WorldWideScience

Sample records for spontaneous emission dynamics

  1. Controlling spontaneous emission dynamics in semiconductor micro cavities

    Science.gov (United States)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  2. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

    NARCIS (Netherlands)

    Thyrrestrup Nielsen, Henri; Hartsuiker, A.; Gerard, J.M.; Vos, Willem L.

    2013-01-01

    We have theoretically studied the effect of deterministic temporal control of spontaneous emission in a dynamic optical microcavity. We propose a new paradigm in light emission: we envision an ensemble of two-level emitters in an environment where the local density of optical states is modified on a

  3. Effect of atomic-state coherence and spontaneous emission on three-level dynamics

    International Nuclear Information System (INIS)

    Cardimona, D.A.

    1990-01-01

    For a three-level atom in the ssV configuration (i.e., having two excited states each dipole-coupled to a common ground state), we have found a particular linear combination of bare-atom states in which Rabi oscillations and their associated collapses and revivals do not occur. Moving to a dressed-state picture, we discover that this particular linear combination state is just that dressed state which is decoupled from all the field modes. It is a dressed state for which the transition dipole moments with the other dressed states are zero. The existence of this decoupled dressed state depends on the tuning of the dressing laser field, which in turn depends on the bare-atom excited-state dipole moments and energy-level separation. When we include spontaneous emission, the population decays from the other dressed states into this decoupled state and remains coherently trapped there, producing a system that experiences no dynamical behavior. This is exact for δ-function photon statistics (i.e., if there is no intensity uncertainty). The trapping becomes less perfect as the photon statistics are allowed to have a greater bandwidth. Also, if the applied field is tuned incorrectly, the spontaneous realignment of the atomic state amplitudes does not result in a totally decoupled dressed state, and the dynamics proceed normally

  4. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  5. Clock frequency estimation under spontaneous emission

    Science.gov (United States)

    Qin, Xi-Zhou; Huang, Jia-Hao; Zhong, Hong-Hua; Lee, Chaohong

    2018-02-01

    We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.

  6. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  7. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  8. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  9. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  10. Cavity enhanced rephased amplified spontaneous emission

    International Nuclear Information System (INIS)

    A Williamson, Lewis; J Longdell, Jevon

    2014-01-01

    Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)

  11. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  12. Spontaneous and stimulated emission from quasifree electrons

    Science.gov (United States)

    Friedman, A.; Gover, A.; Kurizki, G.; Ruschin, S.; Yariv, A.

    1988-04-01

    This article presents a unified formulation and review of an extensive class of radiation effects and devices based on free or quasifree electrons. The effects and devices reviewed include slow-wave radiators [such as Čerenkov, Smith-Purcell, and TWT (traveling-wave tube) effects and devices], periodic bremsstrahlung radiators [such as undulator radiation, magnetic bremsstrahlung FEL's (free-electron lasers), and coherent bremsstrahlung in the crystal lattice], and transverse-binding radiators [such as the CRM (cyclotron resonance maser) and channeling radiation]. Starting from a general quantum-electrodynamic model, both quantum and classical effects and operating regimes of these radiation devices are described. The article provides a unified physical description of the interaction kinematics, and presents equations for the characterization of spontaneous and stimulated radiative emission in these various effects and devices. Universal relations between the spontaneous and stimulated emission parameters are revealed and shown to be related (in the quantum limit) to Einstein relations for atomic radiators and (in the classical limit) to the relations derived by Madey for magnetic bremsstrahlung FEL for on-axis radiative emission. Examples for the application of the formulation are given, estimating the feasibility of channeling radiation x-ray laser and optical regime Smith-Purcell FEL, and deriving the gain equations of magnetic bremsstrahlung FEL and CRM for arbitrary electron propagation direction, structure (wiggler) axis, and radiative emission angle.

  13. Spontaneous light emission from fibers in MINOS

    International Nuclear Information System (INIS)

    Avvakumov, S.; Barrett, W.L.; Belias, T.; Bower, C.; Erwin, A.; Kordosky, M.; Lang, K.; Lee, R.; Liu, J.; Miller, W.; Mualem, L.; Nichol, R.; Nelson, J.; Pearce, G.; Proga, M.; Rebel, B.; Ruddick, K.; Smith, C.; Thomas, J.; Vahle, P.; Webb, R.

    2005-01-01

    We report on the observation and measurements of unexpected background rates in the MINOS Far Detector. The noise level at the Far Detector is significantly greater than that expected from natural radioactivity and intrinsic photomultiplier dark current. We have conducted a series of additional tests which demonstrate that the excess rate is caused by spontaneous light emission in the wavelength-shifting fibers, which are used to read out signals from scintillator strips. This noise due to fibers exhibits an exponential fall off with time with a decay time constant of the order of 100 days

  14. To decay or not to decay - or both ! quantum mechanics of spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2008-01-01

    We discuss calculations of spontaneous emission from quantum dots in photonic crystals and show how the decay depends on the intrinsic properties of the emitter as well as the position. A number of fundamentally different types of spontaneous decay dynamics are shown to be possible, including...... counter intuitive situations in which the quantum dot decays only partially....

  15. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  16. Optical steganography based on amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  17. General theory of spontaneous emission near exceptional points.

    Science.gov (United States)

    Pick, Adi; Zhen, Bo; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljačić, Marin; Johnson, Steven G

    2017-05-29

    We present a general theory of spontaneous emission at exceptional points (EPs)-exotic degeneracies in non-Hermitian systems. Our theory extends beyond spontaneous emission to any light-matter interaction described by the local density of states (e.g., absorption, thermal emission, and nonlinear frequency conversion). Whereas traditional spontaneous-emission theories imply infinite enhancement factors at EPs, we derive finite bounds on the enhancement, proving maximum enhancement of 4 in passive systems with second-order EPs and significantly larger enhancements (exceeding 400×) in gain-aided and higher-order EP systems. In contrast to non-degenerate resonances, which are typically associated with Lorentzian emission curves in systems with low losses, EPs are associated with non-Lorentzian lineshapes, leading to enhancements that scale nonlinearly with the resonance quality factor. Our theory can be applied to dispersive media, with proper normalization of the resonant modes.

  18. Spontaneous emission near non-trivial conducting surfaces

    International Nuclear Information System (INIS)

    Melo e Souza, Reinaldo de; Kort-Kamp, W.J.M.; Taddei, M.M.; Farina, C.

    2013-01-01

    Full text: One of the remarkable phenomena associated with the zero-point fluctuations of the electromagnetic field is the spontaneous emission, which accounts for the emission of photons by an excited atom placed in vacuum. As discovered by Purcell in the 1940's, the spontaneous emission rate depends not only on the atomic properties but also on the nearby bodies. This should be expected once the electromagnetic field modes are affected by the boundary conditions imposed by these bodies. We begin our presentation reviewing a method which establishes a striking connection between the spontaneous emission of an excited atom and the classical radiation emitted by an oscillating real dipole. In fact, it can be shown, the influence of the neighbouring bodies is the same in both cases. We use this approach to evaluate the influence of an infinite conducting plane with a circular aperture on the spontaneous emission rate of the atom. This geometry will be particularly interesting if the atom is placed on the axis of symmetry of the hole and if it is predominantly polarizable in this axis, once this configuration is one of the those rare configurations that give rise to repulsive dispersive interactions. It would be very interesting to establish some connection between how the spontaneous emission rate of an excited atom is influenced by the presence of material bodies and the attractive or repulsive character of the dispersive force between that atom (in its ground state) and those material bodies. (author)

  19. The detrimental effect of spontaneous emission in quantum free electron lasers: A discrete Wigner model

    Science.gov (United States)

    Fares, H.; Piovella, N.; Robb, G. R. M.

    2018-01-01

    We study the spontaneous emission in high-gain free-electron lasers operating in the quantum regime and its detrimental effect on coherent emission. A quantum model describing the coherent and spontaneous emission in free electron lasers has been recently proposed and investigated [G. R. M. Robb and R. Bonifacio, Phys. Plasmas 19, 073101 (2012)]. The model is based on a Wigner distribution describing the electron beam dynamics, coupled to Maxwell equations for the emitted radiation field. Here, we rephrase the model in a more rigorous way, considering a discrete Wigner distribution defined for a periodic space coordinate for which the electron momentum is discrete. From its numerical solution, we find good agreement with the approximate continuous model. In the quantum regime of the free-electron laser, we obtain a simple density matrix equation for two momentum states, where the role of the spontaneous emission has a clear interpretation in terms of coherence decay and population transfer.

  20. Self energy QED: Multipole spontaneous emission

    International Nuclear Information System (INIS)

    Salamin, Y.I.

    1990-08-01

    Within the context of Barut's self-field approach, we write the exact expression of the spontaneous atomic decay rate (Phys. Rev. A37, 2284 (1988)), in the long wavelength approximation, in terms of electric- and magnetic-like multipole contributions which are related to the matrix elements of the transition charge and current distributions of the relativistic electron. A number of features of these expressions are discussed and their generalization to interacting composite systems is also pointed out. (author). 8 refs

  1. Spontaneous emission of semiconductors in the Wigner approach

    Science.gov (United States)

    Filinov, V. S.; Hoyer, W.; Bonitz, M.; Kira, M.; Fortov, V. E.; Koch, S. W.

    2003-06-01

    This paper presents a first step towards combining two well-established methods used in semiconductor physicsmdashsemiconductor Bloch equations and the Wigner approach to quantum transport. This combination provides the possibility of including spontaneous emission, i.e., the spontaneous recombination of excited electron-hole pairs in semiconductors, into the Wigner approach, which so far has been used only for systems with fixed particle number. The theory is presented and first numerical results for a three-dimensional system are shown.

  2. Nonclassical photon streams using rephased amplified spontaneous emission

    International Nuclear Information System (INIS)

    Ledingham, Patrick M.; Naylor, William R.; Longdell, Jevon J.; Beavan, Sarah E.; Sellars, Matthew J.

    2010-01-01

    We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit noise due to amplified spontaneous emission; however, this noise can be seen as a consequence of the entanglement between the atoms and the output light. With a rephasing pulse one can get an 'echo' of the amplified spontaneous emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the context of building wide bandwith quantum repeaters. We also suggest a wideband version of DLCZ protocol based on the same ideas.

  3. Shaping the Spontaneous Emission Pulse from a Superconducting Qubit

    Science.gov (United States)

    Srinivasan, Srikanth; Liu, Yanbing; Zhang, Gengyan; Yu, Terri; Gambetta, Jay; Girvin, Steven; Houck, Andrew

    2013-03-01

    We report on measurements of spontaneous emission in a circuit quantum electrodynamics system. A superconducting qubit with tunable coupling to a coplanar waveguide cavity is operated in a regime where the qubit relaxation time, and consequently the spontaneous emission rate, is dominated by the interaction strength. This fast control knob on the coupling strength is used to shape the emitted single photon's wavepacket. The independent control over the coupling allows the dressed qubit frequency to remain truly constant during the emission. The wavepacket shape becomes important in experiments where quantum information needs to be transported between various nodes in a quantum network. The transfer can happen with a very high fidelity if the wavepacket is time-symmetric, since emission by the source and absorption by the destination become time reversed processes. Authors would like to thank IARPA for their generous support.

  4. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear in th...

  5. Effects of spontaneous otoacoustic emissions on frequency discrimination

    DEFF Research Database (Denmark)

    Hansen, Rói; Santurette, Sébastien; Verhulst, Sarah

    2013-01-01

    When an external tone is presented in proximity to the frequency of a spontaneous otoacoustic emission (SOAE), the SOAE typically synchronizes to the external tone, a phenomenon known as "entrainment". As the tone moves further away from the SOAE frequency, beating patterns between the SOAE...

  6. Spontaneous Emission Enhancement at Finite-length Metal

    DEFF Research Database (Denmark)

    Filonenko, K.; Willatzen, Morten; Bordo, V.

    2013-01-01

    We study spontaneous emission enhancement of a two-level atomic emitter placed in a dielectric medium near a finite-length cylindrical metal nanowire. We calculate the dependence of the Purcell factor and the normalized decay rate to a continuous spectrum on the nanowire radius for several emitter...

  7. Spontaneous radiation emission during penetration of ions in solids

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Pacher, M.C.

    1988-01-01

    In this work, the principal continuum radiative emission processes, which occur during the penetration of ions in solids or gases, are resumed. The characteristics of the following processes are discussed: secondary electron bremsstrahlung (SEB), atomic bremsstrahlung (AB), and internuclear bremsstrahlung (INB). Recent advances of the ion channeling effects in crystal solids on the spontaneous radiative spectra are exposed. (A.C.A.S.) [pt

  8. Spontaneous emission effects in optically pumped x-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Grigor`ev, S.V. [P.N. Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  9. Controlling the spontaneous emission of a superconducting transmon qubit.

    Science.gov (United States)

    Houck, A A; Schreier, J A; Johnson, B R; Chow, J M; Koch, Jens; Gambetta, J M; Schuster, D I; Frunzio, L; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2008-08-22

    We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semiclassical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over 2 orders of magnitude in time and more than an octave in frequency. Coherence times T1 and T_{2};{*} of more than a microsecond are reproducibly demonstrated.

  10. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  11. Spontaneous emission of two quantum dots in a single-mode cavity

    International Nuclear Information System (INIS)

    Qiu Liu; Zhang Ke; Li Zhi-Yuan

    2013-01-01

    The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light—QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling parameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Electron bunchlength measurement from analysis of fluctuations in spontaneous emission

    International Nuclear Information System (INIS)

    Catravas, P.; Leemans, W.P.; Wurtele, J.S.; Zolotorev, M.S.; Babzien, M.; Ben-Zvi, I.; Segalov, Z.; Wang, X.; Yakimenko, V.

    1999-01-01

    A statistical analysis of fluctuations in the spontaneous emission of a single bunch of electrons is shown to provide a new bunchlength diagnostic. This concept, originally proposed by Zolotorev and Stupakov [1], is based on the fact that shot noise from a finite bunch has a correlation length defined by the bunchlength, and therefore has a spiky spectrum. Single shot spectra of wiggler spontaneous emission have been measured at 632 nm from 44 MeV single electron bunches of 1 - 5 ps. The scaling of the spectral fluctuations with frequency resolution and the scaling of the spectral intensity distribution with bunchlength are studied. Bunchlength was extracted in a single shot measurement. Agreement was obtained between the experiment and a theoretical model, and with independent time integrated measurements. copyright 1999 American Institute of Physics

  13. Spontaneous canine hydrocephalus: cerebrospinal fluid dynamics1

    Science.gov (United States)

    Sahar, A.; Hochwald, G. M.; Kay, W. J.; Ransohoff, J.

    1971-01-01

    Cerebrospinal fluid dynamics were studied in 14 dogs with spontaneous hydrocephalus. In nine of the dogs aqueductal obstruction was observed and the remainder had a `communicating type' hydrocephalus. The major histological findings consisted of severe ependymal destruction, spongy changes in the periventricular white matter, increased density of capillaries in this area, and varying degrees of thickening, fibrosis, and fusion of the choroid villi. The formation and absorption of CSF were studied by perfusion of the cerebral ventricles. The rate of formation of CSF was found to decrease with perfusion pressure by Vf = 0·02595−0·00022 P ml./min (P = pressure in cm H2O). The absorption of spinal fluid was found to increase linearly with pressure by Va = 0·0165 + 0·00050 P. The various factors influencing the formation and absorption of the spinal fluid are discussed. The meaning and attainment of `arrest' of the hydrocephalic process in terms of the measured rates of CSF formation and absorption in these animals are considered. Images PMID:5571319

  14. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point...

  15. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  16. Quantum theory of spontaneous and stimulated emission of surface plasmons

    International Nuclear Information System (INIS)

    Archambault, Alexandre; Marquier, Francois; Greffet, Jean-Jacques; Arnold, Christophe

    2010-01-01

    We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media without invoking any specific model for the dielectric constant. Working in Coulomb's gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green's tensor approach in the nonlossy case. Green's approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too small to obtain gain in this frequency region.

  17. Spontaneous emission spectra from a staggered-array undulator

    International Nuclear Information System (INIS)

    Shimada, Shigeki; Okada, Kouji; Masuda, Kai; Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Toku, Hisayuki

    1997-01-01

    A staggered-array undulator set inside the superconducting solenoid coils is shown to be able to provide high undulator fields larger than the longitudinal magnetic fields, a small undulator period, easy tunability through the solenoid coil current, and compact and easy fabrication. The overall performance characteristics of this undulator were studied mainly with respect to iron and aluminum disk widths, and spontaneous emission spectra through the numerical calculations. The maximum undulator field is found to be obtained for the ratio of the aluminum disk width to the undulator period of 0.45. The line widths (FWHM) of the spontaneous emission spectra, however, do not show N w -1 dependence on the number of the undulator period N w for practical beams with a Gaussian distribution, compared with for a single electron. The energy spread among various parameters is seen to play an important role in reducing the FWHM with increase of N w . The large tunability of the wavelength is proved to cover 6-10 mm by changing the solenoid magnetic field from 0.4 T to 1.6 T. (author)

  18. Coherent control of spontaneous emission near a photonic band edge

    International Nuclear Information System (INIS)

    Woldeyohannes, Mesfin; John, Sajeev

    2003-01-01

    We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)

  19. Spontaneous emission of an atom in the presence of nanobodies

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Ducloy, M; Letokhov, V S

    2001-01-01

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 10 5 -10 6 and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses. (review)

  20. Cooperative spontaneous emission from volume sources in layered media

    International Nuclear Information System (INIS)

    Nichelatti, E.

    2009-01-01

    The classical theory of radiation from a dipole located inside a microcavity is extended to the case of a volume source placed inside a layered medium. Cooperation phenomena that can take place in the spontaneous emission process are taken into account with an approach based on the theory of spatial coherence. Three cases are considered: noncooperation, long-range cooperation, and short-range cooperation. In all these cases, the expressions found for the out coupled power are analytical. As an application of the theory, an Alq 3 -based organic light emitting diode is analyzed. The optical properties of the device are evaluated and compared for two different types of cathode, one consisting of an Al layer, the other one consisting of an Al/LiF bi-layer. The results found show that the ultra-thin LiF layer significantly improves extraction efficiency [it

  1. WDM optical steganography based on amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Tait, Alexander N; Chang, Matthew P; Prucnal, Paul R

    2014-10-15

    We propose and experimentally demonstrate a wavelength-division multiplexed (WDM) optical stealth transmission system carried by amplified spontaneous emission (ASE) noise. The stealth signal is hidden in both time and frequency domains by using ASE noise as the signal carrier. Each WDM channel uses part of the ASE spectrum, which provides more flexibility to apply stealth transmission in a public network and adds another layer of security to the stealth channel. Multi-channel transmission also increases the overall channel capacity, which is the major limitation of the single stealth channel transmission based on ASE noise. The relations between spectral bandwidth and coherence length of ASE carrier have been theoretically analyzed and experimentally investigated.

  2. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    International Nuclear Information System (INIS)

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-01-01

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  3. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  4. Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes

    International Nuclear Information System (INIS)

    Le Kien, Fam; Hakuta, K.; Dutta Gupta, S.; Balykin, V.I.

    2005-01-01

    We study the spontaneous emission of a cesium atom in the vicinity of a subwavelength-diameter fiber. We show that the confinement of the guided modes and the degeneracy of the excited and ground states substantially affect the spontaneous emission process. We demonstrate that different magnetic sublevels have different decay rates. When the fiber radius is about 200 nm, a significant fraction (up to 28%) of spontaneous emission by the atom can be channeled into guided modes. Our results may find applications for developing nanoprobes for atoms and efficient couplers for subwavelength-diameter fibers

  5. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    NARCIS (Netherlands)

    Nikolaev, I.; Lodahl, P.; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges

  6. Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Gregersen, Niels; Lorke, Michael

    2011-01-01

    The modulation bandwidth for a quantum dot light-emitting device is calculated using a detailed model for the spontaneous emission including the optical and electronic density-of-states. We show that the Purcell enhancement of the spontaneous emission rate depends critically on the degree...... of inhomogeneous broadening relative to the cavity linewidth and can improve the modulation speed only within certain parameter regimes....

  7. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  8. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Directory of Open Access Journals (Sweden)

    Michael Gelfand

    2010-06-01

    Full Text Available The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions.We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators.A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  9. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Science.gov (United States)

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O; Hudspeth, A J

    2010-06-15

    The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  10. Enhancement of spontaneous emission rate and reduction in amplified spontaneous emission threshold in electrodeposited three-dimensional ZnO photonic crystal

    Science.gov (United States)

    Zhong, Yongchun; Yue, Zhounan; Wong, George K. L.; Xi, Yan Yan; Hsu, Yuk Fan; Djurišić, Aleksandra B.; Dong, Jian-Wen; Chen, Wen-Jie; Wong, Kam Sing

    2010-11-01

    ZnO photonic crystal (PC) with face-center-cube type structure is fabricated by electrodeposition using holographic lithographically made organic (SU-8) template. Photonic band gap effect (reflection peak and transmission dip in infrared spectral region) is clearly seen. Observation of strong enhancement and blueshift of the emission peak (from 383.8 to 378.8 nm), shortening of the exciton photoluminescence lifetime (from 88 to 34 ps), and reduction in amplified spontaneous emission threshold of ZnO PC compared to that of the reference nonstructured electrodeposited ZnO showed clear evidence of PC structure affecting the ZnO exciton emission.

  11. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass

  12. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  13. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  14. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  15. Spontaneous emission of Alfvénic fluctuations

    Science.gov (United States)

    Yoon, P. H.; López, R. A.; Vafin, S.; Kim, S.; Schlickeiser, R.

    2017-09-01

    Low-frequency fluctuations are pervasively observed in the solar wind. The present paper theoretically calculates the steady state spectra of low-frequency electromagnetic (EM) fluctuations of the Alfvénic type for thermal equilibrium plasma. The analysis is based upon a recently formulated theory of spontaneously emitted EM fluctuations in magnetized thermal plasmas. It is found that the fluctuations in the magnetosonic mode branch is constant, while the kinetic Alfvénic mode spectrum is dependent on a form factor that is a function of perpendicular wave number. Potential applicability of the present work in the wider context of heliospheric research is also discussed.

  16. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  17. Comparative investigations of the spontaneous and stimulated emissions from nitrogen molecules in air with femtosecond laser excitation pulses

    International Nuclear Information System (INIS)

    Li, Ziting; Wang, Zhanshan; Chu, Wei; Zeng, Bin; Yao, Jinping; Li, Guihua; Xie, Hongqiang; Cheng, Ya

    2016-01-01

    We report on experimental investigations on the spontaneous and stimulated emissions from excited nitrogen molecules generated in both linearly and circularly polarized intense laser fields. The spontaneous emission is measured from the side direction of the laser-induced filament whereas the stimulated emission generated by seed amplification is measured in the forward direction of the laser propagation. The comparison between the signal intensities of the spontaneous fluorescence emission and the seed-amplified stimulated emission provides an insight into the population inversion generated in nitrogen molecules with circularly polarized femtosecond laser pulses. (paper)

  18. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  19. Spontaneous emission of an atom in the presence of a plasmonic cloaking sphere

    International Nuclear Information System (INIS)

    Kort-Kamp, W.J.M.; Rosa, F.S.S.; Pinheiro, F.A.; Farina, Carlos

    2012-01-01

    Full text: Cavity Quantum Electrodynamics (CQED) consists, essentially, in the study of the influence of the neighborhood of an atomic system in its radiative properties. The purpose of this kind of study is not only to obtain more precise results for atomic quantities like the anomalous magnetic moment of the electron, but also to control the radiative properties of the system as, for example, the atomic transition frequencies or the natural line widths. Particularly, spontaneous emission rates, which are directly related to the natural line widths, may be enhanced, weakened or even suppressed due to the presence of appropriately arranged perfectly conducting walls in the vicinity of the atomic system. The work considered as a landmark of CQED, presented in a conference of the American Physical Society by Purcell in 1946, was precisely about this kind of influence. Purcell showed that the spontaneous emission associated to nuclear magnetic dipole transitions could be enhanced if the system were appropriately coupled to a resonant external electric circuit. Nowadays, there are several studies about the influence in the spontaneous emission rate of an atom due to the presence of new materials in its neighborhood. Particularly, the so-called metamaterials, the name given to material structures artificially constructed with desired electromagnetic properties, give rise to a new way of controlling the radiative properties of an atomic system.In the present work, after making a brief introduction on spontaneous emission, which includes the calculation of Einstein's coefficient in some simple cases as, for example, an atom embedded in a negative refractive index metamaterial, we discuss how the spontaneous emission rate of a two level atom is altered due to the presence of a plasmonic cloaking sphere. Among other things, our result shows that the emission rate exhibits an oscillatory behavior with the mutual distance between the atom and sphere. Also, we show that for a

  20. Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea

    OpenAIRE

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O.; Hudspeth, A. J.

    2010-01-01

    Background The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ens...

  1. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    OpenAIRE

    Kopatch Yuri; Chietera Andreina; Stuttgé Louise; Gönnenwein Friedrich; Mutterer Manfred; Gagarski Alexei; Guseva Irina; Dorvaux Olivier; Hanappe Francis; Hambsch Franz-Josef

    2017-01-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis ...

  2. Influence of local field on spontaneous light emission by nanoparticles

    DEFF Research Database (Denmark)

    Keller, Ole; Lozovski, V.; Iezhokin, I.

    2009-01-01

    A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point of th...... demonstrated to interact as almost point dipoles at distances that exceed their linear dimensions. This fact can be used to substantiate applications of the dipole approximation to studying the optical properties of submonolayer molecular coatings.......A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point...

  3. Spontaneous emission spectrum of a four-level atom coupled by three kinds of reservoirs

    International Nuclear Information System (INIS)

    Yang Dong; Wang Jian; Zhang, Hanzhuang; Yao Jinbo

    2007-01-01

    A model of a four-level atom embedded in a double-band photonic crystal (PC) is presented. The atomic transitions from the upper two levels to the lower two levels are coupled by the same reservoir which is assumed in turn to be isotropic PC modes, anisotropic PC modes and free vacuum modes. The effects of the fine structure of the atomic ground state levels and the quantum interference on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown for the first time that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PC case. Quantum interference induces additional narrow spontaneous lines near the transition from the empty upper level to the lower levels

  4. Influence of local field on spontaneous light emission by nanoparticles

    DEFF Research Database (Denmark)

    Keller, Ole; Lozovski, V.; Iezhokin, I.

    2009-01-01

    A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point...... demonstrated to interact as almost point dipoles at distances that exceed their linear dimensions. This fact can be used to substantiate applications of the dipole approximation to studying the optical properties of submonolayer molecular coatings....

  5. The Effects of Air Pressure on Spontaneous Otoacoustic Emissions of Lizards

    NARCIS (Netherlands)

    van Dijk, Pim; Manley, Geoffrey A.

    Small changes of air pressure outside the eardrum of five lizard species led to changes in frequency, level, and peak width of spontaneous otoacoustic emissions (SOAE). In contrast to humans, these changes generally occurred at very small pressures (<20 mbar). As in humans, SOAE amplitudes were

  6. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Claudon, Julien; Bleuse, Joël

    2012-01-01

    We introduce dielectric elliptical photonic nanowires to funnel efficiently the spontaneous emission of an embedded emitter into a single optical mode. Inside a wire with a moderate lateral aspect ratio, the electromagnetic environment is largely dominated by a single guided mode, with a linear...

  7. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...

  8. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    A model for spontaneous emission in active dielectric microstructures is given in terms of the classical electric field Green's tensor and the quantum-mechanical operators for the generating currents. A formalism is given for calculating the Green's tensor, which does not rely on the existence...

  9. Insect spontaneous ultraweak photon emission as an indicator of insecticidal compounds.

    Science.gov (United States)

    Tian, Yongqing; Yang, Chuping; Xu, Hanhong

    2014-11-01

    The influence of beta-cypermethrin, a commercial insecticide, and Cicuta virosa L. var. latisecta Celak (Umbelliferae:Cicutal), an insecticidal plant, on the spontaneous ultraweak photon emissions from larvae of Spodoptera litura Fabricius and Zophobas morio Fabricius were studied. The increased percentages of spontaneous photon emission intensities from S. litura treated with 0.1 and 1 μg/ml beta-cypermethrin were both lower than those of the control in the 24 post-treatment hours, remarkable difference could also be observed during the same period from Z. morio treated with beta-cypermethrin at 0.156, 0.313 and 0.625 μg/ml. The increased percentages of spontaneous photon emission intensities from the two mentioned insects treated with 10,100 and 1000 μg/ml petroleum ether fraction of C. virosa L. var. latisecta, which displayed little activity against whole insects, could also be changed noticeably. The present study indicated that change in the intensity of spontaneous ultraweak photon emission from insect could be used as a novel method for screening insecticidal compounds with very low content in plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spontaneous emission in the presence of a realistically sized cylindrical waveguide

    International Nuclear Information System (INIS)

    Dung, Ho Trung

    2016-01-01

    Various quantities characterizing the spontaneous emission process of a dipole emitter including the emission rate and the emission pattern can be expressed in terms of the Green tensor of the surrounding environment. By expanding the Green tensor around some analytically known background one as a Born series, and truncating it under appropriate conditions, complicated boundaries can be tackled with ease. However, when the emitter is embedded in the medium, even the calculation of the first-order term in the Born series is problematic because of the presence of a singularity. We show how to eliminate this singularity for a medium of arbitrary size and shape by expanding around the bulk medium rather than vacuum. In the highly symmetric configuration of an emitter located on the axis of a realistically sized cylinder, it is shown that the singularity can be removed by changing the integral variables and then the order of integration. Using both methods, we investigate the spontaneous emission rate of an initially excited two-level dipole emitter, embedded in a realistically sized cylinder, which can be a common optical fiber in the long-length limit and a disk in the short-length limit. The spatial distribution of the emitted light is calculated using the Born-expansion approach, and local-field corrections to the spontaneous emission rate are briefly discussed. (paper)

  11. Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal.

    Science.gov (United States)

    Yuan, X W; Shi, L; Wang, Qi; Chen, C Q; Liu, X H; Sun, L X; Zhang, Bo; Zi, J; Lu, Wei

    2014-09-22

    The spontaneous emission of colloidal CdSe/ZnS quantum dots (CQDs) modified by the hybrid plasmonic-photonic crystal is reported in this paper. By using a spin coater, the spatial overlap between CQDs and the surface resonance modes in this quasi-2D crystal slab is achieved. In this case, the coupling efficiency of them is enhanced greatly and most excited CQDs radiate through the surface modes. Consequently, despite the low refractive index contrast of our hybrid structure, the directionality of spontaneous emission, increased radiative probability and narrowed full width at half maximum of emission peak are all clearly observed by our home-made microscopic angle-resolved spectroscopy and time-resolved photoluminescence system. Our results manifest that the quasi-2D hybrid plasmonic-photonic crystal is an ideal candidate to tailor the radiative properties of CdSe/ZnS CQDs, which might be significant for the applications of light emitting devices.

  12. The 'spontaneous' acoustic emission of the shock front in a perfect fluid: solving a riddle

    International Nuclear Information System (INIS)

    Brun, Louis

    2013-06-01

    In the fifties, S. D'yakov discovered that theory allows for suitable EOS shock fronts to emit acoustic waves 'spontaneously'. Section 90 of Fluid Mechanics of Landau and Lifshitz, 2. Ed., deals with the phenomenon, leaving it unexplained. This open question was chosen to introduce a monograph in progress about 'the shock front in the perfect fluid'. The novelty of our approach consists in having the phenomenon generated - which means it is non-spontaneous -- from an appropriate solicitation of the front and studying its development analytically. The non classical source and mechanism of the emission are thus brought to light. (author)

  13. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  14. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    Science.gov (United States)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  15. Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal

    International Nuclear Information System (INIS)

    Bing, Zhang; Xiu-Dong, Sun; Xiang-Qian, Jiang

    2010-01-01

    We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra. (atomic and molecular physics)

  16. Spontaneous emission and quantum discord: Comparison of Hilbert–Schmidt and trace distance discord

    Energy Technology Data Exchange (ETDEWEB)

    Jakóbczyk, Lech, E-mail: ljak@ift.uni.wroc.pl

    2014-09-12

    Hilbert–Schmidt and trace norm geometric quantum discord are compared with regard to their behavior during local time evolution. We consider the system of independent two-level atoms with time evolution given by the dissipative process of spontaneous emission. It is explicitly shown that the Hilbert–Schmidt norm discord has nonphysical properties with respect to such local evolution and cannot serve as a reasonable measure of quantum correlations and the better choice is to use trace norm discord as such a measure. - Highlights: • We compare Hilbert–Schmidt and trace norm geometric quantum discord. • We consider the system of independent two-level atoms with time evolution given by spontaneous emission. • We show explicitly that Hilbert–Schmidt norm discord has nonphysical properties.

  17. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.

    Science.gov (United States)

    Stewart, C E; Hudspeth, A J

    2000-01-04

    The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6-5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification.

  18. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    International Nuclear Information System (INIS)

    Zhu, Z; Bi, J; Wang, X; Zhu, W

    2014-01-01

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data

  19. Calculations of the self-amplified spontaneous emission performance of a free-electron laser

    International Nuclear Information System (INIS)

    Dejus, R. J.

    1999-01-01

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed

  20. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  1. Localization of the relative position of two atoms induced by spontaneous emission

    International Nuclear Information System (INIS)

    Zheng, L.; Li, C.; Li, Y.; Sun, C.P.

    2005-01-01

    We reexamine the back-action of emitted photons on the wave packet evolution about the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object

  2. Time-reversal symmetrization of spontaneous emission for quantum state transfer

    Science.gov (United States)

    Srinivasan, Srikanth J.; Sundaresan, Neereja M.; Sadri, Darius; Liu, Yanbing; Gambetta, Jay M.; Yu, Terri; Girvin, S. M.; Houck, Andrew A.

    2014-03-01

    We demonstrate the ability to control spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric truncated exponential. The experiment is enabled by a qubit coupled to a cavity, with a coupling strength that can be tuned in tens of nanoseconds while maintaining a constant dressed state emission frequency. Symmetrization of the photonic wave packet will enable use of photons as flying qubits for transferring the quantum state between atoms in distant cavities.

  3. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    Science.gov (United States)

    Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef

    2017-09-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  4. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    Directory of Open Access Journals (Sweden)

    Kopatch Yuri

    2017-01-01

    Full Text Available An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  5. Investigation of coherent molecular resonances in quantum dot–metallic nanoparticle systems using their spontaneous emission

    International Nuclear Information System (INIS)

    Sadeghi, S.M.; Patty, K.D.

    2014-01-01

    In the presence of metallic nanoparticles the nature of the optical excitations (pumping) of semiconductor quantum dots can be determined by their molecular states and resonances formed via coherent coupling of excitons and plasmons. We show that the spontaneous emission of such quantum dots can provide key information regarding formation and characteristics of such molecular properties. This includes an ultra-fast switching process associated with optical transition between the molecular states of the quantum dot-metallic nanoparticle system or its plasmonic meta-resonance when the intensity of the laser field responsible for the exciton–plasmon coupling reaches a critical value. We also show that by varying the intensity of this laser, the spontaneous emission exhibits characteristic features indicating tunability of the molecular resonances and excitation-power dependence of plasmonic fields of the metallic nanoparticles. - Highlights: • Investigation of collective molecular properties of quantum dot-metallic nanoparticle systems. • Impact of such collective properties on the optical excitation of quantum dots. • Effects of exciton–plasmon coupling in the spontaneous emission of the quantum dots. • Signatures of plasmonic meta-resonances in the fluorescence of quantum dots

  6. Effects of spontaneous otoacoustic emissions on pure-tone frequency difference limens

    DEFF Research Database (Denmark)

    Hansen, Rói; Santurette, Sébastien; Verhulst, Sarah

    2014-01-01

    Pure-tone frequency difference limens (FDLs) have been shown to vary in the vicinity of spontaneous otoacoustic emissions (SOAEs). As lower FDLs have been observed near SOAEs when measured ipsi- and contralaterally to the emission ear, it has been proposed that prolonged ongoing stimulation...... of nerve cells tuned to the SOAE frequency could lead to a central oversensitivity to that frequency, hence a better frequency-discrimination ability. However, it is also known that tones close in frequency to an SOAE can “entrain” the emission to oscillate at their own frequency. This may instead explain...... were lowest in the SOAE entrainment region and worsened significantly when beating between the external tone and SOAE occurred. FDLs remained unaffected in the non-emission ear and did not alter with continuous ipsilateral or contralateral presentation of a pure tone aimed at emulating an SOAE...

  7. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    International Nuclear Information System (INIS)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J; Stewart, L; Dawes, J M

    2011-01-01

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  8. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J [Centre for Quantum Science and Technology, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Stewart, L; Dawes, J M, E-mail: james.rabeau@mq.edu.au, E-mail: michael.steel@mq.edu.au [MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2011-07-15

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  9. Spatial Dependent Spontaneous Emission of an Atom in a Semi-Infinite Waveguide of Rectangular Cross Section

    Science.gov (United States)

    Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan

    2018-01-01

    We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001

  10. Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer

    International Nuclear Information System (INIS)

    Yokoyama, Shiyoshi; Nakahama, Tatsuo; Mashiko, Shinro

    2005-01-01

    We measured the amplified spontaneous emission and laser emission from high-gain media of laser-dye encapsulated dendrimers. A highly branched poly(amidoamine) (PAMAM-OH) dendrimer formed a guest-host complex with a conventional laser-dye (DCM), resulting in a high optical-gain. Of particular note was the appearance of a laser threshold, above which a super-narrowed laser spectrum was observed, although laser feedback was caused without any mirror cavity devices. The optical feedback was attributed to spatial confinement of the light due to gain guiding under optical excitation. The laser spectrum clearly indicated a resonant laser-mode with a spectrum linewidth of less than 0.1 nm. This order of spectrum narrowing is comparable to that seen in the laser emission from ordinary laser devices

  11. Enhanced spontaneous emission from the inside of a multilayer hyperbolic metamaterial (presentation video)

    Science.gov (United States)

    Ferrari, Lorenzo; Lu, Dylan; Lepage, Dominic; Liu, Zhaowei

    2014-09-01

    We study the spontaneous emission enhancement inside a hyperbolic metamaterial, composed of a periodic stack of silver and silicon layers. After showing that the decay rate outside the multilayer can be spectrally altered via the metallic filling ratio, we embed the source within the individual silicon layers, and predict a 3-fold increase of the Purcell factor with respect to its outer value. Then we include the emitter in a polymethyl-methacrylate (PMMA) layer, and extract the plasmonic modes by means of a triangular and a rectangular grating, obtaining respectively a 10-fold and 6-fold enhancement in the power emitted into the far-field.

  12. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  13. Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise.

    Science.gov (United States)

    Elson, Daniel J; Saavedra, Gabriel; Shi, Kai; Semrau, Daniel; Galdino, Lidia; Killey, Robert; Thomsen, Benn C; Bayvel, Polina

    2017-08-07

    The use of spectrally shaped amplified spontaneous emission noise (SS-ASE) as a method for emulating interfering channels in optical fibre transmission systems has been studied. It is shown that the use of SS-ASE leads to a slightly pessimistic performance relative to the use of conventionally modulated interfering channels in the nonlinear regime. The additional nonlinear interference noise (on the channel under test), due to the Gaussian nature of SS-ASE, has been calculated using a combination of the Gaussian noise (GN) and enhanced GN (EGN) models for the entire C-band (4.5 THz) and experimentally shown to provide a lower bound for transmission performance.

  14. Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission

    International Nuclear Information System (INIS)

    Wang Fei; Tan Xin-Yu; Gong Cheng; Shi Wen-Xing

    2012-01-01

    We propose a continuously tunable method of sub-half-wavelength localization via the coherent control of the spontaneous emission of a four-level Y-type atomic system, which is coupled to three strong coupling fields including a standing-wave field together with a weak probe field. It is shown that the sub-half-wavelength atomic localization is realized for both resonance and off-resonance cases. Furthermore, by varying the probe detuning in succession, the positions of the two localization peaks are tuned continuously within a wide range of probe field frequencies, which provides convenience for the realization of sub-half-wavelength atomic localization experimentally

  15. Spontaneous emission and scattering in a two-atom system: Conservation of probability and energy

    International Nuclear Information System (INIS)

    Berman, P. R.

    2007-01-01

    An explicit calculation of conservation of probability and energy in a two-atom system is presented. One of the atoms is excited initially and undergoes spontaneous emission. The field radiated by this atom can be scattered by the second atom. It is seen that the Weisskopf-Wigner approximation must be applied using a specific prescription to guarantee conservation of probability and energy. Moreover, for consistency, it is necessary to take into account the rescattering by the source atom of radiation scattered by the second atom

  16. Studies on a one-dimensional model for the spontaneous emission in the semiclassical approximation

    International Nuclear Information System (INIS)

    Crestana, S.

    1983-01-01

    Some generalization are made on the spontaneous emission by a plane of excited atoms, described by two level atom-model, in the Δ1=1, Δm=1, transition and using the semiclassical radiation approximation -both discussed in the text. Initially, the radiation rate of an infinite plane of excited atoms is investigated, using Δ1=0, Δm=0, transition. It is shown that we can observe a limit solution depending on the coupling between field and matter. (author)

  17. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  18. Solid state solvation effect and reduced amplified spontaneous emission threshold value of glass forming DCM derivative in PMMA films

    Energy Technology Data Exchange (ETDEWEB)

    Vembris, Aivars, E-mail: aivars.vembris@cfi.lu.lv [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV 1063 (Latvia); Zarins, Elmars; Kokars, Valdis [Institute of Applied Chemistry, Riga Technical University, 14/24 Azenes Street, Riga LV 1048 (Latvia)

    2015-02-15

    Molecule crystallization is one of the limitations for obtaining high-gain organic laser systems. One of the examples is well known red laser dye 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). The lowest threshold value of amplified spontaneous emission was achieved by doping 2 wt% of DCM molecule in tris-(8-hydroxy quinoline) aluminum (Alq{sub 3}) matrix. Further increase of the DCM dye concentration makes the system less efficient as its threshold value increases. It is due to large intermolecular interaction, which induces photoluminescence quenching. Compounds with reduced intermolecular interaction could be prospective in organic laser systems due to higher possible doping. In this work photoluminescence and amplified spontaneous emission properties of modified DCM molecule in poly(methyl methacrylate) (PMMA) matrix were investigated. Bulky trityloxyethyl groups were attached to the donor part of DCM. These groups increase intermolecular distance wherewith reduce photoluminescence quenching. More than one order of magnitude lower excitation threshold energy of the amplified spontaneous emission was achieved in doped polymer films with investigated compound in comparison to doped polymer with DCM. It means that the investigated compound is more perspective as a laser material compared to the previously studied. In addition, amplified spontaneous emission maximum could be tuned within 15 nm by changing concentration from 0.1 wt% to 10 wt% DWK-1 in PMMA matrix due to solid state solvation effect. - Highlights: • Bulky groups attached to DCM dye reduce photoluminescence quenching. • Amplified spontaneous emission is in red spectral region. • Amplified spontaneous emission spectra were tuned by 15 nm. • Amplified spontaneous emission threshold value was reduced by one order of magnitude.

  19. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-01-01

    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  20. Spontaneous emission and the natural broadening shape of spectral lines in the T-matrix theory

    International Nuclear Information System (INIS)

    Gainutdinov, R.K.

    1986-01-01

    Electronic bound states in the nuclear field and the spontaneous emission of hydrogenlike ions are investigated within the bounds of the approach to the quantum theory of scattering proposed by the author. In the process, it is clear that one must consider the instability of the excited states. We derived equations from determination of the operators C(z) and M(z), describing the energy distribution of the bound states, and of the processes of emission and absorption, without resorting to perturbation theory. These operators describe the natural broadening shape of the spectral lines which can, for example, for very heavy multiply charged ions, differ substantially from Lorentzian. They also describe the relative line intensities

  1. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  2. Enhancement of the spontaneous emission in subwavelength quasi-two-dimensional waveguides and resonators

    Science.gov (United States)

    Tokman, Mikhail; Long, Zhongqu; AlMutairi, Sultan; Wang, Yongrui; Belkin, Mikhail; Belyanin, Alexey

    2018-04-01

    We consider a quantum-electrodynamic problem of the spontaneous emission from a two-dimensional (2D) emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach, which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron systems, e.g., in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem. We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities. Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher, is possible for quantum wells and other 2D emitters in a subwavelength cavity.

  3. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  4. REVIEW: Spontaneous emission of an atom in the presence of nanobodies

    Science.gov (United States)

    Klimov, Vasilii V.; Ducloy, M.; Letokhov, V. S.

    2001-07-01

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 105—106 and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses.

  5. Spontaneous emission high-gain harmonic generation free-electron laser

    Science.gov (United States)

    Xing, Qingzi; Xu, Xinlu; Feng, Chao; Tang, Chuanxiang

    2011-05-01

    A scheme, spontaneous emission high-gain harmonic generation (SEHG) free-electron laser (FEL), is proposed and analyzed for generating the X-ray FEL. The SEHG scheme works in a similar mechanism as high-gain harmonic generation (HGHG), but without the need for a seed laser. The scheme requires two undulators. The 1st undulator must be sufficiently long so that the energies of electrons are modulated within the bunch, but still away from saturation. A dispersion section is followed to transfer energy modulation into density modulation. The 2nd undulator simply serves as a radiator. A simple, one-dimensional, analytical estimation of SEHG is given to show the process of energy modulation and optimize the system parameters. The three-dimensional FEL simulation code, GENESIS, has been used to simulate, verify, and optimize the SEHG scheme for the soft X-ray free-electron laser (SXFEL) project in China. The simulation results are presented in comparison with the self-amplified spontaneous emission (SASE) and HGHG schemes. At 9 nm radiation wavelength, up to 120 MW of output power can be achieved by the SEHG scheme, with a total length of 47.3 m long undulators. Though the undulator length is comparable with the SASE scheme, the output bandwidth of the SEHG scheme is smaller. Moreover, it is tunable and does not require a seed laser. The SEHG scheme offers an attractive alternative option for the X-ray FEL.

  6. Position Dependent Spontaneous Emission Spectra of a Λ-Type Atomic System Embedded in a Defective Photonic Crystal

    International Nuclear Information System (INIS)

    Entezar, S. Roshan

    2012-01-01

    We investigate the position dependent spontaneous emission spectra of a Λ-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  8. Fluorescence and amplified spontaneous emission of glass forming compounds containing styryl-4H-pyran-4-ylidene fragment

    Energy Technology Data Exchange (ETDEWEB)

    Vembris, Aivars, E-mail: aivars.vembris@cfi.lu.lv [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Muzikante, Inta [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga LV-1063 (Latvia); Karpicz, Renata; Sliauzys, Gytis [Institute of Physics, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania); Miasojedovas, Arunas; Jursenas, Saulius [Institute of Applied Research, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Gulbinas, Vidmantas [Institute of Physics, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2012-09-15

    Potential of glassy films of newly synthesised low molecular weight organic molecules for light amplification and lasing applications has been investigated by analysing fluorescence, transient differential absorption and amplified spontaneous emission properties. These non-symmetric and symmetric molecules contain styryl-4H-pyran-4-ylidene fragment with three different electron acceptor groups: dicyanomethylene, barbituric acid, indene-1,3-dione. Fluorescence quantum yields of the investigated compounds in solutions are between 0.32 and 0.54, while they drop down by an order of magnitude in thin solid films. Incorporation of bulky side groups reduced excitonic interactions enabling manifestation of amplified spontaneous emission in the neat films of the investigated derivatives. - Highlights: Black-Right-Pointing-Pointer Bulky substituents attached to DCM dye enable formation of neat glassy films. Black-Right-Pointing-Pointer Investigated dyes show amplified spontaneous emission in neat films. Black-Right-Pointing-Pointer Two electron donor groups negatively influence light amplification.

  9. Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Nielsen, Torben Roland; Gregersen, Niels

    2010-01-01

    We develop a self-consistent finite-element method to quantitatively study spontaneous emission from emitters in nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode is dominatingly excited by the quantum emitter, while the cross section of the plasmo......We develop a self-consistent finite-element method to quantitatively study spontaneous emission from emitters in nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode is dominatingly excited by the quantum emitter, while the cross section...... radius the spontaneous emission β factor and the plasmonic decay rate deviate substantially, by factors of up to 5–10 for a radius of ∼100 nm, from the values obtained in the quasistatic approximation. We also show that the quasistatic approximation is typically valid when the radius is less than...

  10. Neurofeedback tunes scale-free dynamics in spontaneous brain activity

    NARCIS (Netherlands)

    Ros, T.; Frewen, P.A.; Thé berge, J.; Michela, A.; Kluetsch, R.C.; Mü ller, A.; Candrian, G.; Jetly, R.; Vuilleumier, P.; Lanius, R.

    2017-01-01

    Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near

  11. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optical Properties and Amplified Spontaneous Emission of Novel MDMO-PPV/C500 Hybrid

    Directory of Open Access Journals (Sweden)

    Rasha A. Abumosa

    2017-02-01

    Full Text Available The influence of the solvent nature on optical properties of poly[2-methoxy-5-3,7-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV/Coumarine 500 (C500 have been investigated. In addition, the amplified spontaneous emission (ASE from MDMO-PPV and efficient energy transfer between the MDMO-PPV and C500 has been verified. The MDMO-PPV was dissolved in aromatic and nonaromatic solvents, while the solution blending method was employed to prepare the MDMO-PPV:C500 hybrid. The quantum yield of the MDMO-PPV was found to increase with the reduction of a few factors such as polarity index of the solvent, absorption cross section (σa, emission cross section (σe, and extinction coefficient (εmax. The fluorescence spectra of the MDMO-PPV appears from two vibronic band transitions (0-0, 0-1 and the ASE occurs at 0-1 transition, which was verified by the ASE from MDMO-PPV. The MDMO-PPV in toluene exhibited the best ASE efficiency due to its high quantum yield compared with other solvents. Strong overlap between the absorption spectrum of MDMO-PPV and emission spectrum of C500 confirmed the efficient energy transfer between them. Moreover, the ASE for energy transfer of the MDMO-PPV:C500 hybrid was proved.

  13. Decay of stimulated and spontaneous emission in highly excited homoepitaxial GaN

    International Nuclear Information System (INIS)

    Jursenas, S.; Kurilcik, N.; Kurilcik, G.; Zukauskas, A.; Prystawko, P.; Leszcynski, M.; Suski, T.; Perlin, P.; Grzegory, I.; Porowski, S.

    2001-01-01

    The high-density effects in the recombination of electron - hole plasma in photoexcited homoepitaxial GaN epilayers were studied by means of transient photoluminescence at room temperature. Owing to the 'backward' and 'lateral' photoluminescence measurement geometries employed, the influence of stimulated transitions on the decay of degenerate nonthermalized plasma was revealed. The lateral stimulated emission was demonstrated to cause a remarkable increase in the recombination rate on the early stage of the luminescence transient. A delayed enhancement of the stimulated emission due to the cooling of plasma from the initial temperature of 1100 K was observed. After completion of the thermalization process and exhaustion of the stimulated emission, the spontaneous-luminescence decay exhibited an exponential slope that relates to the nonradiative recombination of the carriers. The homoepitaxially grown GaN layer featured a luminescence decay time of 445 ps that implies a room-temperature free-carrier lifetime of 890 ps (considered to be extremely high for undoped hexagonal GaN). [copyright] 2001 American Institute of Physics

  14. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  15. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  16. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  17. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    Science.gov (United States)

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  18. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through...

  19. Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    Directory of Open Access Journals (Sweden)

    Franc Cus

    2002-01-01

    Full Text Available Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.

  20. String and brane models with spontaneously or dynamically induced tension

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Kaganovich, A.; Nissimov, E.; Pacheva, S.

    2002-01-01

    We study in some detail the properties of a previously proposed new class of string and brane models whose world-sheet (world-volume) actions are built with a modified reparametrization-invariant measure of integration and which do not contain any ad hoc dimensionful parameters. The ratio of the new and the standard Riemannian integration measure densities plays the role of a dynamically generated string or brane tension. The latter is identified as (the magnitude of) an effective (non-Abelian) electric field strength on the world-sheet or world-volume obeying the standard Gauss-law constraint. As a result a simple classical mechanism for confinement via modified-measure 'color' strings is proposed where the colorlessness of the 'hadrons' is an automatic consequence of the new string dynamics

  1. Gravity Wave Emission by Spontaneous Imbalance of Baroclinic Waves in the Continuously Stratified Rotating Annulus

    Science.gov (United States)

    Borchert, Sebastian; Achatz, Ulrich; Rieper, Felix; Fruman, Mark

    2013-04-01

    We use a numerical model of the classic differentially heated rotating annulus experiment to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which is a major source of these waves in the atmosphere for which no satisfactory parameterization exists. Atmospheric observations are the main tool for the testing and verification of theoretical concepts but have their limitations. Given their specific potential for yielding reproducible data and for studying process dependence on external system parameters, laboratory experiments are an invaluable complementary tool. Experiments with a rotating annulus exhibiting a jet modulated by large-scale waves due to baroclinic instability have already been used to study GWs: Williams et al (2008) observed spontaneously emitted interfacial GWs in a two-layer flow, and Jacoby et al (2011) detected GWs emitted from boundary-layer instabilities in a differentially heated rotating annulus. Employing a finite-volume code for the numerical simulation of a continuously stratified liquid in a differentially heated rotating annulus, we here investigate the GWs in a wide and shallow annulus with relatively large temperature difference between inner and outer cylinder walls. In this atmosphere-like regime where the Brunt-Vaisala frequency is larger than the inertial frequency, various analyses suggest a distinct gravity wave activity. To identify regions of GW emission we decompose the flow into the geostrophic and ageostrophic part through the inversion of the quasi-geostrophic potential vorticity (e.g. Verkley, 2009). The analysis of the geostrophic sources of the ageostrophic flow indicates that, in addition to boundary layer instabilities, spontaneous imbalance in the jet region acts as an important source mechanism. Jacoby, T. N. L., Read, P. L., Williams, P. D. and Young, R. M. B., 2011: Generation of inertia-gravity waves in the rotating thermal annulus by a localised boundary layer instability. Geophys

  2. Detailed study of the angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    OpenAIRE

    KOPATCH Y.; CHIETERA A.; STUTTGE L.; GOENNENWEIN F.; MUTTERER M.; GAGARSKI A.; GUSEVA I.; CHERNYSHEVA E; DORVAUX O; HAMBSCH Franz-Josef; HANAPPE F.; MEZENTSEVAH Z.; TELEZHNIKOVCH S.

    2015-01-01

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Mo...

  3. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures

    Science.gov (United States)

    Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W.

    1999-11-01

    A fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum-well systems is developed. The resulting many-body hierarchy for the correlation functions is truncated using a dynamical decoupling scheme leading to coupled semiconductor luminescence and Bloch equations. For incoherent excitation conditions, the theory is used to describe nonlinear excitonic emission properties of single-quantum wells, optically coupled multiple quantum-well systems, and quantum wells in a microcavity. Resonant coherent optical excitation leads to a direct coupling between the induced coherent polarization and photoluminescence. The resulting quantum corrections to the semiclassical semiconductor Bloch equations and the coherent contributions to the semiconductor luminescence equations are discussed. The secondary emission in directions deviating from the coherent excitation direction after femtosecond-pulse excitation is studied. Coherent control and quadrature squeezing for the light emission are analyzed.

  4. Yeast dynamics during spontaneous fermentation of mawe and tchoukoutou, two traditional products from Benin

    DEFF Research Database (Denmark)

    Greppi, Anna; Rantisou, Kalliopi; Padonou, Wilfrid

    2013-01-01

    Mawe and tchoukoutou are two traditional fermented foods largely consumed in Benin, West Africa. Their preparations remain as a house art and they are the result of spontaneous fermentation processes. In this study, dynamics of the yeast populations occurring during spontaneous fermentations...... of mawe and tchoukoutou were investigated using both culture-dependent and -independent approaches. For each product, two productions were followed. Samples were taken at different fermentation times and yeasts were isolated, resulting in the collection of 177 isolates. They were identified by the PCR...

  5. Ultrafast table-top dynamic radiography of spontaneous or stimulated events

    Science.gov (United States)

    Smilowitz, Laura; Henson, Bryan

    2018-01-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography. For example, certain embodiments concern X-ray radiography of spontaneous events. Particular embodiments of the disclosed technology provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation, and even material failure. Further, in certain embodiments, x-ray activation and data collection activation are triggered by the object itself that is under observation (e.g., triggered by a change of state detected by one or more sensors monitoring the object itself).

  6. Low-frequency-field-induced spontaneous-emission interference in a two-level atom placed in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Li Gaoxiang; Evers, Joerg; Keitel, Christoph H

    2005-01-01

    We investigate the spontaneous-emission properties of a two-level atom embedded in a three-dimensional anisotropic photonic crystal. In addition to the modified density of states, the atom is driven by a coherent intense low-frequency field (LFF), which creates additional multiphoton decay channels with the exchange of two low-frequency photons and one spontaneous photon during an atomic transition. Due to the low frequency of the applied field, the various transition pathways may interfere with each other and thus give rise to a modified system dynamics. We find that even if all the atomic (bare and induced) transition frequencies are in the conducting band of the photonic crystal, there still may exist a photon-atom bound state in coexistence with propagating modes. The system also allows us to generate narrow lines in the spontaneous-emission spectrum. This spectrum is a function of the distance of the observer from the atom due to the band gap in the photonic crystal. The system properties depend on three characteristic frequencies, which are influenced by quantum interference effects. Thus these results can be attributed to a combination of interference and band-gap effects

  7. Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission.

    Science.gov (United States)

    Yong, Zi-Jun; Zhou, Yang; Ma, Ju-Ping; Chen, Ya-Meng; Yang, Jun-Yi; Song, Ying-Lin; Wang, Jing; Sun, Hong-Tao

    2017-09-27

    All-inorganic lead halide perovskites have gained considerable interest owing to their potential applications in an array of high-performance optoelectronic devices. However, producing highly luminescent, nearly pinhole-free, all-inorganic perovskite films through a simple solution process remains challenging. Here, we provide a detailed investigation of the crystallization control of inorganic perovskite films fabricated by a one-step spin-coating process. Our results reveal that the coating temperature in the fabrication process is of paramount importance in influencing perovskite crystallization and that lowering the coating temperature and fine stoichiometry modification of the precursors favor the suppression of trap states in CsPbBr 3 perovskite films. A broad range of experimental characterizations help us identify that nonsynergistic assembly of solutes, resulting from poor diffusion capability of inorganic salts, is the dominant cause for the inhomogeneous element distribution, low luminescence yield, and poor surface coverage of the resulting films. Importantly, we find that polyethylene glycol can also be used for tailoring the crystallization process, which enables the attainment of high-quality CsPbBr 3 films with a maximum luminescence yield of ∼30%. Finally, we demonstrate that amplification spontaneous emission with an ultralow threshold can be readily accomplished by using the developed film as an emissive component. Our findings provide deep insights into the crystallization control of CsPbBr 3 perovskite films and establish a systematic route to high-quality all-inorganic perovskite films, paving the way for widespread optoelectronic applications.

  8. Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission.

    Science.gov (United States)

    Huang, Rui; Wang, Chenguang; Wang, Yue; Zhang, Hongyu

    2018-04-06

    Organic crystals are generally brittle and tend to crack under applied stress. Doped organic crystals are even more brittle because of lattice defects. Herein, the first doped organic crystals 1d@2d, which display elastic bending ability under applied stress, are reported. Moreover, the potential applications of elastic-doped crystals 1d@2d in flexible optoelectronics are impressively demonstrated. The elastic crystals 1d@2d with high quality and large size are crystalized by a simple and unique "self-doping" process, which is a regular solution evaporation of crude product 1d (2,5-dihydro-3,6-bis(octylamino)terephthalate) containing a minute amount of 2d (3,6-bis(octylamino)terephthalate) as the oxidized byproduct. The host 1d is easily crystallized to form elastic crystals but is nonfluorescent, while the guest 2d has poor crystallinity and is highly emissive. The doping approach integrates the advantages of both 1d and 2d, and thus endows doped crystals 1d@2d with good elasticity as well as intense orange fluorescence. Taking these advantages, the application potentials of these doped crystals 1d@2d are evaluated by measuring optical waveguide and amplified spontaneous emission in both the straight and bent states. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    International Nuclear Information System (INIS)

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  10. Measuring emotional and cognitive empathy using dynamic, naturalistic, and spontaneous emotion displays.

    Science.gov (United States)

    Buck, Ross; Powers, Stacie R; Hull, Kyle S

    2017-10-01

    Most measures of nonverbal receiving ability use posed expressions as stimuli. As empathy measures, such stimuli lack ecological validity, as the participant is not actually experiencing emotion. An alternative approach uses natural and dynamic displays of spontaneous expressions. The Communication of Affect Receiving Ability Test (CARAT) uses as stimuli spontaneous facial expressions and gestures filmed by an unobtrusive camera of solitary participants responding to emotional images. This article reports the development and initial validation of the CARAT-Spontaneous, Posed, Regulated (CARAT-SPR), which measures both abilities to detect emotion from spontaneous displays (emotion communication accuracy) and to differentiate spontaneous, posed, and regulated displays (expression categorization ability). Although spontaneous displays are natural responses to emotional images, posed displays involve asking the sender to display "as if" responding to a particular sort of image when no image is in fact present (simulation), while Regulated displays involve asking the sender to display "as if" responding to a particular sort of image when an image of opposite valence is in fact present (masking). Expression categorization ability involves judging deception-simulation and masking-and conceptually involves a kind of perspective-taking or cognitive empathy. Emotion communication using spontaneous clips achieved a high level of accuracy and was strongly correlated with ratings of sender expressivity. Expression categorization ability was not significantly correlated with expressivity ratings and was modestly negatively correlated with emotion communication accuracy. In a brief version of the CARAT-SPR, women showed evidence of greater emotion signal detection, whereas men reported greater confidence in expression categorization. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    Science.gov (United States)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  12. Spectrum of spontaneous photon emission as a promising biophysical indicator for breast cancer research.

    Science.gov (United States)

    Zhao, Xiaolei; Yang, Meina; Wang, Yong; Pang, Jingxiang; Wijk, Eduard Van; Liu, Yanli; Fan, Hua; Zhang, Liewei; Han, Jinxiang

    2017-10-12

    In this study, we investigated the spectral characteristics of Spontaneous Photon Emission (SPE) from the body surface of a human breast cancer-bearing nude mice model during the overall growth process of breast cancers. By comparing and analyzing the data, we found that there was a striking difference between tumor mice and healthy controls in the spectral distribution of SPE from the body surface of lesion site, even when the morphological changes at the lesion site were not obvious. The spectral distribution of SPE from the healthy site of the tumor mice also differed from that of the healthy controls as the breast cancer developed to a certain stage. In addition, the difference in spectrum was related with different growth states of tumors. Interestingly, there was a positive correlation between the spectral ratio (610-630/395-455 nm) and the logarithm of the tumor volume for both the lesion site (R 2  = 0.947; p spectrum of SPE was sensitive to changes in the tumor status.

  13. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  14. Spontaneous emission spectrum from a V-type three-level atom in a double-band photonic crystal

    International Nuclear Information System (INIS)

    Zhang Han Zhuang; Tang Sing Hai; Dong Po; He Jun

    2002-01-01

    The spontaneous emission spectrum from a V-type three-level atom embedded in a double-band photonic band gap (PBG) material has been investigated for the first time. Most interestingly it is shown that there is not only a black dark line, but also a narrow spontaneous line near the edges of the double photonic band. The positions of the dark line and narrow spontaneous line are near the transition from an empty upper level to a lower level. The lines stem from destructive and constructive quantum interferences, which induce population transfer between the two upper levels, in the PBG reservoirs. The effects of system parameters on the interference have been discussed in detail

  15. Cycle length restitution in sinoatrial node cells: a theory for understanding spontaneous action potential dynamics.

    Directory of Open Access Journals (Sweden)

    Patric Glynn

    Full Text Available Normal heart rhythm (sinus rhythm is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation. While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.

  16. Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic Purcell factor.

    Science.gov (United States)

    Gu, Ying; Wang, Luojia; Ren, Pan; Zhang, Junxiang; Zhang, Tiancai; Martin, Olivier J F; Gong, Qihuang

    2012-05-09

    The mechanism of using the anisotropic Purcell factor to control the spontaneous emission linewidths in a four-level atom is theoretically demonstrated; if the polarization angle bisector of the two dipole moments lies along the axis of large/small Purcell factor, destructive/constructive interference narrows/widens the fluorescence center spectral lines. Large anisotropy of the Purcell factor, confined in the subwavelength optical mode volume, leads to rapid spectral line narrowing of atom approaching a metallic nanowire, nanoscale line width pulsing following periodically varying decay rates near a periodic metallic nanostructure, and dramatic modification on the spontaneous emission spectrum near a custom-designed resonant plasmon nanostructure. The combined system opens a good perspective for applications in ultracompact active quantum devices.

  17. Spontaneous emission near the band edge of a three-dimensional photonic crystal: a fractional calculus approach

    International Nuclear Information System (INIS)

    Cheng, S-C; Wu, J-N; Tsai, M-R; Hsieh, W-F

    2009-01-01

    We suggest a better mathematical method, fractional calculus, for studying the behavior of the atom-field interaction in photonic crystals. By studying the spontaneous emission of an atom in a photonic crystal with a one-band isotropic model, we found that the long-time inducing memory of the spontaneous emission is a fractional phenomenon. This behavior could be well described by fractional calculus. The results show no steady photon-atom bound state for the atomic resonant transition frequency lying in the proximity of the allowed band edge which was encountered in a previous study (Woldeyohannes and John 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R43). The correctness of this result is validated by the 'cut-off smoothing' density of photon states (DOS) with fractional calculus. By obtaining a rigorous solution without the multiple-valued problem for the system, we show that the method of fractional calculus has a logically concise property.

  18. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  19. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    Science.gov (United States)

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm.

  20. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas

    Science.gov (United States)

    Gaunt, Alexander; Navon, Nir; Smith, Robert; Hadzibabic, Zoran

    2015-05-01

    Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z=3/2.

  1. Quantum gases. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas.

    Science.gov (United States)

    Navon, Nir; Gaunt, Alexander L; Smith, Robert P; Hadzibabic, Zoran

    2015-01-09

    Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2. Copyright © 2015, American Association for the Advancement of Science.

  2. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    Science.gov (United States)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  3. New waves: Rhythmic electrical field stimulation systematically alters spontaneous slow dynamics across mouse neocortex.

    Science.gov (United States)

    Greenberg, Anastasia; Abadchi, Javad Karimi; Dickson, Clayton T; Mohajerani, Majid H

    2018-03-10

    The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral - posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrain and alter ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes. Copyright © 2018. Published by Elsevier Inc.

  4. String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory

    International Nuclear Information System (INIS)

    Liu Luxin

    2009-01-01

    The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.

  5. A penalty-based nodal discontinuous Galerkin method for spontaneous rupture dynamics

    Science.gov (United States)

    Ye, R.; De Hoop, M. V.; Kumar, K.

    2017-12-01

    Numerical simulation of the dynamic rupture processes with slip is critical to understand the earthquake source process and the generation of ground motions. However, it can be challenging due to the nonlinear friction laws interacting with seismicity, coupled with the discontinuous boundary conditions across the rupture plane. In practice, the inhomogeneities in topography, fault geometry, elastic parameters and permiability add extra complexity. We develop a nodal discontinuous Galerkin method to simulate seismic wave phenomenon with slipping boundary conditions, including the fluid-solid boundaries and ruptures. By introducing a novel penalty flux, we avoid solving Riemann problems on interfaces, which makes our method capable for general anisotropic and poro-elastic materials. Based on unstructured tetrahedral meshes in 3D, the code can capture various geometries in geological model, and use polynomial expansion to achieve high-order accuracy. We consider the rate and state friction law, in the spontaneous rupture dynamics, as part of a nonlinear transmitting boundary condition, which is weakly enforced across the fault surface as numerical flux. An iterative coupling scheme is developed based on implicit time stepping, containing a constrained optimization process that accounts for the nonlinear part. To validate the method, we proof the convergence of the coupled system with error estimates. We test our algorithm on a well-established numerical example (TPV102) of the SCEC/USGS Spontaneous Rupture Code Verification Project, and benchmark with the simulation of PyLith and SPECFEM3D with agreeable results.

  6. Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers

    Czech Academy of Sciences Publication Activity Database

    Sawicka, Magdalena; Divoký, Martin; Lucianetti, Antonio; Mocek, Tomáš

    2013-01-01

    Roč. 31, č. 4 (2013), s. 553-560 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : amplified spontaneous emission * cryogenic cooling * parasitic oscillations * slab lasers * Yb:YAG, Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.701, year: 2013

  7. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    International Nuclear Information System (INIS)

    Sodha, M. S.; Dixit, A.

    2009-01-01

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  8. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  9. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.

    2014-12-01

    The estimation of vehicular emissions depends mainly on the values of emission factors, which are used for the development of a comprehensive emission inventory of vehicles. In this study the variations of emission factors as well as the emission rates have been studied in Delhi. The implementation of compressed natural gas (CNG), in the diesel and petrol, public vehicles in the year 2001 has changed the complete air quality scenario of Delhi. The dynamic emission factors of criteria pollutants viz. carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM10) for all types of vehicles have been developed after, which are based on the several factors such as regulated emission limits, number of vehicle deterioration, vehicle increment, vehicle age etc. These emission factors are found to be decreased continuously throughout the study years 2003-2012. The International Vehicle Emissions (IVE) model is used to estimate the emissions of criteria pollutants by utilizing a dataset available from field observations at different traffic intersections in Delhi. Thus the vehicular emissions, based on dynamic emission factors have been estimated for the years 2003-2012, which are found to be comparable with the monitored concentrations at different locations in Delhi. It is noticed that the total emissions of CO, NOx, and PM10 are increased by 45.63%, 68.88% and 17.92%, respectively up to the year 2012 and the emissions of NOx and PM10 are grown continuously with an annual average growth rate of 5.4% and 1.7% respectively.

  10. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure

    Directory of Open Access Journals (Sweden)

    Q.-N. Yu

    2017-08-01

    Full Text Available In this paper, an experimental approach to acquiring true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure is described. This method is based on a single edge-emitting laser chip with simple sample processing. The photoluminescence spectra are measured at both facets of the edge-emitting device and transformed to the spontaneous emission rate following the theory described here. The unusual double peaks appearing in the spontaneous emission rate spectra are observed for the InGaAs/GaAs quantum-well structure. The result is analyzed in terms of Indium-rich island and Model-Solid theories. The proposed method is suitable for electrically-pumped quantum-well laser structures, as well.

  11. Characterization and Dynamic Behavior of Wild Yeast during Spontaneous Wine Fermentation in Steel Tanks and Amphorae

    Science.gov (United States)

    Díaz, Cecilia; Molina, Ana María; Nähring, Jörg; Fischer, Rainer

    2013-01-01

    We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase. PMID:23738327

  12. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Dynamic changes in microbiota and mycobiota during spontaneous 'Vino Santo Trentino' fermentation.

    Science.gov (United States)

    Stefanini, Irene; Albanese, Davide; Cavazza, Agostino; Franciosi, Elena; De Filippo, Carlotta; Donati, Claudio; Cavalieri, Duccio

    2016-03-01

    Vino Santo is a sweet wine produced from late harvesting and pressing of Nosiola grapes in a small, well-defined geographical area in the Italian Alps. We used metagenomics to characterize the dynamics of microbial communities in the products of three wineries, resulting from spontaneous fermentation with almost the same timing and procedure. Comparing fermentation dynamics and grape microbial composition, we show a rapid increase in a small number of wine yeast species, with a parallel decrease in complexity. Despite the application of similar protocols, slight changes in the procedures led to significant differences in the microbiota in the three cases of fermentation: (i) fungal content of the must varied significantly in the different wineries, (ii) Pichia membranifaciens persisted in only one of the wineries, (iii) one fermentation was characterized by the balanced presence of Saccharomyces cerevisiae and Hanseniaspora osmophila during the later phases. We suggest the existence of a highly winery-specific 'microbial-terroir' contributing significantly to the final product rather than a regional 'terroir'. Analysis of changes in abundance during fermentation showed evident correlations between different species, suggesting that fermentation is the result of a continuum of interaction between different species and physical-chemical parameters. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  15. Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of dipole transition silence semiconductors.

    Science.gov (United States)

    Pan, Shu Sheng; Yu, Siu Fung; Zhang, Wen Fei; Zhu, Hai; Lu, Wei; Jin, Li Min

    2013-12-07

    Direct bandgap semiconductors, such as In2O3, Cu2O, and SnO2, have enormous applications in photochemistry, photovoltaics, and optoelectronics. Due to the same parity of conduction and valence bands, the dipole transition is silent in these direct bandgap semiconductors. The low band-to-band transition efficiency prevents them from high intensity light emission or absorption. Here, we report the fabrication of SnO2 quantum dots (QDs) with sizes less than the exciton Bohr radius by a facile "top-down" strategy based on laser fragmentation of SnO in water. The SnO2 QDs shows exciton emission at ∼300 nm with a high quantum yield of ~17%. Amplified spontaneous exciton emission is also achieved from a thin layer of SnO2 QDs dispersed in PEG400 on a quartz substrate. Therefore, we have shown that SnO2 QDs can be a potential luminescent material suitable for the realization of ultraviolet B lasing devices.

  16. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  17. Collision dynamics probed by convoy electron emission

    International Nuclear Information System (INIS)

    Seliger, M.; Burgdoerfer, J.; Toekesi, K.; Reinhold, C.O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; RIKEN, Saitama

    2002-01-01

    The description of the collision mechanisms was examined by the emission of convoy electrons as a result of the transport of an Ar 17+ ion with an energy of 390 MeV/amu through self-supporting amorphous carbon foils of thickness varying from 25 to 9190 μg/cm 2 . A classical trajectory Monte Carlo (CTMC) simulation of the random walk of the electron initially attached to the relativistic hydrogenic Argon ion was performed. Measurements were made of the final kinetic energy of the emitted convoy electrons at the Heavy Ion Medical Accelerator in Chiba (HIMAC). (R.P.)

  18. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    Science.gov (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  19. Start-to-end simulation of self-amplified spontaneous emission free electron lasers from the gun through the undulator

    CERN Document Server

    Borland, M M; Emma, P; Lewellen, J W; Bharadwaj, V K; Fawley, W M; Krejcik, P; Limborg, C; Milton, S V; Nuhn, H D; Soliday, R; Woodley, M

    2002-01-01

    It is widely appreciated that the performance of self-amplified spontaneous emission free-electron lasers (FELs) depends critically on the properties of the drive beam. In view of this, a multi-laboratory collaboration has explored methods and software tools for integrated simulation of the photoinjector, linear accelerator, bunch compressor, and FEL. Rather than create a single code to handle such a system, our goal has been a robust, generic solution wherein pre-existing simulation codes are used sequentially. We have standardized on the use of Argonne National Laboratory's Self-Describing Data Sets file protocol for transfer of data among codes. The simulation codes used are PARMELA, elegant, and GENESIS. We describe the software methodology and its advantages, then provide examples involving Argonne's Low-Energy Undulator Test Line and Stanford Linear Accelerator Center's Linac Coherent Light Source. We also indicate possible future direction of this work.

  20. Start-to-end simulation of self-amplified spontaneous emission free electron lasers from the gun through the undulator

    International Nuclear Information System (INIS)

    Borland, M.M.; Chae, Y.C.; Emma, P.; Lewellen, J.W.; Bharadwaj, V.; Fawley, W.M.; Krejcik, P.; Limborg, C.; Milton, S.V.; Nuhn, H.-D.; Soliday, R.; Woodley, M.

    2002-01-01

    It is widely appreciated that the performance of self-amplified spontaneous emission free-electron lasers (FELs) depends critically on the properties of the drive beam. In view of this, a multi-laboratory collaboration has explored methods and software tools for integrated simulation of the photoinjector, linear accelerator, bunch compressor, and FEL. Rather than create a single code to handle such a system, our goal has been a robust, generic solution wherein pre-existing simulation codes are used sequentially. We have standardized on the use of Argonne National Laboratory's Self-Describing Data Sets file protocol for transfer of data among codes. The simulation codes used are PARMELA, elegant, and GENESIS. We describe the software methodology and its advantages, then provide examples involving Argonne's Low-Energy Undulator Test Line and Stanford Linear Accelerator Center's Linac Coherent Light Source. We also indicate possible future direction of this work

  1. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    International Nuclear Information System (INIS)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L.; James, Anthony C.; Deco, Gustavo

    2013-01-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime

  2. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Science.gov (United States)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  3. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)

    2013-12-15

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  4. Energetic particle emission and nuclear dynamics around the Fermi energy

    International Nuclear Information System (INIS)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D'Agostino, M.; Fiandri, M.L.; Vannini, G.; Gramegna, F.; Mastinu, P.F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P.M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J.A.

    2004-01-01

    Energetic proton emission was investigated in the reaction 58 Ni+ 58 Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented

  5. Energetic particle emission and nuclear dynamics around the Fermi energy

    Science.gov (United States)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D'Agostino, M.; Fiandri, M. L.; Vannini, G.; Gramegna, F.; Mastinu, P. F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P. M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J. A.

    2004-04-01

    Energetic proton emission was investigated in the reaction 58Ni+ 58Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented.

  6. Energetic particle emission and nuclear dynamics around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Migneco, E.; Piatteli, P.; Santonocito, D.; Colonna, N.; Bruno, M.; D' Agostino, M.; Fiandri, M.L.; Vannini, G.; Gramegna, F.; Mastinu, P.F.; Fabbietti, L.; Iori, I.; Moroni, A.; Margagliotti, G.; Milazzo, P.M.; Rui, R.; Blumenfeld, Y.; Scarpaci, J.A

    2004-04-05

    Energetic proton emission was investigated in the reaction {sup 58}Ni+{sup 58}Ni at 30 AMeV and compared with the results of dynamical calculations with a momentum dependent mean field. Preliminary results on proton and intermediate mass fragment coincidences are also presented.

  7. Pure gravity mediation and spontaneous B–L breaking from strong dynamics

    Directory of Open Access Journals (Sweden)

    Kaladi S. Babu

    2016-04-01

    Full Text Available In pure gravity mediation (PGM, the most minimal scheme for the mediation of supersymmetry (SUSY breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number B and lepton number L. The F-term of the SUSY-breaking field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–L at a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, ΛN∼m3/2. Assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–L is identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–L D-term.

  8. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins.

    Science.gov (United States)

    Golzan, S Mojtaba; Graham, Stuart L; Leaney, John; Avolio, Alberto

    2011-01-01

    The amplitude of spontaneous retinal venous pulsations (SRVP) is known to be affected by intraocular pressure (IOP), retinal venous pressure, and intracranial pressure (ICP). This study characterized SRVPs adjacent to the disc and quantified changes in the amplitude of these pulsations during IOP manipulation in normal subjects. The study included 12 subjects (40 ± 15, 4 females, 8 males). Baseline IOP (range 10-25 mmHg) was measured and SRVP recorded using the dynamic retinal vessel analyzer (DVA). IOP was lowered using aproclonidine 0.5% and measured every 15 min, followed by dynamic recording of SRVP. Two subjects were also tested with timolol 0.5%, and three were treated with a placebo drop. Mean amplitude of SRVP was determined within each sample at the same site. Blood pressure and heart rate were tracked continuously. Amplitude of SRVP decreased in all subjects with reduction of IOP with aproclonidine and timolol. Mean SRVP amplitude was 8.5 ± 6 μm at baseline and reduced to 2.5 ± 1.8 μm after 45 min (p blood pressure, and heart rate did not change significantly from the baseline. Analysis of waveforms showed a slight phase shift only (150 ± 78.5 ms, p = 0.93) between disc veins and adjacent retinal vein. SRVPs in the peripapillary retina have similar waveform characteristics to those at the disc. SRVP amplitudes are reduced by manipulation of IOP downwards with pharmacological intervention. The relationship was consistent in all individuals tested for two classes of drugs and was independent of BP or heart rate changes.

  9. Wideband thulium–holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel; Baravets, Yauhen; Kašík, Ivan; Podrazký, Ondřej

    2014-01-01

    Roč. 39, č. 12 (2014), s. 3650-3653 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GAP205/11/1840 Institutional support: RVO:67985882 Keywords : Bandwidth * Spontaneous emission * Holmium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  10. Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides.

    Science.gov (United States)

    Costela, A; García, O; Cerdán, L; García-Moreno, I; Sastre, R

    2008-05-12

    Amplified spontaneous emission from planar waveguides and quasi-waveguides based on Pyrromethene 567-doped poly(methyl methacrylate) thin films deposited onto quartz and glass substrates is investigated. Films with different thickness were prepared and pumped optically at 532 nm with pulses of up to 8 MW/cm(2). Pump thresholds for the onset of ASE emission, optical gains and losses were assessed. Net gain coefficients were estimated by fitting the data provided by variable stripe length measurements with a theoretical expression which takes into account saturation. In this way, net gain coefficients of up to 56 +/- 9 cm(-1) at a pump intensity of 5.3 MW/cm(2) for quasi-waveguides and up to 20.6 +/- 2.7 cm(-1) at a pump intensity of 3.4 MW/cm2 for waveguides, were obtained. Loss coefficients in the waveguides were estimated to be 3.8 +/- 0.4 cm-1 and 6.1 +/- 1.3 cm(-1) for 15 microm and 5 microm thick films, respectively. The results obtained seem to indicate a stronger self-mode-restriction capability in the quasiwaveguides than in conventional total internal-reflection waveguides.

  11. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  12. Intersubband spontaneous emission from GaN-based THz quantum cascade laser

    Science.gov (United States)

    Terashima, W.; Hirayama, H.

    2013-03-01

    We studied on terahertz-quantum cascade lasers (THz-QCLs) using III-Nitride semiconductors, which are promising materials for the realization of the unexplored frequency range from 5 to 12 THz and the higher temperature operation on THz-QCLs, because these compounds have much larger longitudinal optical phonon energies (> 18 THz) than those of conventional GaAs-based materials (~ 9 THz). Firstly, we showed clearly that it is possible to design a GaN-based quantum cascade (QC) structure which operates in the THz range in which population inversion can be obtained, by performing numerical calculations based on a self-consistent rate equation model. Secondly, we succeeded in the stack of QC structure with a large number of periods and the drastic improvement of structural properties of QC structure, by introducing a new growth technique named "a droplet elimination by thermal annealing (DETA)" in which utilized the differences of the properties between metals (Al, Ga) and Nitrides (AlN, GaN) into molecular beam epitaxy. Finally, we for the first time successfully observed spontaneous electroluminescence due to intersubband transitions with peaks at frequencies from 1.4 to 2.8 THz from GaN/AlGaN QCL devices fabricated with using the DETA technique grown on a GaN substrate and a metal organic chemical vapor deposition (MOCVD)-AlN template on a sapphire substrate. In this paper, we demonstrate recent achievements on the quantum design, fabrication technique, and electroluminescence properties of GaN-based QCL structures.

  13. Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experiment

    Science.gov (United States)

    Abe, Y.; Abrahão, T.; Alt, C.; Appel, S.; Bekman, I.; Bergevin, M.; Bezerra, T. J. C.; Bezrukov, L.; Blucher, E.; Brugière, T.; Buck, C.; Busenitz, J.; Cabrera, A.; Calvo, E.; Camilleri, L.; Carr, R.; Cerrada, M.; Chauveau, E.; Chimenti, P.; Collin, A. P.; Conover, E.; Conrad, J. M.; Crespo-Anadón, J. I.; Crum, K.; Cucoanes, A. S.; Damon, E.; Dawson, J. V.; de Kerret, H.; Dhooghe, J.; Dietrich, D.; Djurcic, Z.; dos Anjos, J. C.; Dracos, M.; Etenko, A.; Fallot, M.; Felde, J.; Fernandes, S. M.; Fischer, V.; Franco, D.; Franke, M.; Furuta, H.; Gil-Botella, I.; Giot, L.; Göger-Neff, M.; Gomez, H.; Gonzalez, L. F. G.; Goodenough, L.; Goodman, M. C.; Haag, N.; Hara, T.; Haser, J.; Hellwig, D.; Hofmann, M.; Horton-Smith, G. A.; Hourlier, A.; Ishitsuka, M.; Jiménez, S.; Jochum, J.; Jollet, C.; Kaether, F.; Kalousis, L. N.; Kamyshkov, Y.; Kaneda, M.; Kaplan, D. M.; Kawasaki, T.; Kemp, E.; Kryn, D.; Kuze, M.; Lachenmaier, T.; Lane, C. E.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Lima, H. P., Jr.; Lindner, M.; López-Castaño, J. M.; LoSecco, J. M.; Lubsandorzhiev, B.; Lucht, S.; Maeda, J.; Mariani, C.; Maricic, J.; Martino, J.; Matsubara, T.; Mention, G.; Meregaglia, A.; Miletic, T.; Minotti, A.; Nagasaka, Y.; Navas-Nicolás, D.; Novella, P.; Nunokawa, H.; Obolensky, M.; Onillon, A.; Osborn, A.; Palomares, C.; Pepe, I. M.; Perasso, S.; Porta, A.; Pronost, G.; Reichenbacher, J.; Reinhold, B.; Röhling, M.; Roncin, R.; Rybolt, B.; Sakamoto, Y.; Santorelli, R.; Schilithz, A. C.; Schönert, S.; Schoppmann, S.; Shaevitz, M. H.; Sharankova, R.; Shrestha, D.; Sibille, V.; Sinev, V.; Skorokhvatov, M.; Smith, E.; Soiron, M.; Spitz, J.; Stahl, A.; Stancu, I.; Stokes, L. F. F.; Strait, M.; Suekane, F.; Sukhotin, S.; Sumiyoshi, T.; Sun, Y.; Svoboda, R.; Terao, K.; Tonazzo, A.; Trinh Thi, H. H.; Valdiviesso, G.; Vassilopoulos, N.; Verdugo, A.; Veyssiere, C.; Vivier, M.; von Feilitzsch, F.; Wagner, S.; Walsh, N.; Watanabe, H.; Wiebusch, C.; Wurm, M.; Yang, G.; Yermia, F.; Zimmer, V.

    2016-08-01

    During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.

  14. Spontaneous and stimulated emission in Sm3+-doped YAl3(BO3)4 single crystal

    International Nuclear Information System (INIS)

    Ryba-Romanowski, Witold; Lisiecki, Radosław; Beregi, Elena; Martín, I.R.

    2015-01-01

    Single crystals of YAl 3 (BO 3 ) 4 doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the 4 G 5/2 metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10 −20 cm 2 . Optical amplification at 600 nm with a gain coefficient of 2.9 cm −1 was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl 3 (BO 3 ) 4

  15. Propagation of a strong x-ray pulse: Pulse compression, stimulated Raman scattering, amplified spontaneous emission, lasing without inversion, and four-wave mixing

    International Nuclear Information System (INIS)

    Sun Yuping; Wang Chuankui; Liu Jicai; Gel'mukhanov, Faris

    2010-01-01

    We study the compression of strong x-ray pulses from x-ray free-electron lasers (XFELs) propagating through the resonant medium of atomic argon. The simulations are based on the three-level model with the frequency of the incident x-ray pulse tuned in the 2p 3/2 -4s resonance. The pulse propagation is accompanied by the self-seeded stimulated resonant Raman scattering (SRRS). The SRRS starts from two channels of amplified spontaneous emission (ASE), 4s-2p 3/2 and 3s-2p 3/2 , which form the extensive ringing pattern and widen the power spectrum. The produced seed field triggers the Stokes ASE channel 3s-2p 3/2 . The population inversion is quenched for longer propagation distances where the ASE is followed by the lasing without inversion (LWI), which amplifies the Stokes component. Both ASE and LWI reshape the input pulse: The compressed front part of the pulse (up to 100 as) is followed by the long tail of the ringing and beating between the pump and Stokes frequencies. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. These four spectral bands have fine structures caused by the dynamical Stark effect. A slowdown of the XFEL pulse up to 78% of the speed of light in vacuum is found because of a large nonlinear refractive index.

  16. Emission of water clusters: molecular dynamic simulation

    International Nuclear Information System (INIS)

    Kutliev, U.O.; Kalandarov, K.S.

    2006-01-01

    Full text: Secondary ion mass spectrometry (SIMS) is a wonderful technique for providing mass spectrometric information of molecules on surfaces. Theoretical studies of the keV bombardment of organic films on metallic surfaces have contributed to our understanding of the mechanisms governing these processes. Many experiments of keV bombardment, however, are performed both thick and thin organic targets [1]. Molecular systems investigated experimentally by SIMS include adsorbed films on a metal substrate, molecular solids, polymers, or even biological cells. In this account, we focus on thin organic layers on metal substrates as they are used for analytical purposes, are intriguing from a fundamental viewpoint, and are computationally tractable [2]. There are we present molecular dynamics (MD) simulations aimed at obtaining such a microscopic picture and mass spectrum of sputtering particles. Because of the importance of H 2 O in many of the experiments, we have chosen it as our system. Water is also attractive as a system because of the extensive literature available on its physical properties. The interaction potentials available for MD simulations of H 2 O are sufficiently reliable such that a quantitative analysis of the simulation results can be directly related to the parameters of water. From the variety of substrate materials used in different experiments, we have chosen to perform our simulations using Au. This substance is chosen to match preliminary experiments with the selective killing of cells by inserted Au nanoparticles and because of the availability of good interaction potentials for gold. In the simulations, we bombarded by ions Ar the surface Au(III) covered by ice film. The interaction potential employed to describe the H 2 O-H 2 O interaction is the simple-point-charge (SPC) water potential developed by Berendsen et al. [3]. This potential has been used extensively to study the properties of H 2 O as a solid [4, 5]. It has been shown that the

  17. Analysis of serum inflammatory mediators identifies unique dynamic networks associated with death and spontaneous survival in pediatric acute liver failure.

    Science.gov (United States)

    Azhar, Nabil; Ziraldo, Cordelia; Barclay, Derek; Rudnick, David A; Squires, Robert H; Vodovotz, Yoram

    2013-01-01

    Tools to predict death or spontaneous survival are necessary to inform liver transplantation (LTx) decisions in pediatric acute liver failure (PALF), but such tools are not available. Recent data suggest that immune/inflammatory dysregulation occurs in the setting of acute liver failure. We hypothesized that specific, dynamic, and measurable patterns of immune/inflammatory dysregulation will correlate with outcomes in PALF. We assayed 26 inflammatory mediators on stored serum samples obtained from a convenience sample of 49 children in the PALF study group (PALFSG) collected within 7 days after enrollment. Outcomes were assessed within 21 days of enrollment consisting of spontaneous survivors, non-survivors, and LTx recipients. Data were subjected to statistical analysis, patient-specific Principal Component Analysis (PCA), and Dynamic Bayesian Network (DBN) inference. Raw inflammatory mediator levels assessed over time did not distinguish among PALF outcomes. However, DBN analysis did reveal distinct interferon-gamma-related networks that distinguished spontaneous survivors from those who died. The network identified in LTx patients pre-transplant was more like that seen in spontaneous survivors than in those who died, a finding supported by PCA. The application of DBN analysis of inflammatory mediators in this small patient sample appears to differentiate survivors from non-survivors in PALF. Patterns associated with LTx pre-transplant were more like those seen in spontaneous survivors than in those who died. DBN-based analyses might lead to a better prediction of outcome in PALF, and could also have more general utility in other complex diseases with an inflammatory etiology.

  18. Analysis of serum inflammatory mediators identifies unique dynamic networks associated with death and spontaneous survival in pediatric acute liver failure.

    Directory of Open Access Journals (Sweden)

    Nabil Azhar

    Full Text Available Tools to predict death or spontaneous survival are necessary to inform liver transplantation (LTx decisions in pediatric acute liver failure (PALF, but such tools are not available. Recent data suggest that immune/inflammatory dysregulation occurs in the setting of acute liver failure. We hypothesized that specific, dynamic, and measurable patterns of immune/inflammatory dysregulation will correlate with outcomes in PALF.We assayed 26 inflammatory mediators on stored serum samples obtained from a convenience sample of 49 children in the PALF study group (PALFSG collected within 7 days after enrollment. Outcomes were assessed within 21 days of enrollment consisting of spontaneous survivors, non-survivors, and LTx recipients. Data were subjected to statistical analysis, patient-specific Principal Component Analysis (PCA, and Dynamic Bayesian Network (DBN inference.Raw inflammatory mediator levels assessed over time did not distinguish among PALF outcomes. However, DBN analysis did reveal distinct interferon-gamma-related networks that distinguished spontaneous survivors from those who died. The network identified in LTx patients pre-transplant was more like that seen in spontaneous survivors than in those who died, a finding supported by PCA.The application of DBN analysis of inflammatory mediators in this small patient sample appears to differentiate survivors from non-survivors in PALF. Patterns associated with LTx pre-transplant were more like those seen in spontaneous survivors than in those who died. DBN-based analyses might lead to a better prediction of outcome in PALF, and could also have more general utility in other complex diseases with an inflammatory etiology.

  19. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  20. Femtosecond dynamics of a spaser and unidirectional emission from a perfectly spherical nanoparticle

    KAUST Repository

    Gongora, J. S. Totero

    2015-01-01

    We investigate the femtosecond dynamics of the spaser emission by combining ab-initio simulations and thermodynamic analysis. Interestingly, the emission is characterized by rotational evolution, opening to the generation of unidirectional emission from perfectly spherical nanoparticles. © OSA 2015.

  1. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    Science.gov (United States)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  2. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  3. Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures.

    Science.gov (United States)

    Li, Yun-Fei; Feng, Jing; Dong, Feng-Xi; Ding, Ran; Zhang, Zhen-Yu; Zhang, Xu-Lin; Chen, Yang; Bi, Yan-Gang; Sun, Hong-Bo

    2017-12-14

    Organic single crystals have attracted great attention because of their advantages such as high carrier mobility and high thermal stability. Amplified spontaneous emission (ASE) is an important parameter for the optoelectronic applications of organic single crystals. Here, surface plasmon-enhanced ASE from the organic single crystals has been demonstrated by integrating graphene/copper nanoparticle (Cu NP) hybrid nanostructures. Graphene is fully accommodating to the topography of Cu NPs by the transfer-free as-grown method for the configuration of the hybrid nanostructures, which makes full electrical contact and strong interactions between graphene and the local electric field of surface plasmon resonances. The enhanced localized surface plasmon resonances induced by the hybrid nanostructures result in an enhanced intensity and lowered threshold of ASE from the organic single crystals. Moreover, the as-grown graphene sheets covering fully and uniformly on the Cu NPs act as a barrier against oxidation, and results in an enhanced stability of the fluorescence from the crystals.

  4. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  5. Multi-bit wavelength coding phase-shift-keying optical steganography based on amplified spontaneous emission noise

    Science.gov (United States)

    Wang, Cheng; Wang, Hongxiang; Ji, Yuefeng

    2018-01-01

    In this paper, a multi-bit wavelength coding phase-shift-keying (PSK) optical steganography method is proposed based on amplified spontaneous emission noise and wavelength selection switch. In this scheme, the assignment codes and the delay length differences provide a large two-dimensional key space. A 2-bit wavelength coding PSK system is simulated to show the efficiency of our proposed method. The simulated results demonstrate that the stealth signal after encoded and modulated is well-hidden in both time and spectral domains, under the public channel and noise existing in the system. Besides, even the principle of this scheme and the existence of stealth channel are known to the eavesdropper, the probability of recovering the stealth data is less than 0.02 if the key is unknown. Thus it can protect the security of stealth channel more effectively. Furthermore, the stealth channel will results in 0.48 dB power penalty to the public channel at 1 × 10-9 bit error rate, and the public channel will have no influence on the receiving of the stealth channel.

  6. Dynamic Constrained Economic/Emission Dispatch Scheduling Using Neural Network

    Directory of Open Access Journals (Sweden)

    Farid Benhamida

    2013-01-01

    Full Text Available In this paper, a Dynamic Economic/Emission Dispatch (DEED problem is obtained by considering both the economy and emission objectives with required constraints dynamically. This paper presents an optimization algorithm for solving constrained combined economic emission dispatch (EED problem and DEED, through the application of neural network, which is a flexible Hopfield neural network (FHNN. The constrained DEED must not only satisfy the system load demand and the spinning reserve capacity, but some practical operation constraints of generators, such as ramp rate limits and prohibited operating zone, are also considered in practical generator operation. The feasibility of the proposed FHNN using to solve DEED is demonstrated using three power systems, and it is compared with the other methods in terms of solution quality and computation efficiency. The simulation results showed that the proposed FHNN method was indeed capable of obtaining higher quality solutions efficiently in constrained DEED and EED problems with a much shorter computation time compared to other methods.

  7. Statistical properties of antisymmetrized molecular dynamics for non-nucleon-emission and nucleon-emission processes

    International Nuclear Information System (INIS)

    Ono, A.; Horiuchi, H.

    1996-01-01

    Statistical properties of antisymmetrized molecular dynamics (AMD) are classical in the case of nucleon-emission processes, while they are quantum mechanical for the processes without nucleon emission. In order to understand this situation, we first clarify that there coexist mutually opposite two statistics in the AMD framework: One is the classical statistics of the motion of wave packet centroids and the other is the quantum statistics of the motion of wave packets which is described by the AMD wave function. We prove the classical statistics of wave packet centroids by using the framework of the microcanonical ensemble of the nuclear system with a realistic effective two-nucleon interaction. We show that the relation between the classical statistics of wave packet centroids and the quantum statistics of wave packets can be obtained by taking into account the effects of the wave packet spread. This relation clarifies how the quantum statistics of wave packets emerges from the classical statistics of wave packet centroids. It is emphasized that the temperature of the classical statistics of wave packet centroids is different from the temperature of the quantum statistics of wave packets. We then explain that the statistical properties of AMD for nucleon-emission processes are classical because nucleon-emission processes in AMD are described by the motion of wave packet centroids. We further show that when we improve the description of the nucleon-emission process so as to take into account the momentum fluctuation due to the wave packet spread, the AMD statistical properties for nucleon-emission processes change drastically into quantum statistics. Our study of nucleon-emission processes can be conversely regarded as giving another kind of proof of the fact that the statistics of wave packets is quantum mechanical while that of wave packet centroids is classical. copyright 1996 The American Physical Society

  8. Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure.

    Science.gov (United States)

    Zhao, Yun-Jin; Tian, Meng; Wang, Xiao-Yun; Yang, Hong; Zhao, Heping; Huang, Yong-Gang

    2018-01-22

    We provide numerical demonstrations of the applicability and accuracy of the quasi-static method and the finite-element method in the investigation of the modifications of the spontaneous emission rate and the energy level shift of an emitter placed near a silver-air interface or a silver nano-sphere. The analytical results are presented as a reference. Our calculations show that the finite element method is an accurate and general method. For frequency away from the radiative mode, the quasi-static method can be applied more effectively for calculating the energy level shift than the spontaneous emission rate. But for frequency around, there is a blue shift for both and this shift increases with the increasing of emitter-silver distance. Applying the theory to the nanosphere dimmer, we see similar phenomenon and find extremely large modifications of the spontaneous emission rate and energy level shift. These findings are instructive in the fields of quantum light-matter interactions.

  9. Dynamics of secondary ion emission Novel energy and angular spectrometry

    CERN Document Server

    Jalowy, T; Hattass, M; Fiol, J; Afaneh, F; Pereira, J A M; Collado, V; Silveira, E F D; Schmidt-Böcking, H; Groeneveld, K O

    2002-01-01

    A new spectrometer has been developed based on the combination of standard time-of-flight technique and position sensitive delay line detectors. The basic features of the spectrometer, particularly of the multi-hit capable detector, are described. To demonstrate the performance of this new system, the dynamic emission characteristics, i.e. the three-dimensional velocity distribution, of desorbed H sub 2 sup + from Al target by Ar sup 0 impact (570 keV) is presented. It is found that the desorption yield is maximum for radial and axial emission velocities at 1.2 and 12 km/s respectively, corresponding to 1.5 eV ions emitted at 57 deg. to normal (following the projectile radial direction). The initial energy distribution spreads out over 16 eV.

  10. Dynamics of secondary ion emission: Novel energy and angular spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jalowy, T. E-mail: jalowy@hsb.uni-frankfurt.de; Neugebauer, R.; Hattass, M.; Fiol, J.; Afaneh, F.; Pereira, J.A.M.; Collado, V.; Silveira, E.F. da; Schmidt-Boecking, H.; Groeneveld, K.O

    2002-06-01

    A new spectrometer has been developed based on the combination of standard time-of-flight technique and position sensitive delay line detectors. The basic features of the spectrometer, particularly of the multi-hit capable detector, are described. To demonstrate the performance of this new system, the dynamic emission characteristics, i.e. the three-dimensional velocity distribution, of desorbed H{sub 2}{sup +} from Al target by Ar{sup 0} impact (570 keV) is presented. It is found that the desorption yield is maximum for radial and axial emission velocities at 1.2 and 12 km/s respectively, corresponding to 1.5 eV ions emitted at 57 deg. to normal (following the projectile radial direction). The initial energy distribution spreads out over 16 eV.

  11. Systematics of spontaneous positron lines

    International Nuclear Information System (INIS)

    Mueller, U.; Reus, T. de; Reinhardt, J.; Mueller, B.; Greiner, W.

    1985-08-01

    Dynamical and spontaneous positron emission are investigated for heavy-ion collisions with long time delay using a semiclassical description. Numerical results and analytical expressions for the characteristic quantities of the resulting spontaneous positron line, i.e., its position, width, and cross section, are compared. The expected behaviour of the line position and cross section and its visibility against the spectrum of dynamically created positrons is discussed in dependence of the united charge Zsub(u) of projectile and target nucleus in a range of systems from Zsub(u)=180 up to Zsub(u)=188. The results are confronted with presently available experimental data, and possible implications on further experiments are worked out. (orig.)

  12. Influence of Carrier Cooling on the Emission Dynamics of Semiconductor Microcavity Lasers

    Science.gov (United States)

    Hilpert, M.; Hofmann, M.; Ellmers, C.; Oestreich, M.; Schneider, H. C.; Jahnke, F.; Koch, S. W.; Rühle, W. W.; Wolf, H. D.; Bernklau, D.; Riechert, H.

    1997-11-01

    We investigate the influence of carrier relaxation on the emission dynamics of a semiconductor microcavity laser. The structure is optically excited with energies of 1.477 down to 1.346 eV (resonant excitation). The stimulated emission dynamics clearly becomes faster for decreasing excitation energy and the influence of the light hole on the emission dynamics is demonstrated. Theoretical calculations reproduce the results only if the nonequilibrium carrier dynamics is treated on the basis of a microscopic model.

  13. Morphological and dynamic MR evaluation of a giant spontaneous vertebrovertebral fistula during endovascular therapy

    International Nuclear Information System (INIS)

    McGlade, C.; Lufkin, R.; Vinuela, F.; Dion, J.; Lylyck, P.; Bentson, J.; Martin, N.

    1989-01-01

    A case of verbro-vertebral fistula in a patient with neurofibromatosis is presented with emphasis on magnetic resonance (MR) evaluation and integration with endovascular therapy. Vascular involvement is a known complication of neurofibromatosis ranging from intimal proliferation causing arterial narrowing, development of small aneurysms, to spontaneous fistulas probably secondary to mesodermal dysplasia. This case report illustrates the latter and portrays a role for MR in diagnosis and follow-up during therapeutic measures. (author). 14 refs.; 3 figs

  14. Coherent control of cooperative spontaneous emission from two identical three-level atoms in a photonic crystal

    Science.gov (United States)

    Woldeyohannes, Mesfin; Idehenre, Ighodalo; Hardin, Tyler

    2015-08-01

    The coherent control of cooperative spontaneous emission from two identical non-overlapping three-level atoms in the V-configuration located within a photonic band gap (PBG) material with two resonant frequencies near the upper band edge of the PBG and confined to a region small in comparison to their radiation wavelengths but still greater than their atomic sizes is investigated. The dependencies of cooperative effects in which a photon emitted by one atom is reabsorbed by the other atom on the inter-atomic separation, on the initial state of the two-atom system, on the strength of the driving control laser field, and on the detuning of the atomic resonant frequencies from the upper band edge frequency is analyzed so as to identify the conditions for which these cooperative effects are enhanced or inhibited. Cooperative effects between atoms are shown to be influenced more by the PBG than by the nature of the atomic transitions involved. Excited state populations as well as coherences between excited levels are expressed in terms of time-dependent amplitudes which are shown to satisfy coupled integro-differential equations for which analytic solutions are derived under special conditions. Unlike for the case of one atom in a PBG where the fractional non-zero steady state populations on the excited levels as well as the coherence between the excited levels are constants independent of time, in the case of two atoms in PBG these quantities continuously oscillate as a manifestation of beating due to the continuous exchange between the two atoms of the photon trapped by the PBG. The values of these quantities as well as the amplitudes and frequencies of their oscillations depend of the parameters of the system, providing different ways of manipulating the system. The general formalism presented here is shown to recapture the special results of investigations of similar systems in free space when the non-Markovian memory kernels of the PBG are replaced by delta

  15. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice.

    Science.gov (United States)

    Vyazovskiy, Vladyslav V; Cui, Nanyi; Rodriguez, Alexander V; Funk, Chadd; Cirelli, Chiara; Tononi, Giulio

    2014-08-01

    Upon awakening from sleep, a fully awake brain state is not reestablished immediately, but the origin and physiological properties of the distinct brain state during the first min after awakening are unclear. To investigate whether neuronal firing immediately upon arousal is different from the remaining part of the waking episode, we recorded and analyzed the dynamics of cortical neuronal activity in the first 15 min after spontaneous awakenings in freely moving rats and mice. Intracortical recordings of the local field potential and neuronal activity in freely-moving mice and rats. Basic sleep research laboratory. WKY adult male rats, C57BL/6 adult male mice. N/A. In both species the average population spiking activity upon arousal was initially low, though substantial variability in the dynamics of firing activity was apparent between individual neurons. A distinct population of neurons was found that was virtually silent in the first min upon awakening. The overall lower population spiking initially after awakening was associated with the occurrence of brief periods of generalized neuronal silence (OFF periods), whose frequency peaked immediately after awakening and then progressively declined. OFF periods incidence upon awakening was independent of ongoing locomotor activity but was sensitive to immediate preceding sleep/wake history. Notably, in both rats and mice if sleep before a waking episode was enriched in rapid eye movement sleep, the incidence of OFF periods was initially higher as compared to those waking episodes preceded mainly by nonrapid eye movement sleep. We speculate that an intrusion of sleep-like patterns of cortical neuronal activity into the wake state immediately after awakening may account for some of the changes in the behavior and cognitive function typical of what is referred to as sleep inertia. Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after

  16. Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.

    2011-06-08

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  17. Multimodality functional imaging of spontaneous canine tumors using 64CU-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    DEFF Research Database (Denmark)

    Hansen, Anders E; Kristensen, Annemarie T; Law, Ian

    2012-01-01

    To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated.......To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated....

  18. Long-term Tympanic Membrane Pathology Dynamics and Spontaneous Healing in Chronic Suppurative Otitis Media

    DEFF Research Database (Denmark)

    Jensen, Ramon Gordon; Koch, Anders; Homøe, Preben

    2012-01-01

    BACKGROUND:: Children in the developing parts of the world have a high prevalence of chronic suppurative otitis media (CSOM). It is estimated that 65 to 330 million people worldwide have CSOM, yet very little is known about the natural course of the disease. The Inuit population of the Arctic......-based cohort of 591 children originally examined during 1993 to 1994 at 3 to 8 years of age. Follow-up was attempted among 348 individuals still living in the areas. Video otoscopy and tympanometry were used. Data on otologic disease, ear surgery, and antibiotic use for otitis media were collected from medical...... of spontaneous healing was not influenced by the age at which CSOM was diagnosed in the initial study. Thirty-nine individuals (17%) had CSOM in either the initial study or at follow-up. Of these, 2 had never received antibiotic treatment for otitis media, and 15 had been treated less than 3 times. Eighty...

  19. Spherical domain wall formed by field dynamics of Hawking radiation and spontaneous charging-up of black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2004-01-01

    We investigate the Hawking radiation in the gauge Higgs-Yukawa theory. The ballistic model is proposed as an effective description of the system. We find that a spherical domain wall around the black hole is formed by field dynamics rather than thermal phase transition. The formation is a general property of the black hole whose Hawking temperature is equal to or greater than the energy scale of the theory. The formation of the electroweak wall and that of the GUT wall are shown. We also find a phenomenon of the spontaneous charging-up of the black hole by the wall. The Hawking radiation drives a mechanism of the charge transportation into the black hole when C- and CP-violation are assumed. The mechanism can strongly transport the hyper-charge into a black hole of the electroweak scale

  20. Emission of orbital-angular-momentum-entangled photon pairs in a nonlinear ring fiber utilizing spontaneous parametric down-conversion

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 4 (2014), "043844-1"-"043844-12" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * orbital-angular-momentum-entangled * nonlinear ring fiber * spontaneous parametric down-conversion Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.808, year: 2014

  1. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  2. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide.

    Science.gov (United States)

    Moraes, Thiago A; Barlow, Peter W; Klingelé, Emile; Gallep, Cristiano M

    2012-06-01

    Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data--growth, photon count, and tidal--by local tracking correlation always revealed significant coefficients (P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.

  3. Annual Change Detection by ASTER TIR Data and an Estimation of the Annual Coal Loss and CO2 Emission from Coal Seams Spontaneous Combustion

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2014-12-01

    Full Text Available Coal fires, including both underground and coal waste pile fires, result in large losses of coal resources and emit considerable amounts of greenhouse gases. To estimate the annual intensity of greenhouse gas emissions and the loss of coal resources, estimating the annual loss from fire-influenced coal seams is a feasible approach. This study assumes that the primary cause of coal volume loss is subsurface coal seam fires. The main calculation process is divided into three modules: (1 Coal fire quantity calculations, which use change detection to determine the areas of the different coal fire stages (increase/growth, maintenance/stability and decrease/shrinkage. During every change detections, the amount of coal influenced by fires for these three stages was calculated by multiplying the coal mining residual rate, combustion efficiency, average thickness and average coal intensity. (2 The life cycle estimate is based on remote sensing long-term coal fires monitoring. The life cycles for the three coal fire stages and the corresponding life cycle proportions were calculated; (3 The diurnal burnt rates for different coal fire stages were calculated using the CO2 emission rates from spontaneous combustion experiments, the coal fire life cycle, life cycle proportions. Then, using the fire-influenced quantity aggregated across the different stages, the diurnal burn rates for the different stages and the time spans between the multi-temporal image pairs used for change detection, we estimated the annual coal loss to be 44.3 × 103 tons. After correction using a CH4 emission factor, the CO2 equivalent emissions resulting from these fires was on the order of 92.7 × 103 tons. We also discovered that the centers of these coal fires migrated from deeper to shallower parts of the coal seams or traveled in the direction of the coal seam strike. This trend also agrees with the cause of the majority coal fires: spontaneous combustion of coalmine goafs.

  4. Dynamic Emission of CH4 from a Rice-Duck Farming Ecosystem

    Science.gov (United States)

    Jia-En Zhang; Ying Ouyang; Zhao-Xiang Huang Huang; Guo-Ming Quan

    2011-01-01

    Global climatic change induced by emissions of greenhouse gases from human activities is an issue of increasing in-ternational environmental concerns, and agricultural practices and managements are the important contributors for such emissions. This study investigated dynamic emission of methane (CH4) from a paddy field in a rice-duck farming ecosystem. Three different...

  5. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    Science.gov (United States)

    Bellingham, Alyssa

    Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of

  6. Reduction of CO2 emissions from road transport in cities impact of dynamic route guidance system on greenhouse gas emission

    CERN Document Server

    Markiewicz, Michal

    2017-01-01

    Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions. Contents Comparison of Travel Time Measurements Using Floating Car Data and Intelligent Infrastructure Integration of Cellular Automata Traffic Simulator with CO2 Emission Model Impact of Dynamic Route Guidance System on CO2 Emission Naxos Vehicular Traffic Simulator Target Groups Lecturers and students of computer science, transportation and logistics Traffic engineers The Author Dr. Michal Markiewicz defended his PhD thesis in computer science at the University of Bremen,TZI Technologie-Zentrum Informatik und Informationstechnik, Germany. Currently, he is working on commercializat...

  7. Carbon dioxide and methane emission dynamics in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

    2013-04-01

    National Atmospheric Emissions Inventory (NAEI) for the flux footprint estimated using a simple Kormann-Meixner model. Methane emissions from central London exhibit diurnal trends both for concentrations and fluxes. The former is consistent with cycles of growth and shrinkage of the urban boundary layer. Methane fluxes are strongly correlated with those of carbon dioxide. Work is ongoing to establish to what extent the diurnal cycles reflect dynamic changes in ground sources (emissions from road traffic, commercial/ domestic heating, variations in flux footprint) and to what extent they are affected by transport efficiency between street level and the top of the tower and storage in between, given the high measurement height.

  8. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy

    Science.gov (United States)

    Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.

    2018-03-01

    The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.

  9. 3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed

    Directory of Open Access Journals (Sweden)

    M. Cocco

    2005-06-01

    Full Text Available In this work we present a 3D Finite Difference numerical method to model the dynamic spontaneous propagation of an earthquake rupture on planar faults in an elastic half-space. We implement the Traction-at-Split-Nodes fault boundary condition for a system of faults, either vertical or oblique, using different constitutive laws. We can adopt both a slip-weakening law to prescribe the traction evolution within the breakdown zone or rate- and state-dependent friction laws, which involve the choice of an evolution relation for the state variable. Our numerical procedure allows the use of oblique and heterogeneous distribution of initial stress and allows the rake rotation. This implies that the two components of slip velocity and total dynamic traction are coupled together to satisfy, in norm, the adopted constitutive law. The simulations presented in this study show that the rupture acceleration to super-shear crack speeds occurs along the direction of the imposed initial stress; the rupture front velocity along the perpendicular direction is slower than that along the pre-stress direction. Depending on the position on the fault plane the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of initial stress and on its distribution on the fault plane. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone.

  10. Spontaneous assembly of HSP90 inhibitors at water/octanol interface: A molecular dynamics simulation study

    Science.gov (United States)

    Zolghadr, Amin Reza; Boroomand, Samaneh

    2017-02-01

    Drug absorption at an acceptable dose depends on the pair of solubility and permeability. There are many potent therapeutics that are not active in vivo, presumably due to the lack of capability to cross the cell membrane. Molecular dynamics simulation of radicicol, diol-radicicol, cyclopropane-radicicol and 17-DMAG were performed at water/octanol interface to suggest interfacial activity as a physico-chemical characteristic of these heat shock protein 90 (HSP90) inhibitors. We have observed that orally active HSP90 inhibitors form aggregates at the water/octanol and DPPC-lipid/water interfaces by starting from an initial configuration with HSP90 inhibitors embedded in the water matrix.

  11. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  12. The propagation of a strong x-ray pulse followed by pulse slowdown and compression, amplified spontaneous emission and lasing without inversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuping; Liu Jicai; Gel' mukhanov, Faris, E-mail: jicai@theochem.kth.s [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

    2009-10-28

    We study self-seeded stimulated resonant x-ray Raman scattering and show a 20-fold compression of the strong XFEL pulse propagating through the resonant medium of atomic argon with the frequency (244.3 eV) tuned to the 2p{sub 3/2}-4s resonance. The strong x-ray pulse inverts the medium and produces an extensive ringing tail which widens the power spectrum. Newly created seed field triggers the Stokes channel 3s-2p{sub 3/2} of amplified spontaneous emission. The population inversions are quenched for longer propagation distances where lasing without inversion enhances the Stokes component. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. The group velocity is decreased up to 78% of the speed of light in vacuum. (fast track communication)

  13. The propagation of a strong x-ray pulse followed by pulse slowdown and compression, amplified spontaneous emission and lasing without inversion

    International Nuclear Information System (INIS)

    Sun Yuping; Liu Jicai; Gel'mukhanov, Faris

    2009-01-01

    We study self-seeded stimulated resonant x-ray Raman scattering and show a 20-fold compression of the strong XFEL pulse propagating through the resonant medium of atomic argon with the frequency (244.3 eV) tuned to the 2p 3/2 -4s resonance. The strong x-ray pulse inverts the medium and produces an extensive ringing tail which widens the power spectrum. Newly created seed field triggers the Stokes channel 3s-2p 3/2 of amplified spontaneous emission. The population inversions are quenched for longer propagation distances where lasing without inversion enhances the Stokes component. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. The group velocity is decreased up to 78% of the speed of light in vacuum. (fast track communication)

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Analysis of the outlook for using narrow-band spontaneous emission sources for atmospheric air purification

    Science.gov (United States)

    Boyarchuk, K. A.; Karelin, A. V.; Shirokov, R. V.

    2003-12-01

    The outlook for using narrow-band spontaneous emission sources for purification of smoke gases from sulphur and nitrogen oxides is demonstrated by calculations based on a nonstationary kinetic model of the N2 — O2 — H2O — CO2 — SO2 mixture. The dependences of the mixture purification efficiency on the UV source power at different wavelengths, the exposure time, and the mixture temperature are calculated. It is shown that the radiation sources proposed in the paper will provide better purification of waste gases in the atmosphere. The most promising is a KrCl* lamp emitting an average power of no less than 100 W at 222 nm.

  15. Computer studies on dynamics of a large-scale magnetic loop by the spontaneous fast reconnection model

    Science.gov (United States)

    Ugai, M.

    1996-11-01

    The temporal dynamics of a large-scale magnetic loop is numerically studied on the basis of the two-dimensional spontaneous fast reconnection model. When a plasmoid, caused by the fast reconnection, propagates and collides with a wall boundary, across which plasma cannot flow, a large-scale magnetic loop is formed. The resulting magnetic loop is constructed by the reconnected field lines; inside the loop, the plasma, initially residing in the current sheet, is confined. As the reconnected field lines are piled up, the magnetic loop grows and swells outwards, so that a strong fast shock suddenly builds up at the interface between the growing loop and the strong reconnection jet. The fast shock, located ahead of the loop top, moves outwards with the growing loop, changing its strength with several peak and bottom Mach numbers. Accordingly, a localized spot-like region, where the plasma pressure is extremely enhanced, definitely comes out immediately ahead of the loop top. Along the loop side boundary, slow shocks stand, so that the resulting large-scale magnetic loop provides a very powerful energy converter in the sense that it is enclosed by slow and fast shocks.

  16. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    Science.gov (United States)

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-02

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pHbakery productions (slow pH decrease, pH4.0 after eight backslopping steps). In both sourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads. Copyright © 2016. Published by Elsevier B.V.

  17. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NARCIS (Netherlands)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2017-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be

  18. Emission dynamics in QD systems: from single QD resonance fluorescence to many-emitter laser switching

    DEFF Research Database (Denmark)

    Lorke, Michael; Lund, Anders Mølbjerg; Nielsen, Per Kær

    2012-01-01

    and photonic confinement. This combination opens the possibility to exploit the Purcell effect to enhance and direct the photon emission. In this contribution, we investigate multiple facets of the emission dynamics in semiconductor QDs, ranging from the resonance fluorescence of QDs under pulsed excitation...

  19. Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies.

    Science.gov (United States)

    Todorov, Yanko; Sagnes, Isabelle; Abram, Izo; Minot, Christophe

    2007-11-30

    Quantum cascade devices processed into double metal cavities with subwavelength thickness and a grating on top are studied at terahertz frequencies. The power extracted from the devices as a function of the device thickness and the grating period is analyzed owing to electrodynamical modeling of dipole emission based on a modal method in multilayer systems. The experimental data thus reveal a strong Purcell enhancement, with Purcell factors up to approximately 50.

  20. Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach

    International Nuclear Information System (INIS)

    Wu, Jianxin; Wu, Yanrui; Guo, Xiumei; Cheong, Tsun Se

    2016-01-01

    This paper investigates the spatial dynamics of per capita carbon dioxide (CO 2 ) emissions in China. The analyses are conducted by employing a continuous dynamic distribution approach and panel data of 286 cities at the prefecture and above-prefecture level. The results show that per capita CO 2 emissions tend to converge during the sample period of 2002–2011. However, multimodality is found in the ergodic distribution of the full sample. It is also found that there is more persistence in cities with low per capita CO 2 emissions, and more mobility in cities with high per capita CO 2 emissions. The analyses also show that the dynamics of per capita CO 2 emissions are significantly different among various geographical, income and environmental policy groups. The conditional distribution analyses indicate that multimodality cannot be explained independently by any one of the two factors, namely geographical location or income level. The findings in this study may have important policy implications for CO 2 abatement in China. - Highlights: •Spatial dynamics of per capita carbon dioxide (CO 2 ) emissions in 286 Chinese cities. •A continuous dynamic distribution approach and panel data. •Multimodality is found in the ergodic distribution of the full sample. •Significantly different dynamics among various city groups.

  1. Low threshold Amplified Spontaneous Emission properties in deep blue of poly[(9,9-dioctylfluorene-2,7-dyil)-alt-p-phenylene] thin films

    Science.gov (United States)

    Lattante, Sandro; De Giorgi, Maria Luisa; Pasini, Mariacecilia; Anni, Marco

    2017-10-01

    Amongst the different optoelectronic applications of conjugated polymers, the development of new active materials for optically pumped organic lasers is still an open question particularly in the blue-near UV spectral range. We investigate the emission properties of poly[(9,9-dioctylfluorene-2,7-dyil)- alt-p-phenylene] (PFP) neat films under nanosecond pump. We demonstrate that thanks to the introduction of a phenylene moiety between two fluorene units it is possible to obtain Amplified Spontaneous Emission (ASE) with a lower threshold and a blue shifted wavelength with respect to poly(9,9-dioctylfluorene) (PFO). We demonstrate efficient ASE with a minimum threshold as low as 23 μJcm-2 and a minimum ASE wavelength of 436 nm. A maximum net optical gain of about 26 cm-1 is measured at an excitation density of 0.23 mJcm-2. These results make the PFP a good active material for optically pumped deep blue organic lasers.

  2. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    Bassi, A.; Donadi, S.

    2014-01-01

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  3. Intraband dynamics and terahertz emission in biased semiconductor superlattices coupled to double far-infrared pulses

    International Nuclear Information System (INIS)

    Min, Li; Xian-Wu, Mi

    2009-01-01

    This paper studies both the intraband polarization and terahertz emission of a semiconductor superlattice in combined dc and ac electric fields by using the superposition of two identical time delayed and phase shifted optical pulses. By adjusting the delay between these two optical pulses, our results show that the intraband polarization is sensitive to the time delay. The peak values appear again for the terahertz emission intensity due to the superposition of two optical pulses. The emission lines of terahertz blueshift and redshift in different ac electric fields and dynamic localization appears. The emission lines of THz only appear to blueshift when the biased superlattice is driven by a single optical pulse. Due to excitonic dynamic localization, the terahertz emission intensity decays with time in different dc and ac electric fields. These are features of this superlattice which distinguish it from a superlattice generated by a single optical pulse to drive it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Dynamics of the oil transition: Modeling capacity, depletion, and emissions

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.

    2010-01-01

    The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax. (author)

  5. Quantification in dynamic and small-animal positron emission tomography

    NARCIS (Netherlands)

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  6. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode...... at a temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  7. Software development for dynamic position emission tomography: Dynamic image analysis (DIA) tool

    Energy Technology Data Exchange (ETDEWEB)

    Pyeon, Do Yeong; Jung, Young Jin [Dongseo University, Busan (Korea, Republic of); Kim, Jung Su [Dept. of Radilogical Science, Dongnam Health University, Suwon (Korea, Republic of)

    2016-09-15

    Positron Emission Tomography(PET) is nuclear medical tests which is a combination of several compounds with a radioactive isotope that can be injected into body to quantitatively measure the metabolic rate (in the body). Especially, Phenomena that increase (sing) glucose metabolism in cancer tissue using the 18F-FDG (Fluorodeoxyglucose) is utilized widely in cancer diagnosis. And then, Numerous studies have been reported that incidence seems high availability even in the modern diagnosis of dementia and Parkinson's (disease) in brain disease. When using a dynamic PET image including the time information in the static information that is provided for the diagnosis many can increase the accuracy of diagnosis. For this reason, clinical researchers getting great attention but, it is the lack of tools to conduct research. And, it interfered complex mathematical algorithm and programming skills for activation of research. In this study, in order to easy to use and enable research dPET, we developed the software based graphic user interface(GUI). In the future, by many clinical researcher using DIA-Tool is expected to be of great help to dPET research.

  8. Interactions of low-power photons with natural opals—PBG materials, photonic control, natural metamaterials, spontaneous laser emissions, and band-gap boundary responses

    International Nuclear Information System (INIS)

    Four views of each of the opal research specimens in white light (for in-article or cover), in the same order as the specimens depicted in Fig. 3 of the main manuscript. A.On the left: 1.5 carat oval cabochon precious fire opal. B.In the center: 2.5 carats faceted fancy shield precious fire contra luz with mild adularescence. C.On the right: 5.0 carats round cabochon precious crystal opal with blue adularescence. Highlights: ► Emission of micro-lasers from microspheroid cluster boundary zones (quantum dots). ► Lasers illuminated or fluoresced the intra-opal structures of microspheroid photonic glass clusters. ► Microspheroid boundaries are durable to low power light sources. ► Display of previously unknown low power photonic optic properties. ► The research specimens are natural metamaterials. - Abstract: One overall goal of this research was to examine types of naturally-occurring opals that exhibit photonic control to learn about previously-unknown properties of naturally occurring photonic control that may be developed for broader applications. Three different photon sources were applied consecutively to three different types of natural, flawless, gem-quality precious opals. Two photon sources were lasers (green and red) and one was simulated daylight tungsten white. As each type of precious opal was exposed to each of the photon sources, the respective refractions, reflections, and transmissions were studied. This research is the first to show that applying various pleochroic and laser photon sources to these types of opals revealed significant information regarding naturally occurring photonic control, metamaterials, spontaneous laser emissions, and microspheroid cluster (inter-PBG zone) boundary effects. Plus, minimizing ambient light and the use of low power photon sources were critical to observing the properties regarding this photonic materials research. This research yielded information applicable to the development of materials to advance

  9. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  10. Determination of spectral limits imposed by four-wave mixing and amplified spontaneous emission in the 1550 nm region

    International Nuclear Information System (INIS)

    Alvarez-Chavez, J A; Sanchez-Lara, R; Martinez-Piñon, F; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    Dense wavelength division multiplexing (DWDM) systems are normally limited by stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) besides amplified spontaneous emission (ASE) noise from erbium-doped fiber amplifiers (EDFAs). In this paper, theoretical calculation of FWM-based limits and noise from EDFAs in the 1535–1565 nm region, are reported. Results show that FWM power per channel extended from −55 to −20 dBm for dispersion values of 0.0, 0.5, 1.0 and 1.5 ps (nm⋅km) −1 . In a similar manner, for negative dispersion coefficient (D) values ranging from 0.0 to −1.5 ps (nm⋅km) −1 , the FWM power per channel extended from −60 to −30 dBm. As for the maximum span length, the calculations demonstrated a rigorous limitation due to noise, suggesting error compensation techniques. A full set of results for the design of multi-span links is included. (paper)

  11. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

    KAUST Repository

    Pan, Jun

    2015-12-01

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic–organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 108 laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

  12. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  13. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    Science.gov (United States)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  14. Dynamic classifiers: a fine way to help achieve lower emissions

    Energy Technology Data Exchange (ETDEWEB)

    Landers, A.; Dugdale, K.L.; Leppak, T. [Powergen, Ratcliffe-on-Soar (United Kingdom)

    2004-04-01

    There have been very few conversions of UK coal mills from static to dynamic classifiers. But test experience with a dynamic classifier at Powergen's Ratcliffe-on-Soar power station has demonstrated significant fineness gain, especially at the coarse end of the particle size distribution curve, and minimal effect on mill coal throughput and operability, with greatly reduced in vibration levels. All mills at unit 1 are to be converted. The increased fineness will help offset the lower combustion efficiency to be expected when a boosted overfire air system is fitted to the plant to reduce NOx. 4 figs., 4 tabs.

  15. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  16. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Su, Meirong

    2015-10-06

    The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.

  17. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy.

    Science.gov (United States)

    De Stasi, Angela Michela; Farisello, Pasqualina; Marcon, Iacopo; Cavallari, Stefano; Forli, Angelo; Vecchia, Dania; Losi, Gabriele; Mantegazza, Massimo; Panzeri, Stefano; Carmignoto, Giorgio; Bacci, Alberto; Fellin, Tommaso

    2016-04-01

    Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a(-/+) mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a(-/+) during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a(-/+) mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a(-/+) compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a(-/+) mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI. © The Author 2016. Published by Oxford University Press.

  18. Dynamic optimisation of WWTP inflow to reduce total emission.

    Science.gov (United States)

    Tränckner, J; Franz, T; Seggelke, K; Krebs, P

    2007-01-01

    A prerequisite for an integrated control of sewer and wastewater treatment plant (WWTP) is a capacity driven inflow control to WWTP. This requires reliable information about the current status of WWTP operation and its behaviour on varying hydraulic, COD and nutrient loads. So far most of the proposed control strategies are based on hypothetical modelling studies. In this paper the behaviour of three large WWTPs on increased storm water loads is analysed based on online measurements of several years. In all cases the main limiting factors for an increase of load were the sedimentation processes in the secondary clarifier and the nitrification capacity. In one case study predictive control strategies have been developed observing these processes which are backboned by effluent control. Tests using an integrated model of sewer and WWTP demonstrate that inflow control on emission load varies significantly with rain intensity.

  19. Global emission projections for the transportation sector using dynamic technology modeling

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2013-12-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to

  20. Global emission projections for the transportation sector using dynamic technology modeling

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  1. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  2. Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires.

    Science.gov (United States)

    Weiss, Matthias; Kinzel, Jörg B; Schülein, Florian J R; Heigl, Michael; Rudolph, Daniel; Morkötter, Stefanie; Döblinger, Markus; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2014-05-14

    We probe and control the optical properties of emission centers forming in radial heterostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy, and occupancy state on a nanosecond time scale. In the spectral oscillations, we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, different emission lines of a single emission center exhibit pronounced anticorrelated intensity oscillations during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the emission center to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mechanism. These simulation results quantitatively reproduce the observed switching and show that in our systems these emission centers are spatially separated from the continuum by >10.5 nm.

  3. Analysis and Design of International Emission Trading Markets Applying System Dynamics Techniques

    Science.gov (United States)

    Hu, Bo; Pickl, Stefan

    2010-11-01

    The design and analysis of international emission trading markets is an important actual challenge. Time-discrete models are needed to understand and optimize these procedures. We give an introduction into this scientific area and present actual modeling approaches. Furthermore, we develop a model which is embedded in a holistic problem solution. Measures for energy efficiency are characterized. The economic time-discrete "cap-and-trade" mechanism is influenced by various underlying anticipatory effects. With a systematic dynamic approach the effects can be examined. First numerical results show that fair international emissions trading can only be conducted with the use of protective export duties. Furthermore a comparatively high price which evokes emission reduction inevitably has an inhibiting effect on economic growth according to our model. As it always has been expected it is not without difficulty to find a balance between economic growth and emission reduction. It can be anticipated using our System Dynamics model simulation that substantial changes must be taken place before international emissions trading markets can contribute to global GHG emissions mitigation.

  4. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O pr...

  5. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  6. Visual cortex activation recorded by dynamic emission computed tomography of inhaled xenon 133

    DEFF Research Database (Denmark)

    Henriksen, L; Paulson, O B; Lassen, N A

    1981-01-01

    Regional cerebral blood flow (CBF) was studied tomographically with 133Xe administered by inhalation over a 1-min period at a concentration of 10 mCi/l. A fast rotating ("dynamic') single-photon emission computed tomograph with four detector heads was used, an instrument that has been found to be...

  7. The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach

    Directory of Open Access Journals (Sweden)

    Jian-Xin Wu

    2017-01-01

    Full Text Available This paper examines the distribution dynamics of carbon dioxide (CO2 emissions intensity across 30 Chinese provinces using a weighted distribution dynamics approach. The results show that CO2 emissions intensity tends to diverge during the sample period of 1995–2014. However, convergence clubs are found in the ergodic distributions of the full sample and two sub-sample periods. Divergence, polarization, and stratification are the dominant characteristics in the distribution dynamics. Weightings with economic and population sizes have important impacts on current distributions and hence long-run steady distributions. Neglecting the size of the economy may underestimate the deterioration in the long-run steady state. The result also shows that conditioning on space and income cannot eliminate the multimodality in the long-run distribution. However, capital intensity has an important impact on the formation of convergence clubs. Our findings will contribute to an understanding of the spatial dynamic behaviors of CO2 emissions across Chinese provinces, and have important policy implications for CO2 emissions reduction in China.

  8. Dynamic reallocation of marketable nitrogen emission permits in Danish freshwater aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Andersen, Jesper Levring; Bogetoft, Peter

    2014-01-01

    The potential gains from a regulatory change allowing for reallocation of marketable nitrogen emission permits under a cap and trade system are analyzed in a dynamic context using Data Envelopment Analysis to formulate linear programming models. In these models new, more environmental friendly...

  9. Using neutron angular anisotropy information to dynamically determine the ratio of the (α,n) rate to spontaneous fission rate for coincidence counting applications

    Science.gov (United States)

    Holewa, L.; Charlton, W.; Miller, E.; Pozzi, S.

    2013-02-01

    Typically, when neutron coincidence or multiplicity counting is performed, there are three unknowns: the sample mass, the leakage self-multiplication, and the ratio of the (α,n) rate of the source to the spontaneous fission rate. For a given counting time, the strength of the source or the detector efficiency must be sufficiently high for the singles, doubles, and triples count rates to represent statistically meaningful quantities. Often, the strength of the source and the allotted counting time are such that only the singles and doubles count rates are statistically meaningful. In this latter case, the ratio of (α,n) to the spontaneous fission must be estimated through some other means. With a simulated (α,n) rate, the two equations related to the singles and doubles count rates can be used to determine the sample mass. In order to determine the ratio of (α,n) to spontaneous fission rate of the source, the isotopic composition of the sample as well as the light element impurities inside the source must be known. Ideally, there would be a way to dynamically determine the (α,n) rate of the source from count rate information. In this paper, it is shown that the (α,n) rate of the source can be determined by using information about the ratio of the number of coincident neutrons at 180° to the number at 90°. By using this information, the three aforementioned unknowns can be dynamically determined through the sole use of singles and doubles count rates.

  10. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  11. Describing and compensating gas transport dynamics for accurate instantaneous emission measurement

    Science.gov (United States)

    Weilenmann, Martin; Soltic, Patrik; Ajtay, Delia

    Instantaneous emission measurements on chassis dynamometers and engine test benches are becoming increasingly usual for car-makers and for environmental emission factor measurement and calculation, since much more information about the formation conditions can be extracted than from the regulated bag measurements (integral values). The common exhaust gas analysers for the "regulated pollutants" (carbon monoxide, total hydrocarbons, nitrogen oxide, carbon dioxide) allow measurement at a rate of one to ten samples per second. This gives the impression of having after-the-catalyst emission information with that chronological precision. It has been shown in recent years, however, that beside the reaction time of the analysers, the dynamics of gas transport in both the exhaust system of the car and the measurement system last significantly longer than 1 s. This paper focuses on the compensation of all these dynamics convoluting the emission signals. Most analysers show linear and time-invariant reaction dynamics. Transport dynamics can basically be split into two phenomena: a pure time delay accounting for the transport of the gas downstream and a dynamic signal deformation since the gas is mixed by turbulence along the way. This causes emission peaks to occur which are smaller in height and longer in time at the sensors than they are after the catalyst. These dynamics can be modelled using differential equations. Both mixing dynamics and time delay are constant for modelling a raw gas analyser system, since the flow in that system is constant. In the exhaust system of the car, however, the parameters depend on the exhaust volume flow. For gasoline cars, the variation in overall transport time may be more than 6 s. It is shown in this paper how all these processes can be described by invertible mathematical models with the focus on the more complex case of the car's exhaust system. Inversion means that the sharp emission signal at the catalyst out location can be

  12. Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy

    International Nuclear Information System (INIS)

    Odelius, Michael; Nordlund, Dennis; Pettersson, Lars G.M.; Ogasawara, Hirohito; Fuchs, Oliver; Weinhardt, Lothar; Maier, Florian; Umbach, Eberhard; Heske, Clemens; Zubavichus, Yan; Grunze, Michael; Denlinger, Jonathan D.; Nilsson, Anders

    2005-01-01

    The isotope effect and excitation-energy dependence have been measured in the oxygen K-edge x-ray emission spectrum (XES). The use of XES to monitor core decay processes provides information about molecular dynamics (MD) on an ultrafast time scale through the O1s lifetime of a few femtoseconds. Different nuclear masses give rise to differences in the dynamics and the observed isotope effect in XES is direct evidence of the importance of such processes. MD simulations show that even the excitation-energy dependence in the XES is mainly related to differences in core-excited-state dynamics

  13. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.

    Science.gov (United States)

    Sun, Tian Yin; Bornhöft, Nikolaus A; Hungerbühler, Konrad; Nowack, Bernd

    2016-05-03

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental concentrations. Despite significant advances in analytical methods, it is still not possible to measure the concentrations of ENM in natural systems. Material flow and environmental fate models have been used to provide predicted environmental concentrations. However, almost all current models are static and consider neither the rapid development of ENM production nor the fact that many ENM are entering an in-use stock and are released with a lag phase. Here we use dynamic probabilistic material flow modeling to predict the flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. Caused by the increase in production, the concentrations of all ENM in all compartments are increasing. Nano-TiO2 had far higher concentrations than the other three ENM. Sediment showed in our worst-case scenario concentrations ranging from 6.7 μg/kg (CNT) to about 40 000 μg/kg (nano-TiO2). In most cases the concentrations in waste incineration residues are at the "mg/kg" level. The flows to the environment that we provide will constitute the most accurate and reliable input of masses for environmental fate models which are using process-based descriptions of the fate and behavior of ENM in natural systems and rely on accurate mass input parameters.

  14. Multichannel emission spectrometer for high dynamic range optical pyrometry of shock-driven materials

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-10-01

    An emission spectrometer (450-850 nm) using a high-throughput, high numerical aperture (N.A. = 0.3) prism spectrograph with stepped fiberoptic coupling, 32 fast photomultipliers and thirty-two 1.25 GHz digitizers is described. The spectrometer can capture single-shot events with a high dynamic range in amplitude and time (nanoseconds to milliseconds or longer). Methods to calibrate the spectrometer and verify its performance and accuracy are described. When a reference thermal source is used for calibration, the spectrometer can function as a fast optical pyrometer. Applications of the spectrometer are illustrated by using it to capture single-shot emission transients from energetic materials or reactive materials initiated by kmṡs-1 impacts with laser-driven flyer plates. A log (time) data analysis method is used to visualize multiple kinetic processes resulting from impact initiation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) or a Zr/CuO nanolaminate thermite. Using a gray body algorithm to interpret the spectral radiance from shocked HMX, a time history of temperature and emissivity was obtained, which could be used to investigate HMX hot spot dynamics. Finally, two examples are presented showing how the spectrometer can avoid temperature determination errors in systems where thermal emission is accompanied by atomic or molecular emission lines.

  15. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    International Nuclear Information System (INIS)

    Szarka, N.; University of Concepcion; Kakucs, O.; Wolfbauer, J.; Bezama, A.

    2008-01-01

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim R was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO 2 emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)

  16. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  17. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    Science.gov (United States)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  18. Dynamics of the deep red Fe3+ photoluminescence emission in feldspar

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar; Jain, Mayank

    2017-01-01

    We present here new characteristics of the Fe3+ emission in feldspar using a combination of site/energy-selective spectroscopy and time-resolved photoluminescence at cryogenic temperatures. Although the variation in the peak energy of Fe3+ emission has been known to vary across feldspar samples...... be exploited for site discrimination within a complex feldspar sample. The radiative relaxation in Fe3+ (4T1 → 6A1) is shown to be a dynamic process depending on whether the ion is excited using resonant or non-resonant transition. We suggest that during resonant excitation, the excited state of Fe3+ undergoes...

  19. The dynamic relationship between structural change and CO2 emissions in Malaysia: a cointegrating approach.

    Science.gov (United States)

    Ali, Wajahat; Abdullah, Azrai; Azam, Muhammad

    2017-05-01

    The current study investigates the dynamic relationship between structural changes, real GDP per capita, energy consumption, trade openness, population density, and carbon dioxide (CO 2 ) emissions within the EKC framework over a period 1971-2013. The study used the autoregressive distributed lagged (ARDL) approach to investigate the long-run relationship between the selected variables. The study also employed the dynamic ordinary least squared (DOLS) technique to obtain the robust long-run estimates. Moreover, the causal relationship between the variables is explored using the VECM Granger causality test. Empirical results reveal a negative relationship between structural change and CO 2 emissions in the long run. The results indicate a positive relationship between energy consumption, trade openness, and CO 2 emissions. The study applied the turning point formula of Itkonen (2012) rather than the conventional formula of the turning point. The empirical estimates of the study do not support the presence of the EKC relationship between income and CO 2 emissions. The Granger causality test indicates the presence of long-run bidirectional causality between energy consumption, structural change, and CO 2 emissions in the long run. Economic growth, openness to trade, and population density unidirectionally cause CO 2 emissions. These results suggest that the government should focus more on information-based services rather than energy-intensive manufacturing activities. The feedback relationship between energy consumption and CO 2 emissions suggests that there is an ominous need to refurbish the energy-related policy reforms to ensure the installations of some energy-efficient modern technologies.

  20. Spontaneous waves in muscle fibres

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Stefan; Kruse, Karsten [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany)

    2007-11-15

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  1. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  2. Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol.

    Science.gov (United States)

    Ljungberg, M P; Zhovtobriukh, I; Takahashi, O; Pettersson, L G M

    2017-04-07

    We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

  3. Supercritical droplet dynamics and emission in low speed cross-flows

    International Nuclear Information System (INIS)

    Chae, J. W.; Yang, H. S.; Yoon, W. S.

    2008-01-01

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  4. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  5. The Impact of Crop Price on Nitrous Oxide Emissions: A Dynamic Programming Approach

    OpenAIRE

    Cai, Ruohong; Zhang, Xin; Kanter, David

    2014-01-01

    The use of N fertilizer in agriculture is a major source of Nitrous Oxide, an important greenhouse gases. Market-based instruments, such as incentives or taxes, may help reduce Nitrous Oxide emission by changing Nitrogen application rate. Using a dynamic programming approach, we found that changing corn price or fertilizer price have effects on both farm profit and Nitrogen application rate. However, farm profit and Nitrogen rate always change in the same direction when affected by either inp...

  6. Dynamic behaviour of magneto-acoustic emission in a grain-oriented steel

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Perevertov, Oleksiy; Landa, Michal

    2017-01-01

    Roč. 426, Mar (2017), s. 685-690 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magneto-acoustic emission * magnetization dynamics * Barkhausen noise * surface field measurement * magnetization waveform control Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  7. Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Pashkin, Alexej; Kužel, Petr; Khazan, M.; Schnüll, S.; Wilke, I.

    2001-01-01

    Roč. 90, č. 3 (2001), s. 1303-1306 ISSN 0021-8979 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z1010914 Keywords : ultrafast dynamics of free carriers * GaAs * time-domain terahertz emission spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.128, year: 2001

  8. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels.

    Science.gov (United States)

    Lefeber, Timothy; Gobert, William; Vrancken, Gino; Camu, Nicholas; De Vuyst, Luc

    2011-05-01

    To speed up research on the usefulness and selection of bacterial starter cultures for cocoa bean fermentation, a benchmark cocoa bean fermentation process under natural fermentation conditions was developed successfully. Therefore, spontaneous fermentations of cocoa pulp-bean mass in vessels on a 20 kg scale were tried out in triplicate. The community dynamics and kinetics of these fermentations were studied through a multiphasic approach. Microbiological analysis revealed a limited bacterial species diversity and targeted community dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation, as was the case during cocoa bean fermentations processes carried out in the field. LAB isolates belonged to two main (GTG)(5)-PCR clusters, namely Lactobacillus plantarum and Lactobacillus fermentum, with Fructobacillus pseudofilculneus occurring occasionally; one main (GTG)(5)-PCR cluster, composed of Acetobacter pasteurianus, was found among the AAB isolates, besides minor clusters of Acetobacter ghanensis and Acetobacter senegalensis. 16S rRNA-PCR-DGGE revealed that L. plantarum and L. fermentum dominated the fermentations from day two until the end and Acetobacter was the only AAB species present at the end of the fermentations. Also, species of Tatumella and Pantoea were detected culture-independently at the beginning of the fermentations. Further, it was shown through metabolite target analyses that similar substrate consumption and metabolite production kinetics occurred in the vessels compared to spontaneous cocoa bean fermentation processes. Current drawbacks of the vessel fermentations encompassed an insufficient mixing of the cocoa pulp-bean mass and retarded yeast growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  10. Aeolian dust emissions in Southern Africa: field measurements of dynamics and drivers

    Science.gov (United States)

    Wiggs, Giles; Thomas, David; Washington, Richard; King, James; Eckardt, Frank; Bryant, Robert; Nield, Joanna; Dansie, Andrew; Baddock, Matthew; Haustein, Karsten; Engelstaedter, Sebastian; von Holdt, Johannah; Hipondoka, Martin; Seely, Mary

    2016-04-01

    Airborne dust derived from the world's deserts is a critical component of Earth System behaviour, affecting atmospheric, oceanic, biological, and terrestrial processes as well as human health and activities. However, very few data have been collected on the factors that control dust emission from major source areas, or on the characteristics of the dust that is emitted. Such a paucity of data limits the ability of climate models to properly account for the radiative and dynamical impacts triggered by atmospheric dust. This paper presents field data from the DO4 Models (Dust Observations for Models) project that aims to understand the drivers of variability in dust emission processes from major source areas in southern Africa. Data are presented from three field campaigns undertaken between 2011 and 2015. We analysed remote sensing data to identify the key geomorphological units in southern Africa which are responsible for emission of atmospheric dust. These are the Makgadikgadi pans complex in northern Botswana, the ephemeral river valleys of western Namibia, and Etosha Pan in northern Namibia. Etosha Pan is widely recognised as perhaps the most significant source of atmospheric dust in the southern hemisphere. We deployed an array of field equipment within each source region to measure the variability in and dynamics of aeolian erosivity, as well as dust concentration and flux characteristics. This equipment included up to 11 meteorological stations measuring wind shear stress and other standard climatic parameters, Cimel sun photometers, a LiDAR, sediment transport detectors, high-frequency dust concentration monitors, and dust flux samplers. Further data were gathered at each site on the dynamics of surface characteristics and erodibility parameters that impact upon erosion thresholds. These data were augmented by use of a Pi-Swerl portable wind tunnel. Our data represent the first collected at source for these key dust emission areas and highlight the

  11. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    Science.gov (United States)

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  13. Influence of carrier relaxation on the dynamics of stimulated emission in microcavity lasers

    Science.gov (United States)

    Hilpert, M.; Klann, H.; Hofmann, M.; Ellmers, C.; Oestreich, M.; Schneider, H. C.; Jahnke, F.; Koch, S. W.; Rühle, W. W.; Wolf, H. D.; Bernklau, D.; Riechert, H.

    1997-12-01

    The influence of carrier relaxation on the emission dynamics of a semiconductor microcavity laser is investigated using femtosecond optical excitation. For moderate excitation intensities, the dynamics of the output laser pulse becomes significantly slower when the photon energy of the pump laser is tuned from the quantum well band-gap energy towards higher energies. Theoretical calculations reproduce this trend only if the interaction-induced dephasing of the polarization driven by the pump pulse, the formation, and relaxation of the nonequilibrium carrier distribution as well as the chirp of the excitation pulse are taken into account. Additionally, band-structure effects such as excitation of light holes influence the thermalization dynamics and lead to discontinuities in the general trend.

  14. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.

    Science.gov (United States)

    Sun, Tian Yin; Mitrano, Denise M; Bornhöft, Nikolaus A; Scheringer, Martin; Hungerbühler, Konrad; Nowack, Bernd

    2017-03-07

    The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO 2 , nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.

  15. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats.

    Science.gov (United States)

    Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina

    2018-05-01

    Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.

  16. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high, signi...

  17. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  18. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  19. Intermediate energies heavy ion collisions : study of the charged particles emission dynamics and emitters characterization

    International Nuclear Information System (INIS)

    Bauge, E.

    1994-07-01

    In heavy ion collisions at intermediate energies, reaction processes are ranging from slow processes where equilibrium is achieved between every emission, up to direct processes where nucleon nucleon scattering and phase space availability are the deciding factors. In order to investigate this transition, both the emission dynamics and the characteristics of the emitter have been studied, both theoretically and experimentally in the AMPHORA detector, for the systems 7, 17, 27 and 34 AMeV, 40 Ar+Al, 40 Ar+Cu and 40 Ar+Ag. First, the linear momentum transfer of the most central collisions has been evaluated for these systems, by measuring the velocity of heavy residues. Then, by measuring azimuthal angle correlations functions, and by comparing them with statistical model predictions, the average angular momentum of the emitter has been evaluated. To study the charged particles emission dynamics, experimental azimuthal angle and relative momentum correlation functions have been compared with simulations based on a classical trajectory model. Finally, predictions of an advanced BUU model have been studied for the system 34 AMeV 40 Ar+Al. (authors). 69 refs., 52 figs., 5 tabs

  20. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    Science.gov (United States)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  1. Dynamic Energy Consumption and Emission Modelling of Container Terminal based on Multi Agents

    Directory of Open Access Journals (Sweden)

    Hou Jue

    2017-01-01

    Full Text Available Environmental protection and energy saving pressure press the increasing attention of container terminal operators. In order to comply with the more and more strict environmental regulation, reducing energy consumption and air pollution emissions, meanwhile, optimizing the operation efficiency, which, is an urgent problem to container terminal operator of China. This paper based on the characteristic of Container Terminal Operation System (CTOS, which includes several sections of container product processes, consist of berth allocation problem, truck dispatching problem, yard allocation problem and auxiliary process. Dynamic energy consumption and emissions characteristic of each equipment and process is modelled, this paper presents the architecture of CTOS based on the multi agent system with early-warning model, which is based on multi-class support vector machines (SVM. A simulation on container terminal is built on the JADE platform to support the decision-making of container terminal, which can reduce energy consumption and air pollution emissions, allows the container terminal operator to be more flexible in their decision to meet the Emission Control Area regulation and Green Port Plan of China.

  2. Dynamic stimulated Brillouin scattering analysis

    DEFF Research Database (Denmark)

    Djupsöbacka, A.; Jacobsen, Gunnar; Tromborg, Bjarne

    2000-01-01

    We present a new simple analysis - including the effect of spontaneous emission - of the (dynamic) influence of SBS on the detected receiver eye diagram. It applies in principle for general types of modulation formats such as the digital formats of ASK, FSK, and PSK. The analysis is formulated fo...

  3. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    Energy Technology Data Exchange (ETDEWEB)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-12-31

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the {sup 40}Ar + {sup 27}Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.). 45 refs.

  4. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells.

    Science.gov (United States)

    Hedde, Per Niklas; Dörlich, René M; Blomley, Rosmarie; Gradl, Dietmar; Oppong, Emmanuel; Cato, Andrew C B; Nienhaus, G Ulrich

    2013-01-01

    Raster image correlation spectroscopy is a powerful tool to study fast molecular dynamics such as protein diffusion or receptor-ligand interactions inside living cells and tissues. By analysing spatio-temporal correlations of fluorescence intensity fluctuations from raster-scanned microscopy images, molecular motions can be revealed in a spatially resolved manner. Because of the diffraction-limited optical resolution, however, conventional raster image correlation spectroscopy can only distinguish larger regions of interest and requires low fluorophore concentrations in the nanomolar range. Here, to overcome these limitations, we combine raster image correlation spectroscopy with stimulated emission depletion microscopy. With imaging experiments on model membranes and live cells, we show that stimulated emission depletion-raster image correlation spectroscopy offers an enhanced multiplexing capability because of the enhanced spatial resolution as well as access to 10-100 times higher fluorophore concentrations.

  5. A dynamic modelling approach to evaluate GHG emissions from wastewater treatment plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri

    2012-01-01

    The widened scope for wastewater treatment plants (WWTP) to consider not only water quality and cost, but also greenhouse gas (GHG) emissions and climate change calls for new tools to evaluate operational strategies/treatment technologies. The IWA Benchmark Simulation Model no. 2 (BSM2) has been...... widely used within the scientific community for the unbiased comparison of control strategies in wastewater treatment facilities. In this paper, the default set of BSM models is extended with a set of comprehensive dynamic approaches that estimate the most significant on-site (secondary treatment, sludge...... processing) and off-site (net energy use, embedded chemicals, sludge disposal) sources of GHG emissions. The case study presented here calculates and discusses the changes in the effluent quality (EQI) and operational cost (OCI) indices and the formation of carbon dioxide (CO2), methane (CH4) and nitrous...

  6. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-01-01

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40 Ar + 27 Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  7. The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions.

    Science.gov (United States)

    Moore, J L; Howden, S M; McKeon, G M; Carter, J O; Scanlan, J C

    2001-09-01

    This study outlines the development of an approach to evaluate the sources, sinks, and magnitudes of greenhouse gas emissions from a grazed semiarid rangeland dominated by mulga (Acacia aneura) and how these emissions may be altered by changes in management. This paper describes the modification of an existing pasture production model (GRASP) to include a gas emission component and a dynamic tree growth and population model. An exploratory study was completed to investigate the likely impact of changes in burning practices and stock management on emissions. This study indicates that there is a fundamental conflict between maintaining agricultural productivity and reducing greenhouse gas emissions on a given unit of land. Greater agricultural productivity is allied with the system being an emissions source while production declines and the system becomes a net emissions sink as mulga density increases. Effective management for sheep production results in the system acting as a net source (approximately 60-200 kg CO2 equivalents/ha/year). The magnitude of the source depends on the management strategies used to maintain the productivity of the system and is largely determined by starting density and average density of the mulga over the simulation period. Prior to European settlement, it is believed that the mulga lands were burnt almost annually. Simulations indicate that such a management approach results in the system acting as a small net sink with an average net absorption of greenhouse gases of 14 kg CO2 equivalents/ha/year through minimal growth of mulga stands. In contrast, the suppression of fire and the introduction of grazing results in thickening of mulga stands and the system can act as a significant net sink absorbing an average of 1000 kg CO2 equivalents/ha/year. Although dense mulga will render the land largely useless for grazing, land in this region is relatively inexpensive and could possibly be developed as a cost-effective carbon offset for

  8. A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty

    International Nuclear Information System (INIS)

    In this study, a FFSP (full-infinite fuzzy stochastic programming) method is developed for planning MEPS (municipal electric power systems) associated with GHG (greenhouse gas) control under uncertainty. FFSP can deal with multiple uncertainties presented in terms of fuzzy sets, functional intervals, and random variables. FFSP is also applied to a case study of Beijing for managing MEPS, and reducing the GHG emission through introducing the EU ETS (European Union greenhouse gas emission trading scheme). The results indicate that reasonable solutions have been generated, which can be used for generating schemes of energy resources, electricity production/allocation, and capacity expansion under various economic costs and GHG reduction requirements. The case study demonstrates that FFSP can increase the abilities of reflecting complexities for dynamics of capacity expansion and interaction of multiple uncertainties in MEPS. The results allow in-depth analyses of trade-offs between GHG mitigation and economic objective as well as those between system cost and decision makers' satisfaction degree. Besides, this study can also provide an example to help China construct domestic carbon trading market at municipal scale for addressing the challenges of global climate change. - Highlights: • A dynamic optimization (FFSP) method is developed for tackling uncertainties. • FFSP is applied to planning MEPS (municipal electric power systems) of Beijing. • CET (Carbon emission trading) is introduced into MEPS for mitigating CO 2 emissions. • Trade-offs occur between system cost and satisfaction degree under uncertainties. • Results can provide an example to construct domestic CET market in China

  9. Dynamic linkages among transport energy consumption, income and CO2 emission in Malaysia

    International Nuclear Information System (INIS)

    Azlina, A.A.; Law, Siong Hook; Nik Mustapha, Nik Hashim

    2014-01-01

    This paper examines the dynamic relationship between income, energy use and carbon dioxide (CO 2 ) emissions in Malaysia using time-series data during 1975 to 2011. This study also attempts to validate the environmental Kuznet curve (EKC) hypothesis. Applying a multivariate model of income, energy consumption in the transportation sector, carbon emissions, structural change in the economy and renewable energy use, the empirical evidence confirmed that there is a long-run relationship between the variables as shown by the result of co-integration analysis. The results indicate that the inverted U-shape EKC hypothesis does not fully agree with the theory. The coefficient of squared GDP is not statistically different from zero. The time duration and the annual data used for the present study do not seem to strongly validate the existence of EKC hypothesis in the case of Malaysia. Causality test shows that the relationship between GDP and CO 2 is unidirectional. The Granger causality test results reveal that emissions Granger-cause income, energy consumption and renewable energy use. Moreover, we find that income Granger-causes energy consumption and renewable energy use, and both structural change and renewable energy use Granger-cause energy consumption in road transportation. - Highlights: • We examine the dynamic relationship among energy consumption in transportation sector, income and CO 2 and also attempts to validate the environmental Kuznet curve (EKC) hypothesis. • We used a multivariate approach based on VECM. • The inverted U-shape EKC hypothesis is not valid in the case of Malaysia. • Uni-directional causality exists from emission to income, energy consumption and renewable energy use. • Income Granger-causes energy consumption and renewable energy use, and both structural change and renewable energy use Granger-cause energy consumption in road transportation

  10. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  11. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    International Nuclear Information System (INIS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge; D'Incerti, Ludovico

    2015-01-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D 2 ), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes

  12. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    Science.gov (United States)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  13. Dynamics of the Green and Red Upconversion Emissions in Yb3+-Er3+-Codoped Y2O3 Nanorods

    Directory of Open Access Journals (Sweden)

    O. Meza

    2010-01-01

    Full Text Available Efficient green and red upconversion emission in Y2O3:Yb3+, Er3+ nanorods under 978 nm radiation excitation is achieved. Experimental effective lifetimes, luminescent emissions, and nanorod sizes depend strongly on the solvent ratios used during the synthesis. A microscopic nonradiative energy transfer model is used to approach the dynamics of the green, red, and infrared emissions. The excellent agreement between simulated and experimental decay suggests that the energy transfer mechanisms responsible of the visible emission depend on the solvent ratio.

  14. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  15. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    Science.gov (United States)

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  16. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock

    Science.gov (United States)

    Lanspa, Michael J.; Grissom, Colin K.; Hirshberg, Eliotte L.; Jones, Jason P.; Brown, Samuel M.

    2013-01-01

    Background Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. Methods This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10 ml/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index (VCCI) and aortic velocity variation (AoVV) prior to VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index ≥ 15%. Results 14 patients received VE, 5 of which demonstrated a hemodynamic response. VCCI and SVV were predictive (Area under curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: VCCI ≥ 15% (Positive predictive value, PPV 62%, negative predictive value, NPV 100%, p = 0.03); SVV ≥ 17% (PPV 100%, NPV 82%, p = 0.03). AoVV was not predictive. Conclusions VCCI and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients. PMID:23324885

  17. Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten

    Science.gov (United States)

    Li, Xiangyan; Duan, Guohua; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.; Liang, Yunfeng; Chen, Jun-Ling; Luo, G.-N.

    2017-11-01

    Radiation damage not only seriously degrades the mechanical properties of tungsten (W) but also enhances hydrogen retention in the material. Introducing a large amount of defect sinks, e.g. grain boundaries (GBs) is an effective method for improving radiation-resistance of W. However, the mechanism by which the vacancies are dynamically annihilated at long timescale in nano-crystal W is still not clear. The dynamic picture for eliminating vacancies with single interstitials and small interstitial-clusters has been investigated by combining molecular dynamics, molecular statics and object Kinetic Monte Carlo methods. On one hand, the annihilation of bulk vacancies was enhanced due to the reflection of an interstitial-cluster of parallel ≤ftright> crowdions by the GB. The interstitial-cluster was observed to be reflected back into the grain interior when approaching a locally dense GB region. Near this region, the energy landscape for the interstitial was featured by a shoulder, different to the decreasing energy landscape of the interstitial near a locally loose region as indicative of the sink role of the GB. The bulk vacancy on the reflection path was annihilated. On the other hand, the dynamic interstitial emission efficiently anneals bulk vacancies. The single interstitial trapped at the GB firstly moved along the GB quickly and clustered to be the di-interstitial therein, reducing its mobility to a value comparable to that that for bulk vacancy diffusion. Then, the bulk vacancy was recombined via the coupled motion of the di-interstitial along the GB, the diffusion of the vacancy towards the GB and the accompanying interstitial emission. These results suggest that GBs play an efficient role in improving radiation-tolerance of nano-crystal W via reflecting highly-mobile interstitials and interstitial-clusters into the bulk and annihilating bulk vacancies, and via complex coupling of in-boundary interstitial diffusion, clustering of the interstitial and vacancy

  18. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia.

    Science.gov (United States)

    Xi, Xin; Sokolik, Irina N

    2015-02-27

    An improved model representation of mineral dust cycle is critical to reducing the uncertainty of dust-induced environmental and climatic impact. Here we present a mesoscale model study of the seasonal dust activity in the semiarid drylands of Central Asia, focusing on the effects of wind speed, soil moisture, surface roughness heterogeneity, and vegetation phenology on the threshold friction velocity ( u *t ) and dust emission during the dust season of 1 March to 31 October 2001. The dust model WRF-Chem-DuMo allows us to examine the uncertainties in seasonal dust emissions due to the selection of dust emission scheme and soil grain size distribution data. To account for the vegetation effects on the u *t , we use the Moderate Resolution Imaging Spectroradiometer monthly normalized difference vegetation index to derive the dynamic surface roughness parameters required by the physically based dust schemes of Marticorena and Bergametti (1995, hereinafter MB) and Shao et al. (1996, hereinafter Shao). We find the springtime u *t is strongly enhanced by the roughness effects of temperate steppe and desert ephemeral plants and, to less extent, the binding effects of increased soil moisture. The u *t decreases as the aboveground biomass dies back and soil moisture depletes during summer. The u *t dynamics determines the dust seasonality by causing more summer dust emission, despite a higher frequency of strong winds during spring. Due to the presence of more erodible materials in the saltation diameter range of 60-200 µm, the dry-sieved soil size distribution data lead to eight times more season-total dust emission than the soil texture data, but with minor differences in the temporal distribution. On the other hand, the Shao scheme produces almost the same amount of season-total dust emission as the MB scheme, but with a strong shift toward summer due to the strong sensitivity of the u *t to vegetation. By simply averaging the MB and Shao model experiments, we obtain

  19. Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India.

    Science.gov (United States)

    Devi, Khunjamayum Romapati; Deka, Manab; Jeyaram, Kumaraswamy

    2015-04-16

    Ngari is the most popular traditionally processed non-salted fish product, prepared from sun-dried small cyprinid fish Puntius sophore (Ham.) in Manipur state of Northeast India. The microbial involvement in ngari production remained uncertain due to its low moisture content and yearlong incubation in anaerobically sealed earthen pots without any significant change in total microbial count. The culture-independent PCR-DGGE analysis used during this study confirmed a drastic bacterial community structural change in comparison to its raw material. To understand the bacterial dynamics during this dry fermentation, time series samples collected over a period of nine months through destructive sampling from two indigenous ngari production centres were analysed by using both culture-dependent and culture-independent molecular methods. A total of 210 bacteria isolated from the samples were identified by amplified ribosomal DNA restriction analysis (ARDRA) based grouping and 16S rRNA gene sequence similarity analysis. The dominant bacteria were Staphylococcus cohnii subsp. cohnii (38.0%), Tetragenococcus halophilus subsp. flandriensis (16.8%), a novel phylotype related to Lactobacillus pobuzihii (7.2%), Enterococcus faecium (7.2%), Bacillus indicus (6.3%) and Staphylococcus carnosus (3.8%). Distinct bacterial dynamics with the emergence of T. halophilus at third month (10(6)CFU/g), L. pobuzihii at sixth month (10(6)CFU/g), S. carnosus at three to six months (10(4)CFU/g) and B. indicus at six to nine months (10(5)CFU/g) in both the production centres was observed during ngari fermentation. However, the other two dominant bacteria S. cohnii and E. faecium were isolated throughout the fermentation with the population of 10(6)CFU/g and 10(4)CFU/g respectively. Culture-independent PCR-DGGE analysis further showed the presence of additional species, in which Kocuria halotolerans and Macrococcus caseolyticus disappeared during fermentation while Clostridium irregulare and

  20. Lactic acid bacteria dynamics during spontaneous fermentation of cocoa beans verified by culture-independent denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Santos, T F; Santana, L K A; Santos, A C F; Silva, G S; Romano, C C; Dias, J C T; Rezende, R P

    2011-11-04

    Cocoa is naturally fermented in the field before the cocoa seeds are removed for processing. We assessed the dynamics of lactic acid bacteria during cocoa fermentation in Bahia, Brazil. During five days of fermentation, temperature and pH were measured and beans were collected for genomic DNA extraction every 12 h. The DNA was used as a template for amplification with Lac1-Lac2 and Lac3-Lac2 for denaturing gradient gel electrophoresis analyses. pH values ranged from 3.34 to 4.98, while the temperature varied from 23° to 50°C. Lac1-Lac2 primers permitted detection of 11 operational taxonomic units. Twenty-eight operational taxonomic units were obtained with the primer pair Lac3-Lac2. It was observed that there were variations between the numbers of operational taxonomic units throughout the process, probably because of changes in pH and temperature. The greatest similarity in amplified samples was obtained with the primers Lac3-Lac2.

  1. Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis

    International Nuclear Information System (INIS)

    Jahangir Alam, Mohammad; Ara Begum, Ismat; Buysse, Jeroen; Van Huylenbroeck, Guido

    2012-01-01

    The paper investigates the possible existence of dynamic causality between energy consumption, electricity consumption, carbon emissions and economic growth in Bangladesh. First, we have tested cointegration relationships using the Johansen bi-variate cointegration model. This is complemented with an analysis of an auto-regressive distributed lag model to examine the results' robustness. Then, the Granger short-run, the long-run and strong causality are tested with a vector error correction modelling framework. The results indicate that uni-directional causality exists from energy consumption to economic growth both in the short and the long-run while a bi-directional long-run causality exists between electricity consumption and economic growth but no causal relationship exists in short-run. The strong causality results indicate bi-directional causality for both the cases. A uni-directional causality runs from energy consumption to CO 2 emission for the short-run but feedback causality exists in the long-run. CO 2 Granger causes economic growth both in the short and in the long-run. An important policy implication is that energy (electricity as well) can be considered as an important factor for the economic growth in Bangladesh. Moreover, as higher energy consumption also means higher pollution in the long-run, policy makers should stimulate alternative energy sources for meeting up the increasing energy demand. - Highlights: ► Dynamic causality among energy and electricity consumption, CO 2 and economic growth. ► Uni-directional causality exists from energy consumption to economic growth. ► Bi-directional causality exists between electricity consumption and economic growth. ► Feedback causality exists between CO 2 emission to energy consumption. ► CO 2 Granger causes economic growth both in the short and in the long-run.

  2. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqing, Gan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides

  3. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    International Nuclear Information System (INIS)

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  4. A third measure-metastable state in the dynamics of spontaneous shape change in healthy human's white cells.

    Directory of Open Access Journals (Sweden)

    Karen A Selz

    2011-04-01

    Full Text Available Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, "random" state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t, served as a computable order parameter. Comparison of R(t series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the "random" appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence, sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R

  5. Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations▿

    Science.gov (United States)

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-01-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans. PMID

  6. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations.

    Science.gov (United States)

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-11-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans.

  7. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  8. Dynamic study of methionine positron emission tomography in patients with glioblastoma with oligodendroglial components.

    Science.gov (United States)

    Yano, Hirohito; Ohe, Naoyuki; Nakayama, Noriyuki; Nomura, Yu-Ichi; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2015-10-01

    Anaplastic oligoastrocytoma (AOA) with necrosis is classified as glioblastoma (GBM) with oligodendroglioma component (GBMO), according to the 2007 World Health Organization classification. The prognosis of GBMO remains controversial because definitive diagnostic criteria regarding the percentage of the oligodendroglial components (OC) in the GBM do not exist. We previously reported dynamic methionine (MET) positron emission tomography (PET) in patients with these tumors. A significant decrease in the MET signal was seen in oligodendrocytic tumors, in contrast to a significant MET increase in GBMs. In this study, we analyzed the dynamic MET PET signal in four patients with primary (n = 2) and secondary (n = 2) GBMOs. Static PET scanning was performed in three consecutive phases. Both cases of primary GBMOs and one case of secondary GBMO presented with a gradual decrease in MET PET signal over the consecutive phases. In contrast, the remaining case of secondary GBMO presented with a pattern of slight increase. It is likely that the dynamic change of MET in patients with GBMO resemble those in patients with oligodendroglial tumor, however, further studies are needed to confirm them. We discuss the mechanisms from a viewpoint of pathological findings.

  9. Real-time polarization mode dispersion monitoring system for a multiple-erbium-doped fiber amplifier, dense wavelength division multiplexing optical fiber transmission by amplified spontaneous emission modulation and acousto-optic tunable fiber scanning techniques.

    Science.gov (United States)

    Tseng, Bao-Jang; Tarn, Chen-Wen

    2009-03-01

    Without interruption or affecting the transmission of ordinary payload channels, we propose a real time polarization mode dispersion (PMD) monitoring system for long-haul, multiple erbium-doped fiber amplifier (EDFA), dense wavelength division multiplexing (DWDM) optical fiber transmission using modulated amplified spontaneous emission (ASE) of one of the EDFAs as the supervisory (SV) signal source. An acousto-optic tunable filter (AOTF) at the receiver side is adopted to scan the spectrum of the transmitted ASE SV signal. Using the fixed-analyzer method, PMDs of different wavelength bands that range from 1545 to 1580 nm of a DWDM fiber-optic communication system can be found by adaptively changing the radio frequency of the AOTF. The resolution and the measuring range of the proposed monitoring system can be significantly improved by cascading the AOTFs at the receiver side.

  10. Aortic depressor nerve stimulation does not impede the dynamic characteristics of the carotid sinus baroreflex in normotensive or spontaneously hypertensive rats.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Fukumitsu, Masafumi; Kamiya, Atsunori; Sugimachi, Masaru

    2017-05-01

    Recent clinical trials in patients with drug-resistant hypertension indicate that electrical activation of the carotid sinus baroreflex can reduce arterial pressure (AP) for more than a year. To examine whether the electrical stimulation from one baroreflex system impedes normal short-term AP regulation via another unstimulated baroreflex system, we electrically stimulated the left aortic depressor nerve (ADN) while estimating the dynamic characteristics of the carotid sinus baroreflex in anesthetized normotensive Wistar-Kyoto (WKY; n = 8) rats and spontaneously hypertensive rats (SHR; n = 7). Isolated carotid sinus regions were perturbed for 20 min using a Gaussian white noise signal with a mean of 120 mmHg for WKY and 160 mmHg for SHR. Tonic ADN stimulation (2 Hz, 10 V, and 0.1-ms pulse width) decreased mean sympathetic nerve activity (73.4 ± 14.0 vs. 51.6 ± 11.3 arbitrary units in WKY, P = 0.012; and 248.7 ± 33.9 vs. 181.1 ± 16.6 arbitrary units in SHR, P = 0.018) and mean AP (90.8 ± 6.6 vs. 81.2 ± 5.4 mmHg in WKY, P = 0.004; and 128.6 ± 9.8 vs. 114.7 ± 10.3 mmHg in SHR, P = 0.009). The slope of dynamic gain in the neural arc transfer function from carotid sinus pressure to sympathetic nerve activity was not different between trials with and without the ADN stimulation (12.55 ± 0.93 vs. 13.03 ± 1.28 dB/decade in WKY, P = 0.542; and 17.37 ± 1.01 vs. 17.47 ± 1.64 dB/decade in SHR, P = 0.946). These results indicate that the tonic ADN stimulation does not significantly modify the dynamic characteristics of the carotid sinus baroreflex. Copyright © 2017 the American Physiological Society.

  11. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  12. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...... signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured...

  13. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.

    1999-01-01

    The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)

  14. Absorption and emission dynamics in concentrated optical ensembles under laser excitation

    Science.gov (United States)

    Smirnov, V. A.; Ermolaeva, G. M.; Shilov, V. B.

    2002-06-01

    A new theoretical model describing the emission and absorption dynamics in an ensemble of molecules under intense coherent pulsed pumping is developed on the basis of the concepts of cooperative light-induced luminescence (CLIL). The CLIL development is described within the framework of formalism of the system density matrix in the space of photon wave functions. It is shown that the fast growth of CLIL relates to the development of coherent states of the quantum field in the area of efficient cooperative interactions of molecules (coherence volume). A system of equations for the calculation of CLIL energy, population of excited states, and optical absorption of the system in dependence on the laser pump energy density is solved. The theoretical results obtained are in good agreement with the experimental data.

  15. Experimental study of the dynamics of neutron emission from the GOL-3 multimirror trap

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Batrakov, A.M.; Burdakov, A.V.

    2006-01-01

    Making use of the GOL-3 facility one performs the experiments to study plasma heating and confinement in a multimirror trap. A deuterium plasma with ∼10 15 cm -3 density and 1-2 keV ionic temperature is confined longer than 1 ms. Heating is achieved by the use of a relativistic electron beam. One fixed 1.5-2 keV ion temperature subsequent to beam injection termination. One introduced a theoretical model of energy collective transfer from electrons to ions. To verify the model one elaborated a new diagnostic procedure enabling to observe dynamics of neutron emission. One fixed experimentally intensive flashes of neutron radiation predicted y the model of ion quick heating [ru

  16. Impact of Reabsorption on the Emission Spectra and Recombination Dynamics of Hybrid Perovskite Single Crystals.

    Science.gov (United States)

    Diab, Hiba; Arnold, Christophe; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Delport, Géraud; Vilar, Christèle; Bretenaker, Fabien; Barjon, Julien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle; Garrot, Damien

    2017-07-06

    Understanding the surface properties of organic-inorganic lead-based perovskites is of high importance to improve the device's performance. Here, we have investigated the differences between surface and bulk optical properties of CH 3 NH 3 PbBr 3 single crystals. Depth-resolved cathodoluminescence was used to probe the near-surface region on a depth of a few microns. In addition, we have studied the transmitted luminescence through thicknesses between 50 and 600 μm. In both experiments, the expected spectral shift due to the reabsorption effect has been precisely calculated. We demonstrate that reabsorption explains the important variations reported for the emission energy of single crystals. Single crystals are partially transparent to their own luminescence, and radiative transport is the dominant mechanism for propagation of the excitation in thick crystals. The transmitted luminescence dynamics are characterized by a long rise time and a lengthening of their decay due to photon recycling and light trapping.

  17. Observing and modelling F-region ionospheric dynamics using the OII 7320A emission

    International Nuclear Information System (INIS)

    Carr, S.S.

    1992-01-01

    Limb-scan observations of Doppler line profiles from the (OII) lambda 7320A emission at F-Region altitudes, made with the Fabry-Perot interferometer (FPI) on the Dynamics Explorer-2 (DE-2) spacecraft, were analyzed to provide measurements of the meridional component of the ion convection velocity along the instrument line-of-sight. The DE-2 results presented demonstrate the first spaceborne use of the remote-sensing Doppler technique for measurements of ionospheric convection. The FPI meridional ion drift measurements were compared with nearly simultaneous in situ ion drift measurements from the Retarding Potential Analyzer (RPA) on DE-2. Once allowance is made for the temporal lag between the in situ and remote measurements, the results from the two techniques are found to be in good agreement, within specified experimental errors, giving confidence in the FPI measurements. The spaceborne interferometric technique has future utility for 2-dimensional imaging of polar ionospheric convection. Results from a simulated space-based observing platform, based on the DE-2 technique and an extension of a 7320A aeronomical model, are presented to demonstrate that a large fraction of the entire polar ionospheric convection pattern can be monitored from space during approximately 16-minute polar passes of a suitably-instrumented satellite. In the simulation, the polar-orbiting satellite's FPI system views the 7320A emission at various tangent point altitudes at +/- 45 deg and +/- 135 deg to the satellite velocity vector. By adjusting the horizon scan angle, several swaths of vectors at different horizontal spacing from the satellite can be recovered. Doppler line profiles from the (OII) 7320A emission at F-Region altitudes, made with the FPI at Sondre Stromfjord, Greenland, were analyzed to provide ion drift vectors and temperatures

  18. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  19. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  20. Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures

    Science.gov (United States)

    Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.

    2018-03-01

    We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.

  1. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  2. Scenarios Analysis of the Energies’ Consumption and Carbon Emissions in China Based on a Dynamic CGE Model

    Directory of Open Access Journals (Sweden)

    Yuanying Chi

    2014-01-01

    Full Text Available This paper investigates the development trends and variation characteristics of China’s economy, energy consumption and carbon emissions from 2007 to 2030, and the impacts on China’s economic growth, energy consumption, and carbon emissions under the carbon tax policy scenarios, based on the dynamic computable general equilibrium (CGE model. The results show that during the simulation period, China’s economy will keep a relatively high growth rate, but the growth rate will slow down under the benchmark scenario. The energy consumption intensity and the carbon emissions intensity per unit of Gross Domestic Product (GDP will continually decrease. The energy consumption structure and industrial structure will gradually optimize. With the economic growth, the total energy consumption will constantly increase, and the carbon dioxide emissions are still large, and the situation of energy-saving and emission-reduction is still serious. The carbon tax is very important for energy-saving and emission-reduction and energy consumption structure optimization, and the effect of the carbon tax on GDP is small. If the carbon tax could be levied and the enterprise income tax could be reduced at the same time, the dual goals of reducing energy consumption and carbon emissions and increasing the GDP growth can be achieved. Improving the technical progress level of clean power while implementing a carbon tax policy is very meaningful to optimize energy consumption structure and reduce the carbon emissions, but it has some offsetting effect to reduce energy consumption.

  3. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  4. The assessment of tumor blood flow factors using dynamic CT; Comparison with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, Emiko (Chiba Univ. (Japan). School of Medicine)

    1993-03-01

    The dynamic computed tomography (CT) was performed by using rapid-sequence scanning following an intravenous bolus injection of contrast material. Time-density curve was applied for gamma variate curve fitting and CT attenuation values were applied for two compartment model. The value of 1/CM, k[sub 1] and k[sub 2] were defined as the blood flow factors in this study. The inhalation of C[sup 15]O[sub 2] using positron emission tomography (PET) can be useful for determining regional tumor blood flow (rBF). CT and PET were performed in 12 patients. The diagnosis was malignant lymphoma in four, and others; two liver metastases, one focal nodular hyperplasia of the liver, one dermatofibrosarcoma, one hepatocellular carcinoma, one malignant melanoma, one malignant meningioma, one bone metastasis. The correlations among rBF, 1/CM, and k[sub 1] were good, and better correlations were obtained among tumor blood flow factors and rBF in the case of the tumors which existed far from air way and/or had low blood flow. The distance from air way effected both the value of rBF and tumor blood flow factors. Both the distance from air way and pathology caused conflicting results between rBF and tumor blood flow factors. Dynamic CT was particularly useful for evaluating the blood flow of tumors that had contact with air way. (author).

  5. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  6. Measurement of excited oxygen (O2:[sup 1][Delta]g) concentration by spontaneous emission. Hakko kyodo ni yoru reiki sanso ([sup 1][Delta]g) nodo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1993-11-25

    The concentration of excited oxygen ([sup 1][Delta]g), which was generated by microwave discharge in a pure oxygen flow, was measured from the intensity of spontaneous emission. The conversion factor to density was determined by spectroscopic analysis of the rotational structure and calibration of the emission intensity using a black-body furnace as light source. Consequently, a good agreement was found between the observed profiles and those calculated from spectroscopic data, and it was illustrated that the absolute concentration can be obtained by coupling band analysis and the calibration method. In addition, even when the concentration was low, it was shown that the excited oxygen concentration can be measured by considering the reflection at the cell wall. The excited oxygen concentration at the microwave discharge cavity was estimated to be around 1% under the pressure ranging from 0.5 torr to 2 torr. Furthermore, the comparison of the profiles calculated at different temperature provided that the band profile can be a good indicator of gas temperature when the signal-to-noise ratio is high. 9 refs., 10 figs., 2 tabs.

  7. Developing a dynamic life cycle greenhouse gas emission inventory for wood construction for two different end-of-life scenarios

    Science.gov (United States)

    Richard D. Bergman; James Salazar; Scott Bowe

    2012-01-01

    Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....

  8. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogeneous inflow conditions using Positron Emission Particle Tracking

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Mohd Salleh, M.; Seville, J.P.

    2001-01-01

    A hard-sphere granular dynamics model of a two-dimensional gas-fluidised bed was experimentally validated using Positron Emission Particle Tracking (PEPT). In the model the Newtonian equations of motion are solved for each solid particle while taking into account the particle¿particle and

  9. Fractional-Order Modeling and Sliding Mode Control of Energy-Saving and Emission-Reduction Dynamic Evolution System

    DEFF Research Database (Denmark)

    Huang, Sunhua; Zhou, Bin; Li, Canbing

    2018-01-01

    represent complex dynamic behaviours with chaotic and unstable states on the energy conservation, carbon emissions, economic growth, and renewable energy development, and have a great impact on the formulation of government energy policies. Furthermore, based on the fractional Lyapunov stability and robust...

  10. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    International Nuclear Information System (INIS)

    Ludwig, Benno

    2009-01-01

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni 63 Al 37 , Au 50.5 Cd 49.5 , and Fe 68.8 Pd single 31.2 , and the polycrystalline sample Fe 68.8 Pd poly 31.2 . Moreover, a ferromagnetic Ni 52 Mn 23 Ga 25 single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni 52 Mn 23 Ga 25 sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni 63 Al 37 , the combination of relevant thermal fluctuations, different involved time scales, and a high degree of intrinsic disorder leads to a lower acoustic activity and weaker signals under

  11. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of

  12. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    Science.gov (United States)

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment.

  13. Fine and ultrafine emission dynamics from a ferrous foundry cupola furnace.

    Science.gov (United States)

    Meléndez, Antton; García, Estibaliz; Carnicer, Pedro; Pena, Egoitz; Larrión, Miren; Legarreta, Juan Andres; Gutiérrez-Cañas, Cristina

    2010-05-01

    Aerosol size distributions from ferrous foundry cupola furnaces vary depending on semicontinuous process dynamics, time along the tap-to-tap cycle, dilution ratio, and the physical and chemical nature of the charge and fuel. All of these factors result in a highly time-dependent emission of particulate matter (PM) 2.5 pm or less in aerodynamic diameter (PM2.5)--even on a mass concentration basis. Control measures are frequently taken on the basis of low-reliability parameters such as emission factors and loosely established mass ratios of PM2.5 to PM 10 microm or less in aerodynamic diameter (PM1.0). The new environmental requirements could entail unexpected and undesired drawbacks and uncertainties in the meaning and effectiveness of process improvement measures. The development of process-integrated and flue-gas cleaning measures for reduction of particle emissions requires a better knowledge of generation mechanisms during melting. Available aerosol analyzers expand the range of control issues to be tackled and contribute to greatly reduce the uncertainty of engineering decisions on trace pollutant control. This approach combines real-time size distribution monitoring and cascade impactors as preseparators for chemical or morphological analysis. The results allow for establishing a design rationale and performance requirement for control devices. A number size distribution below 10 microm in aerodynamic equivalent diameter was chosen as the main indicator of charge influence and filter performance. Size distribution is trimodal, with a coarse mode more than 12 microm that contributes up to 30% of the total mass. A temporal series for these data leads to identification of the most relevant size ranges for a specific furnace (e.g., the most penetrating size range). In this cupola, this size range is between 0.32 and 0.77 microm of aerodynamic equivalent diameter and defines the pollution control strategy for metals concentrating within this size range. Scrap

  14. The evolution of young HII regions. I. Continuum emission and internal dynamics

    Science.gov (United States)

    Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.

    2018-04-01

    Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  15. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  16. Application of System Dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities

    International Nuclear Information System (INIS)

    Fong, Wee-Kean; Matsumoto, Hiroshi; Lun, Yu-Fat

    2009-01-01

    In spite of the fact that cities are the main sources of CO 2 emissions, presently there are still no specific measures directly addressing the global warming issue in the urban planning process in Malaysia. The present study thus aims to shed new light in the urban planning sector in Malaysia by adopting System Dynamics Model as one of the decision making tools in the urban planning process, with specific considerations on the future CO 2 emission trends. This paper presented projections of future CO 2 emission trends based on the case of Iskandar Development Region of Malaysia, under various options of urban policies, using the System Dynamics Model. The projections demonstrated the capability of the said model in serving as a decision making tool in the urban planning process, with specific reference to CO 2 emissions from cities. Recommendations have been made on the possible approach of adopting the model in the process of Structure Plan study. If the current model was successfully adopted in the urban planning process in Malaysia, it will mark the first step for Malaysia in taking specific considerations on the issues of CO 2 emissions and global warming in the urban planning process. (author)

  17. Small-scale longitudinal variations in the daytime equatorial thermospheric wave dynamics as inferred from oxygen dayglow emissions

    Science.gov (United States)

    Karan, D. K.; Duggirala, P. R.

    2017-12-01

    The equatorial upper atmospheric dynamic processes show both latitudinal and longitudinal variability. While the variability in latitudes can exist over small distances ( 100s km), the longitudinal behavior has been shown to be existing mainly over large spatial separations ( 1000s km). In the present study we have used the variations in thermospheric optical dayglow emissions at OI 557.7, 630.0, and 777.4 nm, as tracers of neutral dynamics. These emissions are obtained simultaneously from a high resolution slit spectrograph, MISE (Multi wavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT) in India, to investigate the longitudinal differences in the upper atmospheric processes over short separations. Spectral analyses of gravity waves carried out on the dayglow emission intensity variations for different independent viewing directions on some days show dissimilar periodicities suggesting the existence of longitudinal differences. Gravity wave scale sizes and the propagation characteristics on these days are different from those in which longitudinal differences are not seen. Further, the zenith diurnal emission intensity patterns are different on the days with and without the observed longitudinal variability. This study shows for the first time that longitudinal differences in upper atmospheric processes can exist at even as small as 30 longitude separations. Such longitudinal differences seen in the neutral dayglow emission intensities are attributed to the zonal variation in the daytime equatorial electrodynamics.

  18. Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid

    Science.gov (United States)

    Sznitko, Lech; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2013-10-01

    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is insoluble in water but soluble in alcohols and can be processed into very good optical quality thin films by solution casting or spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants replacing CTMA in the DNA complex and based on benzalkonium chloride (BA) and didecyldimethylammonium chloride (DDCA) on their optical properties. Particularly, we were interested in all optical switching and light generation in amplified spontaneous emission process in these materials.

  19. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics.

    Science.gov (United States)

    Goel, Shreya; England, Christopher G; Chen, Feng; Cai, Weibo

    2017-04-01

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  1. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    Science.gov (United States)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  2. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus’ Polar Region

    Science.gov (United States)

    Widemann, Thomas; Marcq, Emmanuel; Tsang, Constantine; Mueller, Nils; Kappel, David; Helbert, Joern; Dyar, Melinda; Smrekar, Suzanne

    2017-10-01

    Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012).Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013).The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA’s Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of ~10 km. Circular polar orbit geometry would provide an unprecedented simultaneous study of both polar regions within the same mission. In addition, VEM’s pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals. Tracking lower cloud motions as proxies for wind measurements at high

  3. Research on Bifurcation and Chaos in a Dynamic Mixed Game System with Oligopolies Under Carbon Emission Constraint

    Science.gov (United States)

    Ma, Junhai; Yang, Wenhui; Lou, Wandong

    This paper establishes an oligopolistic game model under the carbon emission reduction constraint and investigates its complex characteristics like bifurcation and chaos. Two oligopolistic manufacturers comprise three mixed game models, aiming to explore the variation in the status of operating system as per the upgrading of benchmark reward-penalty mechanism. Firstly, we set up these basic models that are respectively distinguished with carbon emission quantity and study these models using different game methods. Then, we concentrate on one typical game model to further study the dynamic complexity of variations in the system status, through 2D bifurcation diagrams and 4D parameter adjustment features based on the bounded rationality scheme for price, and the adaptive scheme for carbon emission. The results show that the carbon emission constraint has significant influence on the status variation of two-oligopolistic game operating systems no matter whether it is stable or chaotic. Besides, the new carbon emission regulation meets government supervision target and achieves the goal of being environment friendly by motivating the system to operate with lower carbon emission.

  4. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  5. Spontaneous pneumothorax in weightlifters.

    Science.gov (United States)

    Marnejon, T; Sarac, S; Cropp, A J

    1995-06-01

    Spontaneous pneumothorax is infrequently caused by strenuous exertion. To our knowledge there has only been one case of spontaneous pneumothorax associated with weightlifting reported in the medical literature. We describe three consecutive cases of spontaneous pneumothorax associated with weightlifting. We postulate that spontaneous pneumothorax in these patients may be secondary to improper breathing techniques. It is important that physicians and weight trainers be aware of the association between weight lifting and spontaneous pneumothorax and assure that proper instruction is given to athletes who work with weights.

  6. Carbon Emissions and Income Trajectory in Eight Heterogeneous Countries: The Role of Trade Openness, Energy Consumption and Population Dynamics

    OpenAIRE

    OLUWOLE OWOYE; OLUGBENGA A. ONAFOWORA

    2013-01-01

    This paper examines the long-run and dynamic temporal relationships between economic growth, energy consumption, population density, trade openness, and carbon dioxide (CO2) emissions in Brazil, China, Egypt, Japan, Mexico, Nigeria, South Korea, and South Africa based on the environment Kuznets curve (EKC) hypothesis. We employ the ARDL Bounds test to cointegration and CUSUM and CUSUMSQ tests to ensure long-run cointegration and parameter stability. The estimated results show that the inverte...

  7. Estimation of the input function in dynamic positron emission tomography applied to fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Jouvie, Camille

    2013-01-01

    Positron Emission Tomography (PET) is a method of functional imaging, used in particular for drug development and tumor imaging. In PET, the estimation of the arterial plasmatic activity concentration of the non-metabolized compound (the 'input function') is necessary for the extraction of the pharmacokinetic parameters. These parameters enable the quantification of the compound dynamics in the tissues. This PhD thesis contributes to the study of the input function by the development of a minimally invasive method to estimate the input function. This method uses the PET image and a few blood samples. In this work, the example of the FDG tracer is chosen. The proposed method relies on compartmental modeling: it deconvoluates the three-compartment-model. The originality of the method consists in using a large number of regions of interest (ROIs), a large number of sets of three ROIs, and an iterative process. To validate the method, simulations of PET images of increasing complexity have been performed, from a simple image simulated with an analytic simulator to a complex image simulated with a Monte-Carlo simulator. After simulation of the acquisition, reconstruction and corrections, the images were segmented (through segmentation of an IRM image and registration between PET and IRM images) and corrected for partial volume effect by a variant of Rousset's method, to obtain the kinetics in the ROIs, which are the input data of the estimation method. The evaluation of the method on simulated and real data is presented, as well as a study of the method robustness to different error sources, for example in the segmentation, in the registration or in the activity of the used blood samples. (author) [fr

  8. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    OpenAIRE

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion processes. Emissions were measured at wastewater treatment plants and at lab-scale reactors to investigate the underlying mechanisms. Metabolic and kinetic models were used to identify pathways leading...

  9. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Science.gov (United States)

    Martiniuk, Jonathan T; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  10. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery

    Science.gov (United States)

    Martiniuk, Jonathan T.; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards. PMID:27551920

  11. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Directory of Open Access Journals (Sweden)

    Jonathan T Martiniuk

    Full Text Available Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  12. ASSESSMENT AND DECISION MAKING SCENARIO OF CARBON EMISSION IN SUGAR INDUSTRY BASED ON ENERGY CONSUMPTION USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    CHAIRUL SALEH

    2016-04-01

    Full Text Available This research is conducted to assess and create some scenarios in the sugar industry, which aimed to decrease the production of CO2 emissions in PT Madubaru. In this research, the assessment of CO2 emission is based on the energy consumption used in supply chain activities during the production period in 2014. The problem faced in this research is the used of energy for transportation and production in a complex condition. Thus, simulation modeling based on system dynamic has been proposed to build the assessment model and create a scenario. The result shows that PT Madubaru produces around 174,246,500 kg in 171 days or during the production period in 2014. It means that the amount of CO2 emission in a day is around 1,018,985 kg. Two scenarios haves been developeded in order to reduce CO2 emissions. First, changing the old type boiler with the new one by increasing 155% fuel efficiency. This scenario is proven to reduce the amount of CO2 by 44% or become 98,800,400 kg. Second, eliminating the use of lorry which reduce the 0.2% of CO2 emission or equal to 387,600 kg.

  13. Dynamic analysis of sulfur dioxide monthly emissions in United States power plants

    Science.gov (United States)

    Kim, Tae-Kyung

    The Clean Air Act Amendments (CAAA) of 1990 marked a moving away from command-and-control air quality regulations towards a market-based approach, whereby polluters are assigned annual emission allowances, and are free to select the minimum-cost approach that will keep their actual annual emissions within this allowance limit. Within this context, the objectives of this research are to better understand (1) the temporal patterns of SO 2 emissions from power plants, and (2) the factors affecting fuel choice and SO2 emissions. Large power plant-related datasets from various sources are collected, processed, and combined for empirical analyses, to explain monthly fuel shipments, fuel consumptions, sulfur shipments, gross and net SO 2 emissions, and fuel choices. Because of the interdependency of these various sulfur dioxide, simultaneous equations estimation techniques are used. The empirical findings are as follows. First, forecasts of electricity demand and fuel prices are the main determinants of the amounts and types of fuel shipments. The relationship between fuel shipments and forecasted fuel needs is very strong for the current month, and gradually weakens over future months, due to forecasting difficulties and the costs of fuel inventories. Second, net SO2 emissions increase with allowances, although not proportionately, because of the likely effects of allowance banking and trading. Third, each plant reduces SO2 emissions gradually over time, to account for the future more stringent Phase II emissions constraints. Fourth, plants emit less in winter, possibly because higher electricity leads to reduced unit SO2 emission abatement costs. Finally, plants with an FGD usually consume more high-sulfur fuels due to their potential abatement capability. An integrated analysis of the effects of changing emission allowances and installing FGD is conducted through a simulation. Reducing allowances by 1% leads to an emissions reduction of 0.15% at the plant level

  14. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  15. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    NARCIS (Netherlands)

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion

  16. Dynamism of household carbon emissions (HCEs) from rural and urban regions of northern and southern China

    NARCIS (Netherlands)

    Maraseni, Tek Narayan; Qu, Jiansheng; Yue, Bian; Zeng, Jingjing; Maroulis, Jerry

    2016-01-01

    China contributes 23 % of global carbon emissions, of which 26 % originate from the household sector. Due to vast variations in both climatic conditions and the affordability and accessibility of fuels, household carbon emissions (HCEs) differ significantly across China. This study compares HCEs

  17. Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios.

    NARCIS (Netherlands)

    Leeuwen, van T.T.; Peters, W.; Krol, M.C.; Werf, van der G.R.

    2013-01-01

    [1] Biomass burning is a major source of trace gases and aerosols, influencing atmospheric chemistry and climate. To quantitatively assess its impact, an accurate representation of fire emissions is crucial for the atmospheric modeling community. So far, most studies rely on static emission factors

  18. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants

    DEFF Research Database (Denmark)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna Maritta

    2016-01-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few...... test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During...... Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future....

  19. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, A. [Northern Illinois U.; Grote, D. [LLNL, Livermore; Mihalcea, D. [Northern Illinois U.; Piot, P. [Fermilab; Vay, J.-L. [LBNL, Berkeley

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  20. Methane emission in a specific riparian-zone sediment decreased with bioelectrochemical manipulation and corresponded to the microbial community dynamics

    Directory of Open Access Journals (Sweden)

    Elliot S. Friedman

    2016-01-01

    Full Text Available Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of six weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ~45% (when normalized to remove temporal effects. CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics.

  1. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John

  2. Carbon emissions, energy consumption and output: A threshold analysis on the causal dynamics in emerging African economies

    International Nuclear Information System (INIS)

    Mensah, Justice Tei

    2014-01-01

    Following the recent global economic downturn, attention has gradually shifted towards emerging economies which have experienced robust growth amidst sluggish growth of the world economy. A significant number of these emerging economies are in Africa. Rising growth in these economies is associated with surging demand for energy to propel the engines of growth, with direct implications on emissions into the atmosphere. Further, these economies are constantly being shaped by series of structural reforms with direct and indirect effects on growth, demand for energy, etc. To this end, this paper examines the causal dynamics among energy use, real GDP and CO 2 emissions in the presence of regime shifts in six emerging African economies using the Gregory and Hansen (1996a). J. Econ. 70, 99–126 threshold cointegration and the Toda and Yamamoto (1995). J. Econometrics. 66, 225–250 Granger causality techniques. Results confirm the presence of regime shift effects in the long run inter-linkages among energy use, real GDP and CO 2 emissions in the countries considered, thus indicating that structural changes have both economic and environmental effects. Hence, integration of energy and environmental policies into development plans is imperative towards attaining sustainable growth and development. - Highlights: • The paper examines the causal dynamics among output, energy demand and carbon emissions in the presence of regime shifts. • Regime shift have significant effects on the nexus among energy use, real GDP and CO 2 emissions. • Results suggest that structural changes in selected countries have both economic and environmental effects. • Integration of energy and environmental policies into development plans is desirable

  3. Dynamics of methane emissions from a freshwater marsh of northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenyan; Song, Changchun; Zhang, Jinbo [Northeast Institute of Geography and Agroecology, Chinese Academic Science, Changchun Jilin, 130012 (China)

    2006-12-01

    In this paper, CH{sub 4} flux was measured from Nov. 2002 to Oct. 2005, to estimate CH{sub 4} emissions in winter and during freeze-thaw period, and interannual variation in CH{sub 4} emissions in freshwater marsh in northeast China. The results showed that there was an obvious CH{sub 4} emission (0.1-2.3 mg m{sup -2} h{sup -1}) in the freshwater marsh in winter. Flux of CH{sub 4} in winter (November to March the next year) was about 3.8%, 5.5%, and 2.2% of the whole year in 2003, 2004, and 2005, respectively. Emission of CH{sub 4} significantly increased during the freeze-thaw period (April-June), and was about 30.8%, 20.9%, and 20.6% of the whole year in 2003, 2004, and 2005, respectively. Standing water depth greatly governed interannual variation of CH{sub 4} emissions from marshes during the thaw-freeze period. Interannual variation of CH{sub 4} emissions was significant during the growing season (p<0.05). Standing water depth during April to June was a primary factor, which affected the interannual variation of CH{sub 4} flux during the growing season. Precipitation during the preceding non-growing season affected CH{sub 4} emission indirectly via standing water depth. (author)

  4. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2013-03-01

    Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.

  5. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana▿

    Science.gov (United States)

    Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  6. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana.

    Science.gov (United States)

    Camu, Nicholas; González, Angel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S; Addo, Solomon K; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing.

  7. Dynamics of Phase Coherence Onset in Bose Condensates of Photons by Incoherent Phonon Emission

    Science.gov (United States)

    Snoke, D. W.; Girvin, S. M.

    2013-04-01

    Recent experiments with photons equilibrating inside a dye medium in a cavity have raised the question of whether Bose condensation can occur in a system with only incoherent interaction with phonons in a bath but without particle-particle interaction. Analytical calculations analogous to those done for a system with particle-particle interactions indicate that a system of bosons interacting only with incoherent phonons can indeed undergo Bose condensation and furthermore can exhibit spontaneous amplification of quantum coherence. We review the basic theory for these calculations.

  8. On-the-fly ab initio semiclassical dynamics: identifying degrees of freedom essential for emission spectra of oligothiophenes.

    Science.gov (United States)

    Wehrle, Marius; Šulc, Miroslav; Vaníček, Jiří

    2014-06-28

    Vibrationally resolved spectra provide a stringent test of the accuracy of theoretical calculations. We combine the thawed Gaussian approximation (TGA) with an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes with up to five rings. The efficiency of the OTF-AI-TGA permits treating all vibrational degrees of freedom on an equal footing even in pentathiophene with 105 vibrational degrees of freedom, thus obviating the need for the global harmonic approximation, popular for large systems. Besides reproducing almost perfectly the experimental emission spectra, in order to provide a deeper insight into the associated physical and chemical processes, we also develop a novel systematic approach to assess the importance and coupling between individual vibrational degrees of freedom during the dynamics. This allows us to explain how the vibrational line shapes of the oligothiophenes change with increasing number of rings. Furthermore, we observe the dynamical interplay between the quinoid and aromatic characters of individual rings in the oligothiophene chain during the dynamics and confirm that the quinoid character prevails in the center of the chain.

  9. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  10. Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems.

    Science.gov (United States)

    Clough, T J; Müller, C; Laughlin, R J

    2013-06-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N2O, providing additional insight and unequivocal proof of N2O source, production pathways and consumption. The potential for using stable isotopes of N is underutilised. The intent of this article is to provide an overview of what these tools are and demonstrate where and how these tools could be applied to advance the mitigation of N2O emissions from animal production systems. Nitrogen inputs and outputs are dominated by fertiliser and excreta, respectively, both of which are substrates for N2O production. These substrates can be labelled with 15N to enable the substrate-N to be traced and linked to N2O emissions. Thus, the effects of changes to animal production systems to reduce feed-N wastage by animals and fertiliser wastage, aimed at N2O mitigation and/or improved animal or economic performance, can be traced. Further 15N-tracer studies are required to fully understand the dynamics and N2O fluxes associated with excreta, and the biological contribution to these fluxes. These data are also essential for the new generation of 15N models. Recent technique developments in isotopomer science along with stable isotope probing using multiple isotopes also offer exciting capability for addressing the N2O mitigation quest.

  11. Spontaneous uterine rupture

    African Journals Online (AJOL)

    ABSTRACT. Rupture of a gravid uterus is a surgical emergency. Predisposing factors include a scarred uterus. Spontaneous rupture of an unscarred uterus during pregnancy is a rare occurrence. We hereby present the case of a spontaneous complete uterine rupture at a gestational age of 34 weeks in a 35 year old patient ...

  12. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  13. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions...... hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground...

  14. Dynamics of Non-Controlled Emission of Methane from Arico's landfill, Tenerife, Canary Islands

    Science.gov (United States)

    Pérez, C.; Echeita, A.; Lima, R.; Nolasco, D.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Landfills are one of the largest anthropogenic source of methane emissions to the atmosphere. In order to achieve CH4 emission control at landfills, avoiding gas migration into the near surroundings and reducing gas emission through its surface, landfill gas has to be collected and either flared or utilized by means of gas extraction systems. However, these systems might not reach a high efficiency and non-controlled biogenic CH4 emissions to the atmosphere could be an important fraction of the CH4 produced by a landfill. The goal of this study is to evaluate the non-controlled biogenic CH4 emission from Arico's landfill (0.33 Km2; Tenerife, Canary Islands) where urban solid waste disposal rate is about 1,500 td-1. In order to estimate the temporal evolution of non-controlled biogenic CH4 emissions from Arico's landfill, two surface flux surveys of about 500 sampling sites were performed in 1999 and 2001. Non-controlled biogenic CO2 emission rate measurements were performed by means of a NDIR spectrophotometer according to the accumulation chamber method. At each sampling site, landfill gases were also collected at 40 cm deep using a metallic probe. Samples were analyzed within 24 hours for major, minor and trace gas components using a VARIAN microGC QUAD. Non-controlled biogenic CH4 emission rate was estimated by multiplying surface CO2 efflux times CO2/CH4 weight ratio at each sampling site, respectively. Surface CH4 efflux rates for the 1999 and 2001 surveys ranged from negligible values up to 1,647.3 and 103.2 gm-2d-1, respectively. Spatial distribution of the surface CH4 efflux rate showed a non-uniform pattern in the landfill for both surveys. This observation is related to the actual use of the landfill, which is still operative, as well as to the evolution of the landfill's heterogeneity and anisotropy through time. For the 1999 and 2001 surveys, the total output of non-controlled biogenic CH4 emission from Arico's landfill were estimated about 15.7 and 1

  15. The dynamic intensity of CO 2 emissions: empirical evidence for the 20 th century

    Directory of Open Access Journals (Sweden)

    DIEGO CARNEIRO

    Full Text Available ABSTRACT The debate around the economic growth and environmental degradation is the hot topic among academics. However, up to a point, all of them embrace the uncontroversial view that tells us that anthropic factors have leverage on global climate. It happens that the so-called greenhouse effect is closely related to the accumulation of certain gases in the atmosphere, e.g., carbon dioxide, whose original source comes from productive sectors. Thus, our purpose in this article is to estimate the rate of emission intensity - here we mean the ratio between CO2 emissions and GDP - which has increased since the early part of the 20th century. To support that idea, this study reports on data from 24 different countries. In terms of C02 emission, the results undoubtedly show that United Kingdom and the United States highlight a negative picture, particularly when both are compared to India. It should be noted the presence of structural changes, which coincide with three major historical events: the World War I (1914-1918, the Great Depression in the 1930s, and finally the Oil-price shocks in the 1970s. As the result of the analysis demonstrates, the amount of emission produced by developing countries is surprisingly low. That the technology reveals its relative merit for reducing the overall emission intensity is transparently obvious.

  16. The leverage of demographic dynamics on carbon dioxide emissions: does age structure matter?

    Science.gov (United States)

    Zagheni, Emilio

    2011-02-01

    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO(2)) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO(2) emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO(2) emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO(2) emissions.

  17. Technique for obtaining an engine emissions model based on continuous EPA-CVS test data and a dynamic vehicle model. SAE Paper 760156

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R.; Frank, A.; Beachley, N.

    1976-01-01

    A new technique for obtaining engine emission flow rate maps has been developed. The maps are based on specific emissions data obtained on a continuous basis over a single EPA-CVS urban driving cycle test. The data are averaged for the various torque-speed ranges of the engine. It has been found that these dynamic average emission flow rate maps, which are functions only of engine torque and speed, allow instantaneous emissions to be fairly accurately predicted. It also appears that the technique might be used advantageously to determine engine calibration parameters.

  18. Characterization, Ecological Distribution, and Population Dynamics of Saccharomyces Sensu Stricto Killer Yeasts in the Spontaneous Grape Must Fermentations of Southwestern Spain

    Science.gov (United States)

    Maqueda, Matilde; Zamora, Emiliano; Álvarez, María L.

    2012-01-01

    Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way. PMID:22101056

  19. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  20. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Meyer, E.; Robertson, J.S.; Feindel, W.

    1977-01-01

    Dynamic positron emission tomographic studies were performed on over 120 patients with occlusive cerebrovascular disease, arteriovenous malformations, and brain tumors, using the positron section scanner, consisting of a ring of 32 scintillation detectors. The radiopharmaceuticals were nondiffusible 68 Ga-EDTA for transit time and uptake studies and the diffusible tracer, 77 Kr, for quantitative regional cerebral blood flow studies in every square centimeter of the cross section of the head. The results of dynamic positron emission tomography in correlation with the results from the gamma scintillation camera dynamic studies and computed tomography (CT) scans are discussed

  1. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    Science.gov (United States)

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  2. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging.

    Science.gov (United States)

    Oscar, Breland G; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E; Fang, Chong

    2014-07-15

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.

  3. Determination of Fatty Acid Metabolism with Dynamic [11C]Palmitate Positron Emission Tomography of Mouse Heart In Vivo

    Directory of Open Access Journals (Sweden)

    Yinlin Li

    2015-09-01

    Full Text Available The goal of this study was to establish a quantitative method for measuring fatty acid (FA metabolism with partial volume (PV and spill-over (SP corrections using dynamic [11C]palmitate positron emission tomographic (PET images of mouse heart in vivo. Twenty-minute dynamic [11C]palmitate PET scans of four 18- to 20-week-old male C57BL/6 mice under isoflurane anesthesia were performed using a Focus F-120 PET scanner. A model-corrected blood input function, by which the input function with SP and PV corrections and the metabolic rate constants (k1–k5 are simultaneously estimated from the dynamic [11C]palmitate PET images of mouse hearts in a four-compartment tracer kinetic model, was used to determine rates of myocardial fatty acid oxidation (MFAO, myocardial FA esterification, myocardial FA use, and myocardial FA uptake. The MFAO thus measured in C57BL/6 mice was 375.03 ± 43.83 nmol/min/g. This compares well to the MFAO measured in perfused working C57BL/6 mouse hearts ex vivo of about 350 nmol/g/min and 400 nmol/min/g. FA metabolism was measured for the first time in mouse heart in vivo using dynamic [11C]palmitate PET in a four-compartment tracer kinetic model. MFAO obtained with this model was validated by results previously obtained with mouse hearts ex vivo.

  4. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    Science.gov (United States)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  5. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET...

  6. Dynamics of Energy System Behaviour and Emissions of Trailing Suction Hopper Dredgers

    NARCIS (Netherlands)

    Shi, W.

    2013-01-01

    Reducing fuel consumption from dredge vessels is always one of the priorities of the ship builder and the dredge contractor. In addition there is an increased awareness worldwide regarding exhaust emissions. CO2, NOx and SOx currently are or will in future be regulated strictly by international

  7. Is it possible to quantify emission potential from high resolution monitoring of leachate dynamics?

    NARCIS (Netherlands)

    Heimovaara, T.J.; Bun, A.; van Turnhout, A.G.; Konstantaki, L.A.; Baviskar, S.M.

    2012-01-01

    Modern sanitary landfills are one the most important final storage solutions for safely storing waste in modern society. Many countries around the world have implemented regulations in order to protect the environment from adverse emissions from the landfills. Generally these regulations require the

  8. CAUSAL RELATIONSHIP BETWEEN ENERGY CONSUMPTION, ECONOMIC GROWTH AND CO2 EMISSIONS: A DYNAMIC PANEL DATA APPROACH

    Directory of Open Access Journals (Sweden)

    Chaido Dritsaki

    2014-04-01

    Full Text Available Energy plays an important role in economic development worldwide. The increase of energy consumption showed that CO2 emissions in the atmosphere have increased dramatically, and these lead many scientists to push governments of the developing countries to take action for the formulation of environmental policies. Many studies have attempted to look for the direction of causality between energy consumption (EC, economic growth (GDP and CO2 emissions mainly on developing countries. This paper, therefore, applies the panel unit root tests, panel cointegration methods and panel causality test to investigate the relationship between energy consumption (EC, economic growth (GDP and CO2 emissions for three countries of Southern Europe (Greece, Spain, and Portugal covering the annual period 1960-2009. The FMOLS and DOLS are then used to estimate the long run relationship between the variables. The findings of this study reveal that there is a short-run bilateral causal link between the examined variables. However, in the long run, there is a unidirectional causality running from CO2 emissions to energy consumption (EC, and economic growth (GDP and a bilateral causality between energy consumption and economic growth. This indicates that energy is a force for economic growth both in short and long run as it is driven from economic growth. Moreover, to face the heterogeneity on the three countries of Southern Europe we use the FMOLS and DOLS estimation methods.

  9. Aggregation Effects on the Emission Spectra and Dynamics of Model Oligomers of MEH-PPV

    NARCIS (Netherlands)

    Sherwood, Gizelle A.; Cheng, Ryan; Smith, Timothy M.; Werner, James H.; Shreve, Andrew P.; Peteanu, Linda A.; Wildeman, Jurjen

    2009-01-01

    The effects of aggregate formation on the photophysical properties of oligomers of MEH-PPV were studied in bulk solution to better understand the effects of aggregation on the emission properties of the polymer. Nanoaggregates of oligomers from 3 to 17 repeat units in length were formed using a

  10. MEASUREMENT OF NITROGEN OXIDE EMISSIONS FROM AN AGRICULTURAL SOIL WITH A DYNAMIC CHAMBER SYSTEM

    Science.gov (United States)

    Biogenic soil emissions of nitric oxide (NO) were measured from an intensively managed agricultural row crop (corn, Zea mays) during a 4 week period May 15 through June 9, 1995). The site was located in Washington County, near the town of Plymouth, which is in the Lower Coastal P...

  11. Monitoring CBF in clinical routine by dynamic single photon emission tomography (SPECT) of inhaled xenon-133

    DEFF Research Database (Denmark)

    Sugiyama, H; Christensen, J; Skyhøj Olsen, T

    1986-01-01

    A very simple and low-cost brain dedicated, rapidly rotating Single Photon Emission Tomograph SPECT is described. Its use in following patients with ischemic stroke is illustrated by two middle cerebral artery occlusion cases, one with persistent occlusion and low CBF in MCA territory, and one wi...

  12. Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands

    Science.gov (United States)

    Padrón, Eleazar; Pérez, Nemesio M.; Rodríguez, Fátima; Melián, Gladys; Hernández, Pedro A.; Sumino, Hirochika; Padilla, Germán; Barrancos, José; Dionis, Samara; Notsu, Kenji; Calvo, David

    2015-04-01

    We report herein the results of 13 soil CO2 efflux surveys at Cumbre Vieja volcano, La Palma Island, the most active basaltic volcano in the Canary Islands. The CO2 efflux measurements were undertaken using the accumulation chamber method between 2001 and 2013 to constrain the total CO2 output from the studied area and to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for Cumbre Vieja. Soil CO2 efflux values ranged from non-detectable up to 2442 g m-2 days-1, with the highest values observed in the south, where the last volcanic eruption took place (Teneguía, 1971). Isotopic analyses of soil gas carbon dioxide suggest an organic origin as the main contribution to the CO2 efflux, with a very small magmatic gas component observed at the southern part of the volcano. Total biogenic and magmatic combined CO2 emission rates showed a high temporal variability, ranging between 320 and 1544 t days-1 and averaging 1147 t days-1 over the 220-km2 region. Two significant increases in the CO2 emission observed in 2011 and 2013 were likely caused by an enhanced magmatic endogenous contribution revealed by significant changes in the 3He/4He ratio in a CO2-rich cold spring. The relatively stable emission rate presented in this work defines the background CO2 emission range for Cumbre Vieja during a volcanic quiescence period.

  13. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    Science.gov (United States)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  14. Characterizing spatiotemporal dynamics of methane emissions from rice paddies in Northeast China from 1990 to 2010.

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    Full Text Available BACKGROUND: Rice paddies have been identified as major methane (CH(4 source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010. Consequently, accurate estimation and characterization of spatiotemporal patterns of CH₄ emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels. METHODOLOGY/PRINCIPAL FINDINGS: Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC, was utilized to quantify the regional CH(4 emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1 The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2 the spatial variations in CH₄ fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC content, and (3 the warming climate could enhance CH₄ emission in the cool paddies. CONCLUSIONS/SIGNIFICANCE: The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory.

  15. The dynamic links between carbon dioxide (CO2) emissions, health spending and GDP growth: A case study for 51 countries.

    Science.gov (United States)

    Chaabouni, Sami; Saidi, Kais

    2017-10-01

    This document investigated the causal relationship between carbon dioxide (CO 2 ) emissions, health spending and GDP growth for 51 countries (divided into three groups of countries: low-income countries; group of countries with lower and upper middle income; group of middle income countries) covering the annual period 1995-2013. Dynamic simultaneous-equations models and generalized method of moments (GMM) are used to investigate this relationship. The main results provide evidence of a causal relationship between the three variables. The empirical results show that there is a bidirectional causality between CO 2 emissions and GDP per capita, between health spending and economic growth for the three groups of estimates. The results also indicate that there is a unidirectional causality from CO 2 emissions to health spending, except low income group countries. We found that health plays an important role in GDP per capita; it limits its effect on a growing deterioration in the quality of the environment. Copyright © 2017. Published by Elsevier Inc.

  16. Exploring Relationships between North American Urban Form and Rates of Urban CO2 Emissions: A System Dynamics Approach

    Science.gov (United States)

    Emmi, P. C.; Forster, C. B.; Mills, J. I.; Call, B. D.; Sabula, J.; Klewicki, J. C.; Pataki, D. E.; Peterson, T. R.

    2004-12-01

    Cities are the locus of North America's most intense consumption of fossil fuels. Thus the rate and character of urbanization influence the rate of urban CO2 released into the global atmosphere. The rate of rural-to-urban land conversion, and changes in the population density of urban land, are influenced by coupled changes in urban demographics and the local economy. Urban sprawl (a rapid expansion of urban land with low population densities) is governed by a self-reinforcing feedback effect between urban transportation infrastructure investments (road building) and urban land development where road building begets new urban neighborhoods that, in turn, induce more road building that begets additional new neighborhoods. If unrestrained, this feedback effect leads to the unrestrained expansion of urban sprawl, urban vehicular travel and traffic congestion. This self-reinforcing feedback loop forms a key dynamic that controls the rate at which CO2-emitting fossil fuels are burned for transportation, electricity production, heating, and commercial/industrial processes. In a rapidly sprawling city residents must travel increasingly greater distances between work, shopping, and home while commercial service vehicles must travel to increasingly remote residential locations. The increasing number of vehicle trips and vehicle miles traveled, combined with the growing prevalence of ever-lower density urban land development, leads to a rapid increase in mobile and stationary CO2 emissions. A more compact and punctuated form of urban development with higher-density and mixed-use urban activity centers leads to reduced CO2 emissions. Those who shape urban development policy are often unconcerned by increasing CO2 emissions unless they can be linked to: (1) local concerns about criteria air pollutant emissions and air quality, (2) the dependency of federal infrastructure funding on meeting ambient air quality standards, and (3) the consequences of human exposure to health

  17. Spontaneous symmetry breakdown in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)

  18. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs

    International Nuclear Information System (INIS)

    Nwulu, Nnamdi I.; Xia, Xiaohua

    2015-01-01

    Highlights: • In this work, a game theory based DR program is integrated into the DEED problem. • Objectives are to minimize fuel and emissions costs and maximize the DR benefit. • Optimal generator output, customer load and customer incentive are determined. • Developed model is tested with two different scenarios. • Model provides superior results than independent optimization of DR or DEED. - Abstract: The dynamic economic emission dispatch (DEED) of electric power generation is a multi-objective mathematical optimization problem with two objective functions. The first objective is to minimize all the fuel costs of the generators in the power system, whilst the second objective seeks to minimize the emissions cost. Both objective functions are subject to constraints such as load demand constraint, ramp rate constraint, amongst other constraints. In this work, we integrate a game theory based demand response program into the DEED problem. The game theory based demand response program determines the optimal hourly incentive to be offered to customers who sign up for load curtailment. The game theory model has in built mechanisms to ensure that the incentive offered the customers is greater than the cost of interruption while simultaneously being beneficial to the utility. The combined DEED and game theoretic demand response model presented in this work, minimizes fuel and emissions costs and simultaneously determines the optimal incentive and load curtailment customers have to perform for maximal power system relief. The developed model is tested on two test systems with industrial customers and obtained results indicate the practical benefits of the proposed model

  19. Dynamics of the Upper Atmosphere X-ray Emission during the 23rd Solar Cycle

    Science.gov (United States)

    Pugacheva, Galina; Gusev, Anatoly; Martin, Inácio M.; Spjeldvik, Walther

    Long-term observations with the RPS-1instrument on the CORONAS-F satellite (July 2001 to December 2005) permitted the evaluation of the low energy 3.0-31.5 keV X-ray emission flux radiated by the upper nocturnal atmosphere. This emission mostly results from the bremsstrahlung radiation from magnetospheric electrons. The entire nocturnal atmosphere emits energy in the range of 3 to 5 keV, especially in the southern hemisphere, over the Pacific and Indian ocean areas. In the northern hemisphere, the brightest emission from the atmo-sphere is observed at high latitudes in the region of Earth's radiation belt (ERB). In lower northern latitudes, the X-ray emission intensity is rather weak especially during the summer, and on 5-8 keV maps there are regions where there are no discernible emissions. At energies higher than 8 keV, only areas over the South-Atlantic magnetic anomaly and ERB at high latitudes are distinctly observed. This emission is produced by X-rays arising from interactions of ERB particles, descending to the altitude of 500 km in their bounce motion with the am-bient atmospheric matter, and by direct ERB particles passing through the lateral walls and entrance window of the detector (electrons with energies higher than 100 keV and protons with energies higher than 3 MeV). In order to determine the source mechanisms of soft X-rays in the energy range 3 to 8 keV from regions in the ERB, we studied the relationship between the seasonal variation of the X-ray atmospheric radiation and phases of the solar activity cycle. The global monthly, six-monthly, and yearly-averaged X-ray flux distributions were statistically determined for the five-year duration of the CORONAS-F mission. From these distributions, it is possible to infer about the influence of the phase of the solar activity and seasonal effects on the fluxes with energy in the range of 3 to 8 keV. Analysis of these data revealed important regularities in the behavior of this emission. We noted that

  20. Dynamic positron emission tomography in man using small bismuth germanate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  1. Dynamic positron emission tomography in man using small bismuth germanate crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives

  2. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  3. The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation

    OpenAIRE

    Chen, Yujuan

    2013-01-01

    Global urbanization has resulted in rapidly increased urban land. Soils are the foundation that supports plant growth and human activities in urban areas. Furthermore, urban soils have potential to provide a carbon sink to mitigate greenhouse gas emission and climate change. However, typical urban land development practices including vegetation clearing, topsoil removal, stockpiling, compaction, grading and building result in degraded soils. In this work, we evaluated an urban soil rehabilita...

  4. Energetic Proton Emission and Reaction Dynamics in Heavy Ion Reactions Close to the Fermi Energy

    Science.gov (United States)

    Coniglione, R.; Sapienza, P.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Colonna, M.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Ventura, P. G.; Colonna, N.; Bruno, M.; D'Agostino, M.; Fiandri, M. L.; Vannini, G.; Mastinu, P. F.; Gramegna, F.; Iori, I.; Fabbietti, L.; Moroni, A.; Margagliotti, G. V.; Milazzo, P. M.; Rui, R.; Tonetto, F.; Blumenfeld, Y.; Scarpaci, J. A.

    2001-11-01

    The energetic proton emission has been investigated in the 58Ni+58Ni at 30 MeV/u and 40Ar+ 51V at 44 MeV/u reactions. Information on the origin of the energetic protons and on basic ingredients of the BNV models such as the mean field interaction and the elementary nucleon-nucleon cross section was extracted. Extremely energetic protons were measured and their impact parameter dependence indicates the presence of cooperative processes.

  5. Solid waves and acoustic emission first phase: Problems direct and inverse and equations elasto dynamics fields

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2002-07-01

    The present work is the first of a series of three memoirs briefs, destinadas to revise the classic theoretical foundations that allow to understand the generation,la diffusion and the detection of the elastic waves in those been accustomed to from the point of view of the mechanics of the means continuos. The study is faced in the mark of the non destructive rehearsals, emphasizing aspects related with the rehearsals based on the acoustic emission of the material defects

  6. Monitoring CO2emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  7. Integrated Energy and Emission Management for Diesel Engines with Waste Heat Recovery Using Dynamic Models

    Directory of Open Access Journals (Sweden)

    Willems Frank

    2015-01-01

    Full Text Available Rankine-cycle Waste Heat Recovery (WHR systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel engine with WHR system. This Integrated Powertrain Control (IPC strategy optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption. Contrary to other control studies, the proposed control strategy optimizes overall engine-aftertreatment-WHR system performance and deals with emission constraints. From simulations, the potential of this IPC strategy is demonstrated over a World Harmonized Transient Cycle (WHTC using a high-fidelity simulation model. These results are compared with a state-of-the-art baseline engine control strategy. By applying the IPC strategy, an additional 2.6% CO2 reduction is achieved compare to the baseline strategy, while meeting the tailpipe NOx emission limit. In addition, the proposed low-level WHR controller is shown to deal with the cold start challenges.

  8. Influence of Fuel Load Dynamics on Carbon Emission by Wildfires in the Clay Belt Boreal Landscape

    Directory of Open Access Journals (Sweden)

    Aurélie Terrier

    2016-12-01

    Full Text Available Old-growth forests play a decisive role in preserving biodiversity and ecological functions. In an environment frequently disturbed by fire, the importance of old-growth forests as both a carbon stock as well as a source of emissions when burnt is not fully understood. Here, we report on carbon accumulation with time since the last fire (TSF in the dominant forest types of the Clay Belt region in eastern North America. To do so, we performed a fuel inventory (tree biomass, herbs and shrubs, dead woody debris, and duff loads along four chronosequences. Carbon emissions by fire through successional stages were simulated using the Canadian Fire Effects Model. Our results show that fuel accumulates with TSF, especially in coniferous forests. Potential carbon emissions were on average 11.9 t·ha−1 and 29.5 t·ha−1 for old-growth and young forests, respectively. In conclusion, maintaining old-growth forests in the Clay Belt landscape not only ensures a sustainable management of the boreal forest, but it also optimizes the carbon storage.

  9. Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: influence on the dynamics of microbial populations and physical-chemical properties.

    Science.gov (United States)

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; de Almeida, Euziclei Gonzaga; da Silva Coelho, Irene; Schwan, Rosane Freitas

    2013-02-01

    Spontaneous cocoa bean fermentations carried out in a novel-design 40-kg-capacity stainless steel tank (SST) was studied in parallel to traditional Brazilian methods of fermentation in wooden boxes (40-kg-capacity wooden boxes (WB1) and 600-kg-capacity wooden boxes (WB2)) using a multiphasic approach that entailed culture-dependent and -independent microbiological analyses of fermenting cocoa bean pulp samples and target metabolite analyses of both cocoa pulp and cotyledons. Both microbiological approaches revealed that the dominant species of major physiological roles were the same for fermentations in SST, relative to boxes. These species consisted of Saccharomyces cerevisiae and Hanseniaspora sp. in the yeast group; Lactobacillus fermentum and L. plantarum in the lactic acid bacteria (LAB) group; Acetobacter tropicalis belonging to the acetic acid bacteria (AAB) group; and Bacillus subtilis in the Bacillaceae family. A greater diversity of bacteria and non-Saccharomyces yeasts was observed in box fermentations. Additionally, a potentially novel AAB belonging to the genus Asaia was isolated during fermentation in WB1. Cluster analysis of the rRNA genes-PCR-DGGE profiles revealed a more complex picture of the box samples, indicating that bacterial and yeast ecology were fermentation-specific processes (wooden boxes vs. SST). The profile of carbohydrate consumption and fermentation products in the pulp and beans showed similar trends during both fermentation processes. However, the yeast-AAB-mediated conversion of carbohydrates into ethanol, and subsequent conversion of ethanol into acetic acid, was achieved with greater efficiency in SST, while temperatures were generally higher during fermentation in wooden boxes. With further refinements, the SST model may be useful in designing novel bioreactors for the optimisation of cocoa fermentation with starter cultures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Nanophotonic Devices - Spontaneous Emission Faster than Stimulated Emission

    Science.gov (United States)

    2014-11-04

    maintaining antenna efficiency >50%. References 1. Mulligan JF (March 1989) Heinrich Hertz and the Development of Physics. Physics Today 42:no. 3...50%. References 1. Mulligan JF (March 1989) Heinrich Hertz and the Development of Physics. Physics Today 42:no. 3:50. In Hertz’ discovery of

  11. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    In liquid phase chemistry dynamic solute solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic...

  12. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  13. Temporal Dynamics of Sodic Playa Salt Crust Patterns: Implications for Aeolian Dust Emission Potential

    Science.gov (United States)

    Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.

    2013-12-01

    Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.

  14. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  15. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    Science.gov (United States)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  16. Noninvasive xenon-133 measurements of cerebral blood flow using stationary detectors compared with dynamic emission tomography

    DEFF Research Database (Denmark)

    Schroeder, T; Vorstrup, S; Lassen, N A

    1986-01-01

    Repeated bedside measurements of CBF have been made possible by the recent development of a mobile unit with 10 stationary detectors using the intravenous xenon-133 method. To evaluate this technique, comparative CBF studies at rest and following the application of a cerebral vasodilatory stimulus...... (acetazolamide, 1 g i.v.) were performed with the mobile equipment and with xenon-133 single-photon emission inhalation tomography in patients with cerebrovascular disease. The CBF level and the flow response to acetazolamide as determined with the two methods were well correlated, although at low flow levels...

  17. Computational fluid dynamics (CFD) simulation of CO2 emission from a thermal power plant in an urban environment.

    Science.gov (United States)

    Toja-Silva, Francisco; Chen, Jia; Hachinger, Stephan

    2017-04-01

    Climate change, a societal challenge for the European Union, is affecting all regions in Europe and has a profound impact on society and environment. It is now clear that the present global warming period is due to the strong anthropogenic greenhouse gas (GHG) emission, occurring at an unprecedented rate. Therefore, the identification and control of the greenhouse gas sources has a great relevance. Since the GHG emissions from cities are the largest human contribution to climate change, the present investigation focuses on the urban environment. Bottom-up annual emission inventories are compiled for most countries. However, a rigorous approach requires to perform experimental measurements in order to verify the official estimates. Measurements of column-averaged dry-air mole fractions of GHG (XGHG) can be used for this. To comprehensively detect and quantify GHG emission sources, these punctual column data, however, have to be extended to the surrounding urban map, requiring a deep understanding of the gas transport. The resulting emission estimation will serve several practical purposes, e.g. the verification of official emission rates and the determination of trends in urban emissions. They will enable the administration to make targeted and economically efficient decisions about mitigation options, and help to stop unintentional and furtive releases. With this aim, this investigation presents a completely new approach to the analysis of the carbon dioxide (CO2) emissions from fossil fuel thermal power plants in urban environments by combining differential column measurements with computational fluid dynamics (CFD) simulations in order to deeply understand the experimental conditions. The case study is a natural gas-fueled cogeneration (combined heat and power, CHP) thermal power plant inside the city of Munich (Germany). The software used for the simulations (OpenFOAM) was modified in order to use the most advanced RANS turbulence modeling (i.e. Durbin) and

  18. Dynamism of household carbon emissions (HCEs) from rural and urban regions of northern and southern China.

    Science.gov (United States)

    Maraseni, Tek Narayan; Qu, Jiansheng; Yue, Bian; Zeng, Jingjing; Maroulis, Jerry

    2016-10-01

    China contributes 23 % of global carbon emissions, of which 26 % originate from the household sector. Due to vast variations in both climatic conditions and the affordability and accessibility of fuels, household carbon emissions (HCEs) differ significantly across China. This study compares HCEs (per person) from urban and rural regions in northern China with their counterparts in southern China. Annual macroeconomic data for the study period 2005 to 2012 were obtained from Chinese government sources, whereas the direct HCEs for different types of fossil fuels were obtained using the IPCC reference approach, and indirect HCEs were calculated by input-output analysis. Results suggest that HCEs from urban areas are higher than those from rural areas. Regardless of the regions, there is a similarity in per person HCEs in urban areas, but the rural areas of northern China had significantly higher HCEs than those from southern China. The reasons for the similarity between urban areas and differences between rural areas and the percentage share of direct and indirect HCEs from different sources are discussed. Similarly, the reasons and solutions to why decarbonising policies are working in urban areas but not in rural areas are discussed.

  19. Using STELLA System Dynamic Model to Analyze Greenhouse Gases' Emission From Solid Waste Management in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.

    2004-03-31

    Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce a lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.

  20. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    DEFF Research Database (Denmark)

    Christel, Wibke; Zhu, Kun; Hoefer, Christoph

    2016-01-01

    on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids...... processes and fixation in the residue sphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing...... (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O2 content and had emitted significantly more CO2 than the non-amended control or the char-amended soil. The P availability from manure solids...

  1. Heterogeneity of O2 dynamics in soil amended with animal manure and implications for greenhouse gas emissions

    DEFF Research Database (Denmark)

    Zhu, Kun; Bruun, Sander; Larsen, Morten Kobæk

    2015-01-01

    Soil oxygen (O2) availability influences nitrification and denitrification, the major biological processes responsible for nitrous oxide (N2O) production and missions from soil. In this study O2-specific planar optodes were used to visualise O2 distribution with high spatial and temporal resolution...... in soils in which the same amount of solid fraction of pig manure had been distributed in three different ways (mixed, layered, single patch) and which were maintained at awater potential of 5 kPa (corresponding to 91% of water-filled pore space). In parallel, the greenhouse gas emissions (N2O, CO2 and CH4...... rates are essential to get a detailed understanding of how O2 availability regulates the distribution and coupling of denitrification and nitrification activity in soil. Such unique information on soil O2 dynamics could be used for further modelling and quantification of processes producing greenhouse...

  2. Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    General framework and various criteria for experimental design optimisation are presented. The methodology is applied to estimation of receptor-ligand reaction model parameters with dynamic positron emission tomography data. The possibility of improving parameter estimation using a new experimental design combining an injection of the β + -labelled ligand and an injection of the cold ligand is investigated. Numerical simulations predict remarkable improvement in the accuracy of parameter estimates with this new experimental design and particularly the possibility of separate estimations of the association constant (k +1 ) and of receptor density (B' max ) in a single experiment. Simulation predictions are validated using experimental PET data in which parameter uncertainties are reduced by factors ranging from 17 to 1000. (author)

  3. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  4. On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting

    International Nuclear Information System (INIS)

    Chevallier, Julien; Sevi, Benoit

    2009-01-01

    The recent implementation of the EU Emissions Trading Scheme (EU ETS) in January 2005 created new financial risks for emitting firms. To deal with these risks, options are traded since October 2006. Because the EU ETS is a new market, the relevant underlying model for option pricing is still a controversial issue. This article improves our understanding of this issue by characterizing the conditional and unconditional distributions of the realized volatility for the 2008 futures contract in the European Climate Exchange (ECX), which is valid during Phase II (2008-2012) of the EU ETS. The realized volatility measures from naive, kernel-based and sub-sampling estimators are used to obtain inferences about the distributional and dynamic properties of the ECX emissions futures volatility. The distribution of the daily realized volatility in logarithmic form is shown to be close to normal. The mixture-of-distributions hypothesis is strongly rejected, as the returns standardized using daily measures of volatility clearly departs from normality. A simplified HAR-RV model (Corsi, 2009) with only a weekly component, which reproduces long memory properties of the series, is then used to model the volatility dynamics. Finally, the predictive accuracy of the HAR-RV model is tested against GARCH specifications using one-step-ahead forecasts, which confirms the HAR-RV superior ability. Our conclusions indicate that (i) the standard Brownian motion is not an adequate tool for option pricing in the EU ETS, and (ii) a jump component should be included in the stochastic process to price options, thus providing more efficient tools for risk-management activities. (authors)

  5. Gold-thiolate cluster emission from SAMs under keV ion bombardment: Experiments and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Arezki, B.; Delcorte, A.; Chami, A.C.; Garrison, B.J.; Bertrand, P.

    2003-01-01

    In this contribution the emission of gold-molecule cluster ions from self-assembled monolayers (SAMs) of alkanethiols on gold is investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Layers of alkanethiols [CH 3 (CH 2 ) n SH] with various chain lengths (n=8, 12, 16) have been chosen because they form well-ordered molecular monolayers on gold. First, we compare and interpret the yields and energy spectra of gold-thiolate cluster ions, obtained for different thiol sizes. Our results show that the unimolecular dissociation of larger aggregates in the acceleration section of the spectrometer constitutes a significant formation channel for gold-molecule clusters. Second, we present preliminary results of molecular dynamics simulations performed in order to improve our understanding of the cluster emission processes. These calculations have been conducted using 8 keV projectiles and a long-range term in the hydrocarbon potential in order to account for the van der Waals forces between the thiol chains

  6. Seasonal emission of seminal coagulum and in vivo sperm dynamics in the black-handed spider monkey (Ateles geoffroyi).

    Science.gov (United States)

    Hernández-López, L; Cerda-Molina, A L; Páez-Ponce, L D; Mondragón-Ceballos, R

    2008-03-01

    The ejaculate of diverse primate species consists of two portions, liquid and solid; the latter, known as the seminal coagulum, is thought to sequester large numbers of sperm. In the black-handed spider monkey (Ateles geoffroyi), ejaculates collected by electroejaculation did not always contain seminal coagulum. The objective of the present study was to determine seasonal emission of seminal coagulum and in vivo sperm dynamics in the black-handed spider monkey. Seminal coagulum emission was related to season; it was more frequent in the dry season, coincident with maximal female fertility. Sperm concentration was higher (P = 0.02) in the dry season (dry vs. rainy season: 137.9 +/- 15.7 sperm/mL vs. 82.56 +/- 14.7 x1 0(6) sperm/mL; mean +/- S.E.M.) but also in ejaculates (collected during the rainy season) that had seminal coagulum (coagulum vs. no coagulum: 140.0 +/- 29.3 sperm/mL vs. 31.2+/-0.1 x 10(6) sperm/mL, P<0.001). In semen samples collected from the uterus after AI, the percentage of linearly motile sperm was higher during the dry season (dry vs. rainy: 9.1+/-2.1% vs. 5.9+/-2.5%), as well as whenever coagulum was present (coagulum vs. no coagulum: 13.0+/-3.2% vs. 2.0+/-0.9%, P<0.001).

  7. On the fractal nature of dynamic positron emission tomography (PET) studies

    International Nuclear Information System (INIS)

    Dimitrakopoulou-Strauss, A.; Strauss, L.G.; Mikolajczyk, K.; Burger, C.; Lehnert, T.; Bernd, L.; Ewerbeck, V.

    2003-01-01

    Quantification of dynamic PET Studies is generally based on compartmental methods. This is a report about the implementation and assessment of a new non-compartmental method, the fractal dimension (FD), a parameter based on the box counting (BC) procedure of the chaos theory for the analysis of dynamic PET data. The evaluation included 200 malignant lesions in 159 patients with different tumour entities as well as 57 benign lesions for comparison. 101/200 malignant lesions were treated with chemotherapy, whereas 99/200 malignant lesions as well as all 57 benign lesions were untreated within the last six months prior to the PET study with F-18-Fluorodeoxyglucose (FDG). The evaluation of the FDG kinetics was performed using the BC based FD for the time-activity data. Visual assessment demonstrated generally different FDG uptake patterns in the conventional images and the parametric images of FD. FD estimates depended on the number of boxes and the maximum cut-off value used for calculation. Based on the discriminant analysis for benign and malignant lesions, FD demonstrated an accuracy of 76.65% for all patients, 67.7% for the untreated patients and 83.44% for the treated group. The use of the BC based FD is a reliable, new method for the quantification of dynamic PET studies and seems to be in particular helpful for the evaluation of treated malignant lesions. (author)

  8. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    Science.gov (United States)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  9. Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays

    Science.gov (United States)

    Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas

    2018-03-01

    Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.

  10. Fusion-fission dynamics at high excitation energies studied by neutron emission

    Science.gov (United States)

    Zank, W. P.; Hilscher, D.; Ingold, G.; Jahnke, U.; Lehmann, M.; Rossner, H.

    1986-02-01

    Neutron emission in coincidence with fusion-fission events and evaporation residues was measured in the heavy-ion reactions 141+(316 MeV) 40Ar and 175Lu+(192 MeV) 12C. Both reactions are leading to similar composite systems and excitation energies as the previously investigated reaction 165Ho+ 20Ne. In order to determine the lifetimes of the composite systems prior to scission and to study entrance channel and angular-momentum effects, the results for all three systems are compared. From measured cross sections of fission and evaporation residues, the angular momentum intervals leading to fission are deduced to be 50-109 ħ and 49-62 ħ for Pr+Ar and Lu+C, respectively. The corresponding prescission neutron multiplicities are deduced to be Mnpresc=3.6+/-0.6 and 6.3+/-0.8, whereas the respective postscission multiplicities are Mnpost=4.4+/-0.4 and 3.6+/-0.6. For the system 175Lu+ 12C it is found that 0.5+/-0.2 preequilibrium neutrons are emitted. In contrast to the evaporative neutrons, a strong anisotropy anPE=2.2+/-0.6 relative to the reaction plane defined by one fission fragment and the beam direction is observed. From the prescission neutron multiplicities, the evaporation time of the system prior to scission is deduced using the statistical model to ~=(3-12)×10-20 s. Nucleus deformation effects and neutron emission from not fully accelerated fission fragments are taken into account. The unexpected long prescission lifetimes can be explained as long transition times to the scission point caused by a large two-body viscosity. Under this assumption the viscosity parameter of the highly excited nuclei has been determined in a first approximation to μ~=0.1 TP. The results might be understood also assuming a mixture of a two-body and one-body friction.

  11. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    International Nuclear Information System (INIS)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-01-01

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to “neutralize” the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. - Highlights:

  12. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  13. Neutrino transport in black hole-neutron star binaries: Neutrino emission and dynamical mass ejection

    Science.gov (United States)

    Kyutoku, Koutarou; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2018-01-01

    We study the merger of black hole-neutron star binaries by fully general-relativistic neutrino-radiation-hydrodynamics simulations throughout the coalescence, particularly focusing on the role of neutrino irradiation in dynamical mass ejection. Neutrino transport is incorporated by an approximate transfer scheme based on the truncated moment formalism. While we fix the mass ratio of the black hole to the neutron star to be 4 and the dimensionless spin parameter of the black hole to be 0.75, the equations of state for finite-temperature neutron-star matter are varied. The hot accretion disk formed after tidal disruption of the neutron star emits a copious amount of neutrinos with the peak total luminosity ˜1 - 3 ×1053 erg s-1 via thermal pair production and subsequent electron/positron captures on free nucleons. Nevertheless, the neutrino irradiation does not modify significantly the electron fraction of the dynamical ejecta from the neutrinoless β -equilibrium value at zero temperature of initial neutron stars. The mass of the wind component driven by neutrinos from the remnant disk is negligible compared to the very neutron-rich dynamical component, throughout our simulations performed until a few tens milliseconds after the onset of merger, for the models considered in this study. These facts suggest that the ejecta from black hole-neutron star binaries are very neutron rich and are expected to accommodate strong r -process nucleosynthesis, unless magnetic or viscous processes contribute substantially to the mass ejection from the disk. We also find that the peak neutrino luminosity does not necessarily increase as the disk mass increases, because tidal disruption of a compact neutron star can result in a remnant disk with a small mass but high temperature.

  14. Spontaneous Appendicocutaneous Fistula I

    African Journals Online (AJOL)

    M T0k0de* MB, BS and. Dr 0. A. AWOj0bi+ FMCS (Nig). ABSTRACT. Ruptured appendicitis is not a common cause of spontaneous enterocutaneous fistula. A case of ruptured retrocaecal appendicitis presenting as an enterocutaneous fistula in a Nigerian woman is presented. The literature on this disorder is also reviewed.

  15. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  16. Spontaneous Grammar Explanations.

    Science.gov (United States)

    Tjoo, Hong Sing; Lewis, Marilyn

    1998-01-01

    Describes one New Zealand university language teacher's reflection on her own grammar explanations to university-level students of Bahasa Indonesian. Examines form-focused instruction through the teacher's spontaneous answers to students' questions about the form of the language they are studying. The teacher's experiences show that it takes time…

  17. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  18. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  19. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7...... by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas...

  20. 3-methylcyclohexanone thiosemicarbazone: determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes.

    Science.gov (United States)

    Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela

    2012-12-21

    Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana▿

    Science.gov (United States)

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S.; Vancanneyt, Marc; De Vuyst, Luc

    2007-01-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and

  2. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana.

    Science.gov (United States)

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S; Vancanneyt, Marc; De Vuyst, Luc

    2007-03-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter

  3. Dynamic rupture simulation of the 2017 Mw 7.8 Kaikoura (New Zealand) earthquake: Is spontaneous multi-fault rupture expected?

    Science.gov (United States)

    Ando, R.; Kaneko, Y.

    2017-12-01

    The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al

  4. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae

    Directory of Open Access Journals (Sweden)

    Alfons Penzkofer

    2017-10-01

    Full Text Available The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region. The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C. The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail, 530 nm (central region and 470 nm (short-wavelength tail and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s. The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s. Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed.

  5. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo

    2012-01-01

    during mid-summer when the WL was at its seasonally lowest counterbalancing ~6.4% of the total annual net N2O emission budget. Main surface emission periods of N2O were observed when the water level and associated peaks in subsurface N2O concentrations were gradually decreasing to soil depths down to 40...... production and consumption capacities where >500 nmol N2O cm-3 were sequentially produced and consumed in less than 24 hrs. It is concluded that a higher future frequency of flooding induced N2O emissions will have a very limited effect on the net annual N2O emission budget as long as NO3- availability...

  6. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  7. Quantum mechanics with spontaneous localization and experiments

    International Nuclear Information System (INIS)

    Benatti, F.; Grassi, R.

    1994-05-01

    We examine from an experimental point of view the recently proposed models of spontaneous reduction. We compare their implications about decoherence with those of environmental effects. We discuss the treatment, within the considered models, of the so called quantum telegraph phenomenon and we show that, contrary to what has been recently stated, no problems are met. Finally, we review recent interesting work investigating the implications of dynamical reduction for the proton decay. (author). 16 refs, 4 figs, 3 tabs

  8. Seasonal dynamics of permafrost carbon emissions: A passive, quasi-continuous 14CO2 sampler

    Science.gov (United States)

    Pedron, S.; Xu, X.; Walker, J. C.; Welker, J. M.; Klein, E. S.; Euskirchen, E. S.; Czimczik, C. I.

    2017-12-01

    day at equivalent depths, indicating limited spatial variability (10-20 m) of soil [CO2]. Ongoing sampling and forthcoming 14C analyses will reveal how much plant (root) respiration contributes to ecosystem respiration in the fall, and elucidate the temporal dynamics of microbial C sources, specifically the decomposition of older permafrost C in winter.

  9. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  10. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    Science.gov (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  11. USE OF COMMERCIAL RADON MONITORS FOR LOW LEVEL RADON MEASUREMENTS IN DYNAMICALLY OPERATED VOC EMISSION TEST CHAMBERS.

    Science.gov (United States)

    Hofmann, M; Richter, M; Jann, O

    2017-11-01

    Compared to the intended EU reference level of 300 Bq m-3 for indoor radon concentrations, the contribution of building materials appears to be low. Considering the recommended limit of 100 Bq m-3 by WHO, their contribution is supposed to be relevant, especially at low air exchange rates. This study as part of a two-part research project investigated the suitability of direct low level 222Rn measurement under simulated indoor conditions with commercial radon monitors and dynamically operated emission test chambers. Active measuring devices based on ionisation or scintillation chambers with 1-σ uncertainties below 8.6% at 20 Bq m-3 were found to be best suitable for a practical test procedure for the determination of radon exhalation rates of building materials. For the measurement of such low concentrations, the knowledge of the accurate device background level is essential. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe.

    Science.gov (United States)

    Svinurai, Walter; Mapanda, Farai; Sithole, Dingane; Moyo, Elisha N; Ndidzano, Kudzai; Tsiga, Alois; Zhakata, Washington

    2018-03-01

    Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH 4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH 4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear -1 . Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH 4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH 4 capita -1 year -1 . The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH 4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were

  13. Exploring the manifestation and nature of a dineutron in two-neutron emission using a dynamical dineutron model

    Science.gov (United States)

    Grigorenko, L. V.; Vaagen, J. S.; Zhukov, M. V.

    2018-03-01

    Emission of two neutrons or two protons in reactions and decays is often discussed in terms of "dineutron" or "diproton" emission. The discussion often leans intuitively on something described by Migdal-Watson approximation. In this work we propose a way to formalize situations of dineutron emission. It is demonstrated that properly formally defined dineutron emission may reveal properties which are drastically different from those traditionally expected, and properties which are actually observed in three-body decays.

  14. Collision dynamics of two 238U atomic nuclei.

    Science.gov (United States)

    Golabek, Cédric; Simenel, Cédric

    2009-07-24

    Collisions of actinide nuclei form, during very short times of few 10;{-21} s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions have been proposed as an alternative way to produce heavy and superheavy elements. They are also used to produce superstrong electric fields by the huge number of interacting protons to test spontaneous positron-electron (e;{+}e;{-}) pair emission predicted by the quantum electrodynamics theory. The time-dependent Hartree-Fock theory is used to study collision dynamics of two 238U atomic nuclei. In particular, the role of nuclear deformation on collision time and on reaction mechanisms such as nucleon transfer is emphasized. The highest collision times (approximately 4 x 10;{-21} s at 1200 MeV) should allow experimental signature of spontaneous e;{+}e;{-} emission in case of bare uranium ions. Surprisingly, we also observe ternary fission due to purely dynamical effects.

  15. Dynamic 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography of liver tumours without blood sampling

    DEFF Research Database (Denmark)

    Keiding, S; Munk, O L; Schiøtt, K M

    2000-01-01

    Positron emission tomography (PET) using 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is a useful diagnostic tool for the detection of tumours. Using dynamic FDG PET, net metabolic clearance of FDG, K, can be calculated by Gjedde-Patlak analysis of the time course of the radioactivity concentrations......, and 2.1-8.4:1 (mean, 4.6:1) based on blood sample TACs (P>0.3). We conclude that arterial blood sampling can be replaced by the present AORTA-VOI in the calculation of the net metabolic clearance of FDG in dynamic PET studies of liver tumours in human subjects. Udgivelsesdato: 2000-Apr...... in tissue and arterial blood. We examined whether time-activity curves (TACs) based on arterial blood sampling could be replaced by TACs obtained from the descending aorta in dynamic PET scans of patients with liver tumours. The study was performed in two parts, using data from dynamic liver scans...

  16. Emission of pollutants and the dynamics of air quality in Ida-Viru County in 1995-1998

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut; Maalma, Kaiu

    1999-01-01

    The organisation of monitoring atmospheric air in Ida-Viru County is described and data on the emission of pollutants in 1995-1998 are presented by industrial enterprises and by individual pollutants. A thorough analysis of the concentration of pollutants in the atmospheric air and air quality of towns and concrete air monitoring data are presented. Changes in the air quality are analysed by towns as well as by pollutants. An analysis of the dynamics of the changes in emissions and air quality showed that after a low concentration of pollutants in the atmospheric air in 1993-1995 a tendency towards worsening air quality occurred in 1995-1997. The concentration of some pollutants, for example phenol, has again reached the level of 1990-1991 when the largest amounts of pollutants were emitted into the air. These are signs of some new intensification of production activity in the region, but also of decreasing interest in environmental issues. Although according to reports the total volume of pollutants emitted into the atmosphere in Ida-Viru County has fallen nearly twice as compared with 1991, air monitoring data do not corroborate this. Hazardous pollution incidences may emerge at Saka and in the district of Jaerve in Kohtla-Jaerve in case of unfavourable weather conditions (no wind, high air temperature). The analysis of monitoring data revealed a necessity to improve the system of collecting and processing air monitoring data. For example, at present it is not possible to make a thorough analysis (including correlation analysis of the concentrations of pollutants and direction of winds) of the towns of Narva various objects on an undermine objective conclusions about the origin of pollutants cannot be drawn. It is necessary to guarantee that the existing automatic monitoring system OPSIS should be kept in working order as it is of great significance in monitoring and objective estimation of the air quality in Jaerve district in Kohtla-Jaerve. Presently OPSIS is

  17. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    Science.gov (United States)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  18. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K

    2011-02-01

    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  19. Coherent spontaneous radiation from highly bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-01-01

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10 4 has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques

  20. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    International Nuclear Information System (INIS)

    Christel, Wibke; Zhu, Kun; Hoefer, Christoph; Kreuzeder, Andreas; Santner, Jakob; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann

    2016-01-01

    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O 2 content and had emitted significantly more CO 2 than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in order to

  1. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    Energy Technology Data Exchange (ETDEWEB)

    Christel, Wibke [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Commerce, Industry and Agriculture, Danish Environmental Protection Agency, 1401 Copenhagen C (Denmark); Zhu, Kun [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Hoefer, Christoph [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Kreuzeder, Andreas [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Land Salzburg, Natur- und Umweltschutz, Gewerbe (Abteilung 5), Michael-Pacher-Straße 36, 5020 Salzburg (Austria); Santner, Jakob [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Bruun, Sander; Magid, Jakob [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jensen, Lars Stoumann, E-mail: lsj@plen.ku.dk [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2016-06-01

    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O{sub 2} content and had emitted significantly more CO{sub 2} than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in

  2. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.

    Science.gov (United States)

    Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

  3. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  4. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  5. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Highlights: • We explore the driving forces of the iron and steel industry’s CO 2 emissions in China. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO 2 emissions due to mass real estate construction. • The role of economic growth in reducing emissions is more important than industrialization. - Abstract: Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption and carbon dioxide (CO 2 ) emissions. China’s steel industry is highly energy-consuming and pollution-intensive. Between 1980 and 2013, the carbon dioxide emissions in China’s steel industry increased approximately 11 times, with an average annual growth rate of 8%. Identifying the drivers of carbon dioxide emissions in the iron and steel industry is vital for developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the industry. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Urbanization also has significant effect on CO 2 emissions because of mass urban infrastructure and real estate construction. Economic growth has more impact on emission reduction than industrialization due to the massive fixed asset investment and industrial energy optimization. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the iron and steel industry.

  6. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Science.gov (United States)

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  7. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    NARCIS (Netherlands)

    van Capel, P.J.S.; Turchinovich, D.; Porte, H.P.; Lahmann, S.; Rossow, U.; Dijkhuis, J.I.

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals

  8. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP......-beam lithography of hydrogen silsesquioxane resist deposited on silver-coated silicon substrates. A quality factor of ∼70 for the cavity (full width at half maximum ∼10 nm) with full tunability of the resonance wavelength is demonstrated. An up to 42-fold decay rate enhancement of the spontaneous emission...

  9. Spontaneous Intracranial Hypotension

    International Nuclear Information System (INIS)

    Joash, Dr.

    2015-01-01

    Epidemiology is not only rare but an important cause of new daily persistent headaches among young & middle age individuals. The Etiology & Pathogenesis is generally caused by spinal CSF leak. Precise cause remains largely unknown, underlying structural weakness of spinal meninges is suspected. There are several MR Signs of Intracranial Hypotension that include:- diffuse pachymeningeal (dural) enhancement; bilateral subdural, effusion/hematomas; Downward displacement of brain; enlargement of pituitary gland; Engorgement of dural venous sinuses; prominence of spinal epidural venous plexus and Venous sinus thrombosis & isolated cortical vein thrombosis. The sum of volumes of intracranial blood, CSF & cerebral tissue must remain constant in an intact cranium. Treatment in Many cases can be resolved spontaneously or by use Conservative approach that include bed rest, oral hydration, caffeine intake and use of abdominal binder. Imaging Modalities for Detection of CSF leakage include CT myelography, Radioisotope cisternography, MR myelography, MR imaging and Intrathecal Gd-enhanced MR

  10. Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam.

    Science.gov (United States)

    Gong, Cheng; Li, ZiXi; Hua, LinQiang; Quan, Wei; Liu, XiaoJun

    2016-09-15

    Filamentation dynamics in fused silica are investigated using an Airy pattern and a Gaussian laser beam. The angle-resolved conical emission spectra are measured and compared with the predictions of several models. Our experimental observations are consistent with the X-waves model in both cases. This indicates that both laser beams spontaneously evolve into nonlinear X-waves and suggests a universal evolution of filaments in fused silica, regardless of the initial laser beam profile.

  11. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  12. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a

  13. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  14. Spontaneous Pneumomediastinum: Hamman Syndrome

    Directory of Open Access Journals (Sweden)

    Tushank Chadha, BS

    2018-04-01

    significant fat stranding. The image also showed an intraluminal stent traversing the gastric antrum and gastric pylorus with no indication of obstruction. Circumferential mural thickening of the gastric antrum and body were consistent with the patient’s history of gastric adenocarcinoma. The shotty perigastric lymph nodes with associated fat stranding, along the greater curvature of the distal gastric body suggested local regional nodal metastases and possible peritoneal carcinomatosis. The thoracic CT scans showed extensive pneumomediastinum that tracked into the soft tissues of the neck, which given the history of vomiting also raised concern for esophageal perforation. There was still no evidence of mediastinal abscess or fat stranding. Additionally, a left subclavian vein port catheter, which terminates with tip at the cavoatrial junction of the superior vena cava can also be seen on the image. Discussion: Spontaneous Pneumomediastinum, also known as Hamman syndrome, is defined by the uncommon incidence of free air in the mediastinum due to the bursting of alveoli, as a result of extended spells of shouting, coughing, or vomiting.1,2 The condition is diagnosed when a clear cause (aerodigestive rupture, barotrauma, infection secondary to gas-forming organisms3 for pneumomediastinum cannot be clearly identified on diagnostic studies. Macklin and Macklin were the first to note the pathogenesis of the syndrome and explained that the common denominator to spontaneous pneumomediastinum was that increased alveolar pressure leads to alveolar rupture.3 Common clinical findings for spontaneous pneumomediastinum include: chest pain, dyspnea, cough, and emesis.4 The condition is not always readily recognized on initial presentation in part for its rare incidence, estimated to be approximately 1 in every 44,500 ED patients3and also because of the non-specific presenting symptoms. For this patient, there was no clear singular cause, and therefore she received care for spontaneous

  15. The sheer scale of China's urban renewal and CO2 emissions: multiple structural breaks, long-run relationship, and short-run dynamics.

    Science.gov (United States)

    Ahmed, Khalid

    2016-08-01

    In the light of urban environmental transition (UET) theory, this study explores the relationship between carbon dioxide (CO2) emissions, economic growth, urbanization, and trade openness using updated Chinese data over the extended period (1971-2013). After confirming that all the underlying series are stationary and adjusted with single structural break point, the results of autoregressive distributed lag (ARDL) bounds test approach to cointegration confirm the cointegration between the variables. The long- and short-run dynamics reveal that urbanization reduces the CO2 emissions both in short and long runs, but statistically insignificant. These findings contrast with previous literature and sound the validation of urban environmental transition theory (UET). However, economic growth and trade openness contribute environmental degradation both in long- and short-run paths. The causality analysis reports bidirectional causal link between trade openness and urbanization in the short run. However, in the long-run, economic growth Granger causes carbon dioxide emissions, urbanization, and trade openness. Similarly, trade openness Granger causes carbon dioxide emissions, economic growth, and urbanization in the long run. The overall results imply that rural to urban immigration is still mostly driven by export-related manufacturing sectors. In addition, the higher GDP also contributes to urbanization as a feedback effect. In the end, stability of the model is also checked, model found stable, and findings are suitable for environmental policy control use.

  16. Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excited-State Dynamics.

    Science.gov (United States)

    Mallick, Abhijit; Oh, Juwon; Kim, Dongho; Rath, Harapriya

    2016-06-06

    Two hitherto unknown planar aromatic [30] fused heterocyclic macrocycles (1.1.0.1.1.0), with NIR absorption in free-base form and protonation-induced enhanced NIR emission, have been synthesized from easy to make precursors. The induced correspondence of fusion on the macrocyclic structure, electronic absorption, and emission spectra have been highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spontaneous prediction error generation in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yuichi Yamashita

    Full Text Available Goal-directed human behavior is enabled by hierarchically-organized neural systems that process executive commands associated with higher brain areas in response to sensory and motor signals from lower brain areas. Psychiatric diseases and psychotic conditions are postulated to involve disturbances in these hierarchical network interactions, but the mechanism for how aberrant disease signals are generated in networks, and a systems-level framework linking disease signals to specific psychiatric symptoms remains undetermined. In this study, we show that neural networks containing schizophrenia-like deficits can spontaneously generate uncompensated error signals with properties that explain psychiatric disease symptoms, including fictive perception, altered sense of self, and unpredictable behavior. To distinguish dysfunction at the behavioral versus network level, we monitored the interactive behavior of a humanoid robot driven by the network. Mild perturbations in network connectivity resulted in the spontaneous appearance of uncompensated prediction errors and altered interactions within the network without external changes in behavior, correlating to the fictive sensations and agency experienced by episodic disease patients. In contrast, more severe deficits resulted in unstable network dynamics resulting in overt changes in behavior similar to those observed in chronic disease patients. These findings demonstrate that prediction error disequilibrium may represent an intrinsic property of schizophrenic brain networks reporting the severity and variability of disease symptoms. Moreover, these results support a systems-level model for psychiatric disease that features the spontaneous generation of maladaptive signals in hierarchical neural networks.

  18. Optical emission spectroscopy study of the expansion dynamics of a laser generated plasma during the deposition of thin films by laser ablation

    Directory of Open Access Journals (Sweden)

    Fazio, Enza

    2007-09-01

    Full Text Available The dynamics of the expanding plasma produced by excimer laser ablation of different materials such as silicon, silicon carbide, graphite and tin powder were studied by means of time integrated, spatially resolved emission spectroscopy and fast photography imaging of the expanding plasma. Experiments were performed both in vacuum and in different pure background atmosphere (i.e. oxygen or nitrogen and, finally, in gaseous mixtures (i.e. in O2/Ar and N2/Ar mixtures. These investigations were performed to gather information on the nature of the chemical species present in the plasma and on the occurrence of chemical reactions during the interaction between the plasma and the background gas. Then, we tried to correlate the plasma expansion dynamics to the structural and physical properties of the deposited materials. Experimental results clearly indicate that there is a strong correlation between the plasma expansion dynamics and the structural properties of the deposited thin films. In this respect, the investigations performed by means of fast photography and of optical emission spectroscopy revealed themselves as powerful tools for an efficient control of the deposition process itself.

  19. Spontaneous breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1981-12-01

    There has been recently a revival of interest in supersymmetric gauge theories, stimulated by the hope that supersymmetry might help in clarifying some of the questions which remain unanswered in the so called Grand Unified Theories and in particular the gauge hierarchy problem. In a Grand Unified Theory one has two widely different mass scales: the unification mass M approx. = 10/sup 15/GeV at which the unification group (e.g. SU(5)) breaks down to SU(3) x SU(2) x U(1) and the mass ..mu.. approx. = 100 GeV at which SU(2) x U(1) is broken down to the U(1) of electromagnetism. There is at present no theoretical understanding of the extreme smallness of the ratio ..mu../M of these two numbers. This is the gauge hierarchy problem. This lecture attempts to review the various mechanisms for spontaneous supersymmetry breaking in gauge theories. Most of the discussions are concerned with the tree approximation, but what is presently known about radiative correction is also reviewed.

  20. Spontaneous intracranial hypotension

    International Nuclear Information System (INIS)

    Haritanti, A.; Karacostas, D.; Drevelengas, A.; Kanellopoulos, V.; Paraskevopoulou, E.; Lefkopoulos, A.; Economou, I.; Dimitriadis, A.S.

    2009-01-01

    Spontaneous intracranial hypotension (SIH) is an uncommon but increasingly recognized syndrome. Orthostatic headache with typical findings on magnetic resonance imaging (MRI) are the key to diagnosis. Delayed diagnosis of this condition may subject patients to unnecessary procedures and prolong morbidity. We describe six patients with SIH and outline the important clinical and neuroimaging findings. They were all relatively young, 20-54 years old, with clearly orthostatic headache, minimal neurological signs (only abducent nerve paresis in two) and diffuse pachymeningeal gadolinium enhancement on brain MRI, while two of them presented subdural hygromas. Spinal MRI was helpful in detecting a cervical cerebrospinal fluid leak in three patients and dilatation of the vertebral venous plexus with extradural fluid collection in another. Conservative management resulted in rapid resolution of symptoms in five patients (10 days-3 weeks) and in one who developed cerebral venous sinus thrombosis, the condition resolved in 2 months. However, this rapid clinical improvement was not accompanied by an analogous regression of the brain MR findings that persisted on a longer follow-up. Along with recent literature data, our patients further point out that SIH, to be correctly diagnosed, necessitates increased alertness by the attending physician, in the evaluation of headaches

  1. Spontaneous lateral temporal encephalocele.

    Science.gov (United States)

    Tuncbilek, Gokhan; Calis, Mert; Akalan, Nejat

    2013-01-01

    A spontaneous encephalocele is one that develops either because of embryological maldevelopment or from a poorly understood postnatal process that permits brain herniation to occur. We here report a rare case of lateral temporal encephalocele extending to the infratemporal fossa under the zygomatic arch. At birth, the infant was noted to have a large cystic mass in the right side of the face. After being operated on initially in another center in the newborn period, the patient was referred to our clinic with a diagnosis of temporal encephalocele. He was 6 months old at the time of admission. Computerized tomography scan and magnetic resonance imaging studies revealed a 8 × 9 cm fluid-filled, multiloculated cystic mass at the right infratemporal fossa. No intracranial pathology or connection is seen. The patient was operated on to reduce the distortion effect of the growing mass. The histopathological examination of the sac revealed well-differentiated mature glial tissue stained with glial fibrillary acid protein. This rare clinical presentation of encephaloceles should be taken into consideration during the evaluation of the lateral facial masses in the infancy period, and possible intracranial connection should be ruled out before surgery to avoid complications.

  2. Dynamics of soil GHG emissions shaped by hydration state, aggregate size distribution and carbon placement: Column experiments using artificial soil aggregates

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    Dynamics of soil hydration affect microbial community dynamics and various biogeochemical processes (soil respiration, denitrification, methane production). Evidence suggests that anoxic conditions may persist in soil aggregates (long after bulk soil is aerated) thereby providing niches for anaerobic microbial communities (hot spots). Despite their recognized role in mediating soil biogeochemical fluxes, systematic studies of the impact of different environmental conditions on CO2, N2O and CH4 emissions from soil aggregates remain rare. We constructed artificial aggregates using a silt loam soil of different sizes and different carbon configurations (mixed, core, no addition) to study effects of hydration, aggregate size and carbon source configuration on GHG emissions. An assembly of aggregates of three sizes (18, 12, and 6 mm aggregates) was embedded in sand columns at four distinct layers (3 replicates for each aggregate-carbon source, 9 columns) and the water level was varied periodically to quantify effects of wetting/drying and submersion on GHG fluxes. Several gas samples were taken from the headspaces of each column (after closure) and analyzed using GC with the proper detectors to resolve fluxes. Results illustrate the critical role of hydration states on GHG emission, for example, lowering the water table (unsaturated conditions) decreases CH4 emissions while increasing N2O flux. We observe links between aerobic processes (e.g., nitrification) and anaerobic denitrification presumably by promoting alternative pathways (e.g., ammonia and nitrite oxidation). Methane production was activated under highly anoxic conditions (prolonged inundation). N2O production was highest form aggregates with carbon placed in the (anoxic) core whereas CO2 production rates were comparable from mixed and centered carbon sources (at rates that fluctuated with hydration conditions). Experimental results of artificial soil aggregates are of interest for improvement of physically

  3. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  4. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  5. Bilateral spontaneous carotid artery dissection.

    Science.gov (United States)

    Townend, Bradley Scott; Traves, Laura; Crimmins, Denis

    2005-06-01

    Bilateral internal carotid artery dissections have been reported, but spontaneous bilateral dissections are rare. Internal carotid artery dissection can present with a spectrum of symptoms ranging from headache to completed stroke. Two cases of spontaneous bilateral carotid artery dissection are presented, one with headache and minimal symptoms and the other with a stroke syndrome. No cause could be found in either case, making the dissections completely spontaneous. Bilateral internal carotid artery dissection (ICAD) should be considered in young patients with unexplained head and neck pain with or without focal neurological symptoms and signs. The increasing availability of imaging would sustain the higher index of suspicion.

  6. A new Dynamic Dust-emission rate (DDR) scheme base on Satellite remote sensing data for air quality model

    Science.gov (United States)

    Tang, Yu Jia; Li, Ling Jun; Zhou, Yi Ming; Zhang, Da Wei; Yin, Wen Jun; Zhang, Meng; Xie, Bao Guo; Cheng, Nianliang

    2017-04-01

    Dust produced by wind erosion is a major source of atmospheric dust pollutions which have impacts on air quality, weather and climate. It is difficult to calculate dust concentration in the atmosphere with certainty unless the dust-emission rate can be estimated with accuracy. Hence, due to the unreliable estimation of dust-emission rate flux from ground surface, the dust forecast accuracy in air quality models is low. The main reason is that the parameter that describes the dust-emission rate in the regional air quality model is constant and cannot reflect the reality of surface dust-emission changes. A new scheme which uses the vegetation information from satellite remote sensing data and meteorological condition provided by meteorological forecast model is developed to estimate the actual dust-emission rete from the ground surface. The results shows that the new scheme can improve dust simulation and forecast performance significantly and reduce the root mean square error by 25% 68%. The DDR scheme can be coupled with any current air quality model (e.g. WRF-Chem, CMAQ, CAMx) and produce more accurate dust forecast.

  7. Nitrogen gas emissions and nitrate leaching dynamics under different tillage practices based on data synthesis and process-based modeling

    Science.gov (United States)

    Huang, Y.; Ren, W.; Tao, B.; Zhu, X.

    2017-12-01

    Nitrogen losses from the agroecosystems have been of great concern to global changes due to the effects on global warming and water pollution in the form of nitrogen gas emissions (e.g., N2O) and mineral nitrogen leaching (e.g., NO3-), respectively. Conservation tillage, particularly no-tillage (NT), may enhance soil carbon sequestration, soil aggregation and moisture; therefore it has the potential of promoting N2O emissions and reducing NO3- leaching, comparing with conventional tillage (CT). However, associated processes are significantly affected by various factors, such as soil properties, climate, and crop types. How tillage management practices affect nitrogen transformations and fluxes is still far from clear, with inconsistent even opposite results from previous studies. To fill this knowledge gap, we quantitatively investigated gaseous and leaching nitrogen losses from NT and CT agroecosystems based on data synthesis and an improved process-based agroecosystem model. Our preliminary results suggest that NT management is more efficient in reducing NO3- leaching, and meanwhile it simultaneously increases N2O emissions by approximately 10% compared with CT. The effects of NT on N2O emissions and NO3- leaching are highly influenced by the placement of nitrogen fertilizer and are more pronounced in humid climate conditions. The effect of crop types is a less dominant factor in determining N2O and NO3- losses. Both our data synthesis and process-based modeling suggest that the enhanced carbon sequestration capacity from NT could be largely compromised by relevant NT-induced increases in N2O emissions. This study provides the comprehensive quantitative assessment of NT on the nitrogen emissions and leaching in agroecosystems. It provides scientific information for identifying proper management practices for ensuring food security and minimizing the adverse environmental impacts. The results also underscore the importance of suitable nitrogen management in the NT

  8. Partial synchronization and spontaneous spatial ordering in coupled chaotic systems

    International Nuclear Information System (INIS)

    Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao

    2000-11-01

    A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)

  9. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...

  10. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan

    2010-12-01

    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  11. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  12. Spontaneity and international marketing performance

    OpenAIRE

    Souchon, Anne L.; Hughes, Paul; Farrell, Andrew M.; Nemkova, Ekaterina; Oliveira, Joao S.

    2016-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Purpose – The purpose of this paper is to ascertain how today’s international marketers can perform better on the global scene by harnessing spontaneity. Design/methodology/approach – The authors draw on contingency theory to develop a model of the spontaneity – international marketing performance relationship, and identify three potential m...

  13. On-road magnetic emissions prediction of electric cars in terms of driving dynamics using neural networks

    NARCIS (Netherlands)

    Wefky, Ahmed M.; Espinosa, Felipe; Leferink, Frank Bernardus Johannes; Gardel, Alfredo; Vogt-Ardatjew, R.A.

    2013-01-01

    This paper presents a novel artificial neural network (ANN) model estimating vehicle-level radiated magnetic emissions of an electric car as a function of the corresponding driving pattern. Real world electromagnetic interference (EMI) experiments have been realized in a semi-anechoic chamber using

  14. Investigating the flow dynamics and chemistry of an expanding thermal plasma through CH(A-X) emission spectra

    NARCIS (Netherlands)

    Hansen, T. A. R.; Colsters, P. G. J.; M. C. M. van de Sanden,; Engeln, R.

    2011-01-01

    The gas flow in a linear plasma reactor and the plasma chemistry during hydrogenated amorphous carbon and graphite etching are investigated via time and spatially resolved measurements of the ion density and CH emission. A convolution of the ion and hydrocarbon density shows the importance of charge

  15. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Directory of Open Access Journals (Sweden)

    Hyungmin Lee

    2012-12-01

    Full Text Available This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  16. Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Barzegar Ramin

    2013-01-01

    Full Text Available In the present paper, the combustion process and emission formation in the Lister 8.1 I.D.I Diesel engine have been investigated using a Computational Fluid Dynamics (CFD code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately resolved for the swirl chamber (pre-chamber and the main chamber. The results of model verify the fact that the equal amount of the fuel is burned in the main and pre-chamber at full load state while at part load the majority of the fuel is burned in the main chamber. Also, it is shown that the adherence of fuel spray on the pre-chamber walls is due to formation of a stagnation zone which prevents quick spray evaporation and plays an important role in the increase of soot mass fractions at this zone at full load conditions. The simulation results, such as the mean in-cylinder pressure, heat release rate and exhaust emissions are compared with the experimental data and show good agreement. This work also demonstrates the usefulness of multidimensional modeling for complex chamber geometries, such as in I.D.I Diesel engines, to gain more insight into the flow field, combustion process and emission formation.

  17. Dynamics of 120 and 20 kV plasma focus devices with respect to density and current distribution, and neutron and X-ray emission

    International Nuclear Information System (INIS)

    Decker, G.; Nahrath, B.; Oppenlaender, T.; Pross, G.; Rueckle, B.; Schmidt, H.; Shakhatre, M.; Trunk, M.

    1977-01-01

    The experiments had two goals: (1) Better understanding of the dynamics and neutron production of the focus phase and (2) improved scaling of the neutron yield by operating a high-voltage focus. For the first goal, experiments with a 30-kJ/16-kV plasma focus of the Mather type (NESSI) were performed. The simultaneously applied diagnostics include interferometry, X-ray photography with channel plates, magnetic probes and scintillator/photomultiplier detectors for measuring hard X-ray and neutron emission. In the established chronology one can distinguish five phases in the development of the plasma focus: A compression phase is followed by a short (8 ns) very dense phase, where the density peaks at a minimum radius (t=0, authors' chronology). The plasma cylinder expands to a relatively long-lasting (30 to 70 ns) quiescent phase before instabilities occur. This short unstable phase is followed by a decay phase during which the neutron emission peaks. Important correlations between the plasma parameters and the neutron emission are discussed. Secondly, on the assumption that the neutron yield scales with a high power of the current, it was concluded that a high-voltage focus could result in higher neutron yield as compared with a lower voltage device of the same energy. The proper adjustments of the discharge parameters necessary due to the very short current risetime were investigated. (author)

  18. Dynamics of 120 and 20 kV plasma focus devices with respect to density and current distribution, neutron and X-ray emission

    International Nuclear Information System (INIS)

    Decker, G.; Nahrath, B.; Oppenlaender, T.; Pross, G.; Rueckle, B.; Schmidt, H.; Shakhatre, M.; Trunk, M.

    1976-01-01

    Our experiments have aimed at two goals: 1) better understanding of the dynamics and neutron production of the focus phase and 2) improved scaling of the neutron yield by operating a high voltage focus. 1) For the first goal, experiments with a 30 kJ/ 16 kV plasma focus of the Mather type (NESSI) were performed. The simultaneously applied diagnostics include interferometry, X-ray photography with channel plates, magnetic probes and neutron emission. In the established chronology we can distinguish 5 phases in the development of the plasma focus: a compression phase is followed by a short (8 ns) very dense phase, where the density peaks at a minimum radius (t = 0 in our chronology). The plasma cylinder expands to a relatively long lasting (30 to 70 ns) quiescent phase before instabilities occur. This short unstable phase is followed by a decay phase during which the neutron emission peaks. Important correlations between the plasma parameters and the neutron emission are discussed. 2) Under the assumption that the neutron yield scales with a high power of the current, we concluded that a high voltage focus could result in higher neutron yield as compared with a lower voltage device of the same energy. The proper adjustments of the discharge parameters necessary due to the very short current risetime have been investigated. (orig.) [de

  19. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Takahashi, A.

    1988-01-01

    An in vivo technique was developed for measuring the absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H 2 15 O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C 15 O inhalation was also obtained for correction of the H 2 15 O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 +/- 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease

  20. Wiener kernel analysis of a noise-evoked otoacoustic emission

    NARCIS (Netherlands)

    van Dijk, P; Maat, A; Wit, H P

    1997-01-01

    In one specimen of the frog species, Rana esculenta, the following were measured: (1) a spontaneous otoacoustic emission; (2) a click-evoked otoacoustic emissions; and (3) a noise evoked otoacoustic emission. From the noise evoked emission response, a first-and a second-order Wiener kernel and the