreement with existing {sup 252}Cf data and models. • This eliminates the need of a fission chamber and allows larger samples to be measured.

  15. Disruption of the p53-mediated G{sub 1}/S cell cycle checkpoint results in elevated rates of spontaneous genetic recombination in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Strasfeld, L.; Brainerd, E.; Meyn, M.S. [Yale Univ. School of Medicine, New Haven, CT (United States)

    1994-09-01

    A key feature of the cancer-prone inherited disease ataxia-telangiectasia (A-T) is genetic instability. We recently demonstrated that one aspect of genetic instability in A-T is a marked elevation in the spontaneous rates of intrachromosomal mitotic recombination. We have proposed a model for A-T that attributes these high recombination rates to a lack of DNA damage-sensitive cell cycle checkpoints. One prediction of this model is that disrupting p53 function in normal cells should increase their spontaneous rates of recombination by interfering with their p53-dependent G{sub 1}/S cell cycle checkpoint. To test this prediction, we transfected control and A-T fibroblast lines that each harbor a single integrated copy of lacZ-based recombination vector (pLrec) with derivatives of a eukaryotic expression vector (pRep5) that contain either a dominant-negative p53 mutant (143{sup val{yields}ala}) or a human papilloma virus E6 gene (HPV18 E6). Expression of either of these genes results in loss of p53 function and abolition of the G{sub 1}/S cell cycle checkpoint. Four independent p53{sup 143ala} transformants of the control line showed 25-80 fold elevations in spontaneous recombination rates when compared to their parent cell line. Elevations in spontaneous recombination rates were also detected following transfection with the HPV18 E6 gene. In contrast, four independent p53{sup 143ala} transformants of the A-T cell line showed no significant changes in their already high spontaneous recombination rates. We are now extending these observations to additional normal human fibroblast lines and carrying out molecular analyses of the products of these recombinational events. Our results support our hypothesis that the lack of a p53-dependent G{sub 1}/S cell cycle checkpoint contributes to the hyperrecombination seen in A-T.

  16. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  17. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    Science.gov (United States)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  18. Altered heart rate variability in spontaneously hypertensive rats is associated with specific particulate matter components in Detroit, Michigan.

    Science.gov (United States)

    Rohr, Annette C; Kamal, Ali; Morishita, Masako; Mukherjee, Bhramar; Keeler, Gerald J; Harkema, Jack R; Wagner, James G

    2011-04-01

    Exposure to fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] is linked to adverse cardiopulmonary health effects; however, the responsible constituents are not well defined. We used a rat model to investigate linkages between cardiac effects of concentrated ambient particle (CAP) constituents and source factors using a unique, highly time-resolved data set. Spontaneously hypertensive rats inhaled Detroit Michigan, CAPs during summer or winter (2005-2006) for 13 consecutive days. Electrocardiogram data were recorded continuously, and heart rate (HR) and heart rate variability (HRV) metrics were derived. Extensive CAP characterization, including use of a Semicontinuous Elements in Aerosol Sampler (SEAS), was performed, and positive matrix factorization was applied to investigate source factors. Mean CAP exposure concentrations were 518 μg/m(3) and 357 μg/m(3) in the summer and winter, respectively. Significant reductions in the standard deviation of the normal-to-normal intervals (SDNN) in the summer were strongly associated with cement/lime, iron/steel, and gasoline/diesel factors, whereas associations with the sludge factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAP-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary sulfate factors and most of their associated components. Specific relationships for increased root mean square of the standard deviation of successive normal-to-normal intervals (RMSSD) in winter were difficult to determine because of lack of consistency between factors and associated constituents. Our results indicate that specific modulation of cardiac function in Detroit was most strongly linked to local industrial sources. Findings also highlight the need to consider both factor analytical results and component-specific results when interpreting findings.

  19. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Directory of Open Access Journals (Sweden)

    Gatera Angélique

    2018-01-01

    The latest results for PFG characteristics from the reaction 239Pu(nth,f will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  20. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Brzęk, Paweł; Gębczyński, Andrzej K; Książek, Aneta; Konarzewski, Marek

    2016-07-01

    Spontaneous physical activity (SPA) represents an important component of daily energy expenditures in animals and humans. Intra-specific variation in SPA may be related to the susceptibility to metabolic disease or obesity. In particular, reduced SPA under conditions of limited food availability may conserve energy and prevent loss of body and fat mass ('thrifty genotype hypothesis'). However, both SPA and its changes during food restriction show wide inter-individual variations. We studied the effect of 30% caloric restriction (CR) on SPA in laboratory mice divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate. Selection increased SPA in the H-BMR line but did not change it in the L-BMR mice. This effect reflected changes in SPA intensity but not SPA duration. CR increased SPA intensity more strongly in the L-BMR line than in the H-BMR line and significantly modified the temporal variation of SPA. However, the initial between-line differences in SPA were not affected by CR. Loss of body mass during CR did not differ between both lines. Our results show that the H-BMR mice can maintain their genetically determined high SPA under conditions of reduced food intake without sacrificing their body mass. We hypothesize that this pattern may reflect the higher flexibility in the energy budget in the H-BMR line, as we showed previously that mice from this line reduced their BMR during CR. These energy savings may allow for the maintenance of elevated SPA in spite of reduced food intake. We conclude that the effect of CR on SPA is in large part determined by the initial level of BMR, whose variation may account for the lack of universal pattern of behavioural responses to CR. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  2. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  3. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  4. Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)

    2016-11-15

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in the isotopes {sup 250-260}No. The even-even isotopes have been considered within the standard Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, inner and outer barrier heights as well as fission isomer excitation energies are given. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF} both for even-even and odd-mass nuclei. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account within the self-consistent HFB-EFA blocking procedure, lead to larger t{sub SF} values in odd-mass nuclei as compared with their even-even neighbors. Alpha decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M functional regarding nuclear masses leads to a very good reproduction of Q{sub α} values and consequently of lifetimes. (orig.)

  5. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  6. Self-Organized Fission Control for Flocking System

    Directory of Open Access Journals (Sweden)

    Mingyong Liu

    2015-01-01

    Full Text Available This paper studies the self-organized fission control problem for flocking system. Motivated by the fission behavior of biological flocks, information coupling degree (ICD is firstly designed to represent the interaction intensity between individuals. Then, from the information transfer perspective, a “maximum-ICD” based pairwise interaction rule is proposed to realize the directional information propagation within the flock. Together with the “separation/alignment/cohesion” rules, a self-organized fission control algorithm is established that achieves the spontaneous splitting of flocking system under conflict external stimuli. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed algorithm.

  7. Progress in fission product nuclear data. Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

    International Nuclear Information System (INIS)

    Lammer, G.

    1978-07-01

    This is the fourth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.)

  8. The determination of 210Pb, 210Bi, 210Po by counting gross α and gross β rate of spontaneous deposited samples on Ni foil

    International Nuclear Information System (INIS)

    Wang Yuxue; Guo Dongfa; Huang Qiuhong

    2012-01-01

    The optimum spontaneous deposition conditions of 210 Bi and 210 Po on Ni foil is studied in this paper, and a simultaneous or continuous testing method of 210 Pb, 210 Bi, 210 Po in samples by counting gross α and gross β rate of spontaneous deposited samples on Ni foil is set up. The research results show that under the conditions of the Ni foil area being 3.14 cm 2 , the concentration of HCl being 1.0 mol/L, the volume of HCl being 25 mL, the constant experiment temperature being 90℃, the vibration frequency being 180/min, the vibration amplitude being 20 mm and the spontaneous deposition time being 60 min, 210 Bi and 210 Po on Ni foil can be simultaneously and quantitatively deposited. The linear correlation coefficient between 210 Po activity and its α-counting rate is 0.9998, 210 Bi activity and its β-counting rate is 0.9997. The effects of 210 Bi and 210 Po short half-time radioisotopes on testing will decrease while standing the Ni foil for a certain length of time before measuring, in case of hydrazine hydrochloride and tartaric acid presence, lots of coexisting elements do not produce interference to testing. Degree of precision of this testing technology si higher than 5%, total recovery rate reaches 99.5%∼100.5%. (authors)

  9. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  10. Mechanism of cytokinetic contractile ring constriction in fission yeast.

    Science.gov (United States)

    Stachowiak, Matthew R; Laplante, Caroline; Chin, Harvey F; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D; O'Shaughnessy, Ben

    2014-06-09

    Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown because the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms, we studied fission yeast protoplasts, in which constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  12. Effect of low-intensity low-dose rate irradiation on the incidence and the development of spontaneous leukosis in AKR mice

    International Nuclear Information System (INIS)

    Burlakova, E.B.; Erokhin, V.N.

    2001-01-01

    Development of spontaneous leukosis in AKR mice is accelerated by irradiation with low doses of 1.2-2.4 cGy and low dose rate 0.06 cGy/day. The leukoses incidence rate increases. Deaths of the animals from leukosis occurs earlier, shortening the average and maximum life-spans of the animals. The dynamics of changes in the mass of organs of the immune systems (thymus and spleen) shows extrema. The moment of reaching the extremum correlates with the maximum rate of animals' deaths [ru

  13. Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure.

    Science.gov (United States)

    Zhao, Yun-Jin; Tian, Meng; Wang, Xiao-Yun; Yang, Hong; Zhao, Heping; Huang, Yong-Gang

    2018-01-22

    We provide numerical demonstrations of the applicability and accuracy of the quasi-static method and the finite-element method in the investigation of the modifications of the spontaneous emission rate and the energy level shift of an emitter placed near a silver-air interface or a silver nano-sphere. The analytical results are presented as a reference. Our calculations show that the finite element method is an accurate and general method. For frequency away from the radiative mode, the quasi-static method can be applied more effectively for calculating the energy level shift than the spontaneous emission rate. But for frequency around, there is a blue shift for both and this shift increases with the increasing of emitter-silver distance. Applying the theory to the nanosphere dimmer, we see similar phenomenon and find extremely large modifications of the spontaneous emission rate and energy level shift. These findings are instructive in the fields of quantum light-matter interactions.

  14. Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.

    Science.gov (United States)

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko

    2012-08-15

    Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P activity was much weaker (P abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.

  15. Fission Spectrum Related Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  16. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  17. Contribution to statistics in fission track counting

    International Nuclear Information System (INIS)

    Bigazzi, G.; Bonadonna, F.; Neto, J.C.H.

    1986-01-01

    In order to test the new statistical model proposed in two papers by McGee, Johnson and Naeser for calculating the standard error in fission track dating, spontaneous and induced track counts from external detector method-EDM-or similar were simulated by random numbers, assuming that, for a given uranium content, fission tracks were spatially distributed according to Poisson distributions. By the results of such a simulation it can be concluded that: (1) In EDM, (1/nsub(s)+1/nsub(I)sup(1/2) represents a reliable evaluation of the relative standard error of rhosub(s)/rhosub(I)-ratio of spontaneous to induced track densities in a sample in which nsub(s) spontaneous and nsub(I) induced tracks were counted. (2) The new model confirms the validity of the above conclusion, by applying it to the spontaneous and induced track counts whose relative standard deviations of the means were evaluated by normal sampling statistics. Population method-PM-data were also simulated; (σ-bar' 2 sub(s)+σ-bar' 2 sub(I))sup(1/2), where σ-bar'sub(s) and σ-bar'sub(I) are the above relative standard deviations of the mean, offers a reliable evaluations of the uncertainty of rhosub(s)/rhosub(I) ratio for the simple cases analyzed in the present work. (author)

  18. Correlated fission data measurements with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Hayes, A. C.; Ianakiev, K. D.; Iliev, M. L.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.

    2018-02-01

    To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30-40 keVee. A fission reaction tagging method was developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is ∼47%. New correlated data for prompt fission neutrons and prompt fission γ rays were obtained for 252Cf using this high detection efficiency experimental setup. Average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.

  19. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  20. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  1. Effects of a hot-water extract of porcini (Boletus aestivalis) mushrooms on the blood pressure and heart rate of spontaneously hypertensive rats.

    Science.gov (United States)

    Midoh, Naoki; Miyazawa, Noriko; Eguchi, Fumio

    2013-01-01

    The repeated once-daily oral administration of a hot-water extract of porcini, Boletus aestivalis, mushrooms (WEP) to spontaneously hypertensive rats (SHR) for 18 weeks decreased the systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate. The WEP administration also decreased blood urea nitrogen (BUN), creatinine (Cre), and triglyceride (TG), and increased high-density lipoprotein-cholesterol (HDL-C) in the blood, suggesting that WEP improved the status of hypertension, as well as the high heart rate and metabolic abnormalities involved in hypertension.

  2. Preconception Optimization of Glucose and Insulin Metabolism in Women Wanting to Conceive - High Rate of Spontaneous Conception Prior to Planned Assisted Reproduction.

    Science.gov (United States)

    Fill Malfertheiner, Sara; Gutknecht, Dagmar; Bals-Pratsch, Monika

    2017-12-01

    A hyperglycemic metabolic status with insulin resistance can have a negative effect on fertility and pregnancy outcomes. The aim of this retrospective study was to investigate disorders of glucose and insulin metabolism in women wanting to conceive who conceived spontaneously prior to planned assisted reproduction (ART). Associated risk factors of patients in terms of live births and miscarriages were also analyzed. Out of total study population of 589 pregnancies, the pregnancies of 129 women wishing to have children who conceived spontaneously prior to planned ART were analyzed in more detail. A 75 g OGTT (OGTT: oral glucose tolerance test) was carried out prior to conception and after determination of pregnancy, including glucose measurement and testing of insulin resistance. If anomalies or risk factors for gestational diabetes (GDM) were detected, patients received metformin therapy prior to conception (off-label use). The course and outcome of pregnancies in the defined cohort were recorded. The rate of spontaneous conception before planned ART after treatment for disorders of glucose/insulin metabolism was 21.9% (n = 129/589). 66.7% of the 129 pregnancies resulted in a live birth, 32 patients had a miscarriage. 76.0% of patients were treated with metformin (off-label use) for polycystic ovary syndrome (PCOS), positive risk profile for GDM, or abnormal glucose/insulin metabolism prior to conception. 55.8% of the cohort developed GDM. The insulin requirements of patients with GDM differed significantly depending on their metformin intake. 24.6% of GDM patients receiving metformin treatment developed GDM requiring insulin treatment compared to 53.8% who did not receive metformin medication. The PCOS rate in the study population who had live births was significantly higher (57.0%) than in the group who had miscarriages (31.3%). There were no significant differences with regard to rate of live births and rate of miscarriages with/without metformin treatment

  3. Is channeling of fission tracks taking place?

    CERN Document Server

    Yada, K

    1999-01-01

    A single crystal of natural zircon which is sliced to have (010) basal plane and thinned by ion thinning is electron microscopically observed after slow neutron irradiation to ascertain whether channeling of the nuclear fission fragments is taking place or not. A fairly large number of the induced fission tracks are recognized at low magnification images where a considerable number of them are parallel to low-index lattice planes such as 100, 001, 101, 301, 103 though their directions changed some time up to several degrees. High resolution images of fission tracks often show a variety of zigzag passing of the tracks along low-index lattice planes in atomistic level. The rate of the tracks which are parallel to these low-index lattice planes is fairly high as about 45%, which strongly suggests that channeling of the fission tracks is taking place.

  4. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    Science.gov (United States)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  5. Langevin model of low-energy fission

    Science.gov (United States)

    Sierk, Arnold J.

    2017-09-01

    Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions

  6. Prompt γ rays and neutrons from fission

    Science.gov (United States)

    Kwan, E.; Wu, C. Y.; Chyzh, A.; Gostic, J.; Henderson, R.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.

    2011-10-01

    Nuclear data are needed to test the accuracy of calculations from nuclear reaction codes. Information on the prompt γ-ray distributions from fission is sparse and only a handful of published experiments data that measured the prompt γ-ray distribution above incident neutron energies of 1 MeV can be found. In addition, improvement on the accuracy and shape of neutron spectrum from the fission of actinides been requested by the nuclear data community. An investigation on the shapes of the neutron and γ-ray distributions from the spontaneous fission of 252Cf and the neutron-induced fission of 235U was undertaken using the Chi-Nu detector array at the Weapons Neutron Research Facility of the Los Alamos Neutron Science Center. Preliminary results will be presented. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

  7. Fission properties and production mechanisms for the heaviest known elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1981-01-01

    Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)

  8. Fission-neutron-induced expression of a tumour-associated antigen in human cell hybrids (HeLa x skin fibroblast): evidence for increased expression at low dose rate

    International Nuclear Information System (INIS)

    Redpath, J.L.; Sun, C.

    1990-01-01

    The induction of a tumour-associated antigen in a human cell hybrid line (HeLa x skin fibroblast) following exposure to fission neutrons of average energy 0.85 MeV (Janus reactor, Argonne National Laboratory) at two dose rates, 0.086 and 10.3 cGy/min, has been examined. The dose-response data obtained indicate the lower dose rate to be 2.9-fold more effective than the higher in inducing expression of the tumour-associated antigen, while there was no significant dose-rate effect in terms of cell killing. These results are qualitatively in agreement with previous observations using neutrons from the Janus reactor for the neoplastic transformation of C3H10T1/2 cells and Syrian hamster embryo cells. (author)

  9. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  10. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  11. Fluoroquinolone-associated anaphylaxis in spontaneous adverse drug reaction reports in Germany: differences in reporting rates between individual fluoroquinolones and occurrence after first-ever use.

    Science.gov (United States)

    Sachs, Bernhardt; Riegel, Stefan; Seebeck, Jörg; Beier, Rainer; Schichler, Dagmar; Barger, Antina; Merk, Hans F; Erdmann, Stephan

    2006-01-01

    The frequency of fluoroquinolone-associated anaphylaxis has been estimated to be 1.8-23 per 10 million days of treatment based on spontaneous reports. It is unknown whether there are differences between the reporting rates of anaphylaxis with individual fluoroquinolones. According to pathophysiology, anaphylaxis may be immune mediated (anaphylactic) or not (anaphylactoid). The latter may occur after first-ever intake since no sensitisation phase is necessary. To analyse spontaneous reports of fluoroquinolone-associated anaphylaxis contained in the spontaneous adverse drug reaction database of the Federal Institute for Drugs and Medical Devices in Germany with regard to differences in reporting rates between various fluoroquinolones, the previous intake and the time to onset of the reaction. All fluoroquinolone-associated cases of anaphylaxis, anaphylactic shock, and anaphylactic/anaphylactoid reaction spontaneously reported to the Federal Institute for Drugs and Medical Devices between 1 January 1993 and 31 December 2004 were identified and assessed with regard to the correctness of the diagnosis of anaphylaxis, the causal relationship with the drug, the previous intake of fluoroquinolones and the time to onset of the reaction. In 166 of 204 cases identified, the diagnosis of anaphylaxis and a causal relationship with the drug were considered at least possible. Moxifloxacin, levofloxacin, ciprofloxacin and ofloxacin accounted for 90 (54%), 25 (15%), 21 (13%) and 16 (10%) of the 166 cases, respectively. The corresponding reporting rates per 1 million defined daily doses based on crude estimates of exposure were 3.3, 0.6, 0.2 and 0.2 for moxifloxacin, levofloxacin, ciprofloxacin and ofloxacin, respectively. The occurrence of anaphylaxis after the first dose or within the first three days was reported in 71 of 166 (43%) cases, but no information on prior exposure with this or any other fluoroquinolone was provided with these reports. In 21 of 166 (13%) cases, the

  12. Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores.

    Directory of Open Access Journals (Sweden)

    Sophie Lardy

    Full Text Available Many gregarious species display rapid fission-fusion dynamics with individuals frequently leaving their groups to reunite or to form new ones soon after. The adaptive value of such ephemeral associations might reflect a frequent tilt in the balance between the costs and benefits of maintaining group cohesion. The lack of information on the short-term advantages of group fission, however, hampers our understanding of group dynamics. We investigated the effect of group fission on area-restricted search, a search tactic that is commonly used when food distribution is spatially autocorrelated. Specifically, we determine if roe deer (Capreolus capreolus improve key aspects of their extensive search mode immediately after fission. We found that groups indeed moved faster and farther over time immediately after than before fission. This gain was highest for the smallest group that resulted from fission, which was more likely to include the fission's initiator. Sex of group members further mediated the immediate gain in search capacity, as post-fission groups moved away at farthest rate when they were only comprised of males. Our study suggests that social conflicts during the extensive search mode can promote group fission and, as such, can be a key determinant of group fission-fusion dynamics that are commonly observed in gregarious herbivores.

  13. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  14. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  15. Anisotropic Neutron Evaporation from Spinning Fission Fragments

    Science.gov (United States)

    Stuttgé, L.; Dorvaux, O.; Gönnenwein, F.; Mutterer, M.; Kopatch, Yu.; Chernysheva, E.; Hanappe, F.; Hambsch, F.-J.

    2011-10-01

    Neutron evaporation anisotropy in the centre of mass of the rotating fission fragments in the spontaneous fission of 252Cf has been investigated within the CORA experiments. If it is well accepted that the bulk of emitted neutrons originate from an isotropic evaporation in the centre of mass of the moving fragments, discrepancies in experimental as well as in theoretical energy and angular distributions appear throughout many attempts performed by various authors. Scission neutrons most probably contribute but don't allow to explain totally the observed anisotropy. Due to its weak contribution to the total anisotropy, the centre of mass anisotropy is very difficult to be highlighted. A novel experimental approach has been developed to extract this effect and will be presented as well as some first results.

  16. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1989-01-01

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  17. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  18. Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING.

    Science.gov (United States)

    Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P; Oas, Terrence G

    2017-01-20

    Globular proteins are not permanently folded but spontaneously unfold and refold on time scales that can span orders of magnitude for different proteins. A longstanding debate in the protein-folding field is whether unfolding rates or folding rates correlate to the stability of a protein. In the present study, we have determined the unfolding and folding kinetics of 10 FNIII domains. FNIII domains are one of the most common protein folds and are present in 2% of animal proteins. FNIII domains are ideal for this study because they have an identical seven-strand β-sandwich structure, but they vary widely in sequence and thermodynamic stability. We assayed thermodynamic stability of each domain by equilibrium denaturation in urea. We then assayed the kinetics of domain opening and closing by a technique known as thiol exchange. For this we introduced a buried Cys at the identical location in each FNIII domain and measured the kinetics of labeling with DTNB over a range of urea concentrations. A global fit of the kinetics data gave the kinetics of spontaneous unfolding and refolding in zero urea. We found that the folding rates were relatively similar, ∼0.1-1 s -1 , for the different domains. The unfolding rates varied widely and correlated with thermodynamic stability. Our study is the first to address this question using a set of domains that are structurally homologous but evolved with widely varying sequence identity and thermodynamic stability. These data add new evidence that thermodynamic stability correlates primarily with unfolding rate rather than folding rate. The study also has implications for the question of whether opening of FNIII domains contributes to the stretching of fibronectin matrix fibrils. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Calculation of Neutron Production Rates and Spectra from Compounds of Actinides and Light Elements

    Directory of Open Access Journals (Sweden)

    Vlaskin Gennady

    2017-01-01

    Full Text Available The code NEDIS allows the calculation of neutron production rate and continuous energy spectra due to (α,n reaction on Li, Be, B, C, O, F, Ne, Na Mg, Al, Si, P, S, Cl, Ar, K, and Ca. It accounts for anisotropic angular distribution of neutrons of (α,n reaction in centre-of- mass system and dimensions of alpha emitting source material particles. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, ν- averaged per fission, and Watt spectrum parameters. The results of calculations by NEDIS can be used as input for Monte Carlo simulation for materials that will be used in radiation shielding and for underground neutron experiments

  20. General Description of Fission Observables: GEF Model Code

    Science.gov (United States)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  1. Some aspects of the nuclear fission process

    International Nuclear Information System (INIS)

    Netter, F.

    1961-01-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U 233 , U 235 , Pu 239 , U 238 are described at the beginning of this work. It appears that for U 233 there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U 239 than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U 235 . Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [fr

  2. Monte-Carlo Generation of Time Evolving Fission Chains

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Kenneth S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-08-01

    About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.

  3. Recent improvements in the calculation of prompt fission neutron spectra: Preliminary results

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1989-01-01

    We consider three topics in the refinement and improvement of our original calculations of prompt fission neutron spectra. These are an improved calculation of the prompt fission neutron spectrum N(E) from the spontaneous fission of 252 Cf, a complete calculation of the prompt fission neutron spectrum matrix N(E,E n ) from the neutron-induced fission of 235 U, at incident neutron energies ranging from 0 to 15 MeV, and an assessment of the scission neutron component of the prompt fission neutron spectrum. Preliminary results will be presented and compared with experimental measurements and an evaluation. A suggestion is made for new integral cross section measurements. (author). 45 refs, 12 figs, 1 tab

  4. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  5. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets

    Science.gov (United States)

    Li, Elliott S.; Cheung, Po-Yin; Lee, Tze-Fun; Lu, Min; O'Reilly, Megan

    2016-01-01

    Objective Recently, sustained inflations (SI) during chest compression (CC) have been suggested as an alternative to the current approach during neonatal resuscitation. However, the optimal rate of CC during SI has not yet been established. Our aim was to determine whether different CC rates during SI reduce time to return of spontaneous circulation (ROSC) and improve hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia. Intervention and measurements Term newborn piglets were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized into three groups: CC superimposed by SI at a rate of 90 CC per minute (SI+CC 90, n = 8), CC superimposed by SI at a rate of 120 CC per minute (SI+CC 120, n = 8), or a sham group (n = 6). Cardiac function, carotid blood flow, cerebral oxygenation and respiratory parameters were continuously recorded throughout the experiment. Main results Both treatment groups had similar time of ROSC, survival rates, hemodynamic and respiratory parameters during cardiopulmonary resuscitation. The hemodynamic recovery in the subsequent 4h was similar in both groups and was only slightly lower than sham-operated piglets at the end of experiment. Conclusion Newborn piglets resuscitated by SI+CC 120 did not show a significant advantage in ROSC, survival, and hemodynamic recovery as compared to those piglets resuscitated by SI+CC 90. PMID:27304210

  6. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  7. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  8. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  9. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  10. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  11. An evaluation of fresh gas flow rates for spontaneously breathing cats and small dogs on the Humphrey ADE semi-closed breathing system.

    Science.gov (United States)

    Gale, Elizabeth; Ticehurst, Kim E; Zaki, Sanaa

    2015-05-01

    To evaluate the fresh gas flow (FGF) rate requirements for the Humphrey ADE semi-closed breathing system in the Mapleson A mode; to determine the FGF at which rebreathing occurs, and compare the efficiency of this system to the Bain (Mapleson D) system in spontaneously breathing cats and small dogs. Prospective clinical study. Twenty-five healthy (ASA score I or II) client-owned cats and dogs (mean ± SD age 4.7 ± 5.0 years, and body weight 5.64 ± 3.26 kg) undergoing elective surgery or minor procedures. Anaesthesia was maintained with isoflurane delivered via the Humphrey ADE system in the A mode using an oxygen FGF of 100 mL kg(-1) minute(-1). The FGF was then reduced incrementally by 5-10 mL kg(-1) minute(-1) at approximately five-minute intervals, until rebreathing (inspired CO(2) >5 mmHg (0.7 kPa)) was observed, after which flow rates were increased. In six animals, once the minimum FGF at which rebreathing occurred was found, the breathing system was changed to the Bain, and the effects of this FGF delivery examined, before FGF was increased. Rebreathing did not occur at the FGF recommended by the manufacturer for the ADE. The mean ± SD FGF that resulted in rebreathing was 60 ± 20 mL kg(-1) minute(-1). The mean minimum FGF at which rebreathing did not occur with the ADE was 87 ± 39 mL kg(-1) minute(-1). This FGF resulted in significant rebreathing (inspired CO(2) 8.8 ± 2.6 mmHg (1.2 ± 0.3 kPa)) on the Bain system. The FGF rates recommended for the Humphrey ADE are adequate to prevent rebreathing in spontaneously breathing cats and dogs cats and small dogs. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  12. Contributions to the theory of fission neutron emission

    International Nuclear Information System (INIS)

    Seeliger, D.; Maerten, H.; Ruben, A.

    1990-03-01

    This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs

  13. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  14. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  15. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    Directory of Open Access Journals (Sweden)

    Sibel Kucukyildirim

    2016-07-01

    Full Text Available Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP domain, and/or the existence of a uracil-DNA glycosylase B (UdgB homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.

  16. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway.

    Science.gov (United States)

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F; Doak, Thomas G; Lynch, Michael

    2016-07-07

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. Copyright © 2016 Kucukyildirim et al.

  17. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors

    DEFF Research Database (Denmark)

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J

    2017-01-01

    in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e...... to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect...... of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague...

  18. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  19. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Science.gov (United States)

    Svendsen, Jon C; Genz, Janet; Anderson, W Gary; Stol, Jennifer A; Watkinson, Douglas A; Enders, Eva C

    2014-01-01

    Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons). Using juvenile lake sturgeon (Acipenser fulvescens), the objective of this study was to test four hypotheses: 1) A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2) A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3) measurements of forced maximum metabolic rate (MMR(F)) are repeatable in individual fish; and 4) MMR(F) correlates positively with spontaneous maximum metabolic rate (MMR(S)). Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F). Trials lasting 24 h were used to measure standard metabolic rate (SMR) and MMR(S). Repeatability and correlations between MMR(F) and MMR(S) were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat))), demonstrating oxygen regulation. In contrast, MMR(F) was affected by hypoxia and decreased across the range from 100% O(2sat) to 70% O(2sat). MMR(F) was repeatable in individual fish, and MMR(F) correlated positively with MMR(S), but the relationships between MMR(F) and MMR(S) were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor). Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F) and MMR(S) support the conjecture that MMR(F) represents a measure of organism performance that could be a target of natural selection.

  20. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Directory of Open Access Journals (Sweden)

    Jon C Svendsen

    Full Text Available Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons. Using juvenile lake sturgeon (Acipenser fulvescens, the objective of this study was to test four hypotheses: 1 A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2 A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3 measurements of forced maximum metabolic rate (MMR(F are repeatable in individual fish; and 4 MMR(F correlates positively with spontaneous maximum metabolic rate (MMR(S. Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F. Trials lasting 24 h were used to measure standard metabolic rate (SMR and MMR(S. Repeatability and correlations between MMR(F and MMR(S were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat, demonstrating oxygen regulation. In contrast, MMR(F was affected by hypoxia and decreased across the range from 100% O(2sat to 70% O(2sat. MMR(F was repeatable in individual fish, and MMR(F correlated positively with MMR(S, but the relationships between MMR(F and MMR(S were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor. Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F and MMR(S support the conjecture that MMR(F represents a measure of organism performance that could be a target of natural selection.

  1. Spontaneous breathing trial in T-tube negatively impact on autonomic modulation of heart rate compared with pressure support in critically ill patients.

    Science.gov (United States)

    Güntzel Chiappa, Adriana M; Chiappa, Gaspar R; Cipriano, Gerson; Moraes, Ruy S; Ferlin, Elton L; Borghi-Silva, Audrey; Vieira, Silvia R

    2017-07-01

    Spontaneous breathing with a conventional T-piece (TT) connected to the tracheal tube orotraqueal has been frequently used in clinical setting to weaning of mechanical ventilation (MV), when compared with pressure support ventilation (PSV). However, the acute effects of spontaneous breathing with TT versus PSV on autonomic function assessed through heart rate variability (HRV) have not been fully elucidated. The purpose of this study was to examine the acute effects of spontaneous breathing in TT vs PSV in critically ill patients. Twenty-one patients who had received MV for ≥ 48 h and who met the study inclusion criteria for weaning were assessed. Eligible patients were randomized to TT and PSV. Cardiorespiratory responses (respiratory rate -ƒ, tidal volume-V T , mean blood pressure (MBP) and diastolic blood pressure (DBP), end tidal dioxide carbone (P ET CO 2 ), peripheral oxygen saturation (SpO 2 ) and HRV indices in frequency domain (low-LF, high frequency (HF) and LF/HF ratio were evaluated. TT increased ƒ (20 ± 5 vs 25 ± 4 breaths/min, P<0.05), MBP (90 ± 14 vs 94 ± 18 mmHg, P<0.05), HR (90 ± 17 vs 96 ± 12 beats/min, P<0.05), P ET CO 2 (33 ± 8 vs 48 ± 10 mmHg, P<0.05) and reduced SpO 2 (98 ± 1.6 vs 96 ± 1.6%, P<0.05). In addition, LF increased (47 ± 18 vs 38 ± 12 nu, P<0.05) and HF reduced (29 ± 13 vs 32 ± 16 nu, P<0.05), resulting in higher LF/HF ratio (1.62 ± 2 vs 1.18 ± 1, P<0.05) during TT. Conversely, V T increased with PSV (0.58 ± 0.16 vs 0.50 ± 0.15 L, P<0.05) compared with TT. Acute effects of TT mode may be closely linked to cardiorespiratory mismatches and cardiac autonomic imbalance in critically ill patients. © 2015 John Wiley & Sons Ltd.

  2. Story of Fission

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Story of Fission: Unlocking Power of the Nucleus. Amit Roy. General Article Volume 21 Issue 3 March 2016 pp 247-258. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/021/03/0247-0258 ...

  3. Story of Fission

    Indian Academy of Sciences (India)

    IAS Admin

    and contributes very little to global warming. The discovery of fission of uranium in 1939 changed forever the way society at large supported scientific research. Till that time, individual researchers or small groups would pursue their sub- jects of interest with whatever resources they could muster either from government or ...

  4. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  5. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    Science.gov (United States)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  6. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  7. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    England, T.R.; Rider, B.F.

    1995-01-01

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  8. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  9. The success rate of bupivacaine and lidocaine as anesthetic agents in inferior alveolar nerve block in teeth with irreversible pulpitis without spontaneous pain

    Science.gov (United States)

    Yosefi, Mohammad Hosein; Nakhaee, Nouzar

    2015-01-01

    Objectives Achieving adequate anesthesia with inferior alveolar nerve blocks (IANB) is of great importance during dental procedures. The aim of the present study was to assess the success rate of two anesthetic agents (bupivacaine and lidocaine) for IANB when treating teeth with irreversible pulpitis. Materials and Methods Sixty volunteer male and female patients who required root canal treatment of a mandibular molar due to caries participated in the present study. The inclusion criteria included prolonged pain to thermal stimulus but no spontaneous pain. The patients were randomly allocated to receive either 2% lidocaine with 1:80,000 epinephrine or 0.5% bupivacaine with 1:200,000 epinephrine as an IANB injection. The sensitivity of the teeth to a cold test as well as the amount of pain during access cavity preparation and root canal instrumentation were recorded. Results were statistically analyzed with the Chi-Square and Fischer's exact tests. Results At the final step, fifty-nine patients were included in the study. The success rate for bupivacaine and lidocaine groups were 20.0% and 24.1%, respectively. There was no significant difference between the two groups at any stage of the treatment procedure. Conclusions There was no difference in success rates of anesthesia when bupivacaine and lidocaine were used for IANB injections to treat mandibular molar teeth with irreversible pulpitis. Neither agent was able to completely anesthetize the teeth effectively. Therefore, practitioners should be prepared to administer supplemental anesthesia to overcome pain during root canal treatment. PMID:25984478

  10. The success rate of bupivacaine and lidocaine as anesthetic agents in inferior alveolar nerve block in teeth with irreversible pulpitis without spontaneous pain

    Directory of Open Access Journals (Sweden)

    Masoud Parirokh

    2015-05-01

    Full Text Available Objectives Achieving adequate anesthesia with inferior alveolar nerve blocks (IANB is of great importance during dental procedures. The aim of the present study was to assess the success rate of two anesthetic agents (bupivacaine and lidocaine for IANB when treating teeth with irreversible pulpitis. Materials and Methods Sixty volunteer male and female patients who required root canal treatment of a mandibular molar due to caries participated in the present study. The inclusion criteria included prolonged pain to thermal stimulus but no spontaneous pain. The patients were randomly allocated to receive either 2% lidocaine with 1:80,000 epinephrine or 0.5% bupivacaine with 1:200,000 epinephrine as an IANB injection. The sensitivity of the teeth to a cold test as well as the amount of pain during access cavity preparation and root canal instrumentation were recorded. Results were statistically analyzed with the Chi-Square and Fischer's exact tests. Results At the final step, fifty-nine patients were included in the study. The success rate for bupivacaine and lidocaine groups were 20.0% and 24.1%, respectively. There was no significant difference between the two groups at any stage of the treatment procedure. Conclusions There was no difference in success rates of anesthesia when bupivacaine and lidocaine were used for IANB injections to treat mandibular molar teeth with irreversible pulpitis. Neither agent was able to completely anesthetize the teeth effectively. Therefore, practitioners should be prepared to administer supplemental anesthesia to overcome pain during root canal treatment.

  11. Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.

    Science.gov (United States)

    Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd

    2009-12-01

    We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.

  12. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  13. Cold fission description with constant and varying mass asymmetries

    International Nuclear Information System (INIS)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P.; Goncalves, M.; Garcia, F.; Guzman, F.

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)

  14. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  15. The fission track method

    International Nuclear Information System (INIS)

    Hansen, K.

    1990-01-01

    During the last decade fission track (FT) analysis has evolved as an important tool in exploration for hydrocarbon resources. Most important is this method's ability to yield information about temperatures at different times (history), and thus relate oil generation and time independently of other maturity parameters. The purpose of this paper is to introduce the basics of the method and give an example from the author's studies. (AB) (14 refs.)

  16. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  17. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    International Nuclear Information System (INIS)

    Panov, I; Lutostansky, Yu; Thielemann, F-K

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields.For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory.The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed. (paper)

  18. Status of the general description of fission observables by the GEF code

    CERN Document Server

    Jurado, B

    2014-01-01

    The GEneral Fission (GEF) model treats spontaneous fission and fission up to an excitation energy of about 100 MeV of a wide range of heavy nuclei. GEF makes use of general laws of statistical and quantum mechanics, assuring a high predictive power. It is unique in providing a general description of essentially all fission observables in a consistent way while preserving the correlations between all of them. In this contribution we present some of the physical aspects on which the model is based, give an overview on the results that can be obtained with the code and show an example that illustrates how the GEF code can serve as a framework for revealing the sensitivity of the fission observables to some basic nuclear properties.

  19. Chain yields from 19.1 MeV neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    Bao Jie; Yang Yi; Liu Yonghui; Feng Jing; Li Ze; Cui Anzhi; Sun Hongqing; Zhang Shengdong; Guo Jingru

    2001-01-01

    Chain yields for 35 mass chains were determined for the fission of 235 U induced by 19.1 MeV neutrons for the first time. Absolute fission rate was monitored with a double fission chamber; fission product activities were measured by HPGe γ-ray spectrometry. Threshold detector method was used to measured the neutron spectrum in order to estimate the fission events induced by break-up neutrons and scattering neutrons from the environment. A mass distribution curve has been obtained

  20. Characteristics of prompt fission gamma-ray emission - Experimental results and predictions

    International Nuclear Information System (INIS)

    Oberstedt, Andreas; Billnert, Robert; Oberstedt, Stephan

    2014-01-01

    Systematics from 2001, describing prompt fission gamma-ray spectra (PFGS) characteristics as function of mass and atomic number of the fissioning system, has been revisited and parameters have been revised based on recent experimental results. Although originally expressed for spontaneous and thermal neutron-induced fission, validity for fast neutrons was assumed and applied to predict PFGS characteristics for the reaction n + 238 U up to incident neutron energies of E n = 20 MeV. The results from this work are in good agreement with corresponding results from both model calculations and experiments. (authors)

  1. Nuclear structure via isomer tagging of fission fragments

    Science.gov (United States)

    Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.

    1997-10-01

    The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.

  2. The relationship between dose rate and transformation induction in C3H/10T1/2 cells by TRIGA reactor fission neutrons at 0.3 Gy

    International Nuclear Information System (INIS)

    Balcer-Kubiczek, E.K.; Harrison, G.H.

    1989-01-01

    The authors present their own and other data showing dose-effect relations for cell survival and the induction of transformations in C3H/IOT 1/2 cells in exponential or stationary cultures after a range of high dose-rate irradiations with X-rays or AFRRI neutrons. (UK)

  3. Fission gas release of MOX with heterogeneous structure

    International Nuclear Information System (INIS)

    Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.

    2015-01-01

    It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior

  4. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  5. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  6. Delayed Neutrons and Photoneutrons from Fission Products

    International Nuclear Information System (INIS)

    Amiel, S.

    1965-01-01

    Delayed neutrons: Most studies of the delayed neutrons from fission have involved analysis of the kinetic behaviour of fusion chain- reacting systems, analysis of the gross neutron decay (resolved into six groups with approximate half-lives of 0.2, 0.5, 2, 6, 22 and 55 s) and some measurements of the neutron spectra (the energies extendfrom 0.1 to 1.2 MeV, peaking in the range 0.2 to 0.5 MeV). Rapid separations of fission-produced halogens have indicated seven isotopes (Br 87,88,89,90 and I 137,138,139 ). and rare gas analysis has indicated 1.5-s Kr and 6-s Rb as definite delayed neutron precursors. These identified precursors account for some 80% of the total delayed neutron yields. Theoretical predictions of possible precursors point to a few tens of such nuclides to be found mainly in regions just above closed neutron shells. Total neutron yields are observed to increase with mass number and decrease with atomic number of the fissioning nuclide. Yields are nearly independent of the energy of the incident fissioning neutron at energies up to several MeV. In this range observed group yields,-especially of the long-lived precursors, ate in fairly good agreement with fission mass and charge distributions, and calculated neutron emission probabilities. . Further detailed studies of delayed neutron precursors (particularly in the difficult short half-life region) require development of ultra-fast radiochemical separation procedures (or on-line isotope separation) and fast neutron spectroscopy of high resolution and efficiency. Photoneutrons; A knowledge of the intensities and gamma-ray spectra of fission products is of practical importance in reactor technology particularly with respect to gamma heating, shielding and radiation effects. Gamma-rays of energies greater than 2.23 and 1.67 MeV cause emission of photoneutrons from deuterium and beryllium respectively, and are important in the kinetics of heavy water and beryllium-moderated reactors. The rate of

  7. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  8. Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2002-01-01

    Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  9. Comparison of 235U fission cross sections in JENDL-3.3 and ENDF/B-VI

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Carlson, Allan D.; Matsunobu, Hiroyuki; Nakagawa, Tsuneo; Shibata, Keiichi

    2002-01-01

    Comparisons of evaluated fission cross sections for 235 U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the 235 U prompt fission neutron spectrum, the 252 Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a 9 Be(d, xn) reaction. For 235 U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For 252 Cf and 9 Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  10. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

    Science.gov (United States)

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M

    2017-12-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  12. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  13. Behavior of fission products released from severely damaged fuel during the PBF severe fuel damage tests

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cronenberg, A.W.; Hagrman, D.L.; Broughton, J.M.; Rest, J.

    1984-01-01

    The results of fission product release behavior during the first two Power Burst Facility Severe Fuel Damage tests are presented. Measured fission product release is compared with calculated release using temperature dependent release rate correlations and FASTGRASS analysis. The test results indicate that release from fuel of the high volatility fission products (Xe, Kr, I, Cs, and Te) is strongly influenced by parameters other than fuel temperature; namely fuel/fission product morphology, fuel and cladding oxidation state, extent of fuel liquefaction, and quench induced fuel shattering. Fission product transport from the test fuel through the sample system was strongly influenced by chemical effects. Holdup of I and Cs was affected by fission product chemistry, and transport time while Te release was primarily influenced by the extent of zircaloy oxidation. Analysis demonstrates that such integral test data can be used to confirm physical, chemical, and mechanistic models of fission product behavior for severe accident conditions

  14. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  15. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.; Alexander, D.J.; Gibson, L.T.

    1998-01-01

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below ∼330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to ∼1.5--15 dpa and tested at 200 C

  16. Generalization of Kramer's formula: Fission over a multidimensional potential barrier

    International Nuclear Information System (INIS)

    Jing-Shang, Z.; Weidenmueller, H.A.

    1983-01-01

    We generalize Kramers's rate expression for diffusion over a potential barrier to the case of a diffusion problem for n degrees of freedom. These can be thought of as the shape degrees of freedom of a fissioning nucleus. We present our formula for the fission width and discuss its dependence on the parameters: the mass tensor, the friction tensor, and the shape of the potential landscape

  17. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    also contributed to the discovery of new isotopes. More recently, most of the very neutron- rich isotopes have been discovered by projectile fission. After a brief summary of the discovery of fission process itself, these production mechanisms will be discussed. The paper concludes with an outlook on future discoveries of ...

  18. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  19. Measurement of fission fragments energy loss

    CERN Document Server

    Benetti, P; Calligarich, E; Cesana, A; Dolfini, R; Ioppolo, T; Raselli, G L; Terrani, M

    2002-01-01

    The mean energy of sup 2 sup 5 sup 2 Cf fission fragments emerging from an absorber and the determination of the capture rate in the absorber itself have been measured using two independent and complementary nuclear techniques. The results can be applied to the measurement of the energy self-absorption in a non-zero thickness source and can be used to validate simulation programs.

  20. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    Energy Technology Data Exchange (ETDEWEB)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O. [Voronezh State University (Russian Federation)

    2015-07-15

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  1. Industrial use of fission products

    International Nuclear Information System (INIS)

    Silverman, J.

    1989-01-01

    Perhaps the most disappointing and surprising development in the fifty year history of nuclear fission is the small role fission products play in modern technology. As a large and potentially inexpensive source of ionizing radiation, fission products were expected to offer major practical benefits. The attractive opportunities stimulated imaginative efforts to realize their fulfillment, but their direct impact has been minor. Fission products have not fared well, not only in somewhat indirect competition with nonradioactive alternatives, but also in direct competition with other radiation sources, especially electron accelerators and 60 Co. There is one major triumph for fission product technology: the application of 99 Mo and its daughter 99m Tc as an almost universal tracer system in nuclear medicine

  2. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  3. Ternary fission and cluster radioactivities

    CERN Document Server

    Poenaru, D N; Greiner, W; Gherghescu, R A; Hamilton, J H; Ramayya, A V

    2002-01-01

    Ternary fission yield for different kinds of light particle accompanied fission processes is compared to the Q-values for the corresponding cold phenomena, showing a striking correlation. The experimental evidence for the existence of a quasimolecular state in sup 1 sup 0 Be accompanied fission of sup 2 sup 5 sup 2 Cf may be explained using a three-center phenomenological model which generates a third minimum in the deformation energy at a separation distance very close to the touching point. This model is a natural extension of the unified approach to three groups of binary decay modes (cold fission, cluster radioactivities and alpha decay), illustrated by sup 2 sup 3 sup 4 U decay modes, and the alpha valley on the potential energy surfaces of sup 1 sup 0 sup 6 Te. New measurements of cluster decay modes, confirming earlier predictions within analytical superasymmetric fission model, are included in a comprehensive half-life systematics. (authors)

  4. Fission fragment angular distribution in heavy ion induced fission

    Directory of Open Access Journals (Sweden)

    S. Soheyli

    2006-06-01

    Full Text Available   We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a without neutron correction and b with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the average emitted neutron from compound nuclei considering the best fit for each system.

  5. Fission fragment angular distribution in heavy ion induced fission

    OpenAIRE

    S. Soheyli; I. Ziaeian

    2006-01-01

      We have calculated the fission fragment angular anisotropy for 16O + 232Th,12C + 236U , 11B + 237 Np , 14 N + 232 Th , 11B + 235U , 12C + 232Th systems with the saddle point statistical model and compared the fission fragment angular anisotropy for these systems. This comparison was done with two methods a) without neutron correction and b) with neutron correction. Also we studied normal and anomalous behavior of the fission fragment angular anisotropy. Finally, we have predicted the averag...

  6. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  7. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  8. Dynamical excitation in fission

    International Nuclear Information System (INIS)

    Ledergerber, T.; Paltiel, Z.; Fraenkel, Z.; Pauli, H.C.

    1976-01-01

    The excitation mechanism of the fission process is studied in terms of a model of particles moving in a deformed time-dependent potential. A residual interaction of the pairing type is incoporated by means of the BCS approximation. Only 2-quasi-particle excitations up to some cutoff energy are included. The separation of the total excitation energy into intrinsic and translational parts is made at the scission point. The present calculations for 240 Pu show that, in the framework of this model, most of the available energy at scission is transformed into intrinsic excitation energy. However the convergence of the calculated value for the cutoff energy is unsatisfactory and hence a description in terms of a better model space is needed. The fact that very many channels are involved suggests that a statistical treatment may be useful. (author)

  9. Differences in Adverse Event Reporting Rates of Therapeutic Failure Between Two Once-daily Extended-release Methylphenidate Medications in Canada: Analysis of Spontaneous Adverse Event Reporting Databases.

    Science.gov (United States)

    Park-Wyllie, Laura; van Stralen, Judy; Castillon, Genaro; Sherman, Stephen E; Almagor, Doron

    2017-10-01

    premature loss of efficacy (shorter duration of action) was described in 98 cases (42.6%) and occurred primarily in the afternoon. Impacts on social functioning, such as disruption in work or school performance or adverse social behaviors, were found in 51 cases (22.2%). The ~10-fold higher reporting rate of therapeutic failure with the generic product relative to its reference product in the present Canadian study resembles findings with US-marketed generic products. While these results should be interpreted with caution due to the limitations of spontaneous adverse event reporting, which may confound comparisons across products, similar findings nonetheless led the US Food and Drug Administration to declare in 2014 that 2 methylphenidate ER generic products in the United States were neither bioequivalent nor interchangeable with OROS methylphenidate-their reference product. Our results indicate a potential safety issue with the Canadian-marketed generic and suggest a need for further investigation by Health Canada. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  11. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  12. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  13. Statistical model calculations with a double-humped fission barrier GIVAB computer code

    International Nuclear Information System (INIS)

    Delagrange, H.; Gilat, J.

    1979-01-01

    Neutron and gamma emission probabilities and fission probabilities are computed, taking into account the special feature of the actinide fission barriers with two maxima. Spectra and cross sections are directly deduced from these probabilities. Populations of both wells are followed step by step. For each initial E and J, decay rates are computed and normalized in order to obtain the de-excitation probabilities imposed by the two-humped fission barrier

  14. Cytologic anaplasia is a prognostic factor in osteosarcoma biopsies, but mitotic rate or extent of spontaneous tumor necrosis are not: a critique of the College of American Pathologists Bone Biopsy template.

    Science.gov (United States)

    Cates, Justin Mm; Dupont, William D

    2017-01-01

    The current College of American Pathologists cancer template for reporting biopsies of bone tumors recommends including information that is of unproven prognostic significance for osteosarcoma, such as the presence of spontaneous tumor necrosis and mitotic rate. Conversely, the degree of cytologic anaplasia (degree of differentiation) is not reported in this template. This retrospective cohort study of 125 patients with high-grade osteosarcoma was performed to evaluate the prognostic impact of these factors in diagnostic biopsy specimens in predicting the clinical outcome and response to neoadjuvant chemotherapy. Multivariate Cox regression was performed to adjust survival analyses for well-established prognostic factors. Multivariate logistic regression was used to determine odds ratios for good chemotherapy response (≥90% tumor necrosis). Osteosarcomas with severe anaplasia were independently associated with increased overall and disease-free survival, but mitotic rate and spontaneous necrosis had no prognostic impact after controlling for other confounding factors. Mitotic rate showed a trend towards increased odds of a good histologic response, but this effect was diminished after controlling for other predictive factors. Neither spontaneous necrosis nor the degree of cytologic anaplasia observed in biopsy specimens was predictive of a good response to chemotherapy. Mitotic rate and spontaneous tumor necrosis observed in pretreatment biopsy specimens of high-grade osteosarcoma are not strong independent prognostic factors for clinical outcome or predictors of response to neoadjuvant chemotherapy. Therefore, reporting these parameters for osteosarcoma, as recommended in the College of American Pathologists Bone Biopsy template, does not appear to have clinical utility. In contrast, histologic grading schemes for osteosarcoma based on the degree of cytologic anaplasia may have independent prognostic value and should continue to be evaluated.

  15. Simulated fissioning of uranium and testing of the fission-track dating method

    Science.gov (United States)

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of

  16. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  17. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  18. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  19. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  20. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2005-01-01

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd

  1. A new look at statistics in fission-track dating

    International Nuclear Information System (INIS)

    Green, P.F.

    1981-01-01

    Poissonian errors, as routinely applied in fission-track dating, represent a limiting case, which may not always be attainable in practice. Other experimental factors may introduce additional non-Poissonian errors, which must be taken into account. In the population method, sampling of non-homogeneous uranium distributions introduces experimental error. In the external detector method (EDM), many factors exist to introduce such error. Simply quoting total numbers of spontaneous and induced fission tracks obtained by the EDM may disguise the possible influence of experimental variation. The present work concentrates on the EDM, and describes a test which has recently been proposed to detect the presence of experimental error in EDM analyses. The question of an alternative analysis for cases where such error is present is also considered. A method of presenting EDM data is suggested, which allows assessment of the importance of experimental errors. (author)

  2. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  3. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  4. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  5. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  6. Fission-fusion neutron source

    Science.gov (United States)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  7. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  8. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  9. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  10. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  11. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  12. The latest progress of fission track analysis

    International Nuclear Information System (INIS)

    Wang Shicheng

    1996-01-01

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  13. Studies of Fission-Induced Surface Damage in Actinides Using Ultracold Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, Leah J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-05

    This report describes the results of the fission-induced actinide studies at LANL. Previously, there was no fission data at these energies though there were initial characterizations of UCN energy dependence and material thickness. The proof of principle was demonstrated and the initial characterizations of sputtered rates, angular and size distribution are underway.

  14. Change over from compound nuclear fission to quasi-fission

    International Nuclear Information System (INIS)

    Ghosh, T. K.; Banerjee, K.; Bhattacharya, C.; Bhattacharya, S.; Kundu, S.; Meena, J. K.; Mukherjee, G.; Mukhopadhyay, S.; Rana, T. K.; Golda, K. S.; Bhattacharya, P.

    2010-01-01

    Fission fragment mass distribution has been measured from the decay of 246 Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the 14 N+ 232 Th reaction compared to the 11 B+ 235 U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply. (authors)

  15. Change over from compound nuclear fission to quasi-fission

    Directory of Open Access Journals (Sweden)

    Bhattacharya P.

    2010-03-01

    Full Text Available Fission fragment mass distribution has been measured in two reactions to populate compound nucleus 246Bk. Both the target nuclei were deformed. However, entrance channel mass asymmetry of the two systems was on the either side of the Businaro Gallone mass asymmetry parameter. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be significantly different for the 14N+232Th reaction compared to the 11B+235U reaction. The entrance channel mass asymmetry was found to play a significant role in deciding the fusion process.

  16. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  17. A scintillating fission detector for neutron flux measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Burgett, Eric A [Los Alamos National Laboratory; May, Iain [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Taw, Felicia [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory

    2010-01-01

    material into a liquid scintillator. Analysis of beam line experiments using the thorium-loaded scintillator is underway to determine the fission event rate in the detector, for comparison with a conventional fission chamber as well as with an unloaded liquid scintillator.

  18. Ternary Fission of {sup 249}Cf(n,f) and {sup 250}Cf(SF)

    Energy Technology Data Exchange (ETDEWEB)

    University of Gent, B-9000 Gent, Belgium; CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France; Institute Laue-Langevin, F-38042 Grenoble, France; EC-JRC Institute for Reference Materials and Measurements, B-2440 Geel, Belgium; Wadsworth Center, New York State Department of Health, Albany NY 12201, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Gils, J. Van; Almahamid, I.; Tian, G.; Rao, L.

    2011-09-01

    During the last years, several Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. Here we report on new results on the energy distribution and the emission probability of {sup 3}H, {sup 4}He and {sup 6}He particles emitted in the spontaneous ternary fission of {sup 250}Cf (E{sub exc} = 0 MeV) and in the neutron induced ternary fission of {sup 249}Cf (E{sub exc} = 6.625 MeV). Both measurements were performed using suited and well-calibrated ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the very intense neutron beam PF1b at the Institute Laue-Langevin (Grenoble, France) for the neutron induced fission measurement. In this way, the existing database can be enlarged with new results for Z=98 isotopes, which is important for the systematic investigation. Moreover, the investigation of the 'isotope couple' {sup 249}Cf(n,f) - {sup 250}Cf(SF), together with corresponding data for other isotopes, will yield valuable information on the influence of the excitation energy on the particle emission probabilities.

  19. Neurobiological correlates of impulsivity in healthy adults: Lower prefrontal gray matter volume and spontaneous eye-blink rate but greater resting-state functional connectivity in basal ganglia-thalamo-cortical circuitry.

    Science.gov (United States)

    Korponay, Cole; Dentico, Daniela; Kral, Tammi; Ly, Martina; Kruis, Ayla; Goldman, Robin; Lutz, Antoine; Davidson, Richard J

    2017-08-15

    Studies consistently implicate aberrance of the brain's reward-processing and decision-making networks in disorders featuring high levels of impulsivity, such as attention-deficit hyperactivity disorder, substance use disorder, and psychopathy. However, less is known about the neurobiological determinants of individual differences in impulsivity in the general population. In this study of 105 healthy adults, we examined relationships between impulsivity and three neurobiological metrics - gray matter volume, resting-state functional connectivity, and spontaneous eye-blink rate, a physiological indicator of central dopaminergic activity. Impulsivity was measured both by performance on a task of behavioral inhibition (go/no-go task) and by self-ratings of attentional, motor, and non-planning impulsivity using the Barratt Impulsiveness Scale (BIS-11). Overall, we found that less gray matter in medial orbitofrontal cortex and paracingulate gyrus, greater resting-state functional connectivity between nodes of the basal ganglia-thalamo-cortical network, and lower spontaneous eye-blink rate were associated with greater impulsivity. Specifically, less prefrontal gray matter was associated with higher BIS-11 motor and non-planning impulsivity scores, but was not related to task performance; greater correlated resting-state functional connectivity between the basal ganglia and thalamus, motor cortices, and prefrontal cortex was associated with worse no-go trial accuracy on the task and with higher BIS-11 motor impulsivity scores; lower spontaneous eye-blink rate was associated with worse no-go trial accuracy and with higher BIS-11 motor impulsivity scores. These data provide evidence that individual differences in impulsivity in the general population are related to variability in multiple neurobiological metrics in the brain's reward-processing and decision-making networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fissioning universe: Topological inflation and Kaluza-Klein cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kaku, Michio; Lykken, J.

    1986-05-05

    We propose a Kaluza-Klein cosmology by reversing the usual scenario: instead of starting with a flat 4+N dimensional universe in which N of the dimensions curl up into a compact manifold, we start with a compact 3+N dimensional manifold in which 3 of the dimensions are allowed to peel off and expand into the known universe. We reverse the usual ''spontaneous compactification'' scenario begin with a closed manifold Msup(3+N) which undergoes ''spontaneous fissioning'' into a product manifold M/sup 3/xMsup(N). Remarkably, the 3-dimensional universe M/sup 3/ can undergo a rapid de Sitter expansion large enough to solve the horizon and flatness problem. We call this ''topological inflation'', which we propose as an alternative to the usual GUT inflation. The inflationary phase automatically terminates into a big bang phase. (orig.).

  1. The fissioning universe: Topological inflation and Kaluza-Klein cosmologies

    International Nuclear Information System (INIS)

    Kaku, Michio; Lykken, J.

    1986-01-01

    We propose a Kaluza-Klein cosmology by reversing the usual scenario: instead of starting with a flat 4+N dimensional universe in which N of the dimensions curl up into a compact manifold, we start with a compact 3+N dimensional manifold in which 3 of the dimensions are allowed to peel off and expand into the known universe. We reverse the usual ''spontaneous compactification'' scenario begin with a closed manifold Msup(3+N) which undergoes ''spontaneous fissioning'' into a product manifold M 3 xMsup(N). Remarkably, the 3-dimensional universe M 3 can undergo a rapid de Sitter expansion large enough to solve the horizon and flatness problem. We call this ''topological inflation'', which we propose as an alternative to the usual GUT inflation. The inflationary phase automatically terminates into a big bang phase. (orig.)

  2. Dating by fission track method: study of neutron dosimetry with natural uranium thin films; Datacao com o metodo dos tracos de fissao: estudo da dosimetria de neutrons com filmes finos de uranio natural

    Energy Technology Data Exchange (ETDEWEB)

    Iunes, P.J.

    1990-06-01

    Fission track dating is described, focalizing the problem of the decay constant for spontaneous fission of {sup 238} U and the use of neutron dosimetry in fission track analysis. Experimental procedures using thin films of natural uranium as neutron dosimeters and its results are presented. The author shows a intercomparison between different thin films and between the dosimetry with thin film and other dosimetries. (M.V.M.). 52 refs, 12 figs, 9 tabs.

  3. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  4. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  5. Collective spectra along the fission barrier

    OpenAIRE

    Pigni M. T.; Andreev A. V.; Shneidman T. M.; Massimi C.; Vannini G.; Ventura A.

    2012-01-01

    Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states) and in the intermediate wells (superdeformed and hyperdeformed states) play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster co...

  6. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  7. Modeling of Fission Gas Release in UO2

    Energy Technology Data Exchange (ETDEWEB)

    MH Krohn

    2006-01-23

    A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].

  8. Modeling of Fission Gas Release in UO2

    International Nuclear Information System (INIS)

    MH Krohn

    2006-01-01

    A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4

  9. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review. Keywords. Nuclear fission; charged particle-induced fission; heavy ions; fission angular distribu- tions; mass distributions; fission barrier; moment of inertia; shell effect in fission. PACS Nos 25.70.Jj; 25.85.

  10. Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region

    CERN Multimedia

    Pauwels, D B; Lane, J

    2008-01-01

    In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...

  11. Recent progress in fission track analysis and its applications in China

    International Nuclear Information System (INIS)

    Wang, S.C.; Kang, T.S.; Jing, G.R.

    1993-01-01

    Fission track analysis (FTA) has been developed and applied in China since 1985. Since then great efforts have been made on methodology and applications. In order to improve the accuracy of fission track dating, zeta calibration constants have been determined against NBS SRM 962 standard uranium glass and seven age standards. TINT method and silver coating were used to increase the density and contrast of confined spontaneous fission tracks on apatite. Based on the fanning model of fission track annealing for apatite presented by Laslett, G.M., a forward computer modeling of track shortening and age evolution was completed and an inverse method of modeling thermal histories from apatite fission track data is underway. Apatite fission track data (age and track length), zircon age and forward modeling method have been used to reveal thermal and tectonic histories of several sedimentary basins and of a collision zone in China. In this presentation some progress in methodology and application will be presented and discussed. (Author)

  12. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    Science.gov (United States)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  13. Measurement of fission anisotropy for Ta

    Indian Academy of Sciences (India)

    F on many actinide targets with large deformations exhibit dramatic increase with decreasing energy [5]. In order to understand the data, an admixture of non compound reaction processes, like the fast fission, the quasifission with orientation dependence and the preequilibrium fission, is introduced as a source of fission like ...

  14. Fission fragment mass and angular distributions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...

  15. Fission yield data evaluation system FYDES

    International Nuclear Information System (INIS)

    Liu Tingjin

    1998-01-01

    Taking account of some features of fission yield data, to do the fission yield data evaluation conveniently, a fission yield data evaluation system FYDES has been developed for last two years. Outline of the system, data retrieval and data table standardization, data correction codes, data averaging code, simultaneous evaluation code and data fit programs were introduced

  16. Charged particle-induced nuclear fission reactions

    Indian Academy of Sciences (India)

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of ...

  17. Fission barriers from multidimensionally-constrained covariant density functional theories

    Directory of Open Access Journals (Sweden)

    Lu Bing-Nan

    2017-01-01

    Full Text Available In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  18. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  19. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    of fission in terms of the ratio of transition states at the saddle point to the level density ... It was also intended to probe any turning over or reduction of γ .... 4. Summary and discussion. In this contribution we have reviewed our measurements which were carried out to inves- tigate the dependence of nuclear viscosity ...

  20. Spin determination of fission resonances

    International Nuclear Information System (INIS)

    Keyworth, G.A.

    1976-01-01

    The present status of available information on the channel quantum numbers for resonance fission and the most urgently needed additional experiments are examined. The role of spin in the 235 U + n system is emphasized. The discussion relies heavily on recent alignment measurements and polarization results

  1. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    2015-08-04

    Aug 4, 2015 ... Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster ... those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or 'academy.ias.ernet.in') to 'ias.ac.in'. Thus ...

  2. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  3. Anisotropy in the ternary cold fission

    CERN Document Server

    Delion, D S; Greiner, W

    2003-01-01

    We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.

  4. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Science.gov (United States)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  5. Comparison of 252Cf time correlated induced fission with AmLi induced fission on fresh MTR reserach reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jay Prakash [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-01

    The objectives of this project are to calibrate the Advanced Experimental Fuel Counter (AEFC), benchmark MCNP simulations using experimental results, investigate the effects of change in fuel assembly geometry, and finally to show the boost in doubles count rates with 252Cf active soruces due to the time correlated induced fission (TCIF) effect.

  6. Increasing Diversity of Biological Membrane Fission Mechanisms.

    Science.gov (United States)

    Renard, Henri-François; Johannes, Ludger; Morsomme, Pierre

    2018-01-04

    Membrane fission is essential to life. It is required for many fundamental cellular processes, as diverse as cyto- and karyokinesis, organelle division, membrane repair, and membrane trafficking and endocytosis. While membrane fission was originally seen as resulting from the action of mechanoenzymes such as dynamin, it is clear that the reality is more complex. In this review, we propose an updated overview of fission mechanisms, and try to extract essential requirements for each. We also present examples of cellular processes that involve these fission mechanisms. Finally, we list pending questions, whether they are specific to a peculiar fission mechanism or more general to the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Heavy-ion induced fission reactions

    International Nuclear Information System (INIS)

    Britt, H.C.; Fowler, M.M.; Fraenkel, Z.; Gavron, A.; Plicht, J.; Wilhelmy, J.B.; Plasil, F.; Awes, T.; Young, G.

    1983-01-01

    Heavy-ion induced fission reactions are investigated. The problem of obtaining a representative set of fission-cross section data, so that it would be possible to test both the mass and angular momentum dependence of fission barriers in the mass region 150 9 Be through 64 Ni. The experimental data clearly show the qualitative effects of angular momentum, excitation energy and fissility on the fission cross section. They provide an ideal testing ground for theoretical models of fission in this mass region

  8. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  9. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  10. Fission dynamics in the proton induced fission of heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G

    2004-04-05

    Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.

  11. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  12. Rates of spontaneous reports of adverse drug reactions for drugs reported in children: a cross-sectional study with data from the Swedish adverse drug reaction database and the Swedish Prescribed Drug Register.

    Science.gov (United States)

    Wallerstedt, Susanna M; Brunlöf, Gertrud; Sundström, Anders

    2011-08-01

    Knowledge of drug safety is limited in the paediatric population, especially for drugs not used as labelled. Spontaneous reporting of adverse drug reactions (ADRs) may be an important source for increased knowledge, but the extent of the overall rate of reporting in children is not known. The main objective of the study was to determine the extent of the spontaneous reporting of ADRs in children with a focus on drugs not used as labelled; this involved investigations of reporting rates of individual case safety reports (ICSRs) per 1000 treated individuals for drugs reported in children, to compare these between drugs labelled and not labelled for use in children, and to compare the rates for children with those of adults. ICSRs (extracted from the Swedish ADR database) and number of treated individuals (extracted from the Swedish Prescribed Drug Register) were analysed for a 2-year period (2006-7). For drugs with one or more ICSR regarding children, rates of ICSRs per 1000 treated individuals were determined and compared between children (10% of the volume was sold over-the-counter or for in-hospital use were excluded. The overall reporting ratio of aggregated ICSRs per 1000 treated individuals was calculated between drugs not labelled and drugs labelled for use in children, separately for children and adults. The overall reporting ratio was also calculated between children and adults, separately for drugs labelled and drugs not labelled for use in children. A total of 255 (children) and 1402 (adults) ICSRs concerning 94 drugs were included in the analysis. Seventy-four (29%) and 711 (51%) ICSRs in children and adults, respectively, were registered as serious (p rates of ICSRs per 1000 treated individuals varied between (range) 0.01-6.45 (children) and 0.01-6.39 (adults). For 17 of the drugs (18%) the rates of ICSRs per treated individual were significantly higher for children than for adults, and for 2 of the drugs (2%) the result was the opposite. The overall

  13. Spontaneous pneumothorax in weightlifters.

    Science.gov (United States)

    Marnejon, T; Sarac, S; Cropp, A J

    1995-06-01

    Spontaneous pneumothorax is infrequently caused by strenuous exertion. To our knowledge there has only been one case of spontaneous pneumothorax associated with weightlifting reported in the medical literature. We describe three consecutive cases of spontaneous pneumothorax associated with weightlifting. We postulate that spontaneous pneumothorax in these patients may be secondary to improper breathing techniques. It is important that physicians and weight trainers be aware of the association between weight lifting and spontaneous pneumothorax and assure that proper instruction is given to athletes who work with weights.

  14. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  15. Alkaline glass as induced fission fragment detectors

    International Nuclear Information System (INIS)

    Amorim, A.M.M.

    1986-01-01

    The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt

  16. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    International Nuclear Information System (INIS)

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  17. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  18. The relationship between fission track length and track density in apatite

    International Nuclear Information System (INIS)

    Laslett, G.M.; Gleadow, A.J.W.; Duddy, I.R.

    1984-01-01

    Fission track dating is based upon an age equation derived from a random line segment model for fission tracks. This equation contains the implicit assumption of a proportional relationship between the true mean length of fission tracks and their track density in an isotropic medium. Previous experimental investigation of this relationship for both spontaneous and induced tracks in apatite during progressive annealment model in an obvious fashion. Corrected equations relating track length and density for apatite, an anisotropic mineral, show that the proportionality in this case is between track density and a length factor which is a generalization of the mean track length combining the actual length and crystallographic orientation of the track. This relationship has been experimentally confirmed for induced tracks in Durango apatite, taking into account bias in sampling of the track lengths, and the effect of the bulk etching velocity. (author)

  19. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  20. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.

    2002-01-01

    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  1. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Ricabarra, M.D. Bovisio de; Waisman, Dina.

    1979-08-01

    Distribution of fissions in a UO 2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO 2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO 2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author) [es

  2. Social implications of fission in wild Formosan macaques at Mount Longevity, Taiwan.

    Science.gov (United States)

    Hsu, Minna J; Lin, Jin-Fu; Agoramoorthy, Govindasamy

    2017-04-01

    Group fission in non-human primates has long been proposed to result from interactions between ecological and social factors. Several studies have documented possible causes for group fission, but its proximate causes and ultimate adaptive values are not yet fully understood. We have examined the existing hypotheses on fission from long-term demographic data of Formosan macaques inhabiting the lowland rainforest at Mt Longevity, Taiwan. Five cases of fission occurred in four social groups. We have recorded two types of fission: one involving the separation of a high-ranking adult male and multiple adult females, the other initiated by adult females from main groups. Five adult females immigrated and emigrated a few times between the main and branch groups (oscillation) in three fission events. Data presented in this study are consistent with the prediction that low-ranking females split from main groups when their fitness costs increase due to ecological pressure or population growth. However, their reproductive success may decrease after fission due to a high rate of intra-group competition. Nevertheless, it is beneficial for males to be involved in fission since this increases reproductive benefits by decreasing the sex ratio in small newly formed groups.

  3. Shielding calculation of a hot cell for the processing of fission products

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S. de; Silva, J.J.G. da.

    1986-12-01

    A dose rate estimation is made for an operator of a lead wall, fission products processing hot cell, in a distance of 50 cm from the emission source, at Brazilian Institute of Nuclear Engineering (IEN). (L.C.J.A.)

  4. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  5. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  6. Recycling of used fission material

    International Nuclear Information System (INIS)

    Abrahams, K.

    1991-01-01

    One of the most important social obstructions for the final disposal of nuclear waste is the long lifetime of some radioactive nuclides. However there are new possibilities for recycling high-level radioactive wastes. By nuclear transformation the troublesome components in the waste, the actinides and the long-living fission products can be transformed into products with a shorter decay time. (author). 9 refs.; 2 figs.; 3 tabs

  7. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    Fregeau, M. O.; Brys, T.; Gamboni, T.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  8. Observations of fission-tracks in zircons by atomic force microscope

    International Nuclear Information System (INIS)

    Ohishi, Shinnosuke; Hasebe, Noriko

    2012-01-01

    The fission-track (FT) method is a dating technique based on the observation of damage (tracks) by spontaneous fission of 238 U left in a mineral. The date is calculated from the track density and the uranium concentration in the mineral. This is possible because the number of tracks is a function of uranium concentration and time since the start of track accumulation. Usually, the number of tracks is counted under an optical microscope after etching (chemical expansion of a track). However, as FT density per unit area rises, it becomes difficult to count the number of tracks. This is due to the fact that FTs overlap one another and are unable to be readily distinguished. This research examines the potential of atomic force microscope (AFM) for FT dating using zircons, which are likely to show higher FT density than other minerals due to their high U concentrations. To obtain an AFM image for a sample prepared for FT dating, removing the static electricity of the sample is essential to avoid an unexpected movement of the cantilever. A grain should be wider than about 30 μm to bring the cantilever on the mineral surface. Polishing with a fine grained compound is very important. There is not much difference in sharpness between images by AC mode (scanning with vibrating cantilever at a constant cycle) and Contact mode (scanning with the cantilever always in close contact with the surface). To confirm how tracks can be identified with the AFM, an AFM image was compared with an image obtained with the optical microscope. When change in the number of tracks and their shapes were observed through stepwise etching, the track expanded as the etching time increased. In addition, the etching rate was slower for large tracks than those for small tracks. This implied that the AFM can be used to observe etching of zircons with different degrees of nuclear fission damage. A track that could not be seen with the optical microscope due to insufficient etching could be observed by

  9. A new approach to measure reaction parameters in the 14.8 meV neutron induced fission of 240Pu and 241Pu

    Science.gov (United States)

    Khan, Naeem A.; Khan, Hameed A.; Gul, Khunab; Akber, Riaz A.; Anwar, Muhammad; Waheed, Abdul; Hussain, Gulzar; Shaikh, M. Saleem

    1980-06-01

    A new approach has been made to use solid state nuclear track detectors in 2π-geometry for studying (a) the fission cross-section, and (b) the angular anisotropy of the fission fragments emitted in the 14.8 MeV neutron induced fission of 240Pu and 241Pu. The results of 2π-geometry arrangements have been compared with those obtained by using the conventional vacuum chamber measurements. The results indicate that with proper adjustments, the 2π-geometry method can cut down the accelerator time by at least a few orders of magnitude as compared to that required by the conventional vacuum chamber arrangements. This facilitates the studies of reactions with two yields. The paper also describes the measurements carried out to determine the spontaneous fission decay constants of the above mentioned isotopes of plutonium. Some preliminary values of other fission parameters have also been quoted.

  10. Rating

    OpenAIRE

    Karas, Vladimír

    2006-01-01

    Charakteristika ratingu. Dělení a druhy ratingu (rating emise × rating emitenta; dlouhodobý rating × krátkodobý rating; mezinárodní rating × lokální rating). Obecné požadavky kladené na rating. Proces tvorby ratingu. Vyžádaný rating. Nevyžádaný rating. Ratingový proces na bázi volně přístupných informací. Uplatňované ratingové systémy. Ratingová kriteria. Využití a interpretace ratingové známky. Funkce ratingu. Rating v souvislosti s BASEL II. Rating v souvislosti s hospodářskými krizemi....

  11. SSNTD study of the probable influence of alpha activity on the mass distribution of sup 2 sup 5 sup 2 Cf fission fragments

    CERN Document Server

    Paul, D; Sastri, R C; Ghose, D

    1999-01-01

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...

  12. The resonance neutron fission on heavy nuclei

    CERN Document Server

    Kopach, Yu N; Furman, V I; Alfimenkov, V P; Lason', L; Pikelner, L B; Gonin, N N; Kozlovskij, L K; Tambovtsev, D I; Gagarskij, A M; Petrov, G A; Sokolov, V E

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned sup 2 sup 3 sup 5 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances

  13. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  14. Collective spectra along the fission barrier

    Science.gov (United States)

    Shneidman, T. M.; Andreev, A. V.; Pigni, M. T.; Massimi, C.; Vannini, G.; Ventura, A.

    2012-12-01

    Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states) and in the intermediate wells (superdeformed and hyperdeformed states) play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of upper-shell nucleons between clusters. The impact of theoretical spectra on neutron-induced fission cross sections and, in combination with an improved version of the scission-point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  15. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  16. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    1989-02-01

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  18. Nuclear wastes: fission

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Progress is reported on investigations of transuranics in soils and plants that have demonstrated the importance of valence state, complexation, competing elements, migration down the soil profile, and weathering cycles in governing transuranic, 129 I and 99 Tc availability to plants and, in the case of Pu, to the consuming animals. In the latter case, it was demonstrated, for the first time, that ingestion of plant tissues containing Pu may result in greater transfer across the gut compared to gavaging animals with inorganic Pu solutions, underscoring the importance of detailed studies of the soil, plant, and animal factors influencing uptake by the ingestion pathway. Further evidence of the importance of the ingestion pathway was provided in studies of foliar interception of airborne transuranic elements in which it was shown that Pu in particles in the respiratory size range were effectively intercepted and retained by plants, and significant quantities of intercepted Pu were transported to roots and seeds. Similar studies on the terrestrial ingestion pathway have been initiated with other actinides including, U, Am, Cm, and Np. Radioecological field studies were directed toward establishment of pertinent ingestion pathways and exposure levels through description of habitat types, population densities, and, in several instances, dosimetry, for major insects, reptiles, birds, and mammalian species. These studies were extended to agricultural ecosystems through definition of the uptake of long-lived nuclides and digestibility in cattle of several forage species. In studies on a pond ecosystem at the nuclear fuel reprocessing plant, Pu and Am uptake rates were studied for major biotic components including organic floc, algae, fish, and ducks. The results indicated that assimilation of transuranics by the biota and export from the pond system were low compared to the total inventory

  19. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  20. Control system for a small fission reactor

    Science.gov (United States)

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  1. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  2. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  3. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  4. Status of fission product yield data

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1978-01-01

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  5. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  6. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  7. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  8. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  9. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  10. Spontaneous uterine rupture

    African Journals Online (AJOL)

    ABSTRACT. Rupture of a gravid uterus is a surgical emergency. Predisposing factors include a scarred uterus. Spontaneous rupture of an unscarred uterus during pregnancy is a rare occurrence. We hereby present the case of a spontaneous complete uterine rupture at a gestational age of 34 weeks in a 35 year old patient ...

  11. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  12. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    Science.gov (United States)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  13. Clock frequency estimation under spontaneous emission

    Science.gov (United States)

    Qin, Xi-Zhou; Huang, Jia-Hao; Zhong, Hong-Hua; Lee, Chaohong

    2018-02-01

    We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.

  14. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  15. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  16. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    the angular distribution of the fragments with the direction of the incident projectile caus- ing fission will depend on .... But in harnessing nuclear energy through the critical fission reactors, disposal of nuclear waste ... experimental technique based on a gridded ion chamber, emission spectra and angular distributions of the ...

  17. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  18. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were ...

  19. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  20. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1989-06-01

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  1. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1975-01-01

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  2. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  3. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  4. Spontaneous regression of metastatic Merkel cell carcinoma.

    LENUS (Irish Health Repository)

    Hassan, S J

    2010-01-01

    Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.

  5. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  6. Management of intractable spontaneous epistaxis

    Science.gov (United States)

    Rudmik, Luke

    2012-01-01

    Background: Epistaxis is a common otolaryngology emergency and is often controlled with first-line interventions such as cautery, hemostatic agents, or anterior nasal packing. A subset of patients will continue to bleed and require more aggressive therapy. Methods: Intractable spontaneous epistaxis was traditionally managed with posterior nasal packing and prolonged hospital admission. In an effort to reduce patient morbidity and shorten hospital stay, surgical and endovascular techniques have gained popularity. A literature review was conducted. Results: Transnasal endoscopic sphenopalatine artery ligation and arterial embolization provide excellent control rates but the decision to choose one over the other can be challenging. The role of transnasal endoscopic anterior ethmoid artery ligation is unclear but may be considered in certain cases when bleeding localizes to the ethmoid region. Conclusion: This article will focus on the management of intractable spontaneous epistaxis and discuss the role of endoscopic arterial ligation and embolization as it pertains to this challenging clinical scenario. PMID:22391084

  7. FIFRELIN - TRIPOLI-4® coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

    Science.gov (United States)

    Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick

    2017-09-01

    TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.

  8. Fission fragment mass distribution in the 13C+182W and 176Yb reactions

    International Nuclear Information System (INIS)

    Ramachandran, K.; Hinde, D.J.; Dasgupta, M.; Williams, E.; Wakhle, A.; Luong, D.H.; Evers, M.; Carter, I.P.; Das, S.

    2014-01-01

    Fission fragment mass distributions have been measured for many systems and found to be asymmetric in the fission of nuclei with nucleon number A in the range 228-258 and proton number Z in the range 90-100. For lighter systems, it has been observed that fission fragment mass distributions are usually symmetric. At high excitation energies the shell effects are expected to vanish and the nuclei are expected to behave like a charged liquid drop; hence, only symmetric fission is expected for all the nuclei. Even after much experimental and theoretical work in this field, the rate of damping of shell effects with excitation energy is not well known. This abstract reports our measurements with 13 C beams on 182 W and 176 Yb targets

  9. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    Megaw, W.J.

    1987-12-01

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  10. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  11. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  12. More detailed study of fission dynamics in fusion-fission reactions within a stochastic approach

    Science.gov (United States)

    Nadtochy, P. N.; Adeev, G. D.; Karpov, A. V.

    2002-06-01

    A stochastic approach based on three-dimensional Langevin equations was applied to a more detailed study of fission dynamics in fusion-fission reactions. The dynamical model has been developed and extended to investigate fission characteristics of light fissioning nuclei at low excitation energies. The energy dependences of an anisotropy of the fission fragment angular distribution, an evaporation residue cross section, a fission cross section, mean prescission neutron, and giant dipole γ multiplicities have been analyzed for the 16O+208Pb-induced fission of 224Th. Also, dependence of the prescission neutron multiplicity on the fragment mass asymmetry and total kinetic energy have been calculated. Analysis of the results shows that not only characteristics of the mass-energy distribution of fission fragments, but also the mass and kinetic-energy dependence of the prescission neutron multiplicity, the angular anisotropy, and fission probability can be reproduced using a modified one-body mechanism for nuclear dissipation with a reduction coefficient of the contribution from a wall formula ks=0.25 0.5 for compound nuclei 172Yb, 205Fr, 215Fr, and 224Th. Decrease of the prescission neutron multiplicities with fragment mass asymmetry is due to a decrease of the fission time. The results obtained show that prescission neutrons are evaporated predominantly from the nearly spherical compound nucleus at an early stage of fission process before the saddle point is reached. From performed analysis one can conclude that coordinate-independent reduction coefficient ks is not compatible with simultaneous description of the main fission characteristics for heavy fissioning systems 256Fm and 252Fm.

  13. On the mechanism of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.; Richter, D.; Seeliger, D.

    1986-01-01

    This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5 He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252 Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)

  14. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  15. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  16. Measurement of Fission Neutron Spectrum and Multiplicity using a Gamma Tag Double Time-of-flight Setup

    Science.gov (United States)

    Blain, E.; Daskalakis, A.; Danon, Y.

    2014-05-01

    Recent efforts have been made to improve the prompt fission neutron spectrum and nu-bar measurements for Uranium and Plutonium isotopes particularly in the keV region. A system has been designed at Rensselaer Polytechnic Institute (RPI) utilizing an array of EJ-301 liquid scintillators as well as lithium glass and plastic scintillators to experimentally determine these values. An array of BaF2 detectors was recently obtained from Oak Ridge National Laboratory to be used in conjunction with the neutron detectors. The system uses a novel gamma tagging method for fission which can offer an improvement over conventional fission chambers due to increased sample mass. A coincidence requirement on the gamma detectors from prompt fission gammas is used as the fission tag for the system as opposed to fission fragments in a conventional fission chamber. The system utilizes pulse digitization using Acqiris 8 bit digitizer boards which allow for gamma/neutron pulse height discrimination on the liquid scintillators during post processing. Additionally, a 252Cf fission chamber was designed and constructed at RPI which allowed for optimization and testing of the system without the need for an external neutron source. The characteristics of the gamma tagging method such as false detection rate and detection efficiency were determined using this fission chamber and verified using MCNP Polimi modeling. Prompt fission neutron spectrum data has been taken using the fission chamber focusing on the minimum detectable neutron energy for each of the various detectors. Plastic scintillators were found to offer a significant improvement over traditional liquid scintillators allowing energy measurements down to 50 keV. Background was also characterized for all detectors and will be discussed.

  17. The Technology and Applications of Large Fission Product Beta Sources

    International Nuclear Information System (INIS)

    Silverman, Joseph

    1960-01-01

    Beta emitters have not received consideration as large sources of radiation power because in the past, the radiation processes of interest have been based on particles with high penetration power; hence the great emphasis on gammas and artificially accelerated electrons. About four years ago, it became apparent that a broad field of potential applications involving surface radiation treatment was developing, e. g. surface modification of formed plastics by graft copolymerization and surface pasteurization of food. For these applications, penetration in depth is wasteful and potentially harmful. Also there are two other areas for which machine electrons were not well suited: radiation-induced chemical syntheses in pressure vessels, and certain types of free radical chain reactions for which the production rate per kilowatt decreases with the square root of the dose rate. Broad area beta sources showed obvious potential advantages in all these categories and, since they are available in good yield from the fission process, merited a careful re-appraisal. On the basics of these considerations an AEC sponsored study of the applications and technology of fission product beta sources was performed. The results indicate the following: 1. There are promising areas for commercial application of fission product beta emitters in the radiation processing field, particularly in the graft copolymerization modification of formed plastic surfaces and textiles. 2. Massive, rugged, inert, safe, inexpensive beta sources may be fabricated by suitable extensions of existing techniques. Source-bearing glass formulations show particular promise. 3. Beta absorption calculations indicate that extended sources can be designed with power utilization efficiencies as high as 20 per cent. Equations and curves describing dosage and beta utilization efficiency as a function of the geometry and composition of various source-target systems were developed. An experimental program is in progress to

  18. Nuclear fission induced by high energy protons

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Shmakov, S.Yu.

    1979-01-01

    The fission of 203 Pb, 232 Th, 238 U, 239 Pu, 209 Br nuclei in the energy region T approximately equal to 0.1-2 GeV is considered on the basis of intranuclear cascade model. The competition between fission and evaporation of excited nuclei remaining after the cascade phase of the interaction is taken into account. Fong's model is used to calculate the fission process. The multiplicity of produced particles (d, t, 3 He, α), the energy spectra of neutrons, the distributions of residual nuclei are discussed. The calculated results are compared with the experiment and with the known theoretical data

  19. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  20. Bulk and surface controlled diffusion of fission gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory

    2012-08-09

    in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.

  1. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  2. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  3. Fission fragment anisotropy of 235U measured with the fissionTPC

    Science.gov (United States)

    Hensle, David; Greife, Uwe; Niffte Collaboration

    2017-09-01

    The fissionTPC, built for the purpose of making neutron-induced fission cross section measurements with unprecedented precision, is a two-chamber MICROMEGAS time projection chamber that allows for three-dimensional tracking of charged particles. This three-dimensional tracking capability also provides a direct measurement of fission fragment angular distributions for neutron-induced fission. Fragment angular anisotropy is an important experimental observable for understanding the quantum mechanical state of the fissioning nucleus and a parameter required to determine detection efficiency for cross section measurements. Preliminary results for 235U fission fragment anisotropy as a function of neutron energies in the range 130 keV - 100 MeV will be presented.

  4. Miss Piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides

    Science.gov (United States)

    Düllmann, Ch. E.; Eichler, B.; Eichler, R.; Gäggeler, H. W.; Jost, D. T.; Kindler, U.; Piguet, D.; Soverna, S.; Thörle, P.; Trautmann, N.; Türler, A.

    2003-10-01

    Carrier-free short-lived nuclides are employed in many different fields of modern nuclear chemistry. The two main production strategies are either thermal neutron-induced fission of 235U or 239Pu at nuclear reactors or spallation neutron sources or charged particle-induced nuclear reactions at accelerator facilities. An alternative method is to use a spontaneously fissioning nuclide. A facility applying this technique ("Miss Piggy") was built at the University of Berne (Switzerland). Californium-252 ( 252Cf), which has a 3% fission branch and a half-life of 2.645 a, is used for the production of short-lived fission products that are stopped in an adjacent recoil chamber. Short-lived nuclides are transported out of the recoil chamber using the well-known gas-jet technique. Over 100 nuclides have been identified so far and used in different applications. Since such a device does not require any large facility and is easy to operate it serves well the needs of typical university laboratories.

  5. Correction of Thick Foil Errors in Prompt Neutron (CALIFORNIUM-252 Nu), Fission Cross Section (sigma(f)) and Other Ionization Chamber Fission Data Standards.

    Science.gov (United States)

    Cohensedgh, Farhad

    This research resolves two problems that have long been of important concern in experimental fission physics: (1) determination of pulse height distribution response of ionization chambers in fission fragment detection measurements, and (2) correction of "thick-foil effect" systematic errors in standard values of the fundamental parameters of fission physics--the average number of prompt neutrons per fission (=nu), absolute fission activity and true fission rate of samples (TFR), and isotopic fission cross sections (sigma _{f}). Results are obtained by a comprehensive digital simulation of the electrostatics and pulse height distribution response of the parallel-plate, ungridded, electron-pulse ionization fission chamber together with prompt neutron -fragment multiplicity and angular distribution correlations, neutron-fragment coincidence detection and related variations in the 4pi^here around the chamber for a wide range of the relevant factors--foil thickness, alpha particle interference bias level, fission detector configuration characteristics, fissile isotopes (^{252}Cf, ^{235}U, etc.) and other experimental parameters. Isotope-specific double-energy (E_1,E_2) natural variations in fragment spectrum, in fragment-specific range-energy (dE/dx) relations and in prompt neutron-fragment multiplicity (nu) and nuclear temperature dependent angular distribution correlations are simulated in detail. Detailed results are obtained for double-energy, fragment-specific count loss fractions resulting from in -foil fragment absorption and from alpha -interference discrimination as well as for chamber detection efficiency, fragment spectrum distortion and prompt neutron -fragment coincidence detection distribution variations. Decay alpha pulse pileup statistics are discussed, and the behavior of and factors affecting the fragment pulse height distribution tail are analyzed in detail. Fragment pairs and prompt neutrons issued from them are tracked in the 4pi^ace around the

  6. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  7. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  8. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  9. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  10. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  11. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  12. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  13. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  14. Uranium deposits obtention for fission chambers

    International Nuclear Information System (INIS)

    Artacho Saviron, E.

    1972-01-01

    The obtention of uranium deposits of the required quality for small cylindrical fission chambers presents some difficulties. With the method of electroplating here described the uniformity, reproducibility and adherence of the obtained deposits were satisfactory. (Author) 6 refs

  15. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  16. The enlarged lysosomes in beigej cells result from decreased lysosome fission and not increased lysosome fusion

    Science.gov (United States)

    Durchfort, Nina; Verhoef, Shane; Vaughn, Michael B; Shrestha, Rishna; Adam, Dieter; Kaplan, Jerry; Ward, Diane McVey

    2011-01-01

    Chediak-Higashi Syndrome is an autosomal recessive disorder that affects vesicle morphology. The Chs1/Lyst protein is a member of the BEACH family of proteins. The absence of Chs1/Lyst gives rise to enlarged lysosomes. Lysosome size is regulated by a balance between vesicle fusion and fission and can be reversibly altered by acidifying the cytoplasm using Acetate Ringer’s or by incubating with the drug vacuolin-1. We took advantage of these procedures to determine rates of lysosome fusion and fission in the presence or absence of Chs1/Lyst. Here we show by microscopy, flow cytometry and in vitro fusion that the absence of the Chs1/Lyst protein does not increase the rate of lysosome fusion. Rather, our data indicate that loss of this protein decreases the rate of lysosome fission. We further show that overexpression of the Chs1/Lyst protein gives rise to a faster rate of lysosome fission. These results indicate that Chs1/Lyst regulates lysosome size by affecting fission. PMID:21985295

  17. A revised calculational model for fission

    International Nuclear Information System (INIS)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  18. Hyperfission - a new mode of nuclear fission

    International Nuclear Information System (INIS)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    1988-02-01

    In this paper the nuclear hyperfission as a new mode of fission, possible for heavy elements with Z > 92, is investigated. The Q-systematics, hyperfissibility parameters, hyperfission barrier as well as the essential hindrance factors are presented. The hyperfission hindrance factor relative to that of fission is found to be in the interval 1.0x10 -17 - 3.4x10 -16 for the parent nuclei with Z = 92-108. (orig.)

  19. Live Cell Imaging in Fission Yeast.

    Science.gov (United States)

    Mulvihill, Daniel P

    2017-10-03

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  20. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  1. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event

    Science.gov (United States)

    Rudd, M. Katharine; Endicott, RaeLynn M.; Friedman, Cynthia; Walker, Megan; Young, Janet M.; Osoegawa, Kazutoyo; de Jong, Pieter J.; Green, Eric D.; Trask, Barbara J.

    2009-01-01

    Subtelomeres are concentrations of interchromosomal segmental duplications capped by telomeric repeats at the ends of chromosomes. The nature of the segments shared by different sets of human subtelomeres reflects their high rate of recent interchromosomal exchange. Here, we characterize the rearrangements incurred by the 15q subtelomere after it arose from a chromosome fission event in the common ancestor of great apes. We used FISH, sequencing of genomic clones, and PCR to map the breakpoint of this fission and track the fate of flanking sequence in human, chimpanzee, gorilla, orangutan, and macaque genomes. The ancestral locus, a cluster of olfactory receptor (OR) genes, lies internally on macaque chromosome 7. Sequence originating from this fission site is split between the terminus of 15q and the pericentromere of 14q in the great apes. Numerous structural rearrangements, including interstitial deletions and transfers of material to or from other subtelomeres, occurred subsequent to the fission, such that each species has a unique 15q structure and unique collection of ORs derived from the fission locus. The most striking rearrangement involved transfer of at least 200 kb from the fission-site region to the end of chromosome 4q, where much still resides in chimpanzee and gorilla, but not in human. This gross structural difference places the subtelomeric defect underlying facioscapulohumeral muscular dystrophy (FSHD) much closer to the telomere in human 4q than in the hybrid 4q–15q subtelomere of chimpanzee. PMID:18952852

  2. Fission product release from fuel under LWR accident conditions

    International Nuclear Information System (INIS)

    Osborne, M.F.; Lorenz, R.A.; Norwood, K.S.; Collins, J.L.; Wichner, R.P.

    1983-01-01

    Three tests have provided additional data on fission product release under LWR accident conditions in a temperature range (1400 to 2000 0 C). In the release rate data are compared with curves from a recent NRC-sponsored review of available fission product release data. Although the iodine release in test HI-3 was inexplicably low, the other data points for Kr, I, and Cs fall reasonably close to the corresponding curve, thereby tending to verify the NRC review. The limited data for antimony and silver release fall below the curves. Results of spark source mass spectrometric analyses were in agreement with the gamma spectrometric results. Nonradioactive fission products such as Rb and Br appeared to behave like their chemical analogs Cs and I. Results suggest that Te, Ag, Sn, and Sb are released from the fuel in elemental form. Analysis of the cesium and iodine profiles in the thermal gradient tube indicates that iodine was deposited as CsT along with some other less volatile cesium compound. The cesium profiles and chemical reactivity indicate the presence of more than one cesium species

  3. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Nicolas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-18

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universities receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.

  4. Experimental Studies of quasi-fission reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1989-01-01

    A large number of recent experimental studies have shown that a substantial fraction of the total reaction cross section in heavy-ion reactions is found in fission-like processes, which do not result from the fission decay of a completely fused system. Following the suggestion of Swiatecki such processes, which represents a complete relaxation of the relative kinetic energy and a substantial amount of net mass transfer between the two fragments, are denoted quasi-fission reactions. They are distinct from compound fission reactions by bypassing the stage of a completely fused system. This typically means that they are associated with short reaction times, which results in several measurable characteristics such as broken forward-backward symmetries, large anisotropies of the angular distributions and increased widths of the fragment mass distributions. The distinction between quasi-fission and deep inelastic reactions is less stringent and has the character of a gradual evolution from one reaction type to the other, as found also as quasi-elastic reaction evolves into deeply inelastic processes as a function of the total kinetic energy loss. In the present paper some of the experimental data characterizing quasi-fission reactions are reviewed and discussed. (author)

  5. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Sasaki, M.S.; Saigusa, S.; Kimura, I.

    1992-01-01

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  6. Fission of Polyanionic Metal Clusters

    Science.gov (United States)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  7. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  8. Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting

    Directory of Open Access Journals (Sweden)

    Rakopoulos Vasileios

    2017-01-01

    Full Text Available Independent isomeric yield ratios (IYR of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate on the fissioning system can be noticed. These data were compared with data available in the literature, whenever possible. Using the TALYS code and the experimentally obtained IYRs, we also deduced the average angular momentum of the fission fragments after scission.

  9. Can time reversal invariance be tested in ternary fission?

    International Nuclear Information System (INIS)

    Jesinger, P.; Koetzle, A.; Goennenwein, F.; Schmidt, K.; Gagarski, A. M.; Petrov, G. A.; Petrova, V. I.; Danilyan, G.; Pavlov, V. S.; Chvatchkin, V. B.; Mutterer, M.; Neumaier, S. R.; Nesvizhevsky, V.; Zimmer, O.; Geltenbort, P.; Korobkina, K.

    1998-01-01

    Already several years ago the idea has been put forward that a reaction well suited for tests of Time Reversal Invariance (TRI) might be ternary fission [1][2]. In ternary fission, besides the two main fission fragments, a third (usually light) charged particle is emitted. For a test of TRI a triple correlation has to be studied involving on one hand the momenta of a fission fragment p f and the ternary particle p t , and on the other hand e.g. the spin of the neutron inducing fission s. The correlation coefficient B=s·[p f xp t ] for the respective unit vectors s, p f and p t reverses sign upon time reversal and a non-vanishing expectation value for B could possibly be due to TRI being violated. However, final state interactions could equally well lead to a non-zero B with TRI being perfectly conserved. A first experiment of this type has been performed in early 1998 at the ILL. Placing fragment and ternary particle detectors at right angles both relative to each other and relative to a longitudinally polarized neutron beam, the observable B assumes the values B=±1. For a fixed set of detectors the sign of B is reversed upon flipping the neutron spin. The expected count rates for the two spin orientations are N=N 0 ·(1±D) with N 0 the count rate for an unpolarized beam. The asymmetry D measures the expectation value of the observable B. The reaction chosen was 233 U(n,f). An unexpectedly large correlation coefficient passing all tests of fake asymmetries was observed. From the raw data the expectation value for B is D=-(2.35±0.05)·10 -3 with the sign corresponding to light fragments. Corrections for finite solid angles subtended by the detectors are not included in the above figure. The corrections will further increase the correlation coefficient. At the moment the mere size of D is believed to rule out a failure of TRI as the origin of the effect. But even a less spectacular interpretation--which as yet is not available--should give a detailed and quite

  10. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    compelling strategy for improving organic photovoltaic device efficiencies. The formation of triplet states through singlet fission can be characterized using femtosecond visible transient absorption spectroscopy (fsTA). However, in PDI, the triplet-triplet absorption spectrum is strongly overlapped with the ground state bleach absorption. Here, a dyad molecule where PDI is covalently attached to an apocarotene triplet acceptor is synthesized, and studied in solution aggregates and thin films with fsTA, to demonstrate that apocarotene can be used as a sensitive spectral tag for triplet formation in PDI due to triplet-triplet energy transfer from PDI to the carotenoid. The efficiency of singlet fission in DPP can be tuned by modulating the crystal packing in the solid state. By synthesizing 3,6-bis(thiophene) derivatives of DPP with a series of different sidechains, thin film DPP singlet fission is related to the crystal structure intermolecular geometries, to more precisely determine the relationship between interchromophore coupling and singlet fission rate, which will inform the design of more robust chromophores for singlet fission. Finally, the role of the dielectric environment and stabilization of charge transfer configurations and charge transfer states is explored in DPP singlet fission, through aqueous nanoparticles of 3,6-bis(phenylthiophene) with different surface area-to-volume ratios, and a covalently linked dimer of DPP in solvents of varying polarity which can undergo symmetry-breaking charge separation.

  11. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  12. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  13. Measurement of fast neutron induced fission cross section ratios of Pu-240 and Pu-242 relative to U-235

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Manabe, Fumitoshi; Baba, Mamoru; Matsuyama, Shigeo; Kimiyama, Hiroyuki; Hirakawa, Naohiro

    1990-01-01

    Fission cross section ratios of 240 Pu and 242 Pu relative to 235 U were measured by using the 4.5 MV Dynamitron accelerator of Tohoku University. The measurement using mono-energetic neutrons was performed in the neutron energy range of 0.6∼7 MeV with the time-of-flight method. Prior to the measurement, a fast timing back-to-back fission chamber was developed with good time resolution to reduce the backgrounds due to α-particles and spontaneous fissions. Furthermore, we took account of the effect of the nonuniformity of fission sample thickness for accurate determination of fission cross section ratio. The uncertainty was estimated by analyzing the correlation between the error sources. The correlation matrix between the measured data was given. The overall uncertainty of the present results is about 2%. For both nuclides, the present results agree well with those by Meadows and by Kuprijanov et al. The JENDL-3 evaluation generally has good agreement with the present results. However, the evaluated data are slightly higher around 1 MeV and lower above 6 MeV than the present results. (author)

  14. Simple and effective method of determining multiplicity distribution law of neutrons emitted by fissionable material with significant self -multiplication effect

    International Nuclear Information System (INIS)

    Yanjushkin, V.A.

    1991-01-01

    At developing new methods of non-destructive determination of plutonium full mass in nuclear materials and products being involved in uranium -plutonium fuel cycle by its intrinsic neutron radiation, it may be useful to know not only separate moments but the multiplicity distribution law itself of neutron leaving this material surface using the following as parameters - firstly, unconditional multiplicity distribution laws of neutrons formed in spontaneous and induced fission acts of the given fissionable material corresponding nuclei and unconditional multiplicity distribution law of neutrons caused by (α,n) reactions at light nuclei of some elements which compose this material chemical structure; -secondly, probability of induced fission of this material nuclei by an incident neutron of any nature formed during the previous fissions or(α,n) reactions. An attempt to develop similar theory has been undertaken. Here the author proposes his approach to this problem. The main advantage of this approach, to our mind, consists in its mathematical simplicity and easy realization at the computer. In principle, the given model guarantees any good accuracy at any real value of induced fission probability without limitations dealing with physico-chemical composition of nuclear material

  15. Spontaneous Appendicocutaneous Fistula I

    African Journals Online (AJOL)

    M T0k0de* MB, BS and. Dr 0. A. AWOj0bi+ FMCS (Nig). ABSTRACT. Ruptured appendicitis is not a common cause of spontaneous enterocutaneous fistula. A case of ruptured retrocaecal appendicitis presenting as an enterocutaneous fistula in a Nigerian woman is presented. The literature on this disorder is also reviewed.

  16. Spontaneous Grammar Explanations.

    Science.gov (United States)

    Tjoo, Hong Sing; Lewis, Marilyn

    1998-01-01

    Describes one New Zealand university language teacher's reflection on her own grammar explanations to university-level students of Bahasa Indonesian. Examines form-focused instruction through the teacher's spontaneous answers to students' questions about the form of the language they are studying. The teacher's experiences show that it takes time…

  17. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  18. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  19. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  20. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  1. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  2. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  3. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Managan, R.A.; Nix, J.R.; Sierk, A.J.

    1977-01-01

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  4. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  5. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1998-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and some examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N(E) and bar ν p upon the fissioning nucleus and its excitation energy are treated in detail for the Los Alamos model. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of the ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches. This paper is an extension of a similar paper presented at the International Centre for Theoretical Physics in 1996

  6. Recurrent spontaneous intracerebral hemorrhage associated with ...

    African Journals Online (AJOL)

    Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of stroke cases in the US and Europe and up to 30% in Asian populations. Intracerebral hemorrhage is a relatively uncommon form of stroke-it causes only 10 to 15 percent of all strokes. It is more disabling and has a higher mortality rate than ischemic stroke, ...

  7. Review of the neutron capture process in fission reactors

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1981-07-01

    The importance of the neutron capture process and the status of the more important cross section data are reviewed. The capture in fertile and fissile nuclei is considered. For thermal reactors the thermal to epithermal capture ratio for 238 U and 232 Th remains a problem though some improvements were made with more recent measurements. The capture cross section of 238 U in the fast energy range remains quite uncertain and a long standing discrepancy for the calculated versus experimental central reaction rate ratio C28/F49 persists. Capture in structural materials, fission product nuclei and the higher actinides is also considered

  8. Crystallization study of a glass used for fission product storage

    International Nuclear Information System (INIS)

    Morlevat, J.-P.; Uny, Gisele; Jacquet-Francillon, Noel.

    1981-06-01

    The vitreous matrix used in France is a borosilicate glass of low melting point allowing introduction of volatil fission products and of good chemical stability. However, like any glass, if storage temperature is higher than transformation temperature a partial crystallization can occur. Before final storage, it is important to determine of leaching by water eventually occuring on the choosen site is modified by crystalline phases. The aim of this study is the determination of the leaching rate and the identification of crystalline phases formed during thermal treatment and evaluation of its volumic fraction [fr

  9. Applications of pressurized cation exchange chromatography for fission yield determination

    International Nuclear Information System (INIS)

    Yan Shuheng; Lin Fa; Zhang Hongdi; Li Xueliang; Zhang Shulan

    1988-01-01

    In order to determine the fission yields of lanthanides precisely, lanthanides with carriers of 1-2 mg per element are separated from each other by means of pressurized cation exchange chromatography - αHIBA concentration gradient elution. The effect of initial loading technique, concentration gradient, flow rate, and temperature on separation were investigated in detail. Under the optimum conditions adapted according to the results given in this work, all the lanthanides can be completely separated within about 90 minutes with a recovery of more than 95% and purity higher than 99%. (author) 3 refs.; 6 figs

  10. Spontaneous splenic rupture in pregnancy: a case report | Makwe ...

    African Journals Online (AJOL)

    Spontaneous splenic rupture in pregnancy is a rare condition, associated with very high maternal mortality rate and fetal wastage. It is frequently misdiagnosed at presentation. We report a case of a 33-year-old, gravida 2, para 1 lady at 29 weeks' gestation with spontaneous splenic rupture, which was initially diagnosed as ...

  11. Fusion-fission study at IUAC: Recent results

    Science.gov (United States)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  12. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    Science.gov (United States)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  13. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  14. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  15. Tight connection between fission gas discharge channels

    International Nuclear Information System (INIS)

    Jung, W.; Peehs, M.; Rau, P.; Krug, W.; Stechemesser, H.

    1978-01-01

    The invention is concerned with the tight connection between the fission gas discharge channel, leading away from the support plate of a gas-cooled reactor, and the top of the fuel element suspended from this support plate. The closure is designed to be gas-tight for the suspended as well as for the released fuel element. The tight connection has got an annular body resting on the core support plate in the mouth region of the fission gas discharge channel. This body is connected with the fission gas discharge channel in the fuel element top fitting via a gas-tight part and supported by a compression spring. Care is taken for sealing if the fuel element is removal. (RW) [de

  16. Dynamical Model of Fission Fragment Angular Distribution

    Science.gov (United States)

    Drozdov, V. A.; Eremenko, D. O.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.; Giardina, G.; Taccone, A.

    2002-01-01

    A dynamical model of fission fragment angular distributions is suggested. The model allows one to calculate fission fragment angular distributions, prescission light particle multyplicities, evaporation residue cross sections etc. for the cases of decay of hot and rotating heavy nuclei. The experimental data on angular anisotropies of fission fragments and prescission neutron multiplicities are analyzed for the 16O + 208Pb, 232Th, 248Cm and 238U reactions at the energies of the incident 16O ions ranging from 90 to 160 MeV. This analysis allows us to extract both the nuclear friction coefficient value and the relaxation time for the tilting mode. It is also demonstrated that the angular distributions are sensitive to the deformation dependence of the nuclear friction.

  17. Fission processes through compact and creviced shapes

    International Nuclear Information System (INIS)

    Royer, G.; Remaud, B.

    1984-01-01

    Using a one-parameter family of compact and creviced shapes the deformation energy of the liquid-drop model including the nuclear proximity energy has been calculated. The introduction of the proximity forces on such a shape sequence leads to the identification of fission and scission barriers since the rupture of the neck between the fragments is assumed before the barrier is crossed. The fission barrier heights are well reproduced and are much lower than those given by the liquid-drop model (without proximity) for the medium systems. It is shown that these low barriers are compatible with a strong enhancement of the critical angular momentum for cold fission. The translational kinetic energy of the fragments agrees with experimental data. Double-humped barriers are predicted for actinides; the inner barrier has essentially a microscopic origin while the outer one (which plays the role of a scission barrier) is governed mostly by the balance between Coulomb and nuclear forces. (author)

  18. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  19. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  20. Modeling the Fission Fragment Detection Efficiency of the NIFFTE fissionTPC

    Science.gov (United States)

    Bowden, Nathaniel; Niffte Collaboration

    2017-09-01

    The goal of the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is to measure neutron-induced fission cross section ratios with unprecedented precision. The NIFFTE Collaboration has designed and built a Time Projection Chamber, the fissionTPC, for this purpose. The detector enables charged particle tracking with full three-dimensional charge cloud reconstruction, allowing for the characterization of fission fragments originating from a thin central target. Quantifying the fission fragment detection efficiency is a central element of these cross section ratio measurements. Here we describe how the wealth of data captured for every fission event allows us to build and validate a detailed Monte Carlo efficiency model. Effects such as anisotropy, fission fragment energy degradation, and target thickness, composition, and roughness must all be taken into account. LLNL-ABS-733618. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.