WorldWideScience

Sample records for sponge-associated bacterial communities

  1. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  2. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington

    KAUST Repository

    Lee, O. O.

    2009-04-10

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  3. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima.

    Science.gov (United States)

    Zhang, Fan; Vicente, Jan; Hill, Russell T

    2014-01-01

    Sponges that harbor microalgal or, cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were successfully amplified from the corresponding gDNA and cDNA pools and sequenced by high throughput 454 amplicon sequencing. In both sponges, over half the nifH transcripts were classified as from cyanobacteria and the remainder from heterotrophic bacteria. We found various groups of bacteria actively expressing the nifH gene during the entire day-night cycle, an indication that the nitrogen fixation potential was fully exploited by different nitrogen fixing bacteria groups associated with their hosts. This study showed for the first time the dynamic changes in the activity of the diazotrophic bacterial communities in marine sponges. Our study expands understanding of the diazotrophic groups that contribute to the fixed nitrogen pool in the benthic community. Sponge bacterial community-associated diazotrophy may have an important impact on the nitrogen biogeochemical cycle in the coral reef ecosystem.

  4. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima

    Directory of Open Access Journals (Sweden)

    Fan eZhang

    2014-10-01

    Full Text Available Sponges that harbor microalgal or cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM. nifH genes were successfully amplified from the corresponding gDNA and cDNA pools and sequenced by high throughput 454 amplicon sequencing. In both sponges, over half the nifH transcripts were classified as from cyanobacteria and the remainder from heterotrophic bacteria. We found various groups of bacteria actively expressing the nifH gene during the entire day-night cycle, an indication that the nitrogen fixation potential was fully exploited by different nitrogen fixing bacteria groups associated with their hosts. This study showed for the first time the dynamic changes in the activity of the diazotrophic bacterial communities in marine sponges. Our study expands understanding of the diazotrophic groups that contribute to the fixed nitrogen pool in the benthic community. Sponge bacterial community-associated diazotrophy may have an important impact on the nitrogen biogeochemical cycle in the coral reef ecosystem.

  5. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  6. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea

    KAUST Repository

    Yang, Jiangke

    2011-02-08

    To gain insight into the species richness and phylogeny of the microbial communities associated with sponges in mangroves, we performed an extensive phylogenetic analysis, based on terminal restriction fragment length polymorphism profiling and 16S ribosomal RNA gene sequences, of the 4 sponge species Aplysina fulva, Haliclona hogarthi, Tedania ignis and Ircinia strobilina as well as of ambient seawater. The sponge-associated bacterial communities contained 13 phyla, including Poribacteria and an unclassified group not found in the ambient seawater community, 98% of which comprised Proteobacteria, Cyanobacteria and Bacteroidetes. Although the sponges themselves were phylogenetically distant and bacterial community variation within the host species was observed, microbial phyla such as Proteobacteria, Acidobacteria, Chloroflexi and the unclassified group were consistently observed as the dominant populations within the communities. The sponge-associated bacterial communities resident in the Caribbean Sea mangroves are phylogenetically similar but significantly distinct from communities found in other biogeographical sites such as the deep-water environments of the Caribbean Sea, the South China Sea and Australia. The interspecific variation within the host species and the distinct biogeographical characteristics that the sponge-associated bacteria exhibited indicate that the acquisition, establishment and formation of functional sponge-associated bacterial communities may initially be the product of both vertical and horizontal transmission, and is then shaped by the internal environment created by the sponge species and certain external environmental factors. © Inter-Research 2011.

  7. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    Science.gov (United States)

    Erwin, Patrick M; Olson, Julie B; Thacker, Robert W

    2011-01-01

    Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient

  8. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Patrick M Erwin

    Full Text Available Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP, might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods.We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6% of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil.The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the

  9. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  10. Detecting signatures of a sponge-associated lifestyle in bacterial genomes.

    Science.gov (United States)

    Díez-Vives, Cristina; Esteves, Ana I S; Costa, Rodrigo; Nielsen, Shaun; Thomas, Torsten

    2018-04-30

    Sponges interact with diverse and rich communities of bacteria that are phylogenetically often distinct from their free-living counterparts. Recent genomics and metagenomic studies have indicated that bacterial sponge symbionts also have distinct functional features from free-living bacteria, however it is unclear, if such genome-derived functional signatures are common and present in different symbiont taxa. We therefore compared here a large set of genomes from cultured (Pseudovibrio, Ruegeria, Aquimarina) and yet-uncultivated (Synechococcus) bacteria found either in sponge-associated or free-living sources. Our analysis revealed only very few genera-specific functions that could be correlated with a sponge-associated lifestyle. Using different sets of sponge-associated and free-living bacteria for each genus, we could however show that the functions identified as "sponge-associated" are dependent on the reference comparison being made. Using simulation approaches we show how this influences the robustness of identifying functional signatures and how evolutionary divergence and genomic adaptation can be distinguished. Our results highlight the future need for robust comparative analyses to define genomic signatures of symbiotic lifestyles, whether it is for symbionts of sponges or other host organisms. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington

    KAUST Repository

    Lee, O. O.; Wong, Y. H.; Qian, P.-Y.

    2009-01-01

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction

  12. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea

    KAUST Repository

    Yang, Jiangke; Sun, Jin; Lee, On On; Yim, Him Wong; Qian, Pei Yuan

    2011-01-01

    ribosomal RNA gene sequences, of the 4 sponge species Aplysina fulva, Haliclona hogarthi, Tedania ignis and Ircinia strobilina as well as of ambient seawater. The sponge-associated bacterial communities contained 13 phyla, including Poribacteria

  13. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    KAUST Repository

    Tian, Ren-Mao

    2014-01-01

    Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2\\',4,4\\'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge.

  14. Ecology and biotechnological potential of bacterial community from three marine sponges of the coast of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    FÁBIO V. DE ARAÚJO

    2017-12-01

    Full Text Available ABSTRACT Marine sponges has been a large reservoir of microbial diversity, with the presence of many species specific populations as well as producing biologically active compounds, which has attracted great biotechnological interest. In order to verify the influence of the environment in the composition of the bacterial community present in marine sponges and biotechnological potential of bacteria isolated from these organisms, three species of sponges and the waters surrounding them were collected in different beaches of Rio de Janeiro, Brazil. The profile of the bacterial community present in sponges and water was obtained by PCR-DGGE technique and the biotechnological potential of the strains isolated by producing amylase, cellulase, protease and biosurfactants. The results showed that despite the influence of the environment in the composition of the microbial community, studied marine sponges shown to have specific bacterial populations, with some, showing potential in the production of substances of biotechnological applications.

  15. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.; Wang, Y.; Bougouffa, Salim; Gao, Z.-M.; Cai, L.; Zhang, W.-P.; Bajic, Vladimir B.; Qian, P.-Y.

    2014-01-01

    and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S

  16. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  17. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon

    2010-11-18

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. © 2011 International Society for Microbial Ecology All rights reserved.

  18. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia.

    Science.gov (United States)

    de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M

    2015-04-01

    In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea.

    Science.gov (United States)

    Dupont, Samuel; Carre-Mlouka, Alyssa; Domart-Coulon, Isabelle; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2014-04-01

    Combining culture-dependent and independent approaches, we investigated for the first time the cultivable fraction of the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. The heterotrophic prokaryotes isolated from this tiny sponge were compared between specimens freshly collected from cave and maintained in aquarium. Overall, 67 isolates obtained in pure culture were phylogenetically affiliated to the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. This cultivable diversity was lower than the prokaryotic diversity obtained by previous pyrosequencing study and comparable to that of another Mediterranean demosponge, the filter-feeding Phorbas tenacior. Furthermore, using fluorescence in situ hybridization, we visualized bacterial and archaeal cells, confirming the presence of both prokaryotes in A. hypogea tissue. Approximately 16% of the bacterial isolates tested positive for chitinolytic activity, suggesting potential microbial involvement in the digestion processes of crustacean prey by this carnivorous sponge. Additionally, 6% and 16% of bacterial isolates revealed antimicrobial and antioxidant activities, respectively. One Streptomyces sp. S1CA strain was identified as a promising candidate for the production of antimicrobial and antioxidant secondary metabolites as well as chitinolytic enzymes. Implications in the context of the sponge biology and prey-feeding strategy are discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    Science.gov (United States)

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  1. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis

    NARCIS (Netherlands)

    Costa, Rodrigo; Keller-Costa, Tina; Gomes, Newton C. M.; Nunes da Rocha, Ulisses; van Overbeek, Leo; van Elsas, Jan Dirk

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  2. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis.

    NARCIS (Netherlands)

    Costa, R.; Keller-Costa, T.; Gomes, N.C.M.; Nunes da Rocha, U.; Overbeek, van L.S.; Elsas, J.D.

    2013-01-01

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  3. Evidence for Vertical Transmission of Bacterial Symbionts from Adult to Embryo in the Caribbean Sponge Svenzea zeai

    KAUST Repository

    Lee, O. O.

    2009-07-31

    The Caribbean reef sponge Svenzea zeai was previously found to contain substantial quantities of unicellular photosynthetic and autotrophic microbes in its tissues, but the identities of these symbionts and their method of transfer from adult to progeny are largely unknown. In this study, both a 16S rRNA gene-based fingerprinting technique (denaturing gradient gel electrophoresis [DGGE]) and clone library analysis were applied to compare the bacterial communities associated with adults and embryos of S. zeai to test the hypothesis of vertical transfer across generations. In addition, the same techniques were applied to the bacterial community from the seawater adjacent to adult sponges to test the hypothesis that water column bacteria could be transferred horizontally as sponge symbionts. Results of both DGGE and clone library analysis support the vertical transfer hypothesis in that the bacterial communities associated with sponge adults and embryos were highly similar to each other but completely different from those in the surrounding seawater. Sequencing of prominent DGGE bands and of clones from the libraries revealed that the bacterial communities associated with the sponge, whether adult or embryo, consisted of a large proportion of bacteria in the phyla Chloroflexi and Acidobacteria, while most of the sequences recovered from the community in the adjacent water column belonged to the class Alphaproteobacteria. Altogether, 21 monophyletic sequence clusters, comprising sequences from both sponge adults and embryos but not from the seawater, were identified. More than half of the sponge-derived sequences fell into these clusters. Comparison of sequences recovered in this study with those deposited in GenBank revealed that more than 75% of S. zeai-derived sequences were closely related to sequences derived from other sponge species, but none of the sequences recovered from the seawater column overlapped with those from adults or embryos of S. zeai. In

  4. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts.

    Science.gov (United States)

    Webster, Nicole S; Taylor, Michael W; Behnam, Faris; Lücker, Sebastian; Rattei, Thomas; Whalan, Stephen; Horn, Matthias; Wagner, Michael

    2010-08-01

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250,000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described 'sponge-specific' clusters that were detected in this study, 48% were found exclusively in adults and larvae - implying vertical transmission of these groups. The remaining taxa, including 'Poribacteria', were also found at very low abundance among the 135,000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Host specificity for bacterial, archaeal and fungal communities determined for high- and low-microbial abundance sponge species in two genera

    NARCIS (Netherlands)

    Mares, De Maryam Chaib; Sipkema, Detmer; Huang, Sixing; Bunk, Boyke; Overmann, Jörg; Elsas, van Jan Dirk

    2017-01-01

    Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show

  6. Two distinct microbial communities revealed in the sponge Cinachyrella

    Science.gov (United States)

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  7. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  8. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  9. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W.; Hentschel, Ute T E; Ravasi, Timothy; Schmitt, Susanne

    2012-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated

  10. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  11. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    KAUST Repository

    Tian, Ren-Mao; Lee, On On; Wang, Yong; Cai, Lin; Bougouffa, Salim; Chiu, Jill Man Ying; Wu, Rudolf Shiu Sun; Qian, Pei-Yuan

    2014-01-01

    . In the present study, we studied the short-period effect of PBDE-47 (2,2',4,4'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our

  12. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  13. Host-specificity among abundant and rare taxa in the sponge microbiome.

    Science.gov (United States)

    Reveillaud, Julie; Maignien, Loïs; Murat Eren, A; Huber, Julie A; Apprill, Amy; Sogin, Mitchell L; Vanreusel, Ann

    2014-06-01

    Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge-symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15-960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host-bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge-bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.

  14. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2008-08-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms ("specialists"); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species ("contaminants") acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge-microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.

  15. Sponge-microbe associations survive high nutrients and temperatures.

    Directory of Open Access Journals (Sweden)

    Rachel Simister

    Full Text Available Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU (97% sequence similarity levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.

  16. The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system.

    Science.gov (United States)

    Mehbub, Mohammad F; Tanner, Jason E; Barnett, Stephen J; Franco, Christopher M M; Zhang, Wei

    2016-12-01

    Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 10 6  cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.

  17. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    Science.gov (United States)

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.

  18. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India.

    Directory of Open Access Journals (Sweden)

    C Jasmin

    Full Text Available Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07 compared to H. pigmentifera (Hǀ 1.97. UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001. The results of our study restate the existence of a host driven force in shaping the sponge microbiome.

  19. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  20. Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters▿ †

    Science.gov (United States)

    Hardoim, C. C. P.; Costa, R.; Araújo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  1. The sponge microbiome project

    KAUST Repository

    Moitinho-Silva, Lucas

    2017-08-16

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.

  2. Macrofauna Associated with the Sponge Neopetrosia exigua ...

    African Journals Online (AJOL)

    in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India. Keywords: Neopetrosia exigua, sponge, associated-fauna, species richness,. Mauritius, Indian Ocean. Abstract — The macrofaunal community associated with the sponge Neopetrosia exigua (Kirkpatrick, 1900) was studied across a ...

  3. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  4. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  5. The sponge microbiome project.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P; Feng, Guofang; Bell, James J; Vicente, Jan; Björk, Johannes R; Montoya, Jose M; Olson, Julie B; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V; Ilan, Micha; Taylor, Michael W; Polymenakou, Paraskevi; Erwin, Patrick M; Schupp, Peter J; Simister, Rachel L; Knight, Rob; Thacker, Robert W; Costa, Rodrigo; Hill, Russell T; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S; Thomas, Torsten

    2017-10-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere. © The Authors 2017. Published by Oxford University Press.

  6. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    Science.gov (United States)

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  7. Root-derived organic matter confines sponge community composition in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Ubels, S.M.; Kraak, M.H.S.; van der Geest, H.G.

    2013-01-01

    Introduction Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the

  8. Antibacterial activity of the sponge Ircinia ramosa: Importance of its surface-associated bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Anil, A.C.

    , and concentrated under reduced pressure in a rotary evap- orator. A flow chart of extraction of sponge and its associated bacteria and anti- bacterial bioassays is given in Figure 1. Fractionation of Crude Extracts. The crude methanol extracts collected during... activity, and (3) whether there is a role for sponge surface-associated bacteria in antibacterial activity of the host? ANTIBACTERIAL ACTIVITY OF SPONGE 59 METHODS AND MATERIALS Specimen Collection and Preparation of Crude Extracts. Specimens of Ircinia...

  9. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  10. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  11. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  12. Bacterial Communities Associated with the Lichen Symbiosis▿ †

    Science.gov (United States)

    Bates, Scott T.; Cropsey, Garrett W. G.; Caporaso, J. Gregory; Knight, Rob; Fierer, Noah

    2011-01-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and “algae” (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N2 fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N2 fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  13. Screening of Antibacterial MDR derived from Sponge Associated Fungus of Riung Water, Nusa Tenggara Timur

    OpenAIRE

    Khoeruddin Wittriansyah; Agus Trianto; Sekar Widyaningsih; Ocky Karna Radjasa; Rudhi Pribadi

    2016-01-01

    Marine sponge-associated fungi are the sources of bioactive compounds with various pharmacologicals potency. This study aimed to isolate the sponge-associated fungi as the producer of the MDR anti-bacterial compounds.  The associated fungi were isolated from the sponges collected from Riung water, Nusa Tenggara Timur. Five of the best isolates were cultured on MEA to obtain the methanolic extract for further studies.  The antagonistic test was conducted using overlay method towards the MDR St...

  14. Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of Gulf of Mannar, southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jasmin, C; Anas, A.; Nair, S.

    1.97). UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water(p<0.001). The results of our study restate the existence of a host driven force in shaping the sponge...

  15. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue.

    Science.gov (United States)

    Gardères, Johan; Henry, Joël; Bernay, Benoit; Ritter, Andrès; Zatylny-Gaudin, Céline; Wiens, Matthias; Müller, Werner E G; Le Pennec, Gaël

    2014-01-01

    Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on

  16. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792: insights into an intimate inter-kingdom dialogue.

    Directory of Open Access Journals (Sweden)

    Johan Gardères

    Full Text Available Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted

  17. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  18. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon; Wang, Yong; Yang, Jiangke; Lafi, Feras Fawzi; Al-Suwailem, Abdulaziz M.; Qian, Peiyuan

    2010-01-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus

  19. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  20. Microbiome analysis shows enrichment for specific bacteria in separate anatomical regions of the deep-sea carnivorous sponge Chondrocladia grandis.

    Science.gov (United States)

    Verhoeven, Joost T P; Kavanagh, Alana N; Dufour, Suzanne C

    2017-01-01

    The Cladorhizidae is a unique family of carnivorous marine sponges characterised by either the absence or reduction of the aquiferous system and by the presence of specialised structures to trap and digest mesoplanktonic prey. Previous studies have postulated a key role of host-associated bacteria in enabling carnivory in this family of sponges. In this study, we employed high-throughput Illumina-based sequencing to identify the bacterial community associated with four individuals of the deep-sea sponge Chondrocladia grandis sampled in the Gulf of Maine. By characterising the V6 through V8 region of the 16S rRNA gene, we compared the bacterial community composition and diversity in three distinct anatomical regions with predicted involvement in prey capture (sphere), support (axis) and benthic substrate attachment (root). A high abundance of Tenacibaculum, a known siderophore producing bacterial genus, was present in all anatomical regions and specimens. The abundance of Colwellia and Roseobacter was greater in sphere and axis samples, and bacteria from the hydrocarbon-degrading Robiginitomaculum genus were most abundant in the root. This first description of the bacterial community associated with C. grandis provides novel insights into the contribution of bacteria to the carnivorous lifestyle while laying foundations for future cladorhizid symbiosis studies. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Bacterial communities associated with white shrimp (Litopenaeus vannamei larvae at early developmental stages

    Directory of Open Access Journals (Sweden)

    ANTONIUS SUWANTO

    2010-04-01

    Full Text Available Bacterial communities associated with white shrimp (Litopenaeus vannamei larvae at early developmental stages. Biodiversitas 11 (2: 65-68.Terminal Restriction Fragment Length Polymorphism (T-RFLP was used to monitor the dynamics of the bacterial communities associated with early developmental stages of white shrimp (Litopenaeus vannamei larvae. Samples for analysis were egg, hatching nauplii, 24 hours old nauplii, and 48 hours old nauplii which were collected from one cycle of production at commercial hatchery. T-RFLP results indicated that the bacterial community associated with early stages of shrimp development might be transferred vertically from broodstock via egg. There was no significant difference between bacterial communities investigated, except the bacterial community of 48 hours old nauplii. Diversity analyses showed that the bacterial community of egg had the highest diversity and evenness, meanwhile the bacterial community of 48 hours old nauplii had the lowest diversity. Nine phylotypes were found at all stages with high abundance. Those TRFs were identified as γ- proteobacteria, α-proteobacteria, and bacteroidetes group.

  2. Diversity and spatial heterogeneity of mangrove associated sponges of Curaçao and Aruba

    OpenAIRE

    Hunting, E.R.; van Soest, R.W.M.; van der Geest, H.G.; Vos, A.; Debrot, A.O.

    2008-01-01

    Sponges are major epibionts of mangrove roots in the Caribbean. Mangrove sponge communities in the Caribbean mainly consist of species that are typical to this habitat and community compositions often differ from those found on coral reefs nearby. Heterogeneity in species distributions between locations and within locations between roots is often reported. This study quantifi es the diversity and abundance of mangrove associated sponges in the inner bays of Curaçao and Aruba and correlates va...

  3. Sponges-Cyanobacteria associations: Global diversity overview and new data from the Eastern Mediterranean

    Science.gov (United States)

    Konstantinou, Despoina; Gerovasileiou, Vasilis; Voultsiadou, Eleni

    2018-01-01

    Sponge-cyanobacteria associations have attracted research interest from an ecological, evolutionary and biotechnological perspective. Current knowledge is, in its majority, “hidden” in metagenomics research studying the entire microbial communities of sponges, while knowledge on these associations is totally missing for certain geographic areas. In this study, we (a) investigated the occurrence of cyanobacteria in 18 sponge species, several of which are studied for the first time for their cyanobionts, from a previously unexplored eastern Mediterranean ecoregion, the Aegean Sea, (b) isolated sponge-associated cyanobacteria, and characterized them based on a polyphasic (morphological-morphometric and molecular phylogenetic analysis) approach, and (c) conducted a meta-analysis on the global diversity of sponge species hosting cyanobacteria, as well as the diversity of cyanobacterial symbionts. Our research provided new records for nine sponge species, previously unknown for this association, while the isolated cyanobacteria were found to form novel clades within Synechococcus, Leptolyngbyaceae, Pseudanabaenaceae, and Schizotrichaceae, whose taxonomic status requires further investigation; this is the first report of a Schizotrichaceae cyanobacterium associated with sponges. The extensive evaluation of the literature along with the new data from the Aegean Sea raised the number of sponge species known for hosting cyanobacteria to 320 and showed that the cyanobacterial diversity reported from sponges is yet underestimated. PMID:29596453

  4. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We

  5. Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues.

    Science.gov (United States)

    Gao, Zhao-Ming; Wang, Yong; Lee, On On; Tian, Ren-Mao; Wong, Yue Him; Bougouffa, Salim; Batang, Zenon; Al-Suwailem, Abdulaziz; Lafi, Feras F; Bajic, Vladimir B; Qian, Pei-Yuan

    2014-10-01

    Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species "Candidatus Synechococcus spongiarum," were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.

  6. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  7. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  8. Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria.

    Science.gov (United States)

    Lavy, Adi; Keren, Ray; Haber, Markus; Schwartz, Inbar; Ilan, Micha

    2014-02-01

    In recent years new approaches have emerged for culturing marine environmental bacteria. They include the use of novel culture media, sometimes with very low-nutrient content, and a variety of growth conditions such as temperature, oxygen levels, and different atmospheric pressures. These approaches have largely been neglected when it came to the cultivation of sponge-associated bacteria. Here, we used physiological and environmental conditions to reflect the environment of sponge-associated bacteria along with genomic data of the prominent sponge symbiont Candidatus Poribacteria sp. WGA-4E, to cultivate bacteria from the Red Sea sponge Theonella swinhoei. Designing culturing conditions to fit the metabolic needs of major bacterial taxa present in the sponge, through a combined use of diverse culture media compositions with aerobic and microaerophilic states, and addition of antibiotics, yielded higher diversity of the cultured bacteria and led to the isolation of novel sponge-associated and sponge-specific bacteria. In this work, 59 OTUs of six phyla were isolated. Of these, 22 have no close type strains at the species level (< 97% similarity of 16S rRNA gene sequence), representing novel bacteria species, and some are probably new genera and even families. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Pyrosequencing Reveals the Microbial Communities in the Red Sea Sponge Carteriospongia foliascens and Their Impressive Shifts in Abnormal Tissues

    KAUST Repository

    Gao, Zhaoming

    2014-04-24

    Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species “Candidatus Synechococcus spongiarum,” were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.

  10. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  11. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  12. Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Science.gov (United States)

    Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.

    2012-01-01

    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320

  13. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.

    Science.gov (United States)

    Loh, Tse-Lynn; Pawlik, Joseph R

    2014-03-18

    Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.

  14. Soil bacterial community shifts associated with sugarcane straw removal

    Science.gov (United States)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    driver of bacterial community variation in sugarcane areas with straw removal and the bacterial community showed clusters according to the sampling date: early sampling (0 and 4 months) and late sampling (8 and 12 months). Alterations on the straw composition over the decomposition process is associated with these shifts on material community among the sampling date. Moreover, the rates of straw removal separated the bacterial community in two groups: high (75 and 100% of straw removal) and low (50% and no straw removal) rates of straw removal. This pattern could be attributed to differences in the soil environment (humidity and temperature), a strong driver of shifts on bacterial community. In conclusion, the bacterial community was affected by the time since the straw removal and by the rates of straw removal. Finally, both straw removal management and soil quality should be carefully evaluated, in order to maintain the sustainability of 2G sugarcane ethanol production in Brazil.

  15. Screening of Antibacterial MDR derived from Sponge Associated Fungus of Riung Water, Nusa Tenggara Timur

    Directory of Open Access Journals (Sweden)

    Khoeruddin Wittriansyah

    2016-12-01

    Full Text Available Marine sponge-associated fungi are the sources of bioactive compounds with various pharmacologicals potency. This study aimed to isolate the sponge-associated fungi as the producer of the MDR anti-bacterial compounds.  The associated fungi were isolated from the sponges collected from Riung water, Nusa Tenggara Timur. Five of the best isolates were cultured on MEA to obtain the methanolic extract for further studies.  The antagonistic test was conducted using overlay method towards the MDR Staphylococcus aureus and Escherichia coli. A total of 33 fungi were isolated from 19 sponge specimens. The antagonistic test showed that 19 isolates were active against both S. aureus and E. coli, and 13 of them were merely active against one of the bacteria. However, only five isolates have strong activity against one or both of the bacteria.  The KN-15-3 had the strongest activity against S. aureus (18.75±0.777mm and E. coli (15.10±0.141mm at the concentration of 400 μg.disc-1 so it can be developed further as a source of drug candicate.   Keywords: Fungi symbiont, Sponges, MDR Antibacterial, Staphylococcus aureus,  Escherichia coli.

  16. Analysis of the nitrifying bacterial community in BioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes.

    Science.gov (United States)

    Chae, Kyu-Jung; Rameshwar, T; Jang, Am; Kim, Sung H; Kim, In S

    2008-09-01

    There is growing interest in the development of more cost-effective and retrofit technologies for the upgrade and expansion of existing wastewater treatment plants with extreme space constraints. A free-floating sponge media (BioCube) process, using a 24 L lab scale reactor, was operated to study the nitrification profiles and microbial community. The COD removal efficiencies were maintained, at an average of 95%, with the mixed liquor suspended solids (MLSS) inside the BioCube sponge media maintained at 12,688 mg/L. The nitrification removal efficiencies were between 92% and 100%, with an average value of 99%. From the results of microelectrode measurements, the ammonium ion concentration was found to rapidly decrease from the surface of the BioCube sponge media to a depth of 2mm due to chemical reactions carried out by ammonia oxidizing bacteria (AOB) species. Multi-fluorescence in situ hybridization (FISH) has been used to investigate the spatial distributions of various microbial activities within reactors. Microbial communities were targeted using different oligonucleotide probes specific to AOB and nitrite oxidizing bacteria (NOB). There were a large number of AOB populations, but these were not uniformly distributed in the biofilm compared to the NOB populations.

  17. Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review.

    Science.gov (United States)

    Hardoim, Cristiane C P; Costa, Rodrigo

    2014-09-30

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species-the vast majority of which are difficult to cultivate-and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  18. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Directory of Open Access Journals (Sweden)

    Cristiane C. P. Hardoim

    2014-09-01

    Full Text Available Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  19. Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea

    KAUST Repository

    Kandler, Nora

    2015-12-01

    Between 33 and 91 percent of marine species are currently undescribed, with the majority occurring in tropical and offshore environments. Sponges act as important microhabitats and promote biodiversity by harboring a wide variety of macrofauna and microbiota, but little is known about the relationships between the sponges and their symbionts. This study uses DNA barcoding to examine the macrofaunal communities associated with sponges of the central Saudi Arabian Red Sea, a drastically understudied ecosystem with high biodiversity and endemism. In total, 185 epifaunal and infaunal operational taxonomic units (OTUs) were distinguished from the 1399 successfully-sequenced macrofauna individuals from 129 sponges representing seven sponge species, one of which (Stylissa carteri) was intensively studied. A significant difference was found in the macrofaunal community composition of Stylissa carteri along a cross-shelf gradient using relative OTU abundance (Bray-Curtis diversity index). The abundance of S. carteri also follows a cross-shelf gradient, increasing with proximity to shore. The difference in macrofaunal communities of several species of sponges at one location was found to be significant as well, using OTU presence (binary Jaccard diversity index). Four of the seven sponge species collected were dominated by a single annelid OTU, each unique to one sponge species. A fifth was dominated by four arthropod OTUs, all species-specific as well. Region-based diversity differences may be attributed to environmental factors such as reef morphology, water flow, and sedimentation, whereas species-based differences may be caused by sponge morphology, microbial abundances, and chemical defenses. As climate change and ocean acidification continue to modify coral reef ecosystems, understanding the ecology of sponges and their role as microhabitats may become more important. This thesis also includes a supplemental document in the form of a spreadsheet showing the number of

  20. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea

    KAUST Repository

    Moitinho-Silva, Lucas

    2013-08-20

    Marine sponges are generally classified as high microbial abundance (HMA) and low microbial abundance (LMA) species. Here, 16S rRNA amplicon sequencing was applied to investigate the diversity, specificity and transcriptional activity of microbes associated with an LMA sponge (Stylissa carteri), an HMA sponge (Xestospongia testudinaria) and sea water collected from the central Saudi Arabia coast of the Red Sea. Altogether, 887 068 denoised sequences were obtained, of which 806 661 sequences remained after quality control. This resulted in 1477 operational taxonomic units (OTUs) that were assigned to 27 microbial phyla. The microbial composition of S. carteri was more similar to that of sea water than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly sea water sequences (~24%) than the X. testudinaria data set (~6%). The most abundant OTUs were shared between all three sources (S. carteri, X. testudinaria, sea water), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. The X. testudinaria-specific bacterial taxa were similar to those already described for this species. A set of S. carteri-specific bacterial taxa related to Proteobacteria and Nitrospira was identified, which are likely permanently associated with S. carteri. The transcriptional activity of sponge-associated microorganisms correlated well with their abundance. Quantitative PCR revealed the presence of Poribacteria, representing typical sponge symbionts, in both sponge species and in sea water; however, low transcriptional activity in sea water suggested that Poribacteria are not active outside the host context. © 2013 John Wiley & Sons Ltd.

  1. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy.

    Science.gov (United States)

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin; Lamendella, Regina

    2016-06-15

    Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial

  2. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    Science.gov (United States)

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Bacterial Diversity Associated with the Coccolithophorid Algae Emiliania huxleyi and Coccolithus pelagicus f. braarudii

    Directory of Open Access Journals (Sweden)

    David H. Green

    2015-01-01

    Full Text Available Coccolithophores are unicellular calcifying marine phytoplankton that can form large and conspicuous blooms in the oceans and make significant contributions to oceanic carbon cycling and atmospheric CO2 regulation. Despite their importance, the bacterial diversity associated with these algae has not been explored for ecological or biotechnological reasons. Bacterial membership of Emiliania huxleyi and Coccolithus pelagicus f. braarudii cultures was assessed using cultivation and cultivation-independent methods. The communities were species rich compared to other phytoplankton cultures. Community analysis identified specific taxa which cooccur in all cultures (Marinobacter and Marivita. Hydrocarbon-degrading bacteria were found in all cultures. The presence of Acidobacteria, Acidimicrobidae, Schlegelella, and Thermomonas was unprecedented but were potentially explained by calcification associated with coccolith production. One strain of Acidobacteria was cultivated and is closely related to a marine Acidobacteria isolated from a sponge. From this assessment of the bacterial diversity of coccolithophores, a number of biotechnological opportunities are evident, from bioprospecting for novel taxa such as Acidobacteria to helping understand the relationship between obligate hydrocarbonoclastic bacteria occurrence with phytoplankton and to revealing bacterial taxa that have a specific association with algae and may be suitable candidates as a means to improve the efficiency of mass algal cultivation.

  4. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  5. The effect of antibiotics on associated bacterial community of stored product mites.

    Directory of Open Access Journals (Sweden)

    Jan Kopecky

    Full Text Available Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata. The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria.Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1 of diet for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor.The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.

  6. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    Science.gov (United States)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  7. Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Marie La Rivière

    Full Text Available BACKGROUND: Bacterial communities that are associated with tropical reef-forming corals are being increasingly recognized for their role in host physiology and health. However, little is known about the microbial diversity of the communities associated with temperate gorgonian corals, even though these communities are key structural components of the ecosystem. In the Northwestern Mediterranean Sea, gorgonians undergo recurrent mass mortalities, but the potential relationship between these events and the structure of the associated bacterial communities remains unexplored. Because microbial assemblages may contribute to the overall health and disease resistance of their host, a detailed baseline of the associated bacterial diversity is required to better understand the functioning of the gorgonian holobiont. METHODOLOGY/PRINCIPAL FINDINGS: The bacterial diversity associated with the gorgonian Paramuricea clavata was determined using denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism and the construction of clone libraries of the bacterial 16S ribosomal DNA. Three study sites were monitored for 4 years to assess the variability of communities associated with healthy colonies. Bacterial assemblages were highly dominated by one Hahellaceae-related ribotype and exhibited low diversity. While this pattern was mostly conserved through space and time, in summer 2007, a deep shift in microbiota structure toward increased bacterial diversity and the transient disappearance of Hahellaceae was observed. CONCLUSION/SIGNIFICANCE: This is the first spatiotemporal study to investigate the bacterial diversity associated with a temperate shallow gorgonian. Our data revealed an established relationship between P. clavata and a specific bacterial group within the Oceanospirillales. These results suggest a potential symbiotic role of Hahellaceae in the host-microbe association, as recently suggested for tropical corals

  8. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events.

    Science.gov (United States)

    Sison-Mangus, Marilou P; Jiang, Sunny; Kudela, Raphael M; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6-65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12-86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  9. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events

    Directory of Open Access Journals (Sweden)

    Marilou P. Sison-Mangus

    2016-09-01

    Full Text Available Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6%-65% as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12%- 86% dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in 3 independent bloom events. Other

  10. Pyrosequencing reveals diverse microbial community associated with the zoanthid Palythoa australiae from the South China Sea.

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Li, Zhiyong

    2014-05-01

    Diverse sessile organisms inhabit the coral reef ecosystems, including corals, sponges, and sea anemones. In the past decades, scleractinian corals (Cnidaria, Anthozoa, Scleractinia) and their associated microorganisms have attracted much attention. Zoanthids (Cnidaria, Anthozoa, Zoanthidea) are commonly found in coral reefs. However, little is known about the community structure of zoanthid-associated microbiota. In this study, the microbial community associated with the zoanthid Palythoa australiae in the South China Sea was investigated by 454 pyrosequencing. As a result, 2,353 bacterial, 583 archaeal, and 36 eukaryotic microbial ribotypes were detected, respectively. A total of 22 bacterial phyla (16 formally described phyla and six candidate phyla) were recovered. Proteobacteria was the most abundant group, followed by Chloroflexi and Actinobacteria. High-abundance Rhizobiales and diverse Chloroflexi were observed in the bacterial community. The archaeal population was composed of Crenarchaeota and Euryarchaeota, with Marine Group I as the dominant lineage. In particular, Candidatus Nitrosopumilus dominated the archaeal community. Besides bacteria and archaea, the zoanthid harbored eukaryotic microorganisms including fungi and algae though their diversity was very low. This study provided the first insights into the microbial community associated with P. australiae by 454 pyrosequencing, consequently laid a basis for the understanding of the association of P. australiae-microbes symbioses.

  11. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    Science.gov (United States)

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity.

    Science.gov (United States)

    Vijayan, Vijitha; Jasmin, Chekidhenkuzhiyil; Anas, Abdulaziz; Parakkaparambil Kuttan, Sreelakshmi; Vinothkumar, Saradavey; Perunninakulath Subrayan, Parameswaran; Nair, Shanta

    2017-09-01

    Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml -1 ), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml -1 ) and MMRF 546 (30 mg ml -1 ). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC 50 -9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

  13. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Science.gov (United States)

    Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  14. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Directory of Open Access Journals (Sweden)

    Joseph R Pawlik

    Full Text Available Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down or by the availability of picoplankton to suspension-feeding sponges (bottom-up. We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth. There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  15. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  16. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    Science.gov (United States)

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were

  18. Deep Sequencing of Myxilla (Ectyomyxilla) methanophila, an Epibiotic Sponge on Cold-Seep Tubeworms, Reveals Methylotrophic, Thiotrophic, and Putative Hydrocarbon-Degrading Microbial Associations

    KAUST Repository

    Arellano, Shawn M.

    2012-10-11

    The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ13C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge. © 2012 Springer Science+Business Media New York.

  19. Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations.

    Science.gov (United States)

    Arellano, Shawn M; Lee, On On; Lafi, Feras F; Yang, Jiangke; Wang, Yong; Young, Craig M; Qian, Pei-Yuan

    2013-02-01

    The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ(13)C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge.

  20. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.

    Science.gov (United States)

    Slaby, Beate M; Hackl, Thomas; Horn, Hannes; Bayer, Kristina; Hentschel, Ute

    2017-11-01

    Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.

  1. Fossil and modern sponge fauna of southern Australia and adjacent regions compared: interpretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges

    NARCIS (Netherlands)

    Łukowiak, M.

    2016-01-01

    The late Eocene ‘soft’ sponge fauna of southern Australia is reconstructed based on disassociated spicules and is used to interpret the paleoecology and environmental context of shallow marine communities in this region. The reconstructed sponge association was compared with coeval sponge

  2. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    Science.gov (United States)

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  3. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    KAUST Repository

    Lee, O. O.

    2012-08-03

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  4. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  5. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs

    OpenAIRE

    Loh, Tse-Lynn; Pawlik, Joseph R.

    2014-01-01

    Chemical defenses are known to protect some species from consumers, but it is often difficult to detect this advantage at the community or ecosystem levels because of the complexity of abiotic and biotic factors that influence species abundances. We surveyed the community of sponges and sponge predators (angelfishes and parrotfishes) on coral reefs across the Caribbean ranging from heavily overfished sites to protected marine reserves. High predator abundance correlated with high abundance of...

  6. Diversity and spatial heterogeneity of mangrove associated sponges of Curaçao and Aruba

    NARCIS (Netherlands)

    Hunting, E.R.; van Soest, R.W.M.; van der Geest, H.G.; Vos, A.; Debrot, A.O.

    2008-01-01

    Sponges are major epibionts of mangrove roots in the Caribbean. Mangrove sponge communities in the Caribbean mainly consist of species that are typical to this habitat and community compositions often differ from those found on coral reefs nearby. Heterogeneity in species distributions between

  7. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  8. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast.

    Science.gov (United States)

    Santos, O C S; Soares, A R; Machado, F L S; Romanos, M T V; Muricy, G; Giambiagi-deMarval, M; Laport, M S

    2015-02-01

    Marine bacteria are a rich source of structurally unique natural compounds, several of which have shown a wide variety of biological activities. In this study, the metabolites present in the culture supernatants of the eight sponge-associated bacteria were extracted using ethyl acetate, and all extracts showed activity against Staphylococcus aureus. Subsequently, the extracts of the Pseudomonas fluorescens H40 and H41, and Pseudomonas aeruginosa H51 were subjected to solvent partitioning, and the active fractions were submitted to chromatographic separation. Three different active fractions were obtained, one of which was identified as diketopiperazine cyclo-(L-Leu-L-Pro). This substance was bactericidal for Staph. aureus and Ps. aeruginosa and showed cytotoxic activity against HEp-2 tumour cells. Putative gene fragments coding for the type I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) domains were PCR-amplified from five and three strains, respectively. The results suggest that sponge-associated bacteria analysed in this study may represent a potential source for production of antimicrobial substances against bacterial pathogens of medical importance. © 2014 The Society for Applied Microbiology.

  9. Mangrove-sponge associations: a possible role for tannins

    NARCIS (Netherlands)

    Hunting, E.R.; van der Geest, H.G.; Krieg, A.J.; van Mierlo, M.B.L.; van Soest, R.W.M.

    2010-01-01

    A positive correlation between sponge coverage and tannin concentrations in prop roots of Rhizophora mangle L. has previously been reported. However, the ecological role of tannins within the mangrove sponge association remains speculative. This study investigated whether tannins play a role in

  10. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas.

    Directory of Open Access Journals (Sweden)

    Rachael E Antwis

    Full Text Available Amphibians support symbiotic bacterial communities on their skin that protect against a range of infectious pathogens, including the amphibian chytrid fungus. The conditions under which amphibians are maintained in captivity (e.g. diet, substrate, enrichment in ex situ conservation programmes may affect the composition of the bacterial community. In addition, ex situ amphibian populations may support different bacterial communities in comparison to in situ populations of the same species. This could have implications for the suitability of populations intended for reintroduction, as well as the success of probiotic bacterial inoculations intended to provide amphibians with a bacterial community that resists invasion by the chytrid fungus. We aimed to investigate the effect of a carotenoid-enriched diet on the culturable bacterial community associated with captive red-eyed tree frogs (Agalychnis callidryas and make comparisons to bacteria isolated from a wild population from the Chiquibul Rainforest in Belize. We successfully showed carotenoid availability influences the overall community composition, species richness and abundance of the bacterial community associated with the skin of captive frogs, with A. callidryas fed a carotenoid-enriched diet supporting a greater species richness and abundance of bacteria than those fed a carotenoid-free diet. Our results suggest that availability of carotenoids in the diet of captive frogs is likely to be beneficial for the bacterial community associated with the skin. We also found wild A. callidryas hosted more than double the number of different bacterial species than captive frogs with very little commonality between species. This suggests frogs in captivity may support a reduced and diverged bacterial community in comparison to wild populations of the same species, which could have particular relevance for ex situ conservation projects.

  11. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  12. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy; Hughen, Konrad; Mincer, Tracy

    2013-01-01

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy

    2013-03-21

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  15. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  16. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    Marine sponges are hosts to dense and diverse microbial consortia that are likely to play a key role in the metabolic processes of the host sponge due to their enormous abundance. Common symbioses between nitrogen transforming microorganisms and sponges indicate complex nitrogen cycling within...... the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR....... An absolute quantification of functional genes and transcripts in archaeal and bacterial symbionts was conducted to determine their involvement in nitrification and denitrification, comparing the low microbial abundance (LMA) sponge Dysidea avara with the high microbial abundance (HMA) representative Aplysina...

  17. Isolation, Phylogenetic Analysis and Antibiotic Activity Screening of Red Sea Sponge-Associated Actinobacteria

    KAUST Repository

    Yang, Chen

    2013-06-01

    Infectious disease has always been and will continue to be a heavy burden on human society worldwide. Terrestrial actinobacteria, notable as a source of antibiotics, have been well investigated in the past. In constrast, marine actinobacteria, especially sponge-associated species, have received much less attention and isolates are sparse. With the aim of studying and discovering novel marine actinobacteria, 11 different species of sponges were collected from the Central Red Sea in Saudi Arabia and cultured with three different types of media. 16S rRNA gene-sequencing revealed that among all 75 isolated bacterial strains 13 belonged to the order actinomycetales. These 13 actinomycetes fall into four different families and can be assigned to six different genera. Antibiotic activity tests using disc diffusion assay were performed against Gram-positive bacteria (Bacillus sp.), Gram-negative bacteria (Escherichia coli), fungi (Fusarium sp.) and West Nile virus NS3 protease. Nine strains presented different level of bioactivity against these pathogens. These findings provide evidence that actinomycetes are presented in marine sponges and that they have the potential to be good candidates in the search for new effective antibiotic, antifungal, and antiviral compounds.

  18. First records of sponge-associated Actinomycetes from two coastal ...

    African Journals Online (AJOL)

    First records of sponge-associated Actinomycetes from two coastal sponges from Mauritius. Sandeep Shivram Beepat, Chandani Appadoo, Daniel Edgard Pierre Marie, Shamimtaz Bibi Sadally, Jose Pavao Mendes Paula, Kannan Sivakumar, Rashmi Ragothama Rao, Maryam Salah ...

  19. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Identification Sponges-Associated Fungi From Karimunjawa National Park

    Science.gov (United States)

    Trianto, Agus; Sabdono, Agus; Rochaddi, Baskoro; Wulan Triningsih, Desy; Seswita Zilda, Dewi

    2018-02-01

    Marine sponges are rich sources of bioactive substances with various pharmacological activities. Previous studies have shown that most bioactive compounds were originally produced by associated-microorganisms. Fungi associated with the marine sponges collected off Karimunjawa National Park were isolated and identified by morphological characteristics and molecular level analyses based on internal transcribed spacer (ITS) regions. A total of 2 isolates which were characterized, the fungi Penicillium spinulosum and Trichoderma virens have been revealed.

  1. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women

    Science.gov (United States)

    Brotman, Rebecca M.; Bradford, L. Latey; Conrad, Melissa; Gajer, Pawel; Ault, Kevin; Peralta, Ligia; Forney, Larry J.; Carlton, Jane M.; Abdo, Zaid; Ravel, Jacques

    2012-01-01

    Objectives Some vaginal bacterial communities are thought to prevent infection by sexually transmitted organisms. Prior work demonstrated that the vaginal microbiota of reproductive-age women cluster into five types of bacterial communities; 4 dominated by Lactobacillus species (L. iners, L. crispatus, L. gasseri, L. jensenii), and one (termed community state type (CST) IV) lacking significant numbers of lactobacilli and characterized by higher proportions of Atopobium, Prevotella, Parvimonas, Sneathia, Gardnerella, Mobiluncus, and other taxa. We sought to evaluate the relationship between vaginal bacterial composition and Trichomonas vaginalis. Methods Self-collected vaginal swabs were obtained cross-sectionally from 394 women equally representing four ethnic/racial groups. T. vaginalis screening was performed using PCR targeting the 18S rRNA and β-tubulin genes. Vaginal bacterial composition was characterized by pyrosequencing of barcoded 16S rRNA genes. A panel of eleven microsatellite markers was used to genotype T. vaginalis. The association between vaginal microbiota and T. vaginalis was evaluated by exact logistic regression. Results T. vaginalis was detected in 2.8% of participants (11/394). Of the eleven T. vaginalis-positive cases, eight (72%) were categorized as CST-IV, two (18%) as communities dominated by L. iners and one (9%) as L. crispatus-dominated (p-value:0.05). CST-IV microbiota were associated with an 8-fold increased odds of detecting T. vaginalis compared to women in the L. crispatus-dominated state (OR:8.26, 95% CI:1.07–372.65). Seven of the 11 T. vaginalis isolates were assigned to two genotypes. Conclusion T. vaginalis was associated with vaginal microbiota consisting of low proportions of lactobacilli and high proportions of Mycoplasma, Parvimonas, Sneathia, and other anaerobes. PMID:23007708

  2. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  3. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  4. Molecular profiling of rhizosphere bacterial communities associated with Prosopis juliflora and Parthenium hysterophorus.

    Science.gov (United States)

    Jothibasu, K; Chinnadurai, C; Sundaram, Sp; Kumar, K; Balachandar, Dananjeyan

    2012-03-01

    Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

  5. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  6. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  7. The role of coral-associated bacterial communities in Australian Subtropical White Syndrome of Turbinaria mesenterina.

    Science.gov (United States)

    Godwin, Scott; Bent, Elizabeth; Borneman, James; Pereg, Lily

    2012-01-01

    Australian Subtropical White Syndrome (ASWS) is an infectious, temperature dependent disease of the subtropical coral Turbinaria mesenterina involving a hitherto unknown transmissible causative agent. This report describes significant changes in the coral associated bacterial community as the disease progresses from the apparently healthy tissue of ASWS affected coral colonies, to areas of the colony affected by ASWS lesions, to the dead coral skeleton exposed by ASWS. In an effort to better understand the potential roles of bacteria in the formation of disease lesions, the effect of antibacterials on the rate of lesion progression was tested, and both culture based and culture independent techniques were used to investigate the bacterial communities associated with colonies of T. mesenterina. Culture-independent analysis was performed using the Oligonucleotide Fingerprinting of Ribosomal Genes (OFRG) technique, which allowed a library of 8094 cloned bacterial 16S ribosomal genes to be analysed. Interestingly, the bacterial communities associated with both healthy and disease affected corals were very diverse and ASWS associated communities were not characterized by a single dominant organism. Treatment with antibacterials had a significant effect on the rate of progress of disease lesions (p = 0.006), suggesting that bacteria may play direct roles as the causative agents of ASWS. A number of potential aetiological agents of ASWS were identified in both the culture-based and culture-independent studies. In the culture-independent study an Alphaproteobacterium closely related to Roseovarius crassostreae, the apparent aetiological agent of juvenile oyster disease, was found to be significantly associated with disease lesions. In the culture-based study Vibrio harveyi was consistently associated with ASWS affected coral colonies and was not isolated from any healthy colonies. The differing results of the culture based and culture-independent studies highlight the

  8. The role of coral-associated bacterial communities in Australian Subtropical White Syndrome of Turbinaria mesenterina.

    Directory of Open Access Journals (Sweden)

    Scott Godwin

    Full Text Available Australian Subtropical White Syndrome (ASWS is an infectious, temperature dependent disease of the subtropical coral Turbinaria mesenterina involving a hitherto unknown transmissible causative agent. This report describes significant changes in the coral associated bacterial community as the disease progresses from the apparently healthy tissue of ASWS affected coral colonies, to areas of the colony affected by ASWS lesions, to the dead coral skeleton exposed by ASWS. In an effort to better understand the potential roles of bacteria in the formation of disease lesions, the effect of antibacterials on the rate of lesion progression was tested, and both culture based and culture independent techniques were used to investigate the bacterial communities associated with colonies of T. mesenterina. Culture-independent analysis was performed using the Oligonucleotide Fingerprinting of Ribosomal Genes (OFRG technique, which allowed a library of 8094 cloned bacterial 16S ribosomal genes to be analysed. Interestingly, the bacterial communities associated with both healthy and disease affected corals were very diverse and ASWS associated communities were not characterized by a single dominant organism. Treatment with antibacterials had a significant effect on the rate of progress of disease lesions (p = 0.006, suggesting that bacteria may play direct roles as the causative agents of ASWS. A number of potential aetiological agents of ASWS were identified in both the culture-based and culture-independent studies. In the culture-independent study an Alphaproteobacterium closely related to Roseovarius crassostreae, the apparent aetiological agent of juvenile oyster disease, was found to be significantly associated with disease lesions. In the culture-based study Vibrio harveyi was consistently associated with ASWS affected coral colonies and was not isolated from any healthy colonies. The differing results of the culture based and culture-independent studies

  9. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  10. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  11. Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network.

    Science.gov (United States)

    Delafont, Vincent; Bouchon, Didier; Héchard, Yann; Moulin, Laurent

    2016-09-01

    Free-living amoebae (FLA) constitute an important part of eukaryotic populations colonising drinking water networks. However, little is known about the factors influencing their ecology in such environments. Because of their status as reservoir of potentially pathogenic bacteria, understanding environmental factors impacting FLA populations and their associated bacterial community is crucial. Through sampling of a large drinking water network, the diversity of cultivable FLA and their bacterial community were investigated by an amplicon sequencing approach, and their correlation with physicochemical parameters was studied. While FLA ubiquitously colonised the water network all year long, significant changes in population composition were observed. These changes were partially explained by several environmental parameters, namely water origin, temperature, pH and chlorine concentration. The characterisation of FLA associated bacterial community reflected a diverse but rather stable consortium composed of nearly 1400 OTUs. The definition of a core community highlighted the predominance of only few genera, majorly dominated by Pseudomonas and Stenotrophomonas. Co-occurrence analysis also showed significant patterns of FLA-bacteria association, and allowed uncovering potentially new FLA - bacteria interactions. From our knowledge, this study is the first that combines a large sampling scheme with high-throughput identification of FLA together with associated bacteria, along with their influencing environmental parameters. Our results demonstrate the importance of physicochemical parameters in the ecology of FLA and their bacterial community in water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission

    DEFF Research Database (Denmark)

    Sipkema, Detmer; de Caralt, Sònia; Morillo, Jose A

    2015-01-01

    Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission...... on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by PCR......-DGGE and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbor their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different...

  13. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2018-05-01

    The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real

  14. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    KAUST Repository

    Lee, O. O.; Yang, J.; Bougouffa, S.; Wang, Y.; Batang, Zenon B.; Tian, R.; Al-Suwailem, A.; Qian, P.-Y.

    2012-01-01

    -pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than

  15. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts

  16. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    Science.gov (United States)

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  17. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    Directory of Open Access Journals (Sweden)

    Petra Pop Ristova

    Full Text Available Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m, but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were

  18. Molecular assessment of the bacterial community associated with Cassava (Manihot esculenta Crantz) cultivation in Cameroon.

    Science.gov (United States)

    Sarr, Papa Saliou; Sugiyama, Akifumi; Begoude, Aime Didier Boyogueno; Yazaki, Kazufumi; Araki, Shigeru; Nawata, Eiji

    2017-04-01

    Bacterial communities play an important role in nutrient cycles and plant development. Their distribution and activity may depend on location and environmental heterogeneity. This study characterized soil bacterial communities in cassava fields of Eastern (Andom) and Southern (Bityili) Cameroon using molecular tools. In both sites, two improved varieties (TMS-96/1414; TMS-92/0326) and a local variety (Local) were grown in a randomized block design. Composite bulk soils were collected at 10months after planting from cassava plots. The 16S rDNA region was amplified, MiSeq was performed and sequence data analyzed. The same 17 bacterial phyla were present in both Andom and Bityili, while Chlorobi and Deinococcus-Thermus were only specific to Andom. The phyla Proteobacteria, Planctomycetes, Actinobacteria and Acidobacteria were dominant. Although both sites shared similar phyla, the principal coordinate analysis revealed significant variations in their composition, suggesting that the functions of the bacteria in nutrients cycling are likely to differ between Andom and Bityili. Cassava yields were generally higher in Andom which also displayed a higher diversity of bacterial communities. This study provides useful information on the composition of bacterial communities in cassava fields in two agro-ecologies of Cameroon. It constitutes to our knowledge the first report describing soil bacterial communities in association with cassava growth in the country, using molecular tools. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea.

    Science.gov (United States)

    Ding, Bo; Yin, Ying; Zhang, Fengli; Li, Zhiyong

    2011-08-01

    Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge-fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production.

  20. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  1. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables.

    Science.gov (United States)

    Jackson, Colin R; Randolph, Kevin C; Osborn, Shelly L; Tyler, Heather L

    2013-12-01

    Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Total culturable bacteria on salad vegetables ranged from 8.0 × 10(3) to 5.5 × 10(8) CFU g(-1). The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 10(3) to 5.8 × 10(5) CFU g(-1). Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by traditional

  2. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables

    Science.gov (United States)

    2013-01-01

    Background Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Results Total culturable bacteria on salad vegetables ranged from 8.0 × 103 to 5.5 × 108 CFU g-1. The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 103 to 5.8 × 105 CFU g-1. Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by

  3. Effects of food on bacterial community composition associated with the copepod Acartia tonsa Dana

    OpenAIRE

    Tang, Kam; Dziallas, Claudia; Hutalle-Schmelzer, Kristine; Grossart, Hans-Peter

    2009-01-01

    The estuarine copepod Acartia tonsa naturally carried diverse strains of bacteria on its body. The bacterial community composition (BCC) remained very conservative even when the copepod was fed different axenic algal species, indicating that the food per se did not much affect BCC associated with the copepod. In xenic algal treatments, however, copepod-associated BCC differed with each alga fed, even though the same bacterial source was used to inoculate the algae. In addition, starved copepo...

  4. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.

    Science.gov (United States)

    Nakashima, Yu; Egami, Yoko; Kimura, Miki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-01

    Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.

  5. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    Science.gov (United States)

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages.

    Science.gov (United States)

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria , mainly family Enterobacteriaceae , was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L . vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  7. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei Larvae and Rearing Water across Different Growth Stages

    Directory of Open Access Journals (Sweden)

    Yanfen Zheng

    2017-07-01

    Full Text Available Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy and growth stages (i.e., zoea, mysis, and early postlarvae periods were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85% in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  8. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil.

    Directory of Open Access Journals (Sweden)

    Behnoushsadat Ghodsalavi

    Full Text Available It is important to identify and recover bacteria associating with fungi under natural soil conditions to enable eco-physiological studies, and to facilitate the use of bacterial-fungal consortia in environmental biotechnology. We have developed a novel type of baiting microcosm, where fungal hyphae interact with bacteria under close-to-natural soil conditions; an advantage compared to model systems that determine fungal influences on bacterial communities in laboratory media. In the current approach, the hyphae are placed on a solid support, which enables the recovery of hyphae with associated bacteria in contrast to model systems that compare bulk soil and mycosphere soil. We used the baiting microcosm approach to determine, for the first time, the composition of the bacterial community associating in the soil with hyphae of the phosphate-solubilizer, Penicillium bilaii. By applying a cultivation-independent 16S rRNA gene-targeted amplicon sequencing approach, we found a hypha-associated bacterial community with low diversity compared to the bulk soil community and exhibiting massive dominance of Burkholderia OTUs. Burkholderia is known be abundant in soil environments affected by fungi, but the discovery of this massive dominance among bacteria firmly associating with hyphae in soil is novel and made possible by the current bait approach.

  9. Diazotrophic Bacterial Community of Degraded Pastures

    OpenAIRE

    João Tiago Correia Oliveira; Everthon Fernandes Figueredo; Williane Patrícia da Silva Diniz; Lucianne Ferreira Paes de Oliveira; Pedro Avelino Maia de Andrade; Fernando Dini Andreote; Júlia Kuklinsky-Sobral; Danúbia Ramos de Lima; Fernando José Freire

    2017-01-01

    Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN) of bacteria per gram ...

  10. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  11. Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes.

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    Full Text Available Environmental pressures, such as physical factors, diet and contaminants may affect interactions between microbial symbionts and their multicellular hosts. Despite obvious relevance, effects of antimicrobial contaminants on host-symbiont relations in non-target aquatic organisms are largely unknown. We show that exposure to antibiotics had negative effects on survival and juvenile development of the copepod Nitocra spinipes and caused significant alterations in copepod-associated bacterial communities. The significant positive correlations between indices of copepod development and bacterial diversity indicate that disruption of the microflora was likely to be an important factor behind retarded juvenile development in the experimental animals. Moreover, as evidenced by ribotype distribution in the bacterial clone libraries, the exposure to antibiotics caused a shift in dominance from Betaproteobacteria to Cardinium bacteria; the latter have been shown to cause reproductive manipulations in various terrestrial arthropods. Thus, in addition to providing evidence that the antibiotic-induced perturbation of the microbial community associates with reductions in fitness-related traits of the host, this study is the first record of a copepod serving as a host for endosymbiotic Cardinium. Taken together, our results suggest that (1 antimicrobial substances and possibly other stressors can affect micobiome and symbiont-mediated interactions in copepods and other hosts, and (2 Cardinium endosymbionts may occur in other copepods and affect reproduction of their hosts.

  12. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages

    OpenAIRE

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S r...

  13. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities.

    Science.gov (United States)

    Uroz, Stephane; Kelly, Laura Catherine; Turpault, Marie-Pierre; Lepleux, Cendrella; Frey-Klett, Pascale

    2015-12-01

    Soil is composed of a mosaic of different rocks and minerals, usually considered as an inert substrata for microbial colonization. However, recent findings suggest that minerals, in soils and elsewhere, favour the development of specific microbial communities according to their mineralogy, nutritive content, and weatherability. Based upon recent studies, we highlight how bacterial communities are distributed on the surface of, and in close proximity to, minerals. We also consider the potential role of the mineral-associated bacterial communities in mineral weathering and nutrient cycling in soils, with a specific focus on nutrient-poor and acidic forest ecosystems. We propose to define this microbial habitat as the mineralosphere, where key drivers of the microbial communities are the physicochemical properties of the minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora

    KAUST Repository

    Gao, Zhao-Ming

    2015-06-11

    Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.

  15. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat; Svenningsen, Nanna Bygvraa; Hao, Xiuli

    2017-01-01

    It is important to identify and recover bacteria associating with fungi under natural soil conditions to enable eco-physiological studies, and to facilitate the use of bacterial-fungal consortia in environmental biotechnology. We have developed a novel type of baiting microcosm, where fungal hyphae...... interact with bacteria under close-to-natural soil conditions; an advantage compared to model systems that determine fungal influences on bacterial communities in laboratory media. In the current approach, the hyphae are placed on a solid support, which enables the recovery of hyphae with associated...... bacteria in contrast to model systems that compare bulk soil and mycosphere soil. We used the baiting microcosm approach to determine, for the first time, the composition of the bacterial community associating in the soil with hyphae of the phosphate-solubilizer, Penicillium bilaii. By applying...

  16. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae)

    Science.gov (United States)

    Aaron S. Adams; Sandye M. Adams; Cameron R. Currie; Nancy E. Gillette; Kenneth F. Raffa

    2010-01-01

    Bacterial communities are known to play important roles in insect life histories, yet their consistency or variation across populations is poorly understood. Bacteria associated with the bark beetle Dendroctonus valens LeConte from eight populations, ranging from Wisconsin to Oregon, were evaluated and compared. We used the culture-independent technique of denaturing...

  17. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

    NARCIS (Netherlands)

    Steinert, Georg; Taylor, Michael W.; Deines, Peter; Simister, Rachel L.; Voogd, De Nicole J.; Hoggard, Michael; Schupp, Peter J.

    2016-01-01

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape

  18. Associations between bacterial communities of house dust and infant gut

    Energy Technology Data Exchange (ETDEWEB)

    Konya, T.; Koster, B. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Maughan, H. [Department of Cell and Systems Biology, University of Toronto (Canada); Escobar, M. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Azad, M. B. [Department of Pediatrics, University of Alberta (Canada); Guttman, D. S. [Department of Cell and Systems Biology, University of Toronto (Canada); Sears, M. R. [Department of Medicine, McMaster University (Canada); Becker, A. B. [University of Manitoba (Canada); Brook, J. R. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Environment Canada (Canada); Takaro, T. K. [Faculty of Health Science, Simon Fraser University (Canada); Kozyrskyj, A. L. [Department of Pediatrics, University of Alberta (Canada); Scott, J.A., E-mail: james.scott@utoronto.ca [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada)

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  19. Associations between bacterial communities of house dust and infant gut

    International Nuclear Information System (INIS)

    Konya, T.; Koster, B.; Maughan, H.; Escobar, M.; Azad, M.B.; Guttman, D.S.; Sears, M.R.; Becker, A.B.; Brook, J.R.; Takaro, T.K.; Kozyrskyj, A.L.; Scott, J.A.

    2014-01-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership

  20. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region.

    Science.gov (United States)

    Opelt, Katja; Berg, Christian; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-10-01

    Mosses represent ecological niches that harbor a hitherto largely uncharacterized microbial diversity. To investigate which factors affect the biodiversity of bryophyte-associated bacteria, we analyzed the bacterial communities associated with two moss species, which exhibit different ecological behaviors and importance in bog ecosystems, Sphagnum magellanicum and Sphagnum fallax, from six temperate and boreal bogs in Germany and Norway. Furthermore, their surrounding plant communities were studied. Molecular analysis of bacterial communities was determined by single-strand conformation polymorphism (SSCP) analysis using eubacterial and genus-specific primers for the dominant genera Burkholderia and Serratia as well as by sequence analysis of a Burkholderia 16S rRNA gene clone library. Plant communities were analyzed by monitoring the abundance and composition of bryophyte and vascular plant species, and by determining ecological indicator values. Interestingly, we found a high degree of host specificity for associated bacterial and plant communities of both Sphagnum species independent of the geographical region. Calculation of diversity indices on the basis of SSCP gels showed that the S. fallax-associated communities displayed a statistically significant higher degree of diversity than those associated with S. magellanicum. In contrast, analyses of plant communities of Sphagnum-specific habitats resulted in a higher diversity of S. magellanicum-specific habitats for all six sites. The higher content of nutrients in the S. fallax-associated ecosystems can explain higher diversity of microorganisms.

  1. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf

    Science.gov (United States)

    Kutti, Tina; Bannister, Raymond John; Fosså, Jan Helge

    2013-10-01

    Sponges within the 300 km2 Trænadypet coral MPA (Marine Protected Area) were mapped using photographic techniques. Three types of sponge communities were identified. The eastern side of the central circular depression was dominated by fan-shaped Phakellia ventilabrum sponges and further characterized by Mycale lingua and Oceanapia spp. sponges. Phakellia ventilabrum abundance (0.34 ind m-2) was positively correlated with the number of drop stones found. The western side of the depression was dominated by Geodia barretti, G. macandrewii and G. atlantica with an estimated average abundance of 0.40 ind m-2 and a biomass of 2.4 kg WW m-2. A third type of sponge community was found on both sides of the depression (in between the small scattered cold-water coral reefs constituting the MPA), which was characterized by Mycale lingua (0.20 ind m-2) and Oceanapia spp. (0.10 ind m-2), and which supported a high average Geodiidea biomass (1.6 kg WW m-2). The two last communities were both of the boreal ostur type and seemed to form continuous belts along the 2 km transects surveyed only interrupted by a few 15-30 m long empty patches. Within the MPA the average overall biomass of Geodiidea sponges was 1.8 kg WW m-2 and the overall sponge abundance was 1 ind m-2. Water pumping rates and respiration of Geodia barretti were measured, equating to 3000 l kg-1 DW day-1 and 1.5 μmol O2 g-1 DW h-1, respectively. Up-scaling this to the MPA as a whole suggests that the population of G. barretti alone could filter approximately 250 million m3 of water and consume 60 t of carbon daily. This demonstrates the important ecological function of sponges as nutrient vectors and points out the MPA as an ecologically significant area that should be carefully managed and monitored.

  2. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama.

    Science.gov (United States)

    Seemann, Janina; Yingst, Alexandra; Stuart-Smith, Rick D; Edgar, Graham J; Altieri, Andrew H

    2018-01-01

    Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.

  4. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama

    Directory of Open Access Journals (Sweden)

    Janina Seemann

    2018-03-01

    Full Text Available Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm, with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes and Gobiidae (gobies. Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.

  5. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina; Kamke, Janine; Hentschel, Ute

    2014-01-01

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four

  6. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  7. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  8. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    Science.gov (United States)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  9. Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan.

    Science.gov (United States)

    Chiou, Shu-Fen; Kuo, Jimmy; Wong, Tit-Yee; Fan, Tung-Yung; Tew, Kwee Siong; Liu, Jong-Kang

    2010-07-01

    The methods of denaturing gradient gel electrophoresis (DGGE) and DNA sequencing were used to analyze the ribotypes of microbial communities associated with corals. Both healthy and diseased coral of different species were collected at three locations off the southern coast of Taiwan. Ribotyping results suggested that the microbial communities were diverse. The microbial community profiles, even among the same species of corals from different geographical locations, differ significantly. The coral-associated bacterial communities contain many bacteria common to the habitants of various invertebrates. However, some bacteria were unexpected. The presence of some unusual species, such as Staphylococcus, Clostridium and Legionella, associated with corals that were likely the results of human activities. Human activities, such as thermal pollution from the nearby nuclear plant, active fishing and tourism industries in the region might have all contributed to the change in bacterial communities and the death of coral colonies around the region.

  10. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao; Wang, Yong; Bougouffa, Salim; Gao, Zhaoming; Cai, Lin; Bajic, Vladimir B.; Qian, Peiyuan

    2014-01-01

    coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome

  11. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  12. The bacterial community associated with rose-scented geranium (Pelargonium graveolens) leaves responds to anthracnose symptoms

    NARCIS (Netherlands)

    da Silva, Thais Freitas; Vollu, Renata Estebanez; Marques, Joana Montezano; Salles, Joana Falcao; Seldin, Lucy

    Background The fungus Colletotrichum is a plant pathogen that causes the anthracnose disease, resulting in huge losses in various crops including the rose-scented geranium (Pelargonium graveolens). Although the bacterial community associated with plants has an important role in the establishment of

  13. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  14. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    Science.gov (United States)

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  15. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  16. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  17. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  18. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Bolch, Christopher J S; Bejoy, Thaila A; Green, David H

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum , we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m -2 s -1 ). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  19. Polyketide Synthases in the Microbiome of the Marine Sponge Plakortis halichondrioides: A Metagenomic Update

    Directory of Open Access Journals (Sweden)

    Gerardo Della Sala

    2014-11-01

    Full Text Available Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively parallel 454 pyrosequencing of complex and heterogeneous PCR (Polymerase Chain Reaction products amplified from the metagenomic DNA of a specimen of P. halichondrioides collected in the Caribbean Sea. This was accompanied by a survey of the bacterial diversity within the sponge. In line with previous studies, sequences belonging to supA and swfA, two widespread sponge-specific groups of polyketide synthase (PKS genes were dominant. While they have been previously reported as belonging to Poribacteria (a novel bacterial phylum found exclusively in sponges, re-examination of current genomic sequencing data showed supA and swfA not to be present in the poribacterial genome. Several non-supA, non-swfA type-I PKS fragments were also identified. A significant portion of these fragments resembled type-I PKSs from protists, suggesting that bacteria may not be the only source of polyketides from P. halichondrioides, and that protistan PKSs should receive further investigation as a source of novel polyketides.

  20. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    Science.gov (United States)

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  1. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  2. Defining microbial community composition and seasonal variation in a sewage treatment plant in India using a down-flow hanging sponge reactor.

    Science.gov (United States)

    Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-05-01

    The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.

  3. Pyrosequencing Reveals the Microbial Communities in the Red Sea Sponge Carteriospongia foliascens and Their Impressive Shifts in Abnormal Tissues

    KAUST Repository

    Gao, Zhaoming; Wang, Yong; Lee, Onon; Tian, Renmao; Wong, Yuehim; Bougouffa, Salim; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Lafi, Feras Fawzi; Bajic, Vladimir B.; Qian, Peiyuan

    2014-01-01

    Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from

  4. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses.

    Science.gov (United States)

    Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-11-01

    High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.

  5. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas

  6. Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker

    NARCIS (Netherlands)

    Erpenbeck, D.J.G.; Breeuwer, J.A.J.; van der Velde, H.C.; van Soest, R.W.M.

    2002-01-01

    We present the first comparative phylogenetic analysis of a selected set of marine sponges and their bacterial associates. The Halichondrida for an important order in demosponge systematics and are of a particular interest due to the production of secondary metabolites. We sequenced a fragment of

  7. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur.

    Science.gov (United States)

    Tian, Ren-Mao; Sun, Jin; Cai, Lin; Zhang, Wei-Peng; Zhou, Guo-Wei; Qiu, Jian-Wen; Qian, Pei-Yuan

    2016-09-01

    Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Sponge Hologenome

    Science.gov (United States)

    Thomas, Torsten

    2016-01-01

    ABSTRACT A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont. PMID:27103626

  10. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  11. Microbial ecology of corals, sponges, and algae in mesophotic coral environments

    Science.gov (United States)

    Olson, Julie B.; Kellogg, Christina A.

    2010-01-01

    Mesophotic coral ecosystems that occur at depths from 30 to 200 m have historically been understudied and yet appear to support a diverse biological community. The microbiology of these systems is particularly poorly understood, especially with regard to the communities associated with corals, sponges, and algae. This lack of information is partly due to the problems associated with gaining access to these environments and poor reproducibility across sampling methods. To summarize what is known about the microbiology of these ecosystems and to highlight areas where research is urgently needed, an overview of the current state of knowledge is presented. Emphasis is placed on the characterization of microbial populations, both prokaryotic and eukaryotic, associated with corals, sponges, and algae and the factors that influence microbial community structure. In topic areas where virtually nothing is known from mesophotic environments, the knowledge pertaining to shallow-water ecosystems is summarized to provide a starting point for a discussion on what might be expected in the mesophotic zone.

  12. Spatial and temporal variation in sponge spicule patches at Station M, northeast Pacific.

    Science.gov (United States)

    Laguionie-Marchais, C; Kuhnz, L A; Huffard, C L; Ruhl, H A; Smith, K L

    Changes in habitat-forming organisms can have complex consequences for associated species. Sessile epibenthic glass "plate" sponges (Porifera: Hexactinellida) are conspicuous inhabitants of soft-sediment abyssal areas and their siliceous spicules create persistent spicule patches on the seafloor. Sponge spicule patch density, spatial dispersion, and percent cover were examined over a seven-year period (2006-2013) using remotely operated vehicle videos from Station M in the abyssal northeast Pacific (50˚00N, 123˚00W, ~4,000 m depth). There was an apparent large increase in newly dead plate sponges in February 2007 compared with December 2006, with this trend continuing through June 2007 (mean 0.03 % cover increasing to 0.33 %). A second increase in mean percent cover of dead plate sponges occurred from May 2011 (0.24 %) through June 2012 (0.60 %). Among the 28 megafaunal taxa occurring in association with the patches, the distributions of three taxa [two sponge taxa (Porifera) and brittle stars (Ophiuroidea)] suggested selectivity for the sponge spicule patches. The community structure of visible megafauna within sponge spicule patches was different when compared with that outside the patches suggesting that the sponges, after death, provide preferred habitat patches for certain benthic megafauna. These findings indicate that sponge spicule patches contribute to habitat heterogeneity in space and time.

  13. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  14. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  15. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks.

    Science.gov (United States)

    Kurilshikov, Alexander; Livanova, Natalya N; Fomenko, Nataliya V; Tupikin, Alexey E; Rar, Vera A; Kabilov, Marsel R; Livanov, Stanislav G; Tikunova, Nina V

    2015-01-01

    Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species), Rickettsia (I. persulcatus and D. reticulatus) and Francisella (D. reticulatus). B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002). Between-sex variation was confirmed by PERMANOVA testing in I. persulcatus (p = 0

  16. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila-associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.

  17. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario.

    Science.gov (United States)

    Ibsen, Michael; Fernando, Dinesh M; Kumar, Ayush; Kirkwood, Andrea E

    2017-05-01

    The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.

  18. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Characterization of the cyanobacteria and associated bacterial community from an ephemeral wetland in New Zealand.

    Science.gov (United States)

    Secker, Nick H; Chua, Jocelyn P S; Laurie, Rebecca E; McNoe, Les; Guy, Paul L; Orlovich, David A; Summerfield, Tina C

    2016-10-01

    New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices. We have characterized cyanobacteria from the Wairepo Kettleholes Conservation Area and their associated bacteria. Use of 16S rRNA amplicon sequencing identified several operational taxonomic units (OTUs) representing filamentous heterocystous and non-heterocystous cyanobacterial taxa. One Nostoc OTU that formed macroscopic colonies dominated the cyanobacterial community. A diverse bacterial community was associated with the Nostoc colonies, including a core microbiome of 39 OTUs. Identity of the core microbiome associated with macroscopic Nostoc colonies was not changed by the addition of nutrients. One OTU was highly represented in all Nostoc colonies (27.6%-42.6% of reads) and phylogenetic analyses identified this OTU as belonging to the genus Sphingomonas. Scanning electron microscopy showed the absence of heterotrophic bacteria within the Nostoc colony but revealed a diverse community associated with the colonies on the external surface. © 2016 Phycological Society of America.

  20. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2013-01-01

    Full Text Available Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03 and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23% presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%, insoluble phosphate solubilisation (61%, and ammonia production (70%. The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.

  1. Fungi found in Mediterranean and North Sea sponges: how specific are they?

    Directory of Open Access Journals (Sweden)

    Mohd Azrul Naim

    2017-09-01

    Full Text Available Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales, representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.

  2. Implications of Sponge Biodiversity Patterns for the Management of a Marine Reserve in Northern Australia.

    Directory of Open Access Journals (Sweden)

    Rachel Przeslawski

    Full Text Available Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF. We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1 Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2 Can environmental (depth, substrate hardness, slope or biogeographic (east vs west variables help explain local and regional differences in community structure? 3 Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west and mean slope (east only. These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies.

  3. Implications of Sponge Biodiversity Patterns for the Management of a Marine Reserve in Northern Australia

    Science.gov (United States)

    Przeslawski, Rachel; Alvarez, Belinda; Kool, Johnathan; Bridge, Tom; Caley, M. Julian; Nichol, Scott

    2015-01-01

    Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west) variables help explain local and regional differences in community structure? 3) Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west) and mean slope (east only). These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies. PMID:26606745

  4. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    Science.gov (United States)

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas

    KAUST Repository

    Hadaidi, Ghaida Ali Hassan

    2017-03-31

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.

  6. Treatment capability of an up-flow anammox column reactor using polyethylene sponge strips as biomass carrier.

    Science.gov (United States)

    Zhang, Li; Yang, Jiachun; Ma, Yongguang; Li, Zhigang; Fujii, Takao; Zhang, Wenjie; Takashi, Nishiyama; Furukawa, Kenji

    2010-07-01

    The feasibility of applying a polyethylene (PE) sponge as a biomass carrier in an anaerobic ammonium oxidation (anammox) reactor and its nitrogen removal performance were also investigated. Experiments were carried out in an up-flow column reactor with synthetic inorganic wastewater. Experimental results indicate that reactor containing PE sponge biomass carriers showed a high nitrogen removal capability and exhibited stable performance. In addition, the reactor with 8 strips PE sponge as biomass carrier exhibited greater adaptation capacity compared to that with 6 strips and could achieve a high TN removal rate within a very short period. The ratio of NO(2)-N removal and NO(3)-N production to NH(4)-N removal for the reactor was 1.26:0.21. Furthermore, to investigate the bacterial composition of the mature community, 16S rRNA sequences were amplified by PCR and analyses were conducted using DNA databases. Results showed that a new kind of anammox microorganism (Kumadai-1) was the dominant species in the reactor when using PE sponge as a biomass carrier. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Phylogenetic Analysis of Bacterial Communities in Different Regions of the Gastrointestinal Tract of Agkistrodon piscivorus, the Cottonmouth Snake.

    Directory of Open Access Journals (Sweden)

    Timothy J Colston

    Full Text Available Vertebrates are metagenomic organisms in that they are composed not only of their own genes but also those of their associated microbial cells. The majority of these associated microorganisms are found in the gastrointestinal tract (GIT and presumably assist in processes such as energy and nutrient acquisition. Few studies have investigated the associated gut bacterial communities of non-mammalian vertebrates, and most rely on captive animals and/or fecal samples only. Here we investigate the gut bacterial community composition of a squamate reptile, the cottonmouth snake, Agkistrodon piscivorus through pyrosequencing of the bacterial 16S rRNA gene. We characterize the bacterial communities present in the small intestine, large intestine and cloaca. Many bacterial lineages present have been reported by other vertebrate gut community studies, but we also recovered unexpected bacteria that may be unique to squamate gut communities. Bacterial communities were not phylogenetically clustered according to GIT region, but there were statistically significant differences in community composition between regions. Additionally we demonstrate the utility of using cloacal swabs as a method for sampling snake gut bacterial communities.

  8. Diversity, structure and convergent evolution of the global sponge microbiome

    Science.gov (United States)

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  9. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  10. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  11. Evidence for Vertical Transmission of Bacterial Symbionts from Adult to Embryo in the Caribbean Sponge Svenzea zeai

    KAUST Repository

    Lee, O. O.; Chui, P. Y.; Wong, Y. H.; Pawlik, J. R.; Qian, P.-Y.

    2009-01-01

    to progeny are largely unknown. In this study, both a 16S rRNA gene-based fingerprinting technique (denaturing gradient gel electrophoresis [DGGE]) and clone library analysis were applied to compare the bacterial communities associated with adults and embryos

  12. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks.

    Directory of Open Access Journals (Sweden)

    Alexander Kurilshikov

    Full Text Available Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species, Rickettsia (I. persulcatus and D. reticulatus and Francisella (D. reticulatus. B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002. Between-sex variation was confirmed by PERMANOVA testing in I

  13. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Vick-Majors, Trista J; Priscu, John C; Yao, Tandong; Kang, Shichang; Liu, Keshao; Cong, Ziyuang; Xiong, Jingbo; Li, Yang

    2017-06-01

    Cryoconite holes, water-filled pockets containing biological and mineralogical deposits that form on glacier surfaces, play important roles in glacier mass balance, glacial geochemistry and carbon cycling. The presence of cryoconite material decreases surface albedo and accelerates glacier mass loss, a problem of particular importance in the rapidly melting Tibetan Plateau. No studies have addressed the microbial community composition of cryoconite holes and their associated ecosystem processes on Tibetan glaciers. To further enhance our understanding of these glacial ecosystems on the Tibetan Plateau and to examine their role in carbon cycling as the glaciers respond to climate change, we explored the bacterial communities within cryoconite holes associated with three climatically distinct Tibetan Plateau glaciers using Illumina sequencing of the V4 region of the 16S rRNA gene. Cryoconite bacterial communities were dominated by Cyanobacteria, Chloroflexi, Betaproteobacteria, Bacteroidetes and Actinobacteria. Cryoconite bacterial community composition varied according to their geographical locations, exhibiting significant differences among glaciers studied. Regional beta diversity was driven by the interaction between geographic distance and environmental variables; the latter contributed more than geographic distance to the variation in cryoconite microbial communities. Our study is the first to describe the regional-scale spatial variability and to identify the factors that drive regional variability of cryoconite bacterial communities on the Tibetan Plateau. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea, Antarctica

    Science.gov (United States)

    Kersken, Daniel; Göcke, Christian; Brandt, Angelika; Lejzerowicz, Franck; Schwabe, Enrico; Anna Seefeldt, Meike; Veit-Köhler, Gritta; Janussen, Dorte

    2014-10-01

    Due to their high abundance and large body size sponges have a central position in Antarctic zoobenthos, where they form the most extensive sponge grounds of the world. Though research on Antarctic benthos communities is quite established, research on sponge-associated infauna communities is scarce. We analyzed associated infauna of fifteen individuals of the sponge species Mycale (Oxymycale) acerata Kirkpatrick, 1907 (Demospongiae: Mycalina), Rossella antarctica Carter, 1872 and R. racovitzae Topsent, 1901 (both Hexactinellida: Lyssacinosida). Samples were collected from the deep Ekström Shelf at 602 m in the South-Eastern Weddell Sea, Antarctica, during the ANT XXIV-2 (SYSTCO I) expedition of RV Polarstern. The number of species, α- and β-diversity and the significantly different species composition of infauna communities related to sponge species were calculated, the latter via cluster analysis. The sponge-associated infauna consisted of five phyla: Foraminifera, Nematoda, Polychaeta, Mollusca and Arthropoda. In total 11,463 infaunal specimens were extracted and we found at least 76 associated species. Highest values of α-diversity were calculated for a sample of R. antarctica with a Shannon-Index of 1.84 and Simpson-Index of 0.72 respectively. Our results of the cluster-analysis show significant differences between infauna communities and a unique species composition for single sponge species. Polychaetes of the genus Syllis Lamarck, 1818 were numerous in M. acerata and genera like Pionosyllis Malmgren, 1867 and Cirratulus Lamarck, 1801 were numerous in R. antarctica. Individuals of the amphipod species Seba cf. dubia Schellenberg, 1926 were often found in R. antarctica and R. racovitzae while Colomastix fissilingua Schellenberg, 1926 was frequent in samples of M. acerata. Molluscs were present in M. acerata and R. antarctica but absent in R. racovitzae.

  15. Associations between vaginal pathogenic community and bacterial vaginosis in Chinese reproductive-age women.

    Directory of Open Access Journals (Sweden)

    Zongxin Ling

    Full Text Available BACKGROUND: Bacterial vaginosis (BV is one of the most common urogenital infections among women of reproductive age that represents shifts in microbiota from Lactobacillus spp. to diverse anaerobes. The aim of our study was to evalute the diagnostic values of Gardnerella, Atopobium, Eggerthella, Megasphaera typeI, Leptotrichia/Sneathia and Prevotella, defined as a vaginal pathogenic community for BV and their associations with vaginal pH and Nugent scores. METHODS AND FINDINGS: We investigated the vaginal pathogenic bacteria and Lactobacillus spp. with species-specific real-time quantitative PCR (qPCR in 50 BV-positive and 50 BV-negative Chinese women of reproductive age. Relative to BV-negative subjects, a siginificant decline in Lactobacillus and an obvious increase in bacteria in the vaginal pathogenic community were observed in BV-postive subjects (P<0.05. With the exception of Megasphaera typeI, other vaginal pathogenic bacteria were highly predictable for BV with a better sensitivity and specificity. The vaginal pathogenic community was positively associated with vaginal pH and Nugent scores, while Lactobacillus spp., such as L. iners and L. crispatus was negatively associated with them (P<0.05. CONCLUSIONS: Our data implied that the prevalance of vaginal pathogenic bacteria as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Vaginal microbiota shifts, especially the overgrowth of the vaginal pathogenic community, showed well diagnostic values in predicting BV. Postive correlations between those vaginal pathogenic bacteria and vaginal pH, Nugent score indicated the vaginal pathogenic community rather than a single vaginal microorganism, was participated in the onset of BV directly.

  16. Bacterial communities associated with three Brazilian endemic reef corals (Mussismilia spp.) in a coastal reef of the Abrolhos shelf

    Science.gov (United States)

    de Castro, Alinne Pereira; Araújo, Samuel Dias; Reis, Alessandra M. M.; Pompeu, Maira; Hatay, Mark; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo B.; Thompson, Fabiano L.; Krüger, Ricardo H.

    2013-11-01

    The diversity of bacterial communities associated with three Brazilian endemic reef corals from genus Mussismilia (M. hispida, M. braziliensis, and M. harttii) at a single site was assessed using 16S rRNA clone libraries. The study site, Pedra do Leste, is a coastal reef within the largest and richest South Atlantic coralline reef complex (Abrolhos Bank) and is subject to high fishing pressure, high sedimentation loads, and other land-based stressors. The three coral species are Neogene relicts with unique biological and morphological traits that enable them to survive relatively high sedimentation levels. Our results show that sequences affiliated with γ-Proteobacteria predominated, accounting for more than 60% of the examined sequences. Indeed, the most frequent species were related to Alteromonas, Marinomonas, Neptuniibacter, and Vibrio, which are copiotrophic microorganisms common in environments highly affected by anthropogenic stress. Principal component analysis revealed that bacterial communities of M. braziliensis and M. hispida were more similar to each other than to M. harttii-associated bacteria. Such pattern is likely related to distinct morphological properties of M. harttii, such as the existence of phaceloid colonies, in which polyps are not connected by soft tissue. This is the first investigation assessing the bacterial communities of the three Brazilian endemic Mussismilia species at the same location.

  17. Unexpected diversity and new species in the sponge-Parazoanthidae association in southern Japan

    KAUST Repository

    Montenegro, Javier; Sinniger, Frederic; Reimer, James Davis

    2015-01-01

    © 2015 Elsevier Inc. Currently the genera Parazoanthus (family Parazoanthidae) and Epizoanthus (family Epizoanthidae) are the only sponge-associated zoantharians (Cnidaria, Anthozoa). The Parazoanthidae-sponge associations are widely distributed in tropical and subtropical waters from the intertidal to the deep sea in the Atlantic and Indo-Pacific Oceans. However, the taxonomic identification of both parties is often confused due to variable morphology and wide ecological ranges. In particular, Parazoanthidae species diversity remains poorly understood in the Indo-Pacific. In the present study, the diversity of the sponge-zoanthid association in the Indo-Pacific was investigated with 71 Parazoanthidae specimens collected from 29 different locations in Japan (n= 22), Australia (n= 6) and Florida, USA (n= 1). For all specimens morphological analyses were performed and total DNA was extracted and amplified for four DNA markers (COI-mtDNA, mt 16S-rDNA, ITS-rDNA and ALG11-nuDNA). The combined data demonstrate that the specimens of this study are clearly different from those of all described Parazoanthus species, and lead us to erect Umimayanthus gen. n., within family Parazoanthidae, containing the three newly described species U. chanpuru sp. n., U. miyabi sp. n., U. nakama sp. n. The new genus also includes the previously described species U. parasiticus (Duchassaing and Michelotti, 1860; comb. nov.), previously belonging to the genus Parazoanthus. Neighbor joining, maximum likelihood and Bayesian posterior probability phylogenetic trees clearly demonstrate the monophyly of Umimayanthus gen. n. to the exclusion of all outgroup sequences. The phylogenetic results were also compared to morphological features, and polyp sizes, amount of sand content in tissues, types of connections between polyps, and cnidae data, in particular holotrichs-1, were useful in distinguishing the different species within this new genus. This new genus can be distinguished from all other

  18. Unexpected diversity and new species in the sponge-Parazoanthidae association in southern Japan.

    Science.gov (United States)

    Montenegro, Javier; Sinniger, Frederic; Reimer, James Davis

    2015-08-01

    Currently the genera Parazoanthus (family Parazoanthidae) and Epizoanthus (family Epizoanthidae) are the only sponge-associated zoantharians (Cnidaria, Anthozoa). The Parazoanthidae-sponge associations are widely distributed in tropical and subtropical waters from the intertidal to the deep sea in the Atlantic and Indo-Pacific Oceans. However, the taxonomic identification of both parties is often confused due to variable morphology and wide ecological ranges. In particular, Parazoanthidae species diversity remains poorly understood in the Indo-Pacific. In the present study, the diversity of the sponge-zoanthid association in the Indo-Pacific was investigated with 71 Parazoanthidae specimens collected from 29 different locations in Japan (n=22), Australia (n=6) and Florida, USA (n=1). For all specimens morphological analyses were performed and total DNA was extracted and amplified for four DNA markers (COI-mtDNA, mt 16S-rDNA, ITS-rDNA and ALG11-nuDNA). The combined data demonstrate that the specimens of this study are clearly different from those of all described Parazoanthus species, and lead us to erect Umimayanthus gen. n., within family Parazoanthidae, containing the three newly described species U. chanpuru sp. n., U. miyabi sp. n., U. nakama sp. n. The new genus also includes the previously described species U. parasiticus (Duchassaing and Michelotti, 1860; comb. nov.), previously belonging to the genus Parazoanthus. Neighbor joining, maximum likelihood and Bayesian posterior probability phylogenetic trees clearly demonstrate the monophyly of Umimayanthus gen. n. to the exclusion of all outgroup sequences. The phylogenetic results were also compared to morphological features, and polyp sizes, amount of sand content in tissues, types of connections between polyps, and cnidae data, in particular holotrichs-1, were useful in distinguishing the different species within this new genus. This new genus can be distinguished from all other Zoantharia by a unique and

  19. Unexpected diversity and new species in the sponge-Parazoanthidae association in southern Japan

    KAUST Repository

    Montenegro, Javier

    2015-08-01

    © 2015 Elsevier Inc. Currently the genera Parazoanthus (family Parazoanthidae) and Epizoanthus (family Epizoanthidae) are the only sponge-associated zoantharians (Cnidaria, Anthozoa). The Parazoanthidae-sponge associations are widely distributed in tropical and subtropical waters from the intertidal to the deep sea in the Atlantic and Indo-Pacific Oceans. However, the taxonomic identification of both parties is often confused due to variable morphology and wide ecological ranges. In particular, Parazoanthidae species diversity remains poorly understood in the Indo-Pacific. In the present study, the diversity of the sponge-zoanthid association in the Indo-Pacific was investigated with 71 Parazoanthidae specimens collected from 29 different locations in Japan (n= 22), Australia (n= 6) and Florida, USA (n= 1). For all specimens morphological analyses were performed and total DNA was extracted and amplified for four DNA markers (COI-mtDNA, mt 16S-rDNA, ITS-rDNA and ALG11-nuDNA). The combined data demonstrate that the specimens of this study are clearly different from those of all described Parazoanthus species, and lead us to erect Umimayanthus gen. n., within family Parazoanthidae, containing the three newly described species U. chanpuru sp. n., U. miyabi sp. n., U. nakama sp. n. The new genus also includes the previously described species U. parasiticus (Duchassaing and Michelotti, 1860; comb. nov.), previously belonging to the genus Parazoanthus. Neighbor joining, maximum likelihood and Bayesian posterior probability phylogenetic trees clearly demonstrate the monophyly of Umimayanthus gen. n. to the exclusion of all outgroup sequences. The phylogenetic results were also compared to morphological features, and polyp sizes, amount of sand content in tissues, types of connections between polyps, and cnidae data, in particular holotrichs-1, were useful in distinguishing the different species within this new genus. This new genus can be distinguished from all other

  20. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  1. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  2. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    Science.gov (United States)

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  3. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  4. The sponge microbiome project

    KAUST Repository

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L.; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P.; Feng, Guofang; Bell, James J.; Vicente, Jan; Bjö rk, Johannes R.; Montoya, Jose M.; Olson, Julie B.; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V.; Ilan, Micha; Taylor, Michael W.; Polymenakou, Paraskevi; Erwin, Patrick M.; Schupp, Peter J.; Simister, Rachel L.; Knight, Rob; Thacker, Robert W.; Costa, Rodrigo; Hill, Russell T.; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S.; Thomas, Torsten

    2017-01-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different

  5. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Directory of Open Access Journals (Sweden)

    Cintia P.J. Rua

    2014-06-01

    Full Text Available Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32, Bacillus (N = 26, Shewanella (N = 17, Pseudovibrio (N = 12, and Ruegeria (N = 8 were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

  6. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  7. Sponge systematics facing new challenges.

    Science.gov (United States)

    Cárdenas, P; Pérez, T; Boury-Esnault, N

    2012-01-01

    Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species

  8. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p geminata reduced survival (p geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p geminata, and may partly explain observed distribution patterns.

  9. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  10. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    Science.gov (United States)

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  11. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P floristic communities rhizospheres on their soil bacterial communities.

  12. Temporal variation of the gammaridean fauna (Crustacea, Amphipoda associated with the sponge Mycale angulosa (Porifera, Demospongiae in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Fernandes de Britto Costa

    Full Text Available ABSTRACTMarine sponges are advantageous microhabitats because of their complex architecture. The system of internal canals provides circulation of water and deposition of particulate organic matter, ensuring availability of food and shelter. Diminutive amphipods have little difficulty penetrating the spaces of sponges and remain in their aquiferous systems as one of the most abundant taxa in this association. This study evaluated the temporal variation of the gammaridean amphipod species associated with the sponge Mycale angulosa. Sponge samples were collected every three months over one year at Pontal da Cruz Beach, São Sebastião Channel, southeastern Brazil. The amphipod assembly varied over time, while the amphipod density and sponge biomass remained approximately constant. Six species contributed to the temporal variation infaunal composition, highlighting the importance of the natural history of each species.

  13. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  14. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians.

    Science.gov (United States)

    Martínez-García, Manuel; Díaz-Valdés, Marta; Antón, Josefa

    2010-03-01

    Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.

  15. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    van Overbeek, Leo; van Elsas, Jan Dirk

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Desiree, Merkur and transgenic Desiree line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  16. Bacterial communities of disease vectors sampled across time, space, and species.

    Science.gov (United States)

    Jones, Ryan T; Knight, Rob; Martin, Andrew P

    2010-02-01

    A common strategy of pathogenic bacteria is to form close associations with parasitic insects that feed on animals and to use these insects as vectors for their own transmission. Pathogens interact closely with other coexisting bacteria within the insect, and interactions between co-occurring bacteria may influence the vector competency of the parasite. Interactions between particular lineages can be explored through measures of alpha-diversity. Furthermore, general patterns of bacterial community assembly can be explored through measures of beta-diversity. Here, we use pyrosequencing (n=115,924 16S rRNA gene sequences) to describe the bacterial communities of 230 prairie dog fleas sampled across space and time. We use these communinty characterizations to assess interactions between dominant community members and to explore general patterns of bacterial community assembly in fleas. An analysis of co-occurrence patterns suggests non-neutral negative interactions between dominant community members (Pspace (phylotype-based: R=0.418, Pspace and time.

  17. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  18. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  19. Analysis of Metabolites and Carbon Balance in the Biofilteration of Cumene Using Loofa Sponge as Biofilter Media.

    Science.gov (United States)

    Shahi, Amrita; Rai, B N; Singh, R S

    2016-09-01

    A laboratory-scale biofilter study was performed to treat cumene-inoculated mixed culture of bacterial community and loofa sponge (Luffa cylindrica) as support media for a period of 120 days in five distinct phases. The removal efficiency was obtained in the range of 40-85 % with maximum elimination capacity of 700 g m(-3) h(-1) at the inlet load of 1167 g m(-3) h(-1). The result demonstrated that loofa sponge is good support media for the removal of cumene at higher loading rates. Loofa sponge was characterized via chemical analysis and analytical techniques such as XRD; FTIR; XPS; and CHN, and the result obtained confirms its suitability as biofilter media. The SEM results of loofa with inoculum shows the formation of a biofilm layer on the surface of loofa. The GC-MS analysis of leachate confirms the presence of different organic compounds such as acetaldehyde and 4-hydroxy-2-oxopentanoic acids which are stable metabolites during cumene biodegradation. About 12.69 % of carbon present in inlet cumene was converted to biomass.

  20. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  1. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    Science.gov (United States)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  2. Minerals in soil select distinct bacterial communities in their microhabitats.

    Science.gov (United States)

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (Ppermanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  3. The sponge microbiome project

    NARCIS (Netherlands)

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L.; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P.; Feng, Guofang; Bell, James J.; Vicente, Jan; Björk, Johannes R.; Montoya, Jose M.; Olson, Julie B.; Reveillaud, Julie; Steindler, Laura; Pineda, Mari Carmen; Marra, Maria V.; Ilan, Micha; Taylor, Michael W.; Polymenakou, Paraskevi; Erwin, Patrick M.; Schupp, Peter J.; Simister, Rachel L.; Knight, Rob; Thacker, Robert W.; Costa, Rodrigo; Hill, Russell T.; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S.; Thomas, Torsten

    2017-01-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the

  4. Bacterial Community Development in Experimental Gingivitis

    Science.gov (United States)

    Kistler, James O.; Booth, Veronica; Bradshaw, David J.; Wade, William G.

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1–V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344 267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  5. Bacterial community development in experimental gingivitis.

    Directory of Open Access Journals (Sweden)

    James O Kistler

    Full Text Available Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp, and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs per sample. Principal coordinates analysis (PCoA plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new

  6. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  7. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  8. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  9. Bacterial diversity among four healthcare-associated institutes in Taiwan.

    Science.gov (United States)

    Chen, Chang-Hua; Lin, Yaw-Ling; Chen, Kuan-Hsueh; Chen, Wen-Pei; Chen, Zhao-Feng; Kuo, Han-Yueh; Hung, Hsueh-Fen; Tang, Chuan Yi; Liou, Ming-Li

    2017-08-15

    Indoor microbial communities have important implications for human health, especially in health-care institutes (HCIs). The factors that determine the diversity and composition of microbiomes in a built environment remain unclear. Herein, we used 16S rRNA amplicon sequencing to investigate the relationships between building attributes and surface bacterial communities among four HCIs located in three buildings. We examined the surface bacterial communities and environmental parameters in the buildings supplied with different ventilation types and compared the results using a Dirichlet multinomial mixture (DMM)-based approach. A total of 203 samples from the four HCIs were analyzed. Four bacterial communities were grouped using the DMM-based approach, which were highly similar to those in the 4 HCIs. The α-diversity and β-diversity in the naturally ventilated building were different from the conditioner-ventilated building. The bacterial source composition varied across each building. Nine genera were found as the core microbiota shared by all the areas, of which Acinetobacter, Enterobacter, Pseudomonas, and Staphylococcus are regarded as healthcare-associated pathogens (HAPs). The observed relationship between environmental parameters such as core microbiota and surface bacterial diversity suggests that we might manage indoor environments by creating new sanitation protocols, adjusting the ventilation design, and further understanding the transmission routes of HAPs.

  10. Effects of remediation on the bacterial community of an acid mine drainage impacted stream.

    Science.gov (United States)

    Ghosh, Suchismita; Moitra, Moumita; Woolverton, Christopher J; Leff, Laura G

    2012-11-01

    Acid mine drainage (AMD) represents a global threat to water resources, and as such, remediation of AMD-impacted streams is a common practice. During this study, we examined bacterial community structure and environmental conditions in a low-order AMD-impacted stream before, during, and after remediation. Bacterial community structure was examined via polymerase chain reaction amplification of 16S rRNA genes followed by denaturing gradient gel electrophoresis. Also, bacterial abundance and physicochemical data (including metal concentrations) were collected and relationships to bacterial community structure were determined using BIO-ENV analysis. Remediation of the study stream altered environmental conditions, including pH and concentrations of some metals, and consequently, the bacterial community changed. However, remediation did not necessarily restore the stream to conditions found in the unimpacted reference stream; for example, bacterial abundances and concentrations of some elements, such as sulfur, magnesium, and manganese, were different in the remediated stream than in the reference stream. BIO-ENV analysis revealed that changes in pH and iron concentration, associated with remediation, primarily explained temporal alterations in bacterial community structure. Although the sites sampled in the remediated stream were in relatively close proximity to each other, spatial variation in community composition suggests that differences in local environmental conditions may have large impacts on the microbial assemblage.

  11. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  12. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  13. The Freshwater Sponge Ephydatia fluviatilis Harbours Diverse Pseudomonas Species (Gammaproteobacteria, Pseudomonadales) with Broad-Spectrum Antimicrobial Activity

    Science.gov (United States)

    Keller-Costa, Tina; Jousset, Alexandre; van Overbeek, Leo; van Elsas, Jan Dirk; Costa, Rodrigo

    2014-01-01

    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value. PMID:24533086

  14. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  15. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    Science.gov (United States)

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  16. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    Science.gov (United States)

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  17. Habitat preference of Zoantharia genera depends on host sponge morphology

    Directory of Open Access Journals (Sweden)

    Alberto Acosta

    2010-08-01

    Full Text Available Studies about sponge-zoanthid symbioses have been focused on understanding the specificity of the association, rather thantesting what are the characteristics that make the host suitable to be colonized. For the first time it is investigated whether the ZoanthariaParazoanthus and Epizoanthus preference is related to the host sponge morphology (shape and mechanical resistance. Materials andmethods. Sponges were categorized according to their shape and mechanical resistance. The presence/absence of zoanthids was recordedin 1,068 sponges at San Andres Island, and their habitat preference was evaluated using indices and confidence intervals. Results. 85Parazoanthus colonies (78% of the total associations and 24 Epizoanthus colonies (22% were associated to sponges (10.2% in total.Parazoanthus uses branched and compressible sponges although prefers encrusting and fragile sponges, while Epizoanthus showes theopposite pattern, it can inhabit encrusting and fragile sponges but prefers branched and compressible sponges. Conclusion. These resultsindicated that sponge morphology is an important trait in zoanthid habitat selection. On the other hand, the similarity in the habitat used byzoanthids suggests the possibility of inter-generic competition if common resources are limited in time and space, while the differentialhabitat preference allows the competitive coexistence of both genera.

  18. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef.

    Science.gov (United States)

    Säde, Elina; Penttinen, Katri; Björkroth, Johanna; Hultman, Jenni

    2017-04-01

    Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O 2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  20. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    Science.gov (United States)

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  1. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters

    NARCIS (Netherlands)

    Hardoim, C.C.P.; Costa, R.; Araujo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To

  2. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  3. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata

    Directory of Open Access Journals (Sweden)

    Sonny T.M. Lee

    2016-03-01

    Full Text Available It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont.

  4. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    Science.gov (United States)

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  5. Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kellogg, C.A.; Lisle, J.T.; Galkiewicz, J.P.

    2009-01-01

    Bacteria are recognized as an important part of the total biology of shallow-water corals. Studies of shallow-water corals suggest that associated bacteria may benefit the corals by cycling carbon, fixing nitrogen, chelating iron, and producing antibiotics that protect the coral from other microbes. Cold-water or deep-sea corals have a fundamentally different ecology due to their adaptation to cold, dark, high-pressure environments and as such have novel microbiota. The goal of this study was to characterize the microbial associates of Lophelia pertusa in the northeastern Gulf of Mexico. This is the first study to collect the coral samples in individual insulated containers and to preserve coral samples at depth in an effort to minimize thermal shock and evaluate the effects of environmental gradients on the microbial diversity of samples. Molecular analysis of bacterial diversity showed a marked difference between the two study sites, Viosca Knoll 906/862 (VK906/862) and Viosca Knoll 826 (VK826). The bacterial communities from VK826 were dominated by a variety of unknown mycoplasmal members of the Tenericutes and Bacteroidetes, whereas the libraries from VK906/862 were dominated by members of the Proteobacteria. In addition to novel sequences, the 16S rRNA gene clone libraries revealed many bacterial sequences in common between Gulf of Mexico Lophelia corals and Norwegian fjord Lophelia corals, as well as shallow-water corals. Two Lophelia-specific bacterial groups were identified: a cluster of gammaproteobacteria related to sulfide-oxidizing gill symbionts of seep clams and a group of Mycoplasma spp. The presence of these groups in both Gulf and Norwegian Lophelia corals indicates that in spite of the geographic heterogeneity observed in Lophelia-associated bacterial communities, there are Lophelia-specific microbes. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  6. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    Science.gov (United States)

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bacterial communities in sediment of a Mediterranean marine protected area.

    Science.gov (United States)

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  8. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  9. The Ecology of Microbial Communities Associated with Macrocystis pyrifera.

    Science.gov (United States)

    Michelou, Vanessa K; Caporaso, J Gregory; Knight, Rob; Palumbi, Stephen R

    2013-01-01

    Kelp forests are characterized by high biodiversity and productivity, and the cycling of kelp-produced carbon is a vital process in this ecosystem. Although bacteria are assumed to play a major role in kelp forest carbon cycling, knowledge of the composition and diversity of these bacterial communities is lacking. Bacterial communities on the surface of Macrocystis pyrifera and adjacent seawater were sampled at the Hopkins Marine Station in Monterey Bay, CA, and further studied using 454-tag pyrosequencing of 16S RNA genes. Our results suggest that M. pyrifera-dominated kelp forests harbor distinct microbial communities that vary temporally. The distribution of sequence tags assigned to Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the surface of the kelp and the surrounding water. Several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed considerable temporal variation, often with similar trends in the seawater and the surface of the kelp. Bacterial community structure and membership correlated with the kelp surface serving as host, and varied over time. Several kelp-specific taxa were highly similar to other bacteria known to either prevent the colonization of eukaryotic larvae or exhibit antibacterial activities. Some of these kelp-specific bacterial associations might play an important role for M. pyrifera. This study provides the first assessment of the diversity and phylogenetic profile of the bacterial communities associated with M. pyrifera.

  10. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    Science.gov (United States)

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  11. Evidence of Ash Tree (Fraxinus spp. Specific Associations with Soil Bacterial Community Structure and Functional Capacity

    Directory of Open Access Journals (Sweden)

    Michael P. Ricketts

    2018-04-01

    Full Text Available The spread of the invasive emerald ash borer (EAB across North America has had enormous impacts on temperate forest ecosystems. The selective removal of ash trees (Fraxinus spp. has resulted in abnormally large inputs of coarse woody debris and altered forest tree community composition, ultimately affecting a variety of ecosystem processes. The goal of this study was to determine if the presence of ash trees influences soil bacterial communities and/or functions to better understand the impacts of EAB on forest successional dynamics and biogeochemical cycling. Using 16S rRNA amplicon sequencing of soil DNA collected from ash and non-ash plots in central Ohio during the early stages of EAB infestation, we found that bacterial communities in plots with ash differed from those without ash. These differences were largely driven by Acidobacteria, which had a greater relative abundance in non-ash plots. Functional genes required for sulfur cycling, phosphorus cycling, and carbohydrate metabolism (specifically those which breakdown complex sugars to glucose were estimated to be more abundant in non-ash plots, while nitrogen cycling gene abundance did not differ. This ash-soil microbiome association implies that EAB-induced ash decline may promote belowground successional shifts, altering carbon and nutrient cycling and changing soil properties beyond the effects of litter additions caused by ash mortality.

  12. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    Directory of Open Access Journals (Sweden)

    Alica Chroňáková

    Full Text Available Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI and long-term impact (17 years; LTI, one is regenerating from cattle impact (REG and a control is unaffected by cattle (CON. Cattle manure (CMN, the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  13. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    Science.gov (United States)

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning. PMID:26274496

  14. Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia.

    Science.gov (United States)

    Balmonte, John Paul; Arnosti, Carol; Underwood, Sarah; McKee, Brent A; Teske, Andreas

    2016-01-01

    Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities

  15. Riverine bacterial communities reveal environmental disturbance signatures within the Betaproteobacteria and Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    John Paul Balmonte

    2016-09-01

    Full Text Available Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa versus land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2010, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- versus post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in

  16. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    Science.gov (United States)

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  17. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    Mineral phosphate solubilizing bacterial community in agro-ecosystem. N Saha, S Biswas. Abstract. The present communication deals with the assessment of phosphate solubilizing bacterial community structure across artificially created fertility gradient with regards to N, P and K status of soil in the experimental site.

  18. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  19. Characterizing the sponge grounds of Grays Canyon, Washington, USA

    Science.gov (United States)

    Powell, Abby N.; Clarke, M. Elizabeth; Fruh, Erica; Chaytor, Jason; Reiswig, Henry M.; Whitmire, Curt E.

    2018-01-01

    Deep-sea sponge grounds are relatively understudied ecosystems that may provide key habitats for a large number of fish and invertebrates including commercial species. Glass sponge grounds have been discovered from the tropics to polar regions but there are only a few places with high densities of dictyonine sponges. Dictyonine glass sponges have a fused skeleton, which stays intact when they die and in some areas the accumulation of successive generations of sponges leads to the formation of reefs. In 2010 and 2016, we surveyed an area near Grays Canyon in Washington, USA, where dense aggregations of glass sponges and potential sponge reefs were discovered in 2007. Our primary aims were to make a preliminary assessment of whether the glass sponges form reefs at this location, characterize the sponge assemblage present at this site and examine associations between the sponges and commercially important species. Multibeam mapping and sub-bottom profiling indicate that the glass sponges at this site do not form reefs and are mostly attached to hard substrates. Analysis of photographs collected by an autonomous underwater vehicle and samples collected by a remotely operated vehicle guided by telepresence revealed the presence of two abundant dictyonine sponge species at this site, Heterochone calyx and Aphrocallistes vastus (mean densities = 1.43 ± 0.057 per 10 m2, max = 24 per 10 m2). We also observed a large number of non-reef-building glass sponges and various demosponges including a potentially new species in the genus Acarnus. A diverse fish assemblage was recorded at this site including eight species of rockfish. Rockfish abundance was positively related to sponge abundance. Spot prawns (Pandalus platyceros) were also abundant and were strongly associated with sponges. Despite not finding sponge reefs, this is an ecologically significant area. Further research is necessary to determine the environmental factors that give rise to the abundance of large

  20. Bacterial community structure in the Cerasus sachalinensis Kom ...

    African Journals Online (AJOL)

    Jane

    2011-07-21

    Jul 21, 2011 ... The bacterial community structures of the Cerasus sachalinensis Kom. rhizosphere in wild and cultivated soil were studied and the community changes in different growth stages were analyzed by the PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method. The results showed that the bacterial ...

  1. Preliminary assessment of sponge biodiversity on Saba Bank, Netherlands Antilles.

    Directory of Open Access Journals (Sweden)

    Robert W Thacker

    Full Text Available BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.

  2. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  3. Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques.

    Science.gov (United States)

    Pantos, Olga; Bythell, John C

    2006-03-23

    Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.

  4. Bacteria From Marine Sponges: A Source of New Drugs.

    Science.gov (United States)

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge.

    Science.gov (United States)

    Ramsby, Blake D; Hoogenboom, Mia O; Whalan, Steve; Webster, Nicole S

    2018-04-01

    Bioeroding sponges break down calcium carbonate substratum, including coral skeleton, and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. However, elevated temperature can disrupt the functionally important microbial symbionts of some sponge species, often with adverse consequences for host health. Here, we provide the first detailed description of the microbial community of the bioeroding sponge Cliona orientalis and assess how the community responds to seawater temperatures incrementally increasing from 23°C to 32°C. The microbiome, identified using 16S rRNA gene sequencing, was dominated by Alphaproteobacteria, including a single operational taxonomic unit (OTU; Rhodothalassium sp.) that represented 21% of all sequences. The "core" microbial community (taxa present in >80% of samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic nitrogen metabolism may be a key function of the C. orientalis holobiont. The C. orientalis microbiome was generally stable at temperatures up to 27°C; however, a community shift occurred at 29°C, including changes in the relative abundance and turnover of microbial OTUs. Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that induced sponge bleaching, indicating that changes in the microbiome may play a role in the destabilization of the C. orientalis holobiont. C. orientalis failed to regain Symbiodinium or restore its baseline microbial community following bleaching, suggesting that the sponge has limited ability to recover from extreme thermal exposure, at least under aquarium conditions. © 2018 John Wiley & Sons Ltd.

  6. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage.

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Desmonts, Marie Hélène; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-05-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.

  7. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Hélène Desmonts, Marie; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-01-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota. PMID:25333463

  8. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2017-05-01

    Full Text Available Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM. However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%. At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core

  9. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    Science.gov (United States)

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  10. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    Directory of Open Access Journals (Sweden)

    Sonia Ciccazzo

    2014-01-01

    Full Text Available The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05 on 16S rRNA gene diversity revealed significant differences (P<0.05 between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  11. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    Science.gov (United States)

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  13. A novel filtering mutualism between a sponge host and its endosymbiotic bivalves.

    Science.gov (United States)

    Tsubaki, Remi; Kato, Makoto

    2014-01-01

    Sponges, porous filter-feeding organisms consisting of vast canal systems, provide unique substrates for diverse symbiotic organisms. The Spongia (Spongia) sp. massive sponge is obligately inhabited by the host-specific endosymbiotic bivalve Vulsella vulsella, which benefits from this symbiosis by receiving protection from predators. However, whether the host sponge gains any benefit from this association is unclear. Considering that the bivalves exhale filtered water into the sponge body rather than the ambient environment, the sponge is hypothesized to utilize water exhaled by the bivalves to circulate water around its body more efficiently. We tested this hypothesis by observing the sponge aquiferous structure and comparing the pumping rates of sponges and bivalves. Observations of water currents and the sponge aquiferous structure revealed that the sponge had a unique canal system enabling it to inhale water exhaled from bivalves, indicating that the host sponge adapted morphologically to receive water from the bivalves. In addition, the volume of water circulating in the sponge body was dramatically increased by the water exhaled from bivalves. Therefore, this sponge-bivalve association can be regarded as a novel mutualism in which two filter-feeding symbionts promote mutual filtering rates. This symbiotic association should be called a "filtering mutualism".

  14. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants ▿

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  15. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  16. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary.

    Science.gov (United States)

    Jiang, Peilin; Zhao, Shiye; Zhu, Lixin; Li, Daoji

    2018-05-15

    Plastic trash is common in oceans. Terrestrial and marine ecosystem interactions occur in the intertidal zone where accumulation of plastic frequently occurs. However, knowledge of the plastic-associated microbial community (the plastisphere) in the intertidal zone is scanty. We used high-throughput sequencing to profile the bacterial communities attached to microplastic samples from intertidal locations around the Yangtze estuary in China. The structure and composition of plastisphere communities varied significantly among the locations. We found the taxonomic composition on microplastic samples was related to their sedimentary and aquatic origins. Correlation network analysis was used to identify keystone bacterial genera (e.g. Rhodobacterales, Sphingomonadales and Rhizobiales), which represented important microbial associations within the plastisphere community. Other species (i.e. potential pathogens) were considered as hitchhikers in the plastic attached microbial communities. Metabolic pathway analysis suggested adaptations of these bacterial assemblages to the plastic surface-colonization lifestyle. These adaptations included reduced "cell motility" and greater "xenobiotics biodegradation and metabolism." The findings illustrate the diverse microbial assemblages that occur on microplastic and increase our understanding of plastisphere ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Seasonal variations and resilience of bacterial communities in a sewage polluted urban river.

    Directory of Open Access Journals (Sweden)

    Tamara García-Armisen

    Full Text Available The Zenne River in Brussels (Belgium and effluents of the two wastewater treatment plants (WWTPs of Brussels were chosen to assess the impact of disturbance on bacterial community composition (BCC of an urban river. Organic matters, nutrients load and oxygen concentration fluctuated highly along the river and over time because of WWTPs discharge. Tag pyrosequencing of bacterial 16S rRNA genes revealed the significant effect of seasonality on the richness, the bacterial diversity (Shannon index and BCC. The major grouping: -winter/fall samples versus spring/summer samples- could be associated with fluctuations of in situ bacterial activities (dissolved and particulate organic carbon biodegradation associated with oxygen consumption and N transformation. BCC of the samples collected upstream from the WWTPs discharge were significantly different from BCC of downstream samples and WWTPs effluents, while no significant difference was found between BCC of WWTPs effluents and the downstream samples as revealed by ANOSIM. Analysis per season showed that allochthonous bacteria brought by WWTPs effluents triggered the changes in community composition, eventually followed by rapid post-disturbance return to the original composition as observed in April (resilience, whereas community composition remained altered after the perturbation by WWTPs effluents in the other seasons.

  18. Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Science.gov (United States)

    Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.

    2014-01-01

    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041

  19. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Green, David H; Llewellyn, Lyndon E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2004-03-01

    Gymnodinium catenatum is one of several dinoflagellates that produce a suite of neurotoxins called the paralytic shellfish toxins (PST), responsible for outbreaks of paralytic shellfish poisoning in temperate and tropical waters. Previous research suggested that the bacteria associated with the surface of the sexual resting stages (cyst) were important to the production of PST by G. catenatum. This study sought to characterise the cultivable bacterial diversity of seven different strains of G. catenatum that produce both high and abnormally low amounts of PST, with the long-term aim of understanding the role the bacterial flora has in bloom development and toxicity of this alga. Sixty-one bacterial isolates were cultured and phylogenetically identified as belonging to the Proteobacteria (70%), Bacteroidetes (26%) or Actinobacteria (3%). The Alphaproteobacteria were the most numerous both in terms of the number of isolates cultured (49%) and were also the most abundant type of bacteria in each G. catenatum culture. Two phenotypic (functional) traits inferred from the phylogenetic data were shown to be a common feature of the bacteria present in each G. catenatum culture: firstly, Alphaproteobacteria capable of aerobic anoxygenic photosynthesis, and secondly, Gammaproteobacteria capable of hydrocarbon utilisation and oligotrophic growth. In relation to reports of autonomous production of PST by dinoflagellate-associated bacteria, PST production by bacterial isolates was investigated, but none were shown to produce any PST-like toxins. Overall, this study has identified a number of emergent trends in the bacterial community of G. catenatum which are mirrored in the bacterial flora of other dinoflagellates, and that are likely to be of especial relevance to the population dynamics of natural and harmful algal blooms.

  20. Simplified and representative bacterial community of maize roots.

    Science.gov (United States)

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-03-21

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains ( Enterobacter cloacae , Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum , and Chryseobacterium indologenes ) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides , indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.

  1. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  3. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-12-01

    Full Text Available Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community. This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  4. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  5. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  6. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues

    Directory of Open Access Journals (Sweden)

    Jenny Chun-Yee Ng

    2015-10-01

    Full Text Available Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA or coral tumors are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch’s postulates in efforts to understand the etiology and progression of SGA.

  7. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured

  8. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  9. Sponge-seaweed associations in species of Ptilophora (Gelidiaceae, Rhodophyta)

    CSIR Research Space (South Africa)

    Tronchin, E

    2006-06-01

    Full Text Available , J. G. 1876. Species Genera et Ordines Algarum . . . Volume n Tertium: de Florideis Curae Posteriores. Part 1. Lipsiae, Leipzig, pp. 543–55. Davy, S. K., Trautman, D. A., Borowitzka, M. A. and Hinde, R. 2002. Ammonium excretion by a symbiotic... sponge supplies the nitrogen requirements of its rhodophyte part- ner. J. Exp. Biol. 205: 3505–11. Grant, A. J. and Hinde, R. T. 1999. Evidence of transfer of photosynthate from a red algal macrophyte to its symbiotic sponge. Mem. Queens. Mus. 44...

  10. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti.

    Science.gov (United States)

    Luter, Heidi M; Bannister, Raymond J; Whalan, Steve; Kutti, Tina; Pineda, Mari-Carmen; Webster, Nicole S

    2017-05-24

    Reports of sponge disease are becoming increasingly frequent, although almost all instances involve shallow-water, tropical species. Here, we describe the first disease affecting the deep-water sponge, Geodia barretti. The disease is characterised by brown/black discolouration of the sponge tissue, extensive levels of tissue disintegration and increased levels of fouling. Disease prevalence was quantified using video survey transects conducted between 100 and 220 meters in Korsfjorden, Norway and the microbial communities of healthy and diseased sponges were compared using 16S rRNA gene sequencing. Highly divergent community profiles were evident between the different health states; with distinct community shifts involving higher relative abundances of Bacteroidetes, Firmicutes and Deltaproteobacteria in diseased individuals. In addition, three Operational Taxonomic Units (OTUs) were exclusively present in diseased individuals and were shared between the disease lesions and the apparently healthy tissue of diseased individuals, suggesting a non-localised infection or dysbiosis. Genomic analysis of the G. barretti microbiome combined with experimental work to assess the mechanisms of infection will further elucidate the role of microorganisms in the disease. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp

    Directory of Open Access Journals (Sweden)

    Adityawati Fajar Rini

    2017-07-01

    Full Text Available ABSTRACT The aims of this study were to obtain sponge-associated bacteria as biocontrol to inhibit vibriosis in vitro and in vivo, to identify the bacterial isolates based on 16S-rRNA gene, and to detect the presence of nonribosomal peptide synthetase (NRPS, and polyketide synthase (PKS genes to prove its ability of bioactive compounds synthesis. Aaptos sp. and Hyrtios sp. sponges were collected from Pramuka Island, Jakarta. The isolation using sea water complete (SWC and  zobel marine agar (ZMA medium obtained 174 isolates. A total 69 isolates were screened successfully based on their antibacterial activity. 47 isolates showed negative haemolysis through hemolytic assays. The pathogenicity test used twelve selected isolates that have a broad spectrum of antibacterial activity and haemolysis negative. The result of pathogenicity test showed  that 12 isolates were not pathogenic to the shrimp post larvae with no significantly different (P>0.05 between treatment and negative control. Results of challenge test with Vibrio harveyi have a significant difference survival (70±5.0–90±0.0% (P<0.05 compared with positive control (38.3±2.9%. Genetic analysis based on 16S-rRNA revealed the groups of three genera belonged to Pseudomonas, Staphylococcus, and Alcaligenes. Based on amplification of NRPS and PKS genes, four bacterial isolates have been detected to have only NRPS gene, one isolate has only PKS, and one isolate has both genes. The results indicate that the potency of six sponge-associated bacteria as bioactive compounds producers. Keywords: NRPS, PKS, anti-vibriosis, Pacific white shrimp  ABSTRAK Penelitian ini bertujuan untuk memperoleh isolat bakteri asosiasi spons yang mempunyai kemampuan dalam menghambat vibriosis secara in vitro, in vivo dan mendeteksi gen 16S-rRNA, nonribosomal peptide synthase (NRPS serta polyketide synthase (PKS untuk memastikan kemampuan mensintesis senyawa bioaktif. Spons Aaptos sp. dan Hyrtios sp. berhasil

  12. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Directory of Open Access Journals (Sweden)

    Lidianne L. Rocha

    2016-01-01

    Full Text Available We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1 to habitats covered by Avicennia schaueriana (S2 and Rhizophora mangle (S3. Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  13. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Science.gov (United States)

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  14. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers

    DEFF Research Database (Denmark)

    Edwards, Arwyn; Mur, Luis A. J.; Girdwood, Susan E.

    2014-01-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction...... revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine...... fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids...

  15. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef.

    Directory of Open Access Journals (Sweden)

    Janja Ceh

    Full Text Available Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.

  16. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  17. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    Directory of Open Access Journals (Sweden)

    Safwat Ahmed

    2010-02-01

    Full Text Available Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt and from Rovinj (Croatia. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus and Gram-negative (Escherichia coli, Pseudomonas aeruginosa bacteria, fungi (Candida albicans and human parasites (Leishmania major, Trypanosoma brucei. Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  18. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  19. A novel sponge disease caused by a consortium of micro-organisms

    Science.gov (United States)

    Sweet, Michael; Bulling, Mark; Cerrano, Carlo

    2015-09-01

    In healthy sponges, microbes have been shown to account for up to 40 % of tissues. The majority of these are thought to originate from survivors evading digestion and immune responses of the sponge and growing and residing in the microenvironments of the mesophyll. Although a large percentage of these microbes are likely commensals, they may also include potentially pathogenic agents, which under specific conditions, such as temperature stress, may cause disease. Here we report a novel disease (sponge necrosis syndrome) that is severely affecting populations of the sponge Callyspongia ( Euplacella) aff biru. Both ITS fungal and 16S rDNA bacterial diversities were assessed in healthy and diseased individuals, highlighting six potential primary causal agents for this new disease: two bacteria, a Rhodobacteraceae sp. and a cyanobacterium, Hormoscilla spongeliae (formally identified as Oscillatoria spongeliae), and four fungi, a Ascomycota sp., a Pleosporales sp., a Rhabdocline sp., and a Clasosporium sp. Furthermore, histological analysis showed the dominance of fungal hyphae rather than bacteria throughout the disease lesion, which was absent or rare in healthy tissues. Inoculation trails showed that only a combination of one bacterium and one fungus could replicate the disease, fulfilling Henle-Koch's postulates and showing that this sponge disease is caused by a poly-microbial consortium.

  20. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: implications for future changes in environmental quality.

    Directory of Open Access Journals (Sweden)

    Abigail Powell

    Full Text Available Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.

  1. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes.

    Directory of Open Access Journals (Sweden)

    Ronan M Doyle

    Full Text Available Preterm birth is a major cause of neonatal mortality and morbidity worldwide. Bacterial infection and the subsequent inflammatory response are recognised as an important cause of preterm birth. It is hypothesised that these organisms ascend the cervical canal, colonise placental tissues, cause chorioamnionitis and in severe cases infect amniotic fluid and the foetus. However, the presence of bacteria within the intrauterine cavity does not always precede chorioamnionitis or preterm birth. Whereas previous studies observing the types of bacteria present have been limited in size and the specificity of a few predetermined organisms, in this study we characterised bacteria found in placental tissues from a cohort of 1391 women in rural Malawi using 16S ribosomal RNA gene sequencing. We found that specific bacteria found concurrently on placental tissues associate with chorioamnionitis and delivery of a smaller newborn. Severe chorioamnionitis was associated with a distinct difference in community members, a higher bacterial load and lower species richness. Furthermore, Sneathia sanguinengens and Peptostreptococcus anaerobius found in both matched participant vaginal and placental samples were associated with a lower newborn length-for-age Z-score. This is the largest study to date to examine the placental microbiome and its impact of birth outcomes. Our results provide data on the role of the vaginal microbiome as a source of placental infection as well as the possibility of therapeutic interventions against targeted organisms during pregnancy.

  2. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    Science.gov (United States)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  3. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional...... resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis, and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n = 6), gentamicin (n = 1), amikacin (n = 7), trimethoprim (n = 17), chloramphenicol (n = 1), rifampicin (n = 2) and ampicillin (n = 3......-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance...

  4. Diversity and distribution patterns in high southern latitude sponges.

    Directory of Open Access Journals (Sweden)

    Rachel V Downey

    Full Text Available Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%. Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent

  5. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  6. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert.

    Science.gov (United States)

    Řeháková, Klára; Chroňáková, Alica; Krištůfek, Václav; Kuchtová, Barbora; Čapková, Kateřina; Scharfen, Josef; Čapek, Petr; Doležal, Jiří

    2015-01-01

    Although bacterial assemblages are important components of soils in arid ecosystems, the knowledge about composition, life-strategies, and environmental drivers is still fragmentary, especially in remote high-elevation mountains. We compared the quality and quantity of heterotrophic bacterial assemblages between the rhizosphere of the dominant cushion-forming plant Thylacospermum ceaspitosum and its surrounding bulk soil in two mountain ranges (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m), in communities from cold steppes to the subnival zone in Ladakh, arid Trans-Himalaya, northwest India. Bacterial communities were characterized by molecular fingerprinting in combination with culture-dependent methods. The effects of environmental factors (elevation, mountain range, and soil physico-chemical parameters) on the bacterial community composition and structure were tested by multivariate redundancy analysis and conditional inference trees. Actinobacteria dominate the cultivable part of community and represent a major bacterial lineage of cold desert soils. The most abundant genera were Streptomyces, Arthrobacter, and Paenibacillus, representing both r- and K-strategists. The soil texture is the most important factor for the community structure and the total bacteria counts. Less abundant and diverse assemblages are found in East Karakoram with coarser soils derived from leucogranite bedrock, while more diverse assemblages in Little Tibet are associated with finer soils derived from easily weathering gneisses. Cushion rhizosphere is in general less diverse than bulk soil, and contains more r-strategists. K-strategists are more associated with the extremes of the gradient, with drought at lowest elevations (4850-5000 m) and frost at the highest elevations (5750-5850 m). The present study illuminates the composition of soil bacterial assemblages in relation to the cushion plant T. ceaspitosum in a xeric environment and brings important information about

  7. Environmental and Host Effects on Skin Bacterial Community Composition in Panamanian Frogs

    Directory of Open Access Journals (Sweden)

    Brandon J. Varela

    2018-02-01

    Full Text Available Research on the amphibian skin microbiota has focused on identifying bacterial taxa that deter a pathogenic chytrid fungus, and on describing patterns of microbiota variation. However, it remains unclear how environmental variation affects amphibian skin bacterial communities, and whether the overall functional diversity of the amphibian skin microbiota is associated to such variation. We sampled skin microbial communities from one dendrobatoid frog species across an environmental gradient along the Panama Canal, and from three dendrobatoid frog species before and after the onset of the wet season in one site. We found frog skin microbial alpha diversity to be highest in frogs from sites with low soil pH, but no clear effect of the onset of the wet season. However, we found frog skin microbial community structure to be affected by soil pH and the onset of the wet season, which also resulted in a decrease in between-sample variation. Across the sampled frog species, bacterial functional groups changed with the onset of the wet season, with certain bacterial functional groups entirely disappearing and others differing in their relative abundances. In particular, we found the proportion of Bd-inhibitory bacteria to correlate with mean soil pH, and to increase in two of the frog species with the onset of the wet season. Taken together, our results suggest that structure and predicted function of amphibian bacterial skin communities may be influenced by environmental variables such as pH and precipitation, site effects, and host effects.

  8. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  10. Who Produces Ianthelline? The Arctic Sponge Stryphnus fortis or its Sponge Epibiont Hexadella dedritifera: a Probable Case of Sponge-Sponge Contamination.

    Science.gov (United States)

    Cárdenas, Paco

    2016-04-01

    The bromotyrosine derivative ianthelline was isolated recently from the Atlantic boreo-arctic deep-sea sponge Stryphnus fortis, and shown to have clear antitumor and antifouling effects. However, chemosystematics, field observations, and targeted metabolic analyses (using UPLC-MS) suggest that ianthelline is not produced by S. fortis but by Hexadella dedritifera, a sponge that commonly grows on S. fortis. This case highlights the importance of combining taxonomic and ecological knowledge to the field of sponge natural products research.

  11. Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2016-09-01

    Full Text Available A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer

  12. Architectural design drives the biogeography of indoor bacterial communities.

    Science.gov (United States)

    Kembel, Steven W; Meadow, James F; O'Connor, Timothy K; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G Z; Bohannan, Brendan J M; Green, Jessica L

    2014-01-01

    Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our health and well-being.

  13. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    Science.gov (United States)

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  14. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    Science.gov (United States)

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  15. MORPHOLOGY AND CELL BIOMASS OF SPONGE Aaptos aaptos AND

    Directory of Open Access Journals (Sweden)

    Meutia Samira Ismet

    2011-12-01

    Full Text Available Aaptos aaptos and Petrosia sp. sponges are known for their ability to produce potential marine bioactive compound. As a metazoan animal with simple body structure, the morphology and it association with symbiont-bacteria could influence their bioactive compound both type and activity, as much as their habitat adaptation. In order to determine morphology and its cell biomass of Aaptos aaptos dan Petrosia sp., samples were taken from the West Pari Island, at 7 m depth. Preserved samples (in 4% formaldehyde were examined using a histological mounting and centrifugation method to separate the cells fraction of sponge’s tissues. A. aaptos sponge has a soft body structure with 55.9% skeleton-forming fraction, 14.2% sponge cell fraction and 29.9% bacteria fraction. Meanwhile, Petrosia sp. sponge has a rigid body with dominant skeleton-forming fraction (68.6%, and lesser sponge cell and bacteria associated (19.7% and 11.7%, respectively.Keywords: A. aaptos, Petrosia sp, morphology, cell biomass

  16. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    Science.gov (United States)

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. The Sponge-associated Bacterium Bacillus licheniformis SAB1: A Source of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Prabha Devi

    2010-04-01

    Full Text Available Several bacterial cultures were isolated from sponge Halichondria sp., collected from the Gujarat coast of the Indo Pacific region. These bacterial cultures were fermented in the laboratory (100 mL and the culture filtrate was assayed for antibiotic activity against 16 strains of clinical pathogens. Bacillus sp. (SAB1, the most potent of them and antagonistic to several clinically pathogenic Gram-positive, Gram-negative bacteria and the fungus Aspergillus fumigatus was chosen for further investigation. Analysis of the nucleotide sequence of the 16S rDNA gene of Bacillus sp. SAB1 showed a strong similarity (100% with the 16S rDNA gene of Bacillus licheniformis HNL09. The bioactive compounds produced by Bacillus licheniformis SAB1 (GenBank accession number: DQ071568 were identified as indole (1, 3-phenylpropionic acid (2 and a dimer 4,4′-oxybis[3-phenylpropionic acid] (3 on the basis of their Fourier Transform Infrared (FTIR, Nuclear Magnetic Resonance (NMR and Electrospray Ionization Mass Spectrometer (ESI-MS data. There is a single reference on the natural occurrence of compound 3 from the leaves of a terrestrial herb Aptenia cordifolia in the literature, so to the best of our knowledge, this is a first report of its natural occurrence from a marine source. The recovery of bacterial strains with antimicrobial activity suggests that marine-invertebrates remain a rich source for the isolation of culturable isolates capable of producing novel bioactive secondary metabolites.

  18. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing.

    Science.gov (United States)

    Wang, Ailin; Yao, Zhichao; Zheng, Weiwei; Zhang, Hongyu

    2014-01-01

    The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs). A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%). Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices) and community structure (PCA analysis) varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  19. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae based on 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Ailin Wang

    Full Text Available The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs. A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%. Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices and community structure (PCA analysis varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  20. Characterization of Bioaerosol Bacterial Communities During Hazy and Foggy Weather in Qingdao, China

    Science.gov (United States)

    Qi, Jianhua; Li, Mengzhe; Zhen, Yu; Wu, Lijing

    2018-06-01

    This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis (PCRDGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity (RH; r 2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria ( Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.

  1. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta

    2016-02-02

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities\\' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities\\' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  2. A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs.

    Science.gov (United States)

    Wallis, Corrin; Marshall, Mark; Colyer, Alison; O'Flynn, Ciaran; Deusch, Oliver; Harris, Stephen

    2015-12-31

    Periodontal disease is the most widespread oral disease in dogs. Whilst the involvement of bacteria in the aetiology of periodontitis is well established the role of individual species and their complex interactions with the host is not well understood. The objective of this research was therefore to perform a longitudinal study in dogs to identify the changes that occur in subgingival bacterial communities during the transition from mild gingivitis to the early stages of periodontitis (dogs every six weeks for up to 60 weeks. The microbial composition of plaque samples was determined using 454-pyrosequencing of the 16S rDNA. A group of aerobic Gram negative species, including Bergeyella zoohelcum COT-186, Moraxella sp. COT-017, Pasteurellaceae sp. COT-080, and Neisseria shayeganii COT-090 decreased in proportion as teeth progressed to mild periodontitis. In contrast, there was less evidence that increases in the proportion of individual species were associated with the onset of periodontitis, although a number of species (particularly members of the Firmicutes) became more abundant as gingivitis severity increased. There were small increases in Shannon diversity, suggesting that plaque community membership remains relatively stable but that bacterial proportions change during progression into periodontitis. This is the first study to demonstrate the temporal dynamics of the canine oral microbiota; it showed that periodontitis results from a microbial succession predominantly characterised by a reduction of previously abundant, health associated taxa. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  4. Bacterial diversity associated with the rotifer Brachionus plicatilis sp. complex determined by culture-dependent and -independent methods.

    Science.gov (United States)

    Ishino, Ryota; Iehata, Shunpei; Nakano, Miyo; Tanaka, Reiji; Yoshimatsu, Takao; Maeda, Hiroto

    2012-03-01

    The bacterial communities associated with rotifers (Brachionus plicatilis sp. complex) and their culture water were determined using culture-dependent and -independent methods (16S rRNA gene clone library). The bacterial communities determined by the culture-independent method were more diverse than those determined by the culture-dependent method. Although the culture-dependent method indicated the bacterial community of rotifers was relatively similar to that of the culture water, 16S rRNA gene clone library analyses revealed a great difference between the two microbiotas. Our results suggest that most bacteria associated with rotifers are not easily cultured using conventional methods, and that the microbiota of rotifers do not correspond with that of the culture water completely.

  5. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    Science.gov (United States)

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  6. Surgical sponges in small animal surgery.

    Science.gov (United States)

    Zeltzman, Phil; Downs, Myron

    2011-06-01

    Sponges are commonly used in veterinary practice. Uses for sponges in the operative arena include hemostasis, retraction, protection, dissection, and general wound management. Blood loss can be quantitated by counting blood-soaked sponges. Complications may arise when sponges are retained in the patient. Sponge retention is a risk whenever sponges are used during surgery, regardless of surgical procedure. This article reviews physical characteristics and proper uses of sponges, complications of sponge retention, and techniques to avoid retained sponges.

  7. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Justin Wright

    2017-11-01

    Full Text Available The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM, has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26 with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration

  8. ANALYSIS OF BACTERIAL COMMUNITIES IN SEAGRASS BED SEDIMENTS BY DOUBLE-GRADIENT DENATURING GRADIENT GEL ELECTROPHORESIS OF PCR-AMPLIFIED 16SRRNA GENES

    Science.gov (United States)

    Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...

  9. [Community structure of sponges (Porifera) in three reefs at Morrocoy National Park, Venezuela and its correspondence with some environmental variables].

    Science.gov (United States)

    Romero, Marco A; Villamizar, Estrella; Malaver, Nora

    2013-09-01

    Sponges have an important ecological role in coral reef ecosystems. However, when compared to other benthic Phyla, it has been little researched. This research was focused in the variability of the community structure of sponges in three locations at Morrocoy National Park (Cayo Sombrero, Playa Mero and Punta Brava) exposed to different environmental conditions (transparency and currents intensity) and affected in different degree of severity by a mass mortality event in 1996. A total of 15 transects (10 m long and 1 m wide) were evaluated in three strata (between 3 and 15 m depth) in each site, where all the individuals were counted by species. Relative abundance by species, diversity and evenness were calculated. Locations showed differences respect turbidity, wave and current intensity. 27 species were found in Morrocoy; Cayo Sombrero (23), Playa Mero (18) and Punta Brava (15). Agelas sceptrum, Amphimedon erina and Niphates erecta were the most common in first location; Niphates erecta and Dysidea etheria in Playa Mero and Dysidea etheria, Niphates erecta and Amphimedon erina in Punta Brava. The species composition showed statistical differences between all three locations; Cayo Sombrero resulted the most diverse and even, followed by Playa Mero and Punta Brava. According to Sorensen Similarity Index results, Cayo Sombrero and Playa Mero were more similar, while Punta Brava resulted the most different. The variability in environmental conditions and the differential mass mortality effects of 1996 in all three reefs, were probably the main causes of the differences between their sponge communities. Nevertheless, we cannot conclude about the weight of these factors.

  10. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    Science.gov (United States)

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The bacterial community composition of the surface microlayer in a high mountain lake.

    Science.gov (United States)

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  12. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    Science.gov (United States)

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  13. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  14. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    Science.gov (United States)

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.

  15. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.

    2014-06-20

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. © 2014 International Society for Microbial Ecology. All rights reserved.

  16. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  17. Impact of oil on bacterial community structure in bioturbated sediments.

    Directory of Open Access Journals (Sweden)

    Magalie Stauffert

    Full Text Available Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment, the common burrowing organism Hediste (Nereis diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  18. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  19. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics.

    Directory of Open Access Journals (Sweden)

    Federico M Ibarbalz

    Full Text Available The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1-V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1-V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1-V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1 the changes occurring within the communities along fixed time intervals, 2 the slow turnover of activated sludge communities and 3 the rate of species replacement calculated from the taxa-time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1-V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.

  20. Analysis of soil whole- and inner-microaggregate bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Mummey, D L; Stahl, P D [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2004-07-01

    Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also seen. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.

  1. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  2. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  3. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  4. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: what’s old, what’s new, and future directions

    Directory of Open Access Journals (Sweden)

    Joseph R. Pawlik

    2018-01-01

    Full Text Available Interest in the ecology of sponges on coral reefs has grown in recent years with mounting evidence that sponges are becoming dominant members of reef communities, particularly in the Caribbean. New estimates of water column processing by sponge pumping activities combined with discoveries related to carbon and nutrient cycling have led to novel hypotheses about the role of sponges in reef ecosystem function. Among these developments, a debate has emerged about the relative effects of bottom-up (food availability and top-down (predation control on the community of sponges on Caribbean fore-reefs. In this review, we evaluate the impact of the latest findings on the debate, as well as provide new insights based on older citations. Recent studies that employed different research methods have demonstrated that dissolved organic carbon (DOC and detritus are the principal sources of food for a growing list of sponge species, challenging the idea that the relative availability of living picoplankton is the sole proxy for sponge growth or abundance. New reports have confirmed earlier findings that reef macroalgae release labile DOC available for sponge nutrition. Evidence for top-down control of sponge community structure by fish predation is further supported by gut content studies and historical population estimates of hawksbill turtles, which likely had a much greater impact on relative sponge abundances on Caribbean reefs of the past. Implicit to investigations designed to address the bottom-up vs. top-down debate are appropriate studies of Caribbean fore-reef environments, where benthic communities are relatively homogeneous and terrestrial influences and abiotic effects are minimized. One recent study designed to test both aspects of the debate did so using experiments conducted entirely in shallow lagoonal habitats dominated by mangroves and seagrass beds. The top-down results from this study are reinterpreted as supporting past research

  5. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    Science.gov (United States)

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  6. Vaginal sponge and spermicides

    Science.gov (United States)

    ... counter; Contraceptives - over the counter; Family planning - vaginal sponge; Contraception - vaginal sponge ... Spermicides and vaginal sponges do not work as well at preventing pregnancy as some other forms of birth control. However, using a spermicide ...

  7. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  8. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  9. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    Science.gov (United States)

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  10. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis.

    Science.gov (United States)

    Kuehn, Joanna S; Gorden, Patrick J; Munro, Daniel; Rong, Ruichen; Dong, Qunfeng; Plummer, Paul J; Wang, Chong; Phillips, Gregory J

    2013-01-01

    Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1-V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease.

  11. The Prestige oil spill: bacterial community dynamics during a field biostimulation assay

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N; Solanas, A M [Barcelona Univ. (Spain). Dept. of Microbiology; Vinas, M [GIRO Technological Centre, Mollet del Valles (Spain); Bayona, J M; Albaiges, J [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry

    2007-12-15

    A field bioremediation assay using the oleophilic fertilizer S200 was carried out 12 months after the Prestige heavy fuel-oil spill on a beach on the Cantabrian coast (north Spain). This assay showed that S200-enhanced oil degradation, particularly of high-molecular-weight n-alkanes and alkylated PAHs, suggesting an increase in the microbial bioavailability of these compounds. The bacterial community structure was determined by cultivation-independent analysis of polymerase chain reaction-amplified 16S rDNA by denaturing gradient gel electrophoresis. Bacterial community was mainly composed of {alpha}-Proteobacteria (Rhodobacteriaceae and Sphingomonadaceae). Representatives of {gamma}-Proteobacteria (Chromatiales, Moraxellaceae, and Halomonadaceae), Bacteroidetes (Flavobacteriaceae), and Actinobacteria group (Nocardiaceae and Corynebacteriaceae) were also found. The addition of the fertilizer led to the appearance of the bacterium Mesonia algae in the early stages, with a narrow range of growth substrates, which has been associated with the common alga Achrosiphonia sonderi. The presence of Mesonia algae may be attributable to the response of the microbial community to the addition of N and P rather than indicating a role in the biodegradation process. The Rhodococcus group appeared in both assay plots, especially at the end of the experiment. It was also found at another site on the Galician coast that had been affected by the same spill. This genus has been associated with the degradation of n-alkanes up to C{sub 36}. Taking into account the high content of heavy alkanes in the Prestige fuel, these microorganisms could play a significant role in the degradation of such fuel. A similar bacterial community structure was observed at another site that showed a similar degree of fuel weathering. (orig.)

  12. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations

    OpenAIRE

    Ying, Shi; Zeng, Dan-Ning; Chi, Liang; Tan, Yuan; Galzote, Carlos; Cardona, Cesar; Lax, Simon; Gilbert, Jack; Quan, Zhe-Xue

    2015-01-01

    Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urba...

  13. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  15. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  16. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  17. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  18. Spatial Distribution of Bacterial Communities Driven by Multiple Environmental Factors in a Beach Wetland of the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Xia eDing

    2015-02-01

    Full Text Available The spatial distributions of bacterial communities may be driven by multiple environmental factors. Thus, understanding the relationships between bacterial distribution and environmental factors is critical for understanding wetland stability and the functioning of freshwater lakes. However, little research on the bacterial communities in deep sediment layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from a beach wetland of the Poyang Lake along both horizontal (distance to the water-land junction and vertical (sediment depth gradients to assess the effects of sediment properties on bacterial community structure and diversity. Our results showed that bacterial diversity increased along the horizontal gradient and decreased along the vertical gradient. The heterogeneous sediment properties along gradients substantially affected the dominant bacterial groups at the phylum and species levels. For example, the NH4+ concentration decreased with increasing depth, which was positively correlated with the relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant bacterial groups showed that the top layer had a different bacterial community structure than the deeper layers. Principal component analysis revealed that both gradients, not each gradient independently, contributed to the shift in the bacterial community structure. A multiple linear regression model explained the changes in bacterial diversity and richness along the depth and distance gradients. Overall, our results suggest that spatial gradients associated with sediment properties shaped the bacterial communities in the Poyang Lake beach wetland.

  19. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  20. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers.

    Science.gov (United States)

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J

    2014-08-24

    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  1. Impact of enzymatic digestion on bacterial community composition in CF airway samples

    Directory of Open Access Journals (Sweden)

    Kayla M. Williamson

    2017-05-01

    Full Text Available Background Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF. We sought to evaluate the effect of enzymatic digestion (EnzD prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP samples from patients with CF. Methods DNA from 81 samples (39 sputum and 42 OP collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA of individual genera for paired samples with and without EnzD. Results Shannon Diversity Index (alpha-diversity decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn, whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella (p < 0.01, Streptococcus (p < 0.01, and Rothia (p < 0.01. Staphylococcus (p < 0.01 was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD: Veillonella (p < 0.01, Granulicatella (p < 0.01, Prevotella (p < 0.01, and Gemella (p = 0.02. In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition. Discussion We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP

  2. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  3. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DEFF Research Database (Denmark)

    Jurburg, Stephanie D.; Nunes, Ines Marques; Stegen, James C.

    2017-01-01

    The response of bacterial communities to environmental change may affect local to global nutrient cycles. However the dynamics of these communities following disturbance are poorly understood, given that they are often evaluated over macro-ecological time scales and end-point measurements. In ord...... diversity and functional redundancy, respond to disturbances like many macro-ecological systems and exhibit path-dependent, autogenic dynamics during secondary succession. These results highlight the role of autogenic factors and successional dynamics in microbial recovery....... to understand the successional trajectory of soil bacterial communities following disturbances and the mechanisms controlling these dynamics at a scale relevant for these organisms, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days...... slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Phylogenetic turnover patterns indicated that the community experienced stronger deterministic selection during recovery. Thus, soil bacterial communities, despite their extreme...

  4. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  5. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Science.gov (United States)

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  6. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    Science.gov (United States)

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Antibacterial activity of the sponge Suberites domuncula and its primmorphs: Potential basis for epibacterial chemical defense

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N; Hentschel, U.; Krasko, A; Pabel, C; Anil, A.C; Mueller, W.E.G.

    The epibacterial chemical defense of the marine sponge Suberites domuncula was explored by screening sponge extract, sponge primmorph (3-D aggregates containing proliferating cells) extract and sponge-associated as well as primmorph...

  8. Physiological and DNA fingerprinting of the bacterial community of Meloidogyne fallax egg masses

    NARCIS (Netherlands)

    Papert, A; Kok, CJ; van Elsas, JD

    2004-01-01

    Bacterial communities associated with the plant-parasitic nematode Meloidogyne fallax egg masses were compared with those present in the rhizoplane. Two agricultural soils with different nematode population dynamics were used in a glasshouse study, with either potato or tomato as host plant for the

  9. Physiological and DNA fingerprinting of the bacterial community of Meloidogyne fallax egg masses

    NARCIS (Netherlands)

    Papert, A; Kok, CJ; van Elsas, JD

    Bacterial communities associated with the plant-parasitic nematode Meloidogyne fallax egg masses were compared with those present in the rhizoplane. Two agricultural soils with different nematode population dynamics were used in a glasshouse study, with either potato or tomato as host plant for the

  10. Bacterial communities differ among Drosophila melanogaster populations and affect host resistance against parasitoids

    NARCIS (Netherlands)

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population

  11. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  12. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    Science.gov (United States)

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  13. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  14. Spatial variation of bacterial community composition near the Luzon ...

    African Journals Online (AJOL)

    Spatial variation of bacterial community composition near the Luzon strait assessed by polymerase chain reaction-denaturing gradient gel electrophoresis ... chain reaction (PCR)-amplified bacterial 16S ribosomal deoxyribonucleic acid (DNA) gene fragments and interpreted the results; its relationship with physical and ...

  15. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A

    Directory of Open Access Journals (Sweden)

    Amanda Leigh Waters

    2014-10-01

    Full Text Available Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp. that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899 (Class Demospongiae, Order Haplosclerida, Family Petrosiidae. These findings suggest that a general strategy of analysis of the macroorganism’s microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

  16. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  17. Ecological interactions and the distribution, abundance, and diversity of sponges.

    Science.gov (United States)

    Wulff, Janie

    2012-01-01

    Although abiotic factors may be important first-order filters dictating which sponge species can thrive at a particular site, ecological interactions can play substantial roles influencing distribution and abundance, and thus diversity. Ecological interactions can modify the influences of abiotic factors both by further constraining distribution and abundance due to competitive or predatory interactions and by expanding habitat distribution or abundance due to beneficial interactions that ameliorate otherwise limiting circumstances. It is likely that the importance of ecological interactions has been greatly underestimated because they tend to only be revealed by experiments and time-series observations in the field. Experiments have revealed opportunistic predation to be a primary enforcer of sponge distribution boundaries that coincide with habitat boundaries in several systems. Within habitats, by contrast, dramatic effects of predators on sponge populations seem to occur primarily in cases of unusually high recruitment rates or unusually low mortality rates for the predators, which are often specialists on the sponge species affected. Competitive interactions have been demonstrated to diminish populations or exclude sponge species from a habitat in only a few cases. Cases in which competitive interactions have appeared obvious have often turned out to be neutral or even beneficial interactions when observed over time. Especially striking in this regard are sponge-sponge interactions in dense sponge-dominated communities, which may promote the continued coexistence of all participating species. Mutualistic symbioses of sponges with other animals, plants, or macroalgae have been demonstrated to increase abundance, habitat distribution, and diversity of all participants. Symbiotic microbes can enhance sponge distribution and abundance but also render their hosts more vulnerable to environmental changes. And while photosynthetic symbionts can boost growth and

  18. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    Science.gov (United States)

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  19. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves.

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I; Noronha, Melline F; Resende, Rafael T; Machado, Fernanda S; Mantovani, Hilário C; Dill-McFarland, Kimberly A; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea , and Succinivribrio ). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides , and Parabacteroides ). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces . Relative

  20. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  1. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Directory of Open Access Journals (Sweden)

    Juliana Dias

    2017-08-01

    Full Text Available At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days. Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio. Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides. In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces

  2. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Science.gov (United States)

    Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.

    2018-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem

  3. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Directory of Open Access Journals (Sweden)

    Baneshwar Singh

    2018-01-01

    Full Text Available As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m and temporal (3–732 days dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples, the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples, the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding

  4. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  5. Sediment impacts on marine sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  7. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations.

    Directory of Open Access Journals (Sweden)

    Shi Ying

    Full Text Available Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.

  8. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature......The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  9. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Directory of Open Access Journals (Sweden)

    Amy Apprill

    Full Text Available Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae, and examine the potential for a core bacterial community and its variability with host (endogenous or geographic/environmental (exogenous specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding, suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp., as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could

  10. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  11. Efforts to develop a cultured sponge cell line: revisiting an intractable problem.

    Science.gov (United States)

    Grasela, James J; Pomponi, Shirley A; Rinkevich, Buki; Grima, Jennifer

    2012-01-01

    Residents of the marine environment, sponges (Porifera) have the ability to produce organic compounds known as secondary metabolites, which are not directly involved in the normal growth, development, or reproduction of an organism. Because of their sessile nature, the production of these bioactive compounds has been interpreted as a functional adaptation to serve in an important survival role as a means to counter various environmental stress factors such as predation, overgrowth by fouling organisms, or competition for limited space. Regardless of the reasons for this adaptation, a variety of isolated compounds have already proven to demonstrate remarkable anticancer, fungicidal, and antibiotic properties. A major obstacle to the isolation and production of novel compounds from sponges is the lack of a large, reliable source of sponge material. Sponge collection from the sea would be environmentally detrimental to the already stressed and sparse sponge populations. Sponge production in an aquaculture setting might appear to be an ideal alternative but would also be cost-ineffective and sponge growth is extremely slow. A third approach involves the development of a sponge cell culture system capable of producing the necessary cell numbers to harvest for research purposes as well as for the eventual commercial-scale production of promising bioactive compounds. Unfortunately, little progress has been made in this direction other than the establishment of temporary cultures containing aggregates and fragments of cells. One impediment toward successful sponge cell culture might be ascribed to a lack of published knowledge of failed methodologies, and thus, time and effort is wasted on continued reinvention of the same methods and procedures. Consequently, we have undertaken here to chart some of our unsuccessful research efforts, our methodology, and results to provide the sponge research community with knowledge to assist them to better avoid taking the same failed

  12. Meteorological factors had more impact on airborne bacterial communities than air pollutants.

    Science.gov (United States)

    Zhen, Quan; Deng, Ye; Wang, Yaqing; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Ouyang, Zhiyun

    2017-12-01

    Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×10 3 to 2.14×10 7 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Think like a sponge: The genetic signal of sensory cells in sponges.

    Science.gov (United States)

    Mah, Jasmine L; Leys, Sally P

    2017-11-01

    A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the

  14. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    OpenAIRE

    Haihan Zhang; Jingyu Jia; Shengnan Chen; Tinglin Huang; Yue Wang; Zhenfang Zhao; Ji Feng; Huiyan Hao; Sulin Li; Xinxin Ma

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal tr...

  15. Bacterial community from gut of white shrimp, Penaeus vannamei, cultured in earthen ponds

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2007-05-01

    Full Text Available The Fluorescent in situ hybridization (FISH technique and conventional method were used to analyse the bacterial community in the gut of white shrimp cultured in earthen ponds. Samples were collectedfrom three parts, hepatopancreas, anterior intestine and posterior intestine. Gut bacterial community was enumerated by 15 probes in FISH and 3 bacterial culture technique media. The results showed that bacteriaspecific probes determined bacterial community and Eubacteria as the dominant group of microbial community in the studied gut portions. β-Proteobacteria group (29.53±5.39% and γ-Proteobacteria group (26.18±6.88% were major groups of bacterial flora in the hepatopancreas. In contrast, low G+C gram positive bacteria group (LGC was the most abundant group detected in anterior intestine (36.40±3.53% andposterior intestine (30.32±4.63%. Vibrio spp. were detected very less in hepatopancreas (0.25±0.43% and were present in 3 of 9 samples. In the case of bacterial detection using cultivation method, the number ofbacterial groups verified by TSA, TCBS and MRS showed high variation in every part of the studied digestive tract portions; however, no vibrio or lactic acid bacteria were present in the hepatopancreas ofhealthy shrimp. This study reveals the proportion of bacterial community in the digestive tract of white shrimp which can be used as important database for studying the change of the bacterial community in an abnormal condition including the efficiency of probiotics in the gut (in vivo of white shrimp.

  16. Host-specific microbial communities in three sympatric North Sea sponges

    DEFF Research Database (Denmark)

    Naim, Mohd Azrul; Morillo, Jose A.; Sørensen, Søren Johannes

    2014-01-01

    phylotypes belonging to Chlamydiae, TM6, Actinobacteria and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4% ± 1.4% of the total reads, which suggests an important ecological role...

  17. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    OpenAIRE

    Irene de Araújo Barros; Welington Luiz Araújo; João Lúcio Azevedo

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were c...

  18. Impact of cadmium on the bacterial communities in the gut of Metaphire posthuma

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Hsiung; Chen, Mu-Hsuan; Chen, Chien-Cheng; Chen, Colin S [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Chen, Jiun-Hong [Department of Life Science, National Taiwan University, Taipei, Taiwan (China); Chen, Ssu Ching, E-mail: osycchna@ksts.seed.net.tw [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)

    2010-12-30

    The effects of cadmium (Cd) contamination in soil onto the bacterial communities of the guts pooled from ten Metaphire posthuma were addressed during 14 days' incubation. We found that about 50% of Cd (5 mg/kg, dry weight soil) in the contaminated soil was bio-accumulated into the earthworms. DNA was extracted from the guts of M. posthuma and their dwelling soil irrespective of Cd treatment for the analysis of the bacterial communities of guts in M. posthuma and in soil by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). A distinctive cluster of bacterial communities of the guts in the earthworm with and without Cd treatment using the analysis of unweighted pair-group method using arithmetic averages (UPGMA) was observed, indicating that the bacterial community of guts could be changed by Cd. However, no differences in the bacterial communities in soil irrespective of Cd treatment were observed, which could be resulted from the bioremediation of Cd by earthworms leading to insignificant effect of Cd on bacterial communities in soil. For the sequencing of some of the dominant bands in the DGGE profile, Bradyrhizobium japonicum, Stenotrophomonas sp. D2, and Labrys, sp. CC-BB4, whose sequences display an identity of more than 97% using blast program against a known sequence in the GeneBank database and Ribosomal database, were identified. Collectively, our results showed that earthworm treatment can decrease the concentrations of Cd in soil, and Cd cause a shift in the bacterial communities in the guts of M. posthuma. The application of M. posthuma for Cd bioremediation would be desired.

  19. Impact of cadmium on the bacterial communities in the gut of Metaphire posthuma

    International Nuclear Information System (INIS)

    Liang, Shih-Hsiung; Chen, Mu-Hsuan; Chen, Chien-Cheng; Chen, Colin S.; Chen, Jiun-Hong; Chen, Ssu Ching

    2009-01-01

    The effects of cadmium (Cd) contamination in soil onto the bacterial communities of the guts pooled from ten Metaphire posthuma were addressed during 14 days' incubation. We found that about 50% of Cd (5 mg/kg, dry weight soil) in the contaminated soil was bio-accumulated into the earthworms. DNA was extracted from the guts of M. posthuma and their dwelling soil irrespective of Cd treatment for the analysis of the bacterial communities of guts in M. posthuma and in soil by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). A distinctive cluster of bacterial communities of the guts in the earthworm with and without Cd treatment using the analysis of unweighted pair-group method using arithmetic averages (UPGMA) was observed, indicating that the bacterial community of guts could be changed by Cd. However, no differences in the bacterial communities in soil irrespective of Cd treatment were observed, which could be resulted from the bioremediation of Cd by earthworms leading to insignificant effect of Cd on bacterial communities in soil. For the sequencing of some of the dominant bands in the DGGE profile, Bradyrhizobium japonicum, Stenotrophomonas sp. D2, and Labrys, sp. CC-BB4, whose sequences display an identity of more than 97% using blast program against a known sequence in the GeneBank database and Ribosomal database, were identified. Collectively, our results showed that earthworm treatment can decrease the concentrations of Cd in soil, and Cd cause a shift in the bacterial communities in the guts of M. posthuma. The application of M. posthuma for Cd bioremediation would be desired.

  20. Pig Farmers’ Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes

    Directory of Open Access Journals (Sweden)

    Ditte V. Vestergaard

    2018-05-01

    Full Text Available Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building’s occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers’ homes, and from suburban homes (267 samples in total and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3–V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers’ homes than suburban homes (Wilcoxon rank sum test P < 0.05. Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers’ homes than in suburban homes (ALDEx2 with P < 0.05, including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, and Lactobacillus. Pig stables had significantly lower airborne bacterial diversity than farmers’ homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables

  1. Pig Farmers’ Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes

    Science.gov (United States)

    Vestergaard, Ditte V.; Holst, Gitte J.; Basinas, Ioannis; Elholm, Grethe; Schlünssen, Vivi; Linneberg, Allan; Šantl-Temkiv, Tina; Finster, Kai; Sigsgaard, Torben; Marshall, Ian P. G.

    2018-01-01

    Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building’s occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers’ homes, and from suburban homes (267 samples in total) and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3–V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers’ homes than suburban homes (Wilcoxon rank sum test P < 0.05). Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers’ homes than in suburban homes (ALDEx2 with P < 0.05), including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, and Lactobacillus. Pig stables had significantly lower airborne bacterial diversity than farmers’ homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables themselves do not appear

  2. Pig Farmers' Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes.

    Science.gov (United States)

    Vestergaard, Ditte V; Holst, Gitte J; Basinas, Ioannis; Elholm, Grethe; Schlünssen, Vivi; Linneberg, Allan; Šantl-Temkiv, Tina; Finster, Kai; Sigsgaard, Torben; Marshall, Ian P G

    2018-01-01

    Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building's occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers' homes, and from suburban homes (267 samples in total) and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3-V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers' homes than suburban homes (Wilcoxon rank sum test P < 0.05). Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers' homes than in suburban homes (ALDEx2 with P < 0.05), including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium , and Lactobacillus . Pig stables had significantly lower airborne bacterial diversity than farmers' homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables themselves do not appear to

  3. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  4. Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean.

    Science.gov (United States)

    Granados, C; Camargo, C; Zea, S; Sánchez, J A

    2008-11-01

    Phylogenetic relationships of symbiotic dinoflagellate lineages, distributed in all tropical and subtropical seas, suggest strategies for long distance dispersal but at the same time strong host specialization. Zooxanthellae (Symbiodinium: Dinophyta), which are associated to diverse shallow-water cnidarians, also engage in symbioses with some sponge species of the genus Cliona. In the Caribbean, zooxanthellae-bearing Cliona has recently become abundant due to global warming, overfishing, and algae abundance. Using molecular techniques, the symbionts from five excavating species (Clionacaribbaea, C. tenuis, C. varians, C. aprica and C. laticavicola) from the southern and southwestern Caribbean were surveyed. Several DNA sequence regions were used in order to confirm zooxanthellae identity; 18S rDNA, domain V of chloroplast large subunit (cp23S), internal transcribed spacer 2 (ITS2), and ITS2 secondary structure. Sequence analyses corroborated the presence of three zooxanthellae clades: A, B, and G. Presence of clades A and B in common boring sponges of the Caribbean fit with the general pattern of the province. The discovery of clade G for the first time in any organism of the Atlantic Ocean leads us to consider this unusual finding as a phylogenetic relict through common ancestors of sponge clades or an invasion of the sponge from the Indo-Pacific.

  5. Clones or clans: the genetic structure of a deep-sea sponge, Aphrocallistes vastus, in unique sponge reefs of British Columbia, Canada.

    Science.gov (United States)

    Brown, Rachel R; Davis, Corey S; Leys, Sally P

    2017-02-01

    Understanding patterns of reproduction, dispersal and recruitment in deep-sea communities is increasingly important with the need to manage resource extraction and conserve species diversity. Glass sponges are usually found in deep water (>1000 m) worldwide but form kilometre-long reefs on the continental shelf of British Columbia and Alaska that are under threat from trawling and resource exploration. Due to their deep-water habitat, larvae have not yet been found and the level of genetic connectivity between reefs and nonreef communities is unknown. The genetic structure of Aphrocallistes vastus, the primary reef-building species in the Strait of Georgia (SoG) British Columbia, was studied using single nucleotide polymorphisms (SNPs). Pairwise comparisons of multilocus genotypes were used to assess whether sexual reproduction is common. Structure was examined 1) between individuals in reefs, 2) between reefs and 3) between sites in and outside the SoG. Sixty-seven SNPs were genotyped in 91 samples from areas in and around the SoG, including four sponge reefs and nearby nonreef sites. The results show that sponge reefs are formed through sexual reproduction. Within a reef and across the SoG basin, the genetic distance between individuals does not vary with geographic distance (r = -0.005 to 0.014), but populations within the SoG basin are genetically distinct from populations in Barkley Sound, on the west coast of Vancouver Island. Population structure was seen across all sample sites (global F ST  = 0.248), especially between SoG and non-SoG locations (average pairwise F ST  = 0.251). Our results suggest that genetic mixing occurs across sponge reefs via larvae that disperse widely. © 2016 John Wiley & Sons Ltd.

  6. Characterization of the Bacterial Community Naturally Present on Commercially Grown Basil Leaves: Evaluation of Sample Preparation Prior to Culture-Independent Techniques

    Directory of Open Access Journals (Sweden)

    Siele Ceuppens

    2015-08-01

    Full Text Available Fresh herbs such as basil constitute an important food commodity worldwide. Basil provides considerable culinary and health benefits, but has also been implicated in foodborne illnesses. The naturally occurring bacterial community on basil leaves is currently unknown, so the epiphytic bacterial community was investigated using the culture-independent techniques denaturing gradient gel electrophoresis (DGGE and next-generation sequencing (NGS. Sample preparation had a major influence on the results from DGGE and NGS: Novosphingobium was the dominant genus for three different basil batches obtained by maceration of basil leaves, while washing of the leaves yielded lower numbers but more variable dominant bacterial genera including Klebsiella, Pantoea, Flavobacterium, Sphingobacterium and Pseudomonas. During storage of basil, bacterial growth and shifts in the bacterial community were observed with DGGE and NGS. Spoilage was not associated with specific bacterial groups and presumably caused by physiological tissue deterioration and visual defects, rather than by bacterial growth.

  7. The effects of host age and spatial location on bacterial community composition in the English Oak tree (Quercus robur).

    Science.gov (United States)

    Meaden, S; Metcalf, C J E; Koskella, B

    2016-04-27

    Drivers of bacterial community assemblages associated with plants are diverse and include biotic factors, such as competitors and host traits, and abiotic factors, including environmental conditions and dispersal mechanisms. We examine the roles of spatial distribution and host size, as an approximation for age, in shaping the microbiome associated with Quercus robur woody tissue using culture-independent 16S rRNA gene amplicon sequencing. In addition to providing a baseline survey of the Q. robur microbiome, we screened for the pathogen of acute oak decline. Our results suggest that age is a predictor of bacterial community composition, demonstrating a surprising negative correlation between tree age and alpha diversity. We find no signature of dispersal limitation within the Wytham Woods plot sampled. Together, these results provide evidence for niche-based hypotheses of community assembly and the importance of tree age in bacterial community structure, as well as highlighting that caution must be applied when diagnosing dysbiosis in a long-lived plant host. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. AFSC/RACE/GAP/Rooper: Deep sea coral and sponge distribution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of a series of ongoing research projects, the AFSC has been mapping and modeling the distribution of deep-sea coral and sponge communities throughout Alaska....

  9. Environmental impacts of air-gun surveys on glass sponges : final report

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, V; Yahel, G [Victoria Univ., Victoria, BC (Canada). Dept. of Biology; Chapman, R; Wilmut, M [Victoria Univ., Victoria, BC (Canada). School of Earth and Ocean Sciences

    2008-09-15

    Air-gun surveys associated with the oil and gas exploration in the Queen Charlotte Basin will insonify the seafloor with broadband, high intensity noise, exposing the glass sponge reef systems of that area to acoustic impacts. Tissue integrity and behaviour of marine animals can be affected by the acoustic harassment of water propagated vibration. This paper examined the effects of acoustic noise on the behaviour of glass sponges. The purpose of the study was to test the hypothesis that the acoustic vibration produced by a small, surface operated air gun would not alter the normal pattern of sponge feeding activities. The paper described the methods, with particular reference to the study site; sponge pumping rate; and acoustic effects on sponge pumping. Results were presented for ambient conditions; air gun shots; sponge pumping responses to air gun shots; and correlation of sponge response and ambient current. The question of whether the sponge's excurrent flow responds to the pressure from a series of air-gun shots was addressed by a statistical analysis over all the excurrent data from the experiment. It was concluded that there is little or no evidence that the acoustic pressure from the shots influences the physiological functions of the sponge. 22 refs., 2 tabs., 11 figs.

  10. Environmental impacts of air-gun surveys on glass sponges : final report

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, V.; Yahel, G. [Victoria Univ., Victoria, BC (Canada). Dept. of Biology; Chapman, R.; Wilmut, M. [Victoria Univ., Victoria, BC (Canada). School of Earth and Ocean Sciences

    2008-09-15

    Air-gun surveys associated with the oil and gas exploration in the Queen Charlotte Basin will insonify the seafloor with broadband, high intensity noise, exposing the glass sponge reef systems of that area to acoustic impacts. Tissue integrity and behaviour of marine animals can be affected by the acoustic harassment of water propagated vibration. This paper examined the effects of acoustic noise on the behaviour of glass sponges. The purpose of the study was to test the hypothesis that the acoustic vibration produced by a small, surface operated air gun would not alter the normal pattern of sponge feeding activities. The paper described the methods, with particular reference to the study site; sponge pumping rate; and acoustic effects on sponge pumping. Results were presented for ambient conditions; air gun shots; sponge pumping responses to air gun shots; and correlation of sponge response and ambient current. The question of whether the sponge's excurrent flow responds to the pressure from a series of air-gun shots was addressed by a statistical analysis over all the excurrent data from the experiment. It was concluded that there is little or no evidence that the acoustic pressure from the shots influences the physiological functions of the sponge. 22 refs., 2 tabs., 11 figs.

  11. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    Science.gov (United States)

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Distinct Bacterial Composition Associated with Different Laboratory-cultured Aiptasia Strains Across Two Thermal Conditions

    KAUST Repository

    Ahmed, Hanin

    2018-05-01

    Coral reefs are crucial for the ecological sustainability of the oceans, yet, increasing sea surface temperature is threatening these ecosystems globally. Microbial communities associated with corals have become a recent research focus, as the associated microbiome may contribute to coral resilience to environmental stressors, e.g., heat stress. However, research in this area is hampered by the difficulty of working with corals. This study aims to use Aiptasia, a sea anemone, as a tractable laboratory model system to study the role of the coral microbiome. Analyses of the bacterial compositions associated with different Aiptasia strains across two temperatures (25 °C and 32 °C), based on 16S rRNA gene sequencing. This study aims also to identify a “core” microbiome associated with heat stress acclimation, as well as host-specific differences. In general, results showed that bacterial composition associated with Aiptasia strains differs significantly with temperature. Higher bacterial diversity and richness were observed when all Aiptasia strains were placed under heat stress. Moreover, results showed an increase in beta diversity and dispersion of bacterial communities in response to heat stress. These changes in the bacterial composition are in line with the recently described “Anna Karenina principle” for animal microbiomes, which suggests that the microbiomes of unhealthy individuals vary more than healthy and stable individuals. This study further shows that while temperature had the greatest effect on structuring the bacterial compositions, there were some variations better attributed to batch and host effects. This suggests that technical aspects have to be carefully addressed in the framework of microbiome studies. Members of a putative “core” microbiome associated with 32 °C Aiptasia have been identified as indicator species of heat stress (i.e., Francisella sp.,). Previous reports have shown that these indicator taxa are associated with

  13. Bacterial communities in the fruit bodies of ground basidiomycetes

    Science.gov (United States)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  14. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef.

    Science.gov (United States)

    González-Díaz, Patricia; González-Sansón, Gaspar; Alvarez Fernández, Sergio; Perera Pérez, Orlando

    2010-06-01

    The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species), but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities.

  15. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  16. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    Science.gov (United States)

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science

  17. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  18. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  19. Associations of the vaginal microbiota with HIV infection, bacterial vaginosis, and demographic factors.

    Science.gov (United States)

    Chehoud, Christel; Stieh, Daniel J; Bailey, Aubrey G; Laughlin, Alice L; Allen, Shannon A; McCotter, Kerrie L; Sherrill-Mix, Scott A; Hope, Thomas J; Bushman, Frederic D

    2017-04-24

    We sought to investigate the effects of HIV infection on the vaginal microbiota and associations with treatment and demographic factors. We thus compared vaginal microbiome samples from HIV-infected (HIV+) and HIV-uninfected (HIV-) women collected at two Chicago area hospitals. We studied vaginal microbiome samples from 178 women analyzed longitudinally (n = 324 samples) and collected extensive data on clinical status and demographic factors. We used 16S rRNA gene sequencing to characterize the bacterial lineages present, then UniFrac, Shannon diversity, and other measures to compare community structure with sample metadata. Differences in microbiota measures were modest in the comparison of HIV+ and HIV- samples, in contrast to several previous studies, consistent with effective antiretroviral therapy. Proportions of healthy Lactobacillus species were not higher in HIV- patients overall, but were significantly higher when analyzed within each hospital in isolation. Rates of bacterial vaginosis were higher among African-American women and HIV+ women. Bacterial vaginosis was associated with higher frequency of HIV+. Unexpectedly, African-American women were more likely to switch bacterial vaginosis status between sampling times; switching was not associated with HIV+ status. The influence of HIV infection on the vaginal microbiome was modest for this cohort of well suppressed urban American women, consistent with effective antiretroviral therapy. HIV+ was found to be associated with bacterial vaginosis. Although bacterial vaginosis has previously been associated with HIV transmission, most of the women studied here became HIV+ many years before our test for bacterial vaginosis, thus implicating additional mechanisms linking HIV infection and bacterial vaginosis.

  20. Storm-scale dynamics of bacterial community composition in throughfall and stemflow

    Science.gov (United States)

    Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.

    2017-12-01

    Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.

  1. Impact of cadmium on the bacterial communities in the gut of Metaphire posthuma

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Hsiung; Chen, Mu-Hsuan; Chen, Chien-Cheng; Chen, Colin S. [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Chen, Jiun-Hong [Department of Life Science, National Taiwan University, Taipei, Taiwan (China); Chen, Ssu Ching, E-mail: osycchna@ksts.seed.net.tw [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)

    2009-12-30

    The effects of cadmium (Cd) contamination in soil onto the bacterial communities of the guts pooled from ten Metaphire posthuma were addressed during 14 days' incubation. We found that about 50% of Cd (5 mg/kg, dry weight soil) in the contaminated soil was bio-accumulated into the earthworms. DNA was extracted from the guts of M. posthuma and their dwelling soil irrespective of Cd treatment for the analysis of the bacterial communities of guts in M. posthuma and in soil by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). A distinctive cluster of bacterial communities of the guts in the earthworm with and without Cd treatment using the analysis of unweighted pair-group method using arithmetic averages (UPGMA) was observed, indicating that the bacterial community of guts could be changed by Cd. However, no differences in the bacterial communities in soil irrespective of Cd treatment were observed, which could be resulted from the bioremediation of Cd by earthworms leading to insignificant effect of Cd on bacterial communities in soil. For the sequencing of some of the dominant bands in the DGGE profile, Bradyrhizobium japonicum, Stenotrophomonas sp. D2, and Labrys, sp. CC-BB4, whose sequences display an identity of more than 97% using blast program against a known sequence in the GeneBank database and Ribosomal database, were identified. Collectively, our results showed that earthworm treatment can decrease the concentrations of Cd in soil, and Cd cause a shift in the bacterial communities in the guts of M. posthuma. The application of M. posthuma for Cd bioremediation would be desired.

  2. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    OpenAIRE

    Chro??kov?, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottov?, Dana; ?imek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of...

  3. Structure of the Bacterial Community in Different Stages of Early Childhood Caries.

    Science.gov (United States)

    Ximenes, Marcos; Armas, Rafael Dutra de; Triches, Thaisa Cezária; Cardoso, Mariane; Vieira, Ricardo de Souza

    2018-01-15

    To characterise in vivo the structure of bacterial communities in decayed and sound primary teeth. Samples of biofilms were collected from three groups of patients with complete and exclusively primary dentition (n = 45): G1: sound teeth (n = 15); G2: enamel lesion (n = 15); G3: dentin lesion (n = 15). DNA was extracted (CTAB 2%) from the biofilm, the partial 16S rRNA gene was amplified with Bacteria Universal Primers (BA338fGC - UN518r) and subjected to DGGE (denaturing gradient gel electrophoresis). Multidimensional scaling and ANOSIM (analysis of similarity) were employed to determine the structure of the bacterial communities. The amplicon richness was determined by averaging amplicons, with the differences between treatments determined with ANOVA, while means were compared using Tukey's test (p < 0.05). Compared to sound teeth, a greater variety of bacterial communities was found in decayed teeth. Despite the differences between the bacterial communities of sound teeth and decayed teeth, the Venn diagram showed that the samples had 38 amplicons in common. Greater amplicon richness was observed in samples of decayed teeth (enamel: 20.5 ± 2.7; dentin: 20.1 ± 2.8) compared with the sound samples (12.0 ± 4.3) (p <0.05), indicating enhanced growth for specific groups of bacteria on decayed teeth. Although there is less bacterial diversity on sound than ECC-decayed teeth, the bacterial communities are very similar.

  4. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    Science.gov (United States)

    Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F.

    2016-01-01

    Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a north-south permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa (operational taxonomic units, OTUs), and then analyzed these results relative to environmental variables to identify variables controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley; however, the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial "keystone species". These highly connected nodes (OTUs) in the network were not merely the numerically dominant taxa, and their loss would alter the organization of microbial consortia and ultimately the food web structure and functioning of these aquatic ecosystems.

  5. Bacterial Communities in Polluted Seabed Sediments: A Molecular Biology Assay in Leghorn Harbor

    Directory of Open Access Journals (Sweden)

    Carolina Chiellini

    2013-01-01

    Full Text Available Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution.

  6. Temporal variation in macroinvertebrates associated with intertidal sponge Ircinia fusca (Carter 1880) from Ratnagiri, West coast, India.

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.K.; Redij, A.G.S.; Sagare, P.; Thakur, N.L.; Ingole, B.S.

    : similarity profiles and biota-environment linkage, J. Exp. Mar. Biol. Ecol., 366 (2008) 56-69. 18 Villamizar, E., Laughlin, R.A., Fauna associated with the sponges Aplysina archeri and Aplysina etroit in a coral reef of the Archipiélago de Los Roques...

  7. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata

    OpenAIRE

    Malacrinò, Antonino; Campolo, Orlando; Medina, Raul F; Palmeri, Vincenzo

    2018-01-01

    Microorganisms are acknowledged for their role in shaping insects' evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant speci...

  8. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    Science.gov (United States)

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  9. The obesity paradox in community-acquired bacterial pneumonia.

    Science.gov (United States)

    Corrales-Medina, Vicente F; Valayam, Josemon; Serpa, Jose A; Rueda, Adriana M; Musher, Daniel M

    2011-01-01

    The impact of obesity on the outcome of pneumonia is uncertain. We retrospectively identified 266 hospitalized patients with proven pneumococcal or Haemophilus community-acquired pneumonia who had at least one body mass index (BMI, kg/m²) value documented in the 3 months before admission. Patients were classified as underweight (BMI values and BMI categories with the mortality at 30 days after admission for pneumonia was investigated. Increasing BMI values were associated with reduced 30-day mortality, even after adjustment for significant covariates (odds ratio 0.88, confidence interval 0.81-0.96; p<0.01). There was a significant trend towards lower mortality in the overweight and obese (non-parametric trend, p=0.02). Our data suggest that obesity may exert a protective effect against 30-day mortality from community-acquired bacterial pneumonia. Copyright © 2010 International Society for Infectious Diseases. All rights reserved.

  10. Growth and metabolism of sponges

    NARCIS (Netherlands)

    Koopmans, M.

    2009-01-01

    Sponges (phylum Porifera) are multi cellular filter-feeding invertebrate animals living attached to a substratum in mostly marine but also in freshwater habitats. The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. An

  11. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  12. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Science.gov (United States)

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  13. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Directory of Open Access Journals (Sweden)

    Annamaria Bevivino

    Full Text Available Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered. Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture showed a more stable bacterial community than those with high human input (vineyards and managed meadow. Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio

  14. Coral-Associated Bacterial Diversity is Conserved Across Two Deep-Sea Anthothela Species

    Directory of Open Access Journals (Sweden)

    Stephanie Nichole Lawler

    2016-04-01

    Full Text Available Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12 and Baltimore Canyons (n = 11 from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp. and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp. had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  15. Microplastic-associated Bacterial Assemblages in the Intertidal Zone

    Science.gov (United States)

    Jiang, P.; Zhao, S.; Zhu, L.; Li, D.

    2017-12-01

    Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.

  16. Sponge cell culture

    NARCIS (Netherlands)

    Schippers, K.J.

    2013-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential and are the most prolific source of newly discovered bioactive compounds with more than 7,000 novel molecules discovered in 40 years. Despite its enormous potential, only a few sponge-derived bioactive

  17. 21 CFR 886.4790 - Ophthalmic sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze, cotton...

  18. Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kim, Chang-Gi; Kang, Hojeong

    2011-04-01

    We assessed the temporal dynamics of bacterial and fungal communities in a soil ecosystem supporting genetically modified (GM) rice (Oryza sativa L., ABC-TPSP; fusion of trehalose-6-phosphate synthase and phosphatase). Using terminal restriction fragment length polymorphism analysis and real-time quantitative PCR, we compared bacterial and fungal communities in the soils underlying GM rice (ABC-TPSP), and its host cultivar (Nakdong) during growing seasons and non-growing seasons. Overall, the soils supporting GM and non-GM rice did not differ significantly in diversity indices, including ribotype numbers, for either bacteria or fungi. The diversity index (H) in both the bacterial and fungal communities was correlated with water content, dissolved organic carbon (DOC), and ammonium nitrogen, and the correlation was stronger in fungi than in bacteria. Multivariate analysis showed no differences in microbial community structures between the two crop genotypes, but such differences did appear in time, with significant changes observed after harvest. Gene copy number was estimated as 10(8)~10(11) and 10(5)~10(7) per gram of soil for bacteria and fungi, respectively. As observed for community structure, the rice genotypes did not differ significantly in either bacterial- or fungal-specific gene copy numbers, although we observed a seasonal change in number. We summarize the results of this study as follows. (1) GM rice did not influence soil bacterial and fungal community structures as compared to non-GM rice in our system, (2) both bacterial and fungal communities changed with the growth stage of either rice genotype, (3) fungal communities were less variable than bacterial communities, and (4) although several environmental factors, including ammonium nitrogen and DOC correlated with shifts in microbial community structure, no single factor stood out.

  19. Influence of technological treatments on bacterial communities in ...

    African Journals Online (AJOL)

    Influence of technological treatments on bacterial communities in tilapia ( Oreochromis niloticus ) as determined by 16S rDNA fingerprinting using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)

  20. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Díez-Vives, Cristina; Batani, Giampiero; Esteves, Ana Is; Jahn, Martin T; Thomas, Torsten

    2017-07-01

    Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge's filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge-microbe symbiosis, bridging the gap between cell- and community-level knowledge.

  1. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    Science.gov (United States)

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  2. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    Science.gov (United States)

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  3. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lors, C.; Ryngaert, A.; Perie, F.; Diels, L.; Damidot, D. [University of Lille, Lille (France)

    2010-11-15

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 165 rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82%, respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma proteobacteria, in particular the Enterobacteria and Pseudomonas genera which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely other species like the Beta proteobacteria were detected after 3 months when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus presence of the Beta proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH contaminated soil.

  4. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    Science.gov (United States)

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  5. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...... the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related...... to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community...

  6. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  7. Bacterial community profile of contaminated soils in a typical antimony mining site.

    Science.gov (United States)

    Wang, Ningning; Zhang, Suhuan; He, Mengchang

    2018-01-01

    The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, Sb DGT , As DGT , potential ecological risk index (RI), TC, TN), among which pH, Sb DGT , and As DGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.

  8. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    Science.gov (United States)

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (PPCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (Pmicrobial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.

  9. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  10. Bacterial social interactions and the emergence of community-intrinsic properties

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Sørensen, Søren Johannes; Burmølle, Mette

    2018-01-01

    Bacterial communities are dominated and shaped by social interactions, which facilitate the emergence of properties observed only in the community setting. Such community-intrinsic properties impact not only the phenotypes of cells in a community, but also community composition and function...... on community composition and interactions in multispecies biofilms. We hereby wish to emphasize the importance of studying social interactions in settings where community-intrinsic properties are likely to emerge....

  11. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno; Ryu, Tae Woo; Abdelmohsen, Usama Ramadan; Moitinho-Silva, Lucas; Horn, Hannes; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  12. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  13. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  14. Temporal relationships exist between cecum, ileum and litter bacterial microbiomes in a commercial turkey flock, and subtherapeutic penicillin treatment impacts ileum bacterial community establishment

    Directory of Open Access Journals (Sweden)

    Jessica L Danzeisen

    2015-11-01

    Full Text Available Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of twelve weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics.

  15. Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape.

    Directory of Open Access Journals (Sweden)

    Lucie Zinger

    2011-05-01

    Full Text Available The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.

  16. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  17. Upper and lower respiratory tract microbiota in horses: bacterial communities associated with health and mild asthma (inflammatory airway disease) and effects of dexamethasone.

    Science.gov (United States)

    Bond, Stephanie L; Timsit, Edouard; Workentine, Matthew; Alexander, Trevor; Léguillette, Renaud

    2017-08-23

    The microbial composition of the equine respiratory tract, and differences due to mild equine asthma (also called Inflammatory Airway Disease (IAD)) have not been reported. The primary treatment for control of IAD in horses are corticosteroids. The objectives were to characterize the upper and lower respiratory tract microbiota associated with respiratory health and IAD, and to investigate the effects of dexamethasone on these bacterial communities using high throughput sequencing. The respiratory microbiota of horses was dominated by four major phyla, Proteobacteria (43.85%), Actinobacteria (21.63%), Firmicutes (16.82%), and Bacteroidetes (13.24%). Fifty genera had a relative abundance > 0.1%, with Sphingomonas and Pantoea being the most abundant. The upper and lower respiratory tract microbiota differed in healthy horses, with a decrease in richness in the lower airways, and 2 OTUs that differed in abundance. There was a separation between bacterial communities in the lower respiratory tract of healthy and IAD horses; 6 OTUs in the tracheal community had different abundance with disease status, with Streptococcus being increased in IAD horses. Treatment with dexamethasone had an effect on the lower respiratory tract microbiota of both heathy and IAD horses, with 8 OTUs increasing in abundance (including Streptococcus) and 1 OTU decreasing. The lower respiratory tract microbiota differed between healthy and IAD horses. Further research on the role of Streptococcus in IAD is warranted. Dexamethasone treatment affected the lower respiratory tract microbiota, which suggests that control of bacterial overgrowth in IAD horses treated with dexamethasone could be part of the treatment strategy.

  18. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    Science.gov (United States)

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  19. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies.

    Science.gov (United States)

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-11-16

    Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.

    Science.gov (United States)

    Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-12-01

    Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.

  1. Changes in bacterial community after application of three different herbicides.

    Science.gov (United States)

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities.

    Science.gov (United States)

    Rieder, Stephan Raphael; Brunner, Ivano; Daniel, Otto; Liu, Bian; Frey, Beat

    2013-01-01

    Methylmercury compounds are very toxic for most organisms. Here, we investigated the potential of earthworms to methylate inorganic-Hg. We hypothesized that the anaerobic and nutrient-rich conditions in the digestive tracts of earthworm's promote the methylation of Hg through the action of their gut bacteria. Earthworms were either grown in sterile soils treated with an inorganic (HgCl2) or organic (CH3HgCl) Hg source, or were left untreated. After 30 days of incubation, the total-Hg and methyl-Hg concentrations in the soils, earthworms, and their casts were analyzed. The impact of Hg on the bacterial community compositions in earthworms was also studied. Tissue concentrations of methyl-Hg in earthworms grown in soils treated with inorganic-Hg were about six times higher than in earthworms grown in soils without Hg. Concentrations of methyl-Hg in the soils and earthworm casts remained at significantly lower levels suggesting that Hg was mainly methylated in the earthworms. Bacterial communities in earthworms were mostly affected by methyl-Hg treatment. Terminal-restriction fragments (T-RFs) affiliated to Firmicutes were sensitive to inorganic and methyl-Hg, whereas T-RFs related to Betaproteobacteria were tolerant to the Hg treatments. Sulphate-reducing bacteria were detected in earthworms but not in soils.

  3. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

    Science.gov (United States)

    Leys, Sally P.; Yahel, Gitai; Reidenbach, Matthew A.; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M.

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  4. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae

    Directory of Open Access Journals (Sweden)

    Irene de Araújo Barros

    2010-12-01

    Full Text Available Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2% and 346 (64.2% were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. (B. cereus, B. megaterium, B. pumilus and B. subtilis, Paenibacillus sp., Amphibacillus sp., Gracilibacillus sp., Micrococcus sp. and Stenotrophomonas spp. (S. maltophilia and S. nitroreducens. B. pumilus was the most frequently isolated bacterial species. Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana, which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  5. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    Science.gov (United States)

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  6. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    Science.gov (United States)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  7. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    Science.gov (United States)

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  8. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling

    Directory of Open Access Journals (Sweden)

    Andrew Maltez Thomas

    2016-12-01

    by digital droplet PCR. Our findings point to increased bacterial richness and diversity in rectal cancer, along with several differences in microbial community composition. Our work is the first to present evidence for a possible role of bacteria such as Bacteroides fragilis and the phylum Parcubacteria in rectal cancer, emphasizing the need to study tissue-associated bacteria and specific regions of the gastrointestinal tract in order to better understand the possible links between the microbiota and rectal cancer.

  9. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef

    Directory of Open Access Journals (Sweden)

    Patricia González-Díaz

    2010-06-01

    Full Text Available The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species, but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities. Rev. Biol. Trop. 58 (2: 621-634. Epub 2010 June 02.

  10. From 2D fluidic array screening to 3D bacterial capturing structures in a point of care system for sepsis diagnosis

    DEFF Research Database (Denmark)

    Shahbazi, Mohammad-Ali; Kant, Krishna; Kaplinsky, Joseph John

    2017-01-01

    A combined 2D microfluidic-microarray high throughput approach is reported to identify universal bacterial capturing ligands that can be tethered on the surface of 3D sponges fabricated by different methods for concentrating of bacterial targets in diagnosis devices. The developed platform allows...... between the solid surface and ligands. 3D sponges and micropillars are modified with the most potent capturing molecule to assess their bacterial capturing in real blood samples. Next, the 3D structures are placed into a chip with an immense potential to recognize bacteria through imaging and fluorescence...

  11. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    Science.gov (United States)

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.

  12. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  13. Characterization of deep coral and sponge communities in the Gulf of the Farallones National Marine Sanctuary: Rittenburg Bank, Cochrane Bank and the Farallon Escarpment.

    Science.gov (United States)

    Etnoyer, P.; Cochrane, Guy R.; Salgado, E.; Graiff, K.; Roletto, J.; Williams, G.J.; Reyna, K.; Hyland, J.

    2014-01-01

    Benthic surveys were conducted in the Gulf of Farallones National Marine Sanctuary (GFNMS) aboard R/V Fulmar, October 3-11, 2012 using the large observation-class remotely operated vehicle (ROV) Beagle. The purpose of the surveys was to groundtruth mapping data collected in 2011, and to characterize the seafloor biota, particularly corals and sponges, in order to support Essential Fish Habitat designations under Magnuson-Stevens Act (MSA) and other conservation and management goals under the National Marine Sanctuaries Act (NMSA). A total area of 25,416 sq. meters of sea floor was surveyed during 34 ROV transects. The overall research priorities were: (1) to locate and characterize DSC and sponge habitats in priority areas; (2) to collect information to help understand the value of DSCs and sponges as reservoirs of biodiversity, or habitat for associated species, including commercially important fishes and invertebrates; (3) to assess the condition of DSC/sponge assemblages in relation to potential anthropogenic or environmental disturbances; and (4) to make this information available to support fisheries and sanctuary management needs under MSA and NMSA requirements.

  14. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    Science.gov (United States)

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Genetics Home Reference: white sponge nevus

    Science.gov (United States)

    ... Twitter Home Health Conditions White sponge nevus White sponge nevus Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description White sponge nevus is a condition characterized by the formation ...

  16. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.

  17. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans.

    Science.gov (United States)

    Wietz, Matthias; Wemheuer, Bernd; Simon, Heike; Giebel, Helge-Ansgar; Seibt, Maren A; Daniel, Rolf; Brinkhoff, Thorsten; Simon, Meinhard

    2015-10-01

    The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  20. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.