WorldWideScience

Sample records for spme sorbent coatings

  1. A home-made SPME fiber coating for Arson Analysis

    International Nuclear Information System (INIS)

    Umi Khairul Ahmad; Abdul Rahim Yacob; Selvaraju, Geetha

    2008-01-01

    A number of adsorbents are available commercially as coatings for SPME fibers but some analytical methodologies might demand specific properties for the extraction of selected compounds, special coatings that have particular volume and a selectivity towards particular analytes. This paper presents a simple, fast, effective and environmental friendly methodology for the determination of accelerants in arson samples using headspace solid-phase micro extraction coupled to gas chromatography. A new fiber prepared by sol-gel method, containing 1:1 molar ratio of octyltriethoxysilane (C 8 -TEOS): methyltrimethoxysilane (MTMOS) was employed in this technique. The efficiency of the new fiber coating prepared by sol-gel technology for the determination of accelerants was compared to that of commercial PDMS/ DVB fibers. Poly dimethylsiloxane divinylbenzene (PDMS/ DVB) is the most common fiber coating for the extraction of hydrocarbon compounds. Compared with commercial PDMS/ DVB fiber, the new homemade fiber exhibited higher extraction capability and good selectivity for accelerants. The homemade fiber was also applied for the simulated arson samples. The home-made SPME adsorbent was shown to be a good alternative to commercially available fiber for the determination of accelerants in arson cases. (author)

  2. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    Science.gov (United States)

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

    Science.gov (United States)

    Cordero-Vaca, María; Trujillo-Rodríguez, María J; Zhang, Cheng; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2015-06-01

    Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 μg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 μg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 μm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 μg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

  4. Coating membranes for a sorbent-based artificial liver: adsorption characteristics

    NARCIS (Netherlands)

    de Koning, H. W.; Chamuleau, R. A.; Bantjes, A.

    1982-01-01

    Techniques are described for the coating of sorbents to be used in an artificial liver support system based on mixed sorbent bed hemoperfusion. Activated charcoal has been coated with cellulose acetate (CA) by solvent evaporation. With Amberlite XAD-4, the Wurster technique was used for coating with

  5. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    International Nuclear Information System (INIS)

    Zielińska, Katarzyna; Leeuwen, Herman P. van

    2014-01-01

    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex

  6. Microextraction by Packed Sorbent (MEPS and Solid-Phase Microextraction (SPME as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2014-01-01

    Full Text Available For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS and solid-phase microextraction (SPME, completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.

  7. Matrix-compatible sorbent coatings based on structurally-tuned polymeric ionic liquids for the determination of acrylamide in brewed coffee and coffee powder using solid-phase microextraction.

    Science.gov (United States)

    Cagliero, Cecilia; Nan, He; Bicchi, Carlo; Anderson, Jared L

    2016-08-12

    Nine crosslinked polymeric ionic liquid (PIL)-based SPME sorbent coatings were designed and screened in this study for the trace level determination of acrylamide in brewed coffee and coffee powder using gas chromatography-mass spectrometry (GC-MS). The structure of the ionic liquid (IL) monomer was tailored by introducing different functional groups to the cation and the nature of the IL crosslinker was designed by altering both the structure of the cation as well as counteranions. The extraction efficiency of the new PIL coatings towards acrylamide was investigated and compared to a previously reported PIL sorbent coating. All PIL fibers exhibited excellent analytical precision and linearity. The PIL fiber coating consisting of 50% 1,12-di(3-vinylbenzylbenzimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide as IL crosslinker in 1-vinyl-3-(10-hydroxydecyl)imidazolium bis[(trifluoromethyl)sulfonyl]imide IL monomer resulted in a limit of quantitation of 0.5μgL(-1) with in-solution SPME sampling. The hydroxyl moiety appended to the IL cation was observed to significantly increase the sensitivity of the PIL coating toward acrylamide. The quantitation of acrylamide in brewed coffee and coffee powder was performed using the different PIL-based fibers by the method of standard addition after a quenching reaction using ninhydrin to inhibit the formation of interfering acrylamide in the GC inlet, mainly by asparagine thermal degradation. Excellent repeatability with relative standard deviations below 10% were obtained on the real coffee samples and the structure of the coatings appeared intact by scanning electron microscopy after coffee sampling proving the matrix-compatibility of the PIL sorbent coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Determination of Pyrethroids in Tea Brew by GC-MS Combined with SPME with Multiwalled Carbon Nanotube Coated Fiber

    Directory of Open Access Journals (Sweden)

    Dongxia Ren

    2018-01-01

    Full Text Available A new method has been developed to simultaneously determine 7 pyrethroid residues in tea brew using gas chromatography-mass spectrometry (GC-MS combined with solid phase microextraction (SPME with multiwalled carbon nanotubes (MWCNTs coated fiber. The MWCNTs coated fiber of SPME was homemade by using stainless steel wire as coating carrier and polyacrylonitrile (PAN solution as adhesive glue. Under the optimized conditions, a good linearity was shown for bifenthrin, fenpropathrin, permethrin, and cyfluthrin in 1–50 ng mL−1 and for cypermethrin, fenvalerate, and deltamethrin in 5–50 ng mL−1. The correlation coefficients were in the range of 0.9948–0.9999. The average recoveries of 7 pyrethroids were 94.2%–107.3% and the relative standard deviations (RSDs were less than 15%. The detection limit of the method ranged from 0.12 to 1.65 ng mL−1. The tea brew samples made from some commercial tea samples were analyzed. Among them, bifenthrin, fenpropathrin, and permethrin were found. The results show that the method is rapid and sensitive and requires low organic reagent consumption, which can be well used for the detection of the pyrethroids in tea brew.

  9. Determination of Pyrethroids in Tea Brew by GC-MS Combined with SPME with Multiwalled Carbon Nanotube Coated Fiber.

    Science.gov (United States)

    Ren, Dongxia; Sun, Chengjun; Ma, Guanqun; Yang, Danni; Zhou, Chen; Xie, Jiayu; Li, Yongxin

    2018-01-01

    A new method has been developed to simultaneously determine 7 pyrethroid residues in tea brew using gas chromatography-mass spectrometry (GC-MS) combined with solid phase microextraction (SPME) with multiwalled carbon nanotubes (MWCNTs) coated fiber. The MWCNTs coated fiber of SPME was homemade by using stainless steel wire as coating carrier and polyacrylonitrile (PAN) solution as adhesive glue. Under the optimized conditions, a good linearity was shown for bifenthrin, fenpropathrin, permethrin, and cyfluthrin in 1-50 ng mL -1 and for cypermethrin, fenvalerate, and deltamethrin in 5-50 ng mL -1 . The correlation coefficients were in the range of 0.9948-0.9999. The average recoveries of 7 pyrethroids were 94.2%-107.3% and the relative standard deviations (RSDs) were less than 15%. The detection limit of the method ranged from 0.12 to 1.65 ng mL -1 . The tea brew samples made from some commercial tea samples were analyzed. Among them, bifenthrin, fenpropathrin, and permethrin were found. The results show that the method is rapid and sensitive and requires low organic reagent consumption, which can be well used for the detection of the pyrethroids in tea brew.

  10. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  11. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  12. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    Science.gov (United States)

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  13. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An approach to determination of phenolic compounds in seawater using SPME-GC-MS based on SWCNTs coating

    Science.gov (United States)

    Zhu, Jia; Wang, Ying; Zeng, Lin

    2016-08-01

    Phenolic compounds have become one kind of the important pollutants of the marine environment. Single-walled Carbon nanotubes, as one-dimensional nano materials, have light weight and perfect hexagonal structure of connections, with many unusual mechanical, chemical and electrical properties. In recent years, with the research of carbon nanotubes and other nano materials, the application prospect is also constantly discussed. In this paper, homemade single-walled carbon nanotubes (SWCNTs) coating was used for establishing an analytical approach to the determination of five kinds of phenolic compounds in seawater using SPME-GC-MS. Optimal conditions: After saturation was conducted with NaCl, and pH was adjusted to 2.0 with H2SO4, the extract was immersed in a water bath at 40°C for GC-MS determination through 40-min agitating extraction at 500 rmin-1 and 3-min desorption at 280°C. The liniearities ranged between 0.01-100 μg L-1, and the determination limits ranged between 1.5-10 ng L-1. The relative standard deviation (RSD, n = 5) was less than 6.5%. For the phenolic compounds obtained from the spiked recovery test for actual seawater samples, the rates of recovery were 87.5%-101.7%, and the RSDs were less than 8.8%, which met the requirements of determination. Due to its simplicity, high efficiency and low consumption, this approach is suitable for the analysis of trace amounts of phenolic compounds in marine waters.

  15. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials.

    Science.gov (United States)

    DeGreeff, Lauryn E; Furton, Kenneth G

    2011-09-01

    Human remains detection canines are used in locating deceased humans in diverse scenarios and environments based on odor produced during the decay process of the human body. It has been established that human remains detection canines are capable of locating human remains specifically, as opposed to living humans or animal remains, thus suggesting a difference in odor between the different sources. This work explores the collection and determination of such odors using a dynamic headspace concentration device. The airflow rate and three sorbent materials-Dukal cotton gauze, Johnson & Johnson cotton-blend gauze, and polyester material-used for odor collection were evaluated using standard compounds. It was determined that higher airflow rates and openly woven material, e.g., Dukal cotton gauze, yielded significantly less total volatile compounds due to compound breakthrough through the sorbent material. Collection from polymer- and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in compound collection as well. Volatiles, including cyclic and straight-chain hydrocarbons, organic acids, sulfides, aldehydes, ketones, and alcohols, were collected from a population of 27 deceased bodies from two collection locations. The common compounds between the subjects were compared and the odor profiles were determined. These odor profiles were compared with those of animal remains and living human subjects collected in the same manner. Principal component analysis showed that the odor profiles of the three sample types were distinct.

  16. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls

    Science.gov (United States)

    Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.

    2011-01-01

    Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.

  17. HP-SPME of volatile polycyclic aromatic hydrocarbons from water using multiwalled carbon nanotubes coated on a steel fiber through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoudi, S.; Noroozian, E. [Shahid Bahonar Univ., Kerman (Iran, Islamic Republic of). Dept. of Chemistry

    2012-08-15

    A headspace solid-phase microextraction (SPME) method using a stainless steel wire electrophoretically coated with dodecylsulfate modified multiwalled carbon nanotubes was used for the gas chromatographic (GC) determination of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Electrophoretic deposition was easily carried out from an aqueous sodium dodecylsulfate medium. The effects of various parameters on the efficiency of SPME process, such as extraction time, extraction temperature, ionic strength, desorption time, and desorption temperature were studied. Under optimized conditions, the detection limits for the various PAHs studied varied from 0.03 to 0.07 ng mL{sup -1}. The inter-day and intra-day relative standard deviations at a 10 ng mL{sup -1} concentration level (n = 7) using a single-fiber were from 5.5 to 9.7 and 4.1 to 8.5 %, respectively. The fiber-to-fiber RSD% (n = 3) was between 7.3 and 11.1 %. The linear ranges were between 0.1 and 100 ng mL{sup -1}. The method was successfully applied to the analysis of a real sample with the recoveries from 88 to 105 % for 5 ng mL{sup -1} and 89 to 101 % for 0.5 ng mL{sup -1} samples. (orig.)

  18. A comparison study on a sulfonated graphene-polyaniline nanocomposite coated fiber for analysis of nicotine in solid samples through the traditional and vacuum-assisted HS-SPME.

    Science.gov (United States)

    Ghiasvand, Alireza; Koonani, Samira; Yazdankhah, Fatemeh; Farhadi, Saeid

    2018-02-05

    A simple, rapid, and reliable headspace solid-phase microextraction (HS-SPME) procedure, reinforced by applying vacuum in the extraction vial, was developed. It was applied for the extraction of nicotine in solid samples prior to determination by gas chromatography-flame ionization detection (GC-FID). First, the surface of a narrow stainless steel wire was made porous and adhesive by platinization to obtain a durable, higher surface area, and resistant fiber. Then, a thin film of sulfonated graphene/polyaniline (Sulf-G/PANI) nanocomposite was synthesized and simultaneously coated on the platinized fiber using the electrophoretic deposition (EPD) method. It was demonstrated that the extraction efficiency remarkably increased by applying the reduced-pressure condition in the extraction vial. To evaluate the conventional HS-SPME and vacuum-assisted HS-SPME (VA-HS-SPME) platforms, all experimental parameters affecting the extraction efficiency including desorption time and temperature, extraction time and temperature and moisture content of sample matrix were optimized. The highest extraction efficiency was obtained at 60°C, 10min (extraction temperature and time) and 280°C, 2min (desorption condition), for VA-HS-SPME strategy, while for conventional HS-SPME the extraction and desorption conditions found to be 100°C, 30min and 280°C, 2min, respectively. The Sulf-G/PANI coated fiber showed high thermal stability, good chemical/mechanical resistance, and long lifetime. For analysis of nicotine in solid samples using VA-HS-SPME-GC-FID, linear dynamic range (LDR) was 0.01-30μgg -1 (R 2 =0.996), the relative standard deviation (RSD%, n=6), for analyses of 1μgg -1 nicotine was calculated 3.4% and limit of detection (LOD) found to be 0.002μgg -1 . The VA-HS-SPME-GC-FID strategy was successfully carried out for quantitation of nicotine in hair and tobacco real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications.

    Science.gov (United States)

    Souza-Silva, Érica A; Gionfriddo, Emanuela; Shirey, Robert; Sidisky, Len; Pawliszyn, Janusz

    2016-05-12

    The main quest for the implementation of direct SPME to complex matrices has been the development of matrix compatible coatings that provide sufficient sensitivity towards the target analytes. In this context, we present here a thorough evaluation of PDMS-overcoated fibers suitable for simultaneous extraction of different polarities analytes, while maintaining adequate matrix compatibility. For this, eleven analytes were selected, from various application classes (pesticides, industrial chemicals and pharmaceuticals) and with a wide range of log P values (ranging from 1.43 to 6). The model matrix chosen was commercial Concord grape juice, which is rich in pigments such as anthocyanins, and contains approximately 20% of sugar (w/w). Two types of PDMS, as well as other intrinsic factors associated with the PDMS-overcoated fiber fabrication are studied. The evaluation showed that the PDMS-overcoated fibers considerably slowed down the coating fouling process during direct immersion in complex matrices of high sugar content. Longevity differences could be seen between the two types of PDMS tested, with a proprietary Sylgard(®) giving superior performance because of lesser amount of reactive groups and enhanced hydrophobicity. Conversely, the thickness of the outer layer did not seem to have a significant effect on the fiber lifetime. We also demonstrate that the uniformity of the overcoated PDMS layer is paramount to the achievement of reliable data and extended fiber lifetime. Employing the optimum overcoated fiber, limits of detection (LOD) in the range of 0.2-1.3 ng/g could be achieved. Additional improvement is attainable by introducing washing of the coatings after desorption, so that any carbon build-up (fouling) left on the coating surface after thermal desorption can be removed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses.

    Science.gov (United States)

    Trujillo-Rodríguez, María J; Yu, Honglian; Cole, William T S; Ho, Tien D; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2014-04-01

    The extraction performance of four polymeric ionic liquid (PIL)-based solid-phase microextraction (SPME) coatings has been studied and compared to that of commercial SPME coatings for the extraction of 16 volatile compounds in cheeses. The analytes include 2 free fatty acids, 2 aldehydes, 2 ketones and 10 phenols and were determined by headspace (HS)-SPME coupled to gas chromatography (GC) with flame-ionization detection (FID). The PIL-based coatings produced by UV co-polymerization were more efficient than PIL-based coatings produced by thermal AIBN polymerization. Partition coefficients of analytes between the sample and the coating (Kfs) were estimated for all PIL-based coatings and the commercial SPME fiber showing the best performance among the commercial fibers tested: carboxen-polydimethylsyloxane (CAR-PDMS). For the PIL-based fibers, the highest K(fs) value (1.96 ± 0.03) was obtained for eugenol. The normalized calibration slope, which takes into account the SPME coating thickness, was also used as a simpler approximate tool to compare the nature of the coating within the determinations, with results entirely comparable to those obtained with estimated K(fs) values. The PIL-based materials obtained by UV co-polymerization containing the 1-vinyl-3-hexylimidazolium chloride IL monomer and 1,12-di(3-vinylimiazolium)dodecane dibromide IL crosslinker exhibited the best performance in the extraction of the select analytes from cheeses. Despite a coating thickness of only 7 µm, this copolymeric sorbent coating was capable of quantitating analytes in HS-SPME in a 30 to 2000 µg L(-1) concentration range, with correlation coefficient (R) values higher than 0.9938, inter-day precision values (as relative standard deviation in %) varying from 6.1 to 20%, and detection limits down to 1.6 µg L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A review on procedures for the preparation of coatings for solid phase microextraction

    International Nuclear Information System (INIS)

    Aziz-Zanjani, Mohammad Ovais; Mehdinia, Ali

    2014-01-01

    Introduced in the 1990s, solid-phase microextraction (SPME) has found numerous applications. This is due to the solventless nature of SPME and the large variety of sorbents and coatings available. Highly diverse procedures have been applied to coat supports such as fused silica fibers or metal wires with sorbents in order to enhance capability, selectivity and robustness of SPME. Lately, research also is directed towards more simple methods for deposition of different types of coatings. Several of these methods have resulted in better stability and higher effective surface areas of the coatings. This review (with 128 references) covers the state of the art in methods for coating materials for use in SPME. It is divided into the following sections: (a) Dip methods and physical agglutination methods, (b) sol-gel technology, (c) chemical grafting, (d) electrochemical methods for coating (such as electrodeposition, anodizing and electrophoretic deposition), (e) electrospinning, (f) liquidphase deposition, and (g) hydrothermal methods. A final section covers conclusions and future trends. (author)

  2. Comparison of the atmospheric- and reduced-pressure HS-SPME strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Nouriasl, Kolsoum; Yazdankhah, Fatemeh

    2018-01-01

    A low-cost, sensitive and reliable reduced-pressure headspace solid-phase microextraction (HS-SPME) setup was developed and evaluated for direct extraction of residual solvents in commercial antibiotics, followed by determination by gas chromatography with flame ionization detection (GC-FID). A stainless steel narrow wire was made porous and adhesive by platinization by a modified electrophoretic deposition method and coated with a polyaniline/multiwalled carbon nanotube nanocomposite. All experimental variables affecting the extraction efficiency were investigated for both atmospheric-pressure and reduced-pressure conditions. Comparison of the optimal experimental conditions and the results demonstrated that the reduced-pressure strategy leads to a remarkable increase in the extraction efficiency and reduction of the extraction time and temperature (10 min, 25 °Ϲ vs 20 min, 40 °Ϲ). Additionally, the reduced-pressure strategy showed better analytical performances compared with those obtained by the conventional HS-SPME-GC-FID method. Limit of detections, linear dynamic ranges, and relative standard deviations of the reduced-pressure HS-SPME procedure for benzene, toluene, ethylbenzene, and xylene (BTEX) in injectable solid drugs were obtained over the ranges of 20-100 pg g -1 , 0.02-40 μg g -1 , and 2.8-10.2%, respectively. The procedure developed was successful for the analysis of BTEX in commercial containers of penicillin, ampicillin, ceftriaxone, and cefazolin. Graphical abstract Schematic representation of the developed RP-HS-SPME setup.

  3. A high area, porous and resistant platinized stainless steel fiber coated by nanostructured polypyrrole for direct HS-SPME of nicotine in biological samples prior to GC-FID quantification.

    Science.gov (United States)

    Abdolhosseini, Sana; Ghiasvand, Alireza; Heidari, Nahid

    2017-09-01

    The surface of a stainless steel fiber was made porous, resistant and cohesive using electrophoretic deposition and coated by the nanostructured polypyrrole using an amended in-situ electropolymerization method. The coated fiber was applied for direct extraction of nicotine in biological samples through a headspace solid-phase microextraction (HS-SPME) method followed by GC-FID determination. The effects of the important experimental variables on the efficiency of the developed HS-SPME-GC-FID method, including pH of sample solution, extraction temperature and time, stirring rate, and ionic strength were evaluated and optimized. Under the optimal experimental conditions, the calibration curve was linear over the range of 0.1-20μgmL -1 and the detection limit was obtained 20ngmL -1 . Relative standard deviation (RSD, n=6) was calculated 7.6%. The results demonstrated the superiority of the proposed fiber compared with the most used commercial types. The proposed HS-SPME-GC-FID method was successfully used for the analysis of nicotine in urine and human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases

    Directory of Open Access Journals (Sweden)

    Pascual Serra-Mora

    2018-02-01

    Full Text Available In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1, have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS and polyetilenglicol (PEG-based phases have been used, and the results have been compared with those obtained with a synthesized tetraethyl orthosilicate (TEOS-trimethoxyethylsilane (MTEOS polymer, as well as the same polymer reinforced with silica nanoparticles (SiO2 NPs. The SiO2 NPs functionalized TEOS-MTEOS coating provided the best results for most herbicides, especially for the most polar compounds. On the basis of the results obtained, conditions for the quantification of the herbicides tested are described using a SiO2 NPs reinforced TEOS-MTEOS coated capillary. The proposed method provided satisfactory linearity up to concentrations of 200 μg/L. The precision was also suitable, with relative standard deviations (RSDs values ≤9% (n = 3, and the limits of detection (LODs were within the 0.5–7.5 µg/L range. The method has been applied to different water samples and the extract obtained from an agricultural soil.

  5. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  6. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Science.gov (United States)

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  7. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    Science.gov (United States)

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sorbent suppliers

    International Nuclear Information System (INIS)

    Vedder, M.

    1994-01-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate

  9. Polythiophene-coated Fe{sub 3}O{sub 4} superparamagnetic nanocomposite: Synthesis and application as a new sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Moradi, Morteza; Esrafili, Ali [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2013-04-03

    Graphical abstract: In the present work, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) have been successfully synthesized. The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and pre-concentration of several typical plasticizer compounds from environmental water samples. Highlights: ► A novel polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) was synthesized. ► The synthesized Fe{sub 3}O{sub 4}@PTh NPs were characterized by using different instruments. ► The Fe{sub 3}O{sub 4}@PTh NPs were applied as a sorbent for extraction of several plasticizers. ► After extraction, separation of NPs from solution was achieved by a magnetic field. ► The proposed procedure was applied to analysis of the analytes in real water samples. -- Abstract: In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe{sub 3}O{sub 4}@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount

  10. Novel ion-imprinted polymer coated on nanoporous silica as a highly selective sorbent for the extraction of ultratrace quantities of gold ions from mine stone samples

    International Nuclear Information System (INIS)

    Ebrahimzadeh, H.; Moazzen, E.; Amini, M.; Sadeghi, O.

    2013-01-01

    We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is -1 , the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions. (author)

  11. New Functionalized Sol-Gel Hybrid Sorbent Coating for Stir Bar Sorptive Extraction of Selected Non-Steroidal Anti Inflammatory Drugs in Human Urine Samples

    International Nuclear Information System (INIS)

    Mashkurah Abd Rahim; Wan Aini Wan Ibrahim; Zainab Ramli; Mohd Marsin Sanagi

    2015-01-01

    A new sol-gel hybrid material, methyltrimethoxysilane-cyanopropyltriethoxysilane (MTMOS-CNPrTEOS) was successfully synthesized and used as a coating material in stir bar sorptive extraction (SBSE) of selected non-steroidal anti-inflammatory drugs (NSAIDs) in urine samples. The MTMOS-CNPrTEOS hybrid was synthesized by hydrolysis and condensation of MTMOS and CNPrTEOS in the presence of trifluoroacetic acid as catalyst via sol-gel method. Several factors influencing the synthesized sol-gel hybrid MTMOS-CNPrTEOS process such as mole ratio of MTMOS-CNPrTEOS, NaOH concentrations as etching solution, etching time, coating time and water content were investigated and optimized in this study. The optimum synthesis conditions obtained were 1:1 mol ratio of MTMOS-CNPrTEOS, 1 M NaOH as etching solution, 60 min etching time, 2 h coating time and 6 mmol water. The sol-gel hybrid MTMOS-CNPrTEOS synthesized under the optimum conditions was used to determine selected NSAIDs in human urine samples using normal stacking mode capillary electrophoresis with ultraviolet detection. MTMOS-CNPrTEOS SBSE method demonstrated good linearity (60 to 20,000 μg L -1 ) with excellent coefficient of determination (r 2 > 0.9990). The sol-gel hybrid MTMOS-CNPrTEOS SBSE method showed low limit of detection (35 - 41 μg L -1 ) with good precision (RSD < 6 %, n = 3) and excellent extraction recoveries (83.5 - 98.9 %) for the selected NSAIDs. The sol-gel hybrid MTMOS-CNPrTEOS SBSE method demonstrated good potential as an alternative sorbent in SBSE method for NSAIDs. (author)

  12. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  13. Dispersive solid-phase extraction for the determination of trace organochlorine pesticides in apple juices using reduced graphene oxide coated with ZnO nanocomposites as sorbent.

    Science.gov (United States)

    Sun, Ting; Sun, Hefeng; Zhao, Feng

    2017-09-01

    In this work, reduced graphene oxide coated with ZnO nanocomposites was used as an efficient sorbent of dispersive solid-phase extraction and successfully applied for the extraction of organochlorine pesticides from apple juice followed by gas chromatography with mass spectrometry. Several experimental parameters affecting the extraction efficiencies, including the amount of adsorbent, extraction time, and the pH of the sample solution, as well as the type and volume of eluent solvent, were investigated and optimized. Under the optimal experimental conditions, good linearity existed in the range of 1.0-200.0 ng/mL for all the analytes with the correlation coefficients (R 2 ) ranging from 0.9964 to 0.9994. The limits of detection of the method for the compounds were 0.011-0.053 ng/mL. Good reproducibilities were acquired with relative standard deviations below 8.7% for both intraday and interday precision. The recoveries of the method were in the range of 78.1-105.8% with relative standard deviations of 3.3-6.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of Microextraction Techniques Including SPME and MESI to the Thermal Degradation of Polymers: A Review.

    Science.gov (United States)

    Kaykhaii, Massoud; Linford, Matthew R

    2017-03-04

    Here, we discuss the newly developed micro and solventless sample preparation techniques SPME (Solid Phase Microextraction) and MESI (Membrane Extraction with a Sorbent Interface) as applied to the qualitative and quantitative analysis of thermal oxidative degradation products of polymers and their stabilizers. The coupling of these systems to analytical instruments is also described. Our comprehensive literature search revealed that there is no previously published review article on this topic. It is shown that these extraction techniques are valuable sample preparation tools for identifying complex series of degradation products in polymers. In general, the number of products identified by traditional headspace (HS-GC-MS) is much lower than with SPME-GC-MS. MESI is particularly well suited for the detection of non-polar compounds, therefore number of products identified by this technique is not also to the same degree of SPME. Its main advantage, however, is its ability of (semi-) continuous monitoring, but it is more expensive and not yet commercialized.

  15. A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography-mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food.

    Science.gov (United States)

    Lv, Fangying; Gan, Ning; Cao, Yuting; Zhou, You; Zuo, Rongjie; Dong, Youren

    2017-11-24

    In this work, the molybdenum disulfide/reduced graphene oxide (MoS 2 /RGO) composite material was synthesized as a fiber coating to extract seven indicator polychlorinated biphenyls (PCBs; PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) present in food via a saponification-headspace solid-phase microextraction assay (saponification-HS-SPME). The MoS 2 /RGO coating was prepared and deposited on a stainless steel wire with the help of a silicone sealant and used as an SPME fiber. The alkali solution dissolved the fat and helped in releasing the PCBs present in milk to the headspace for extraction under 100°C. Following desorption in the inlet, the targets were quantified by gas chromatography-mass spectrometry. The effects of sorbent dosage, extraction time, added salts, and stirring rate on the extraction efficiency were investigated. The new coating was able to adsorb a higher amount of analytes, which was about 1.1-2.9 times in comparison with the commercially available SPME fiber (coated with divinylbenzene/carboxen/polydimethylsiloxane). It also showed the highest adsorption capability toward PCBs, which was 1.5-2.7 times that of the prepared RGO modified fiber. Moreover, MoS 2 also showed a strong affinity toward PCBs in a manner similar to its affinity for graphene. The developed method is simple and environmentally friendly as it does not require any organic solvents. Furthermore, it exhibits good sensitivity with detection limits less than 0.1ngmL -1 , linearity (0.25-100ngmL -1 ), and reproducibility (relative standard deviation below 10% for n=3). The novel SPME fibers are inexpensive, reusable, and can be easily prepared and manipulated. In addition, the saponification-HS-SPME assay was also found to be suitable for screening persistent organic pollutants in dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Expanding the Applicability of Poly(Ionic Liquids in Solid Phase Microextraction: Pyrrolidinium Coatings

    Directory of Open Access Journals (Sweden)

    David J. S. Patinha

    2017-09-01

    Full Text Available Crosslinked pyrrolidinium-based poly(ionic liquids (Pyrr-PILs were synthesized through a fast, simple, and solventless photopolymerization scheme, and tested as solid phase microextraction (SPME sorbents. A series of Pyrr-PILs bearing three different alkyl side chain lengths with two, eight, and fourteen carbons was prepared, characterized, and homogeneously coated on a steel wire by using a very simple procedure. The resulting coatings showed a high thermal stability, with decomposition temperatures above 350 °C, excellent film stability, and lifetime of over 100 injections. The performance of these PIL-based SPME fibers was evaluated using a mixture of eleven organic compounds with different molar volumes and chemical functionalities (alcohols, ketones, and monoterpenes. The Pyrr-PIL fibers were obtained as dense film coatings, with 67 μm thickness, with an overall sorption increase of 90% and 55% as compared to commercial fibers of Polyacrylate (85 μm (PA85 and Polydimethylsiloxane (7 μm (PDMS7 coatings, respectively. A urine sample doped with the sample mixture was used to study the matrix effect and establish relative recoveries, which ranged from 60.2% to 104.1%.

  17. Phytoscreening with SPME: Variability Analysis.

    Science.gov (United States)

    Limmer, Matt A; Burken, Joel G

    2015-01-01

    Phytoscreening has been demonstrated at a variety of sites over the past 15 years as a low-impact, sustainable tool in delineation of shallow groundwater contaminated with chlorinated solvents. Collection of tree cores is rapid and straightforward, but low concentrations in tree tissues requires sensitive analytics. Solid-phase microextraction (SPME) is amenable to the complex matrix while allowing for solvent-less extraction. Accurate quantification requires the absence of competitive sorption, examined here both in laboratory experiments and through comprehensive examination of field data. Analysis of approximately 2,000 trees at numerous field sites also allowed testing of the tree genus and diameter effects on measured tree contaminant concentrations. Collectively, while these variables were found to significantly affect site-adjusted perchloroethylene (PCE) concentrations, the explanatory power of these effects was small (adjusted R(2) = 0.031). 90th quantile chemical concentrations in trees were significantly reduced by increasing Henry's constant and increasing hydrophobicity. Analysis of replicate tree core data showed no correlation between replicate relative standard deviation (RSD) and wood type or tree diameter, with an overall median RSD of 30%. Collectively, these findings indicate SPME is an appropriate technique for sampling and analyzing chlorinated solvents in wood and that phytoscreening is robust against changes in tree type and diameter.

  18. Modified application of HS-SPME for quality evaluation of essential oil plant materials.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-01-01

    The main limitation in the standard application of head space analysis employing solid phase microextraction (HS-SPME) for the evaluation of plants as sources of essential oils (EOs) are different quantitative relations of EO components from those obtained by direct analysis of EO which was got in the steam distillation (SD) process from the same plant (EO/SD). The results presented in the paper for thyme, mint, sage, basil, savory, and marjoram prove that the quantitative relations of EO components established by HS-SPME procedure and direct analysis of EO/SD are similar when the plant material in the HS-SPME process is replaced by its suspension in oil of the same physicochemical character as that of SPME fiber coating. The observed differences in the thyme EO composition estimated by both procedures are insignificant (F(exp)SPME procedure proposed in this paper substantially shortens the evaluation time of plant material quality and thus may improve the efficiency of analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  20. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Science.gov (United States)

    Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.

    2010-11-01

    A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  1. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Directory of Open Access Journals (Sweden)

    N. Yassaa

    2010-11-01

    Full Text Available A headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC/MS system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS, 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS. Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m−2 s−1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  2. Sorbent Scoping Studies

    International Nuclear Information System (INIS)

    Chancellor, Christopher John

    2016-01-01

    The Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  3. Sorbent Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Carlsbad, NM (United States). Difficult Waste Team

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  4. Uptake of Radionuclide Metals by SPME Fibers

    International Nuclear Information System (INIS)

    Duff, M; S Crump, S; Robert Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection

  5. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  6. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method.

    Science.gov (United States)

    Zhang, Zhuomin; Duan, Hongbin; Zhang, Lan; Chen, Xi; Liu, Wei; Chen, Guonan

    2009-05-15

    A new solid phase microextraction (SPME) method coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of four anabolic steroids such as 3alpha-hydroxy-5alpha-androstane-17-one (HA), dihydrotestosterone (DHT), androstenedione (AD) and methyltestosterone (MT) in pig urine. SPME was used to extract the four anabolic compounds directly without derivatization. The optimum SPME sampling conditions were based on the home-made carbowax-divinylbenzene (CW-DVB) fiber coating during extraction at 40 degrees C for 50 min with 0.18 g/mL NaCl solution and 750 rpm stirring speed. The linear ranges of the proposed method were in the range of 8-640 pg/mL for HA and DHT and 16-510 pg/mL for AD and MT, respectively. The detection limits (S/N=3) were from 2 to 8 pg/mL for the four anabolic steroids. This SPME method provided very high enrichment factors for the four anabolic steroids, which were 1063-fold and 965-fold for HA and DHT at the concentration of 8 pg/mL and 207-fold and 451-fold for AD and MT at the concentration of 16 pg/mL, respectively. The recoveries ranged from 71.3 to 121%, and the RSDs were lower than 12.9%. The method was sensitive and reliable for determination of trace anabolic steroids in biological samples.

  7. Determination of benzene, toluene, ethylbenzene and xylene in field and laboratory by means of cold fiber SPME equipped with thermoelectric cooler and GC/FID method

    Directory of Open Access Journals (Sweden)

    Tajik Leila

    2017-09-01

    Full Text Available A simple and effective cooling device based on a thermoelectric cooler was applied to cool the SPME fiber. The device was used for quantitative extraction of aromatic hydrocarbons in the air. Several factors such as coating temperature, extraction temperature and relative humidity in the laboratory setting were optimized. Comparison of the results between the cold fiber SPME (CF-SPME and NIOSH 1501 method on standard test atmosphere indicated a satisfactory agreement. The CF-SPME and SPME method were also compared. The results revealed that CF-SPME has the most appropriate outcome for the extraction of aromatic hydrocarbons from the ambient air. The cold fiber SPME technique showed good results for several validation parameters. Under the optimized conditions, the limits of detection (LOD and the limits of quantification (LOQ ranged from 0.00019 to 0.00033 and 0.0006 to 0.001 ng ml−1, respectively. The intra-day relative standard deviation (RSD showed ranging from 4.8 to 10.5%.

  8. Method for covering a spme fibre with carbon nanotubes and resulting spme fibre

    OpenAIRE

    Bertrán, Enric; Jover Comas, Eric; García Céspedes, Jordi; Bayona Termens, Josep María

    2010-01-01

    [EN] The invention relates to a method for covering solid phase microextraction (SPME) fibres with carbon nanotubes (CNT), comprising the following operations: (i) depositing a layer of a metal material on the SPME fibre; (ii) applying a heat treatment in order to form catalytic metal nanoparticles in a reducing atmosphere; and (iii) applying carbon using chemical deposition techniques, thereby forming CNT on top ofthe metal nanoparticles. The invention also relates to a fibre obtain...

  9. Elucidating the sorption mechanism of “mixed-mode” SPME using the basic drug amphetamine as a model compound

    International Nuclear Information System (INIS)

    Peltenburg, Hester; Groothuis, Floris A.; Droge, Steven T.J.; Bosman, Ingrid J.; Hermens, Joop L.M.

    2013-01-01

    Graphical abstract: -- Highlights: •C18/propylsulfonic acid “mixed-mode” SPME fiber is efficient in sampling amphetamine. •Both protonated and neutral species of amphetamine sorb to the mixed-mode fiber. •Sorption of organic cations to this mixed-mode fiber depends on pH and salinity. •Amphetamine has a 20× higher affinity to the mixed-mode coating than to polyacrylate. -- Abstract: We studied the sorption of amphetamine as a model drug to represent small, polar organic cations to a new SPME coating combining C18 and propylsulfonic acid. This combination of hydrophobic and strong cation exchange (SCX) groups was compared to conventional SPME fibers with polyacrylate (PA) or C18 coating. The affinity of amphetamine at physiological pH (PBS) was 20 to 180 times greater for the new C18/SCX coating than for C18 alone and PA of different coating thickness. As amphetamine is a base and >99% protonated at physiological pH, this enhanced affinity is attributed to the ion-exchange phase in the coating. Tests at pH above the pK a of amphetamine show that, when normalized to the coating volume, neutral amphetamine also has a higher affinity compared to PA. As ion-exchange groups are not unlimitedly present in the coating, amphetamine isotherms level off to a saturation concentration on the C18/SCX fiber at the highest tested aqueous concentrations. Also, other cations (Na + , K + , Ca 2+ ) compete for the SCX sites and decrease the sorption coefficients, e.g. by 1.7 log units when comparing Milli-Q water with PBS. The C18/SCX fiber provides improved sensitivity over some of the classic SPME fibers. However, care should be taken near the cation exchange capacity of the fiber and the fiber should be calibrated in an appropriate matrix so as to eliminate competition effects

  10. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  11. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    Science.gov (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  12. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  13. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  14. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  15. Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS.

    Science.gov (United States)

    Liu, Changjiao; Li, Yu

    2017-04-01

    The volatile components of Tuber liyuanum were determined by HS-SPME with GC-MS for the first time. The effects of different fibre coating, extraction time, extraction temperature and sample amount were studied to get optimal extraction conditions. The optimal conditions were SPME fibre of Carboxen/PDMS, extraction time of 40 min, extraction temperature of 80 °C, sample amount of 2 g. Under these conditions 57 compounds in volatile of T. liyuanum were detected with a resemblance percentage above 80%. Aldehydes and aromatics were the main chemical families identified. The contribution of 3-Octanone(11.67%), phenylethyl alcohol (10.60%), isopentana (9.29%) and methylbutana (8.06%) for the total volatile profile were more significant in T. liyuanum than other compounds.

  16. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides

    International Nuclear Information System (INIS)

    Ling, Xu; Zhang, Wenpeng; Chen, Zilin

    2016-01-01

    The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)

  17. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    International Nuclear Information System (INIS)

    Souza, Israel D.; Melo, Lidervan P.; Jardim, Isabel C.S.F.; Monteiro, Juliana C.S.; Nakano, Ana Marcia S.; Queiroz, Maria Eugênia C.

    2016-01-01

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL"−"1 (LLOQ) to 400 ng mL"−"1 with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded. • The

  18. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Israel D.; Melo, Lidervan P. [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Jardim, Isabel C.S.F. [Instituto de Química, Universidade Estadual de Campinas, Campinas, SP (Brazil); Monteiro, Juliana C.S.; Nakano, Ana Marcia S. [Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Queiroz, Maria Eugênia C., E-mail: mariaeqn@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL{sup −1} (LLOQ) to 400 ng mL{sup −1} with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded.

  19. SPME GC/MS determination of organochlorine pesticides in water samples

    Directory of Open Access Journals (Sweden)

    Yerbolat Sailaukhanuly

    2013-05-01

    Full Text Available Headspace solid phase microextraction (HS-SPME in combination with gas chromatography and mass-spectrometry (GC/MS was studied for analysis of water samples. The organochlorine pesticides (OCPs, p,p'-DDT, p,p'-DDD, and p,p'-DDE were collected and analyzed by GC/MS. To select of effective fiber coatings four types of SPME fibers were examined and compared. The parameters effecting the efficiency of HS-SPME such as extraction and pre-incubation time and extraction temperature, effect of solvent nature, ionic strength were studied to obtain optimal parameters. The method was developed using spiked water samples in a concentration range  10 - 500 ng/L. The calibration curve was linear over the studied concentration range with r≥0.9925. The detection limits varied from 1.57 to 2.08 ng/L. An authentic water samples from contaminated lake with OCPs were analyzed by developed method.

  20. Determination of volatile polycyclic aromatic hydrocarbons in waters using headspace solid-phase microextraction with a benzyl-functionalized crosslinked polymeric ionic liquid coating.

    Science.gov (United States)

    Merdivan, Melek; Pino, Verónica; Anderson, Jared L

    2017-08-01

    A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.

  1. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  2. Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Ángel

    2018-03-01

    In this work, the suitability of Fe 3 O 4 nanoparticles coated with polydopamine was evaluated as sorbent for the extraction of a group of 21 compounds with oestrogenic activity including seven phytoestrogens, six mycotoxins as well as four synthetic and four natural oestrogens from different types of milk, including sheep milk, in which the evaluation of oestrogenic compounds have never been developed before. Extraction was carried out using magnetic micro-dispersive solid-phase extraction after a previous deproteinisation step. Separation, determination and quantification of the target analytes were achieved by ultra-high-performance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry. The methodology was validated for five milk samples using 17β-estradiol-2,4,16,16,17-d 5 as internal standard for natural and synthetic oestrogens, β-zearalanol-10,10,11,12,12-d 5 for mycotoxins and prunetin for phytoestrogens. Recovery values ranged from 70 to 120% for the five types of matrices with relative standard deviation values lower than 18%. Limits of quantification of the method were in the range 0.55-11.8 μg L -1 for all samples. Graphical abstract General scheme of the multiresidue analysis of oestrogenic compounds in milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in μ-dSPE.

  3. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  4. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  5. Recent Developments and Applications of Solid Phase Microextraction (SPME in Food and Environmental Analysis—A Review

    Directory of Open Access Journals (Sweden)

    Sybille Merkle

    2015-06-01

    Full Text Available Solid-phase microextraction (SPME is a simple, sensitive, rapid and solvent-free technique for the extraction of analytes from gaseous, liquid and solid samples and takes a leading position among microextraction methods. Application of SPME in sample preparation has been increasing continuously over the last decade. It is most often used as an automatized fiber injection system coupled to chromatographic separation modules for the extraction of volatile and semivolatile organic compounds and also allows for the trace analysis of compounds in complex matrices. Since SPME was first introduced in the early 1990s, several modifications have been made to adapt the procedure to specific application requirements. More robust fiber assemblies and coatings with higher extraction efficiencies, selectivity and stability have been commercialized. Automation and on-line coupling to analytical instruments have been achieved in many applications and new derivatization strategies as well as improved calibration procedures have been developed to overcome existing limitations regarding quantitation. Furthermore, devices using tubes, needles or tips for extraction instead of a fiber have been designed. In the field of food analysis, SPME has been most often applied to fruit/vegetables, fats/oils, wine, meat products, dairy and beverages whereas environmental applications focus on the analysis of air, water, soil and sediment samples.

  6. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  7. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  8. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME.

    Science.gov (United States)

    Hough, Rachael; Archer, Debra; Probert, Christopher

    2018-01-01

    Disturbance to the hindgut microbiota can be detrimental to equine health. Metabolomics provides a robust approach to studying the functional aspect of hindgut microorganisms. Sample preparation is an important step towards achieving optimal results in the later stages of analysis. The preparation of samples is unique depending on the technique employed and the sample matrix to be analysed. Gas chromatography mass spectrometry (GCMS) is one of the most widely used platforms for the study of metabolomics and until now an optimised method has not been developed for equine faeces. To compare a sample preparation method for extracting volatile organic compounds (VOCs) from equine faeces. Volatile organic compounds were determined by headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GCMS). Factors investigated were the mass of equine faeces, type of SPME fibre coating, vial volume and storage conditions. The resultant method was unique to those developed for other species. Aliquots of 1000 or 2000 mg in 10 ml or 20 ml SPME headspace were optimal. From those tested, the extraction of VOCs should ideally be performed using a divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS) SPME fibre. Storage of faeces for up to 12 months at - 80 °C shared a greater percentage of VOCs with a fresh sample than the equivalent stored at - 20 °C. An optimised method for extracting VOCs from equine faeces using HS-SPME-GCMS has been developed and will act as a standard to enable comparisons between studies. This work has also highlighted storage conditions as an important factor to consider in experimental design for faecal metabolomics studies.

  9. Optimization of HS-SPME/GC-MS analysis and its use in the profiling of illicit ecstasy tablets (Part 1).

    Science.gov (United States)

    Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre

    2009-05-30

    A headspace solid-phase microextraction procedure (HS-SPME) was developed for the profiling of traces present in 3,4-methylenedioxymethylampethamine (MDMA). Traces were first extracted using HS-SPME and then analyzed by gas chromatography-mass spectroscopy (GC-MS). The HS-SPME conditions were optimized using varying conditions. Optimal results were obtained when 40 mg of crushed MDMA sample was heated at 80 degrees C for 15 min, followed by extraction at 80 degrees C for 15 min with a polydimethylsiloxane/divinylbenzene coated fibre. A total of 31 compounds were identified as traces related to MDMA synthesis, namely precursors, intermediates or by-products. In addition some fatty acids used as tabletting materials and caffeine used as adulterant, were also detected. The use of a restricted set of 10 target compounds was also proposed for developing a screening tool for clustering samples having close profile. 114 seizures were analyzed using an SPME auto-sampler (MultiPurpose Samples MPS2), purchased from Gerstel GMBH & Co. (Germany), and coupled to GC-MS. The data was handled using various pre-treatment methods, followed by the study of similarities between sample pairs based on the Pearson correlation. The results show that HS-SPME, coupled with the suitable statistical method is a powerful tool for distinguishing specimens coming from the same seizure and specimens coming from different seizures. This information can be used by law enforcement personnel to visualize the ecstasy distribution network as well as the clandestine tablet manufacturing.

  10. Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC.

    Science.gov (United States)

    Wang, ShuLing; Hu, Sheng; Xu, Hui

    2015-11-05

    In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%-117%. Good linearity was obtained with excellent correlation coefficients (R(2)) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L(-1). The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf

    Directory of Open Access Journals (Sweden)

    Parviz Aberoomand Azar

    2013-01-01

    Full Text Available A new fabrication strategy was proposed to prepare polydimethylsiloxane (PDMS- coated solid-phase microextraction (SPME on inexpensive and unbreakable Cu fiber. PDMS was covalently bonded to the Cu substrate using self-assembled monolayer (SAM of (3-mercaptopropyltrimethoxysilane (3MPTS as binder. To increase the performance of the fiber, the incorporation effect of some nanomaterials including silica nanoparticles (NPs, carbon nanotubes (CNTs, and carboxylated carbon nanotubes (CNT-COOH to PDMS coating was compared. The surface morphology of the prepared fibers was characterized by scanning electron microscopy (SEM, and their applicability was evaluated through the extraction of some volatile organic compounds (VOCs of Eucalyptus leaf in headspace mode, and parameters affecting the extraction efficiency including extraction temperature and extraction time were optimized. Extracted compounds were analyzed by GC-MS instrument. The results obtained indicated that prepared fibers have some advantages relative to previously prepared SPME fibers, such as higher thermal stability and improved performance of the fiber. Also, results showed that SPME is a fast, simple, quick, and sensitive technique for sampling and sample introduction of Eucalyptus VOCs.

  12. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    International Nuclear Information System (INIS)

    Zhang Zhuomin; Wang Qingtang; Li Gongke

    2012-01-01

    Highlights: ► Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. ► NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. ► NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7–4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography–mass spectrometry (GC–MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient analytical method for the potential study of trace and small molecular

  13. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhuomin [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang Qingtang [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002 (China); Li Gongke, E-mail: cesgkl@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. Black-Right-Pointing-Pointer NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. Black-Right-Pointing-Pointer NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7-4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography-mass spectrometry (GC-MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient

  14. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    Science.gov (United States)

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  15. EVALUACIÓN DE DES, FSC Y SPME/CG-MS PARA LA EXTRACCIÓN Y DETERMINACIÓN DE COMPUESTOS RESPONSABLES DEL AROMA DE CAFÉ TOSTADO DE VILCABAMBA - ECUADOR

    Directory of Open Access Journals (Sweden)

    Jorge G. Figueroa

    2016-07-01

    Full Text Available The aim of this study was to compare the usefulness of three extraction methods: solid-phase microextraction (SPME with four different coating (PDMS, PDMS/DVB, DVB/CAR/PDMS and PA, supercritical fluid extraction with carbon dioxide (SCF and simultaneous distillation and extraction (SDE for isolation of flavor compounds from roasted ground coffee (Coffea arabica L. var. Typica of Vilcabamba (Ecuador. Identification and characterization of volatile compounds were achieved using gas chromatography / mass spectrometry (GC-MS. Analysis of variance and principal components analysis was done. For the SPME method the coating material affect the amount and concentration of compounds extracted, the DVB/CAR/PDMS coating provided the most representative aroma extract (44 compounds were identified. The SCF method allowed extracting a higher amount of compounds and also their identification by GC-MS (72 that SDE (64 and SPME (57, in addition provide higher extractions. The acetic acid, caffeine, furfuryl alcohol, furfural, 5-methylfurfural, butylated hydroxytoluene and maltol were the compounds with higher concentrations found with SPME and SDE, with SCF were found higher concentration to compounds with high molecular weights (> 194 g mol-1. Preferably SPME-DVB/CAR/PDMS method should be used for a characterization of coffee aroma compounds.

  16. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  17. Method for sampling and analysis of volatile biomarkers in process gas from aerobic digestion of poultry carcasses using time-weighted average SPME and GC-MS.

    Science.gov (United States)

    Koziel, Jacek A; Nguyen, Lam T; Glanville, Thomas D; Ahn, Heekwon; Frana, Timothy S; Hans van Leeuwen, J

    2017-10-01

    A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  19. Sampling atmospheric pesticides with SPME: Laboratory developments and field study

    International Nuclear Information System (INIS)

    Wang Junxia; Tuduri, Ludovic; Mercury, Maud; Millet, Maurice; Briand, Olivier; Montury, Michel

    2009-01-01

    To estimate the atmospheric exposure of the greenhouse workers to pesticides, solid phase microextraction (SPME) was used under non-equilibrium conditions. Using Fick's law of diffusion, the concentrations of pesticides in the greenhouse can be calculated using pre-determined sampling rates (SRs). Thus the sampling rates (SRs) of two modes of SPME in the lab and in the field were determined and compared. The SRs for six pesticides in the lab were 20.4-48.3 mL min -1 for the exposed fiber and 0.166-0.929 mL min -1 for the retracted fiber. In field sampling, two pesticides, dichlorvos and cyprodinil were detected with exposed SPME. SR with exposed SPME for dichlorvos in the field (32.4 mL min -1 ) was consistent with that in the lab (34.5 mL min -1 ). SR for dichlorvos in the field (32.4 mL min -1 ) was consistent with that in the lab (34.5 mL min -1 ). The trends of temporal concentration and the inhalation exposure were also obtained. - SPME was proved to be a powerful and simple tool for determining pesticides' atmospheric concentration

  20. Analysis of organic micropollutants in drinking water using SPME and GC-MS

    International Nuclear Information System (INIS)

    Guidotti, M.; Ravaioli, G.

    1999-01-01

    In this work the purpose was to develop accurate and reproducible methods for the qualitative and quantitative analysis of pesticides/herbicides, phthalates, chlorinated solvents, trihalomethanes, polycyclic aromatic hydrocarbons (PAHs) and chlorophenols in drinking waters, using solid-phase micro extraction and GC-MS techniques. The SPME developed by J. Pawliszyn and co-workers, consists of an fused silica fibre, coated with an appropriate absorbent phase, hosted inside the needle of a holder that looks like a GC-syringe; the needle pierces the septum of a sealed vial and the fibre is lowered, by depressing the plunger of the holder, into the liquid (or in the headspace, if that is the case) that contains the analytes of interest. After a set period of time, necessary to reach the partitioning equilibrium, the fibre is retracted inside the needle, the needle is inserted into the GC injector port and the fibre pushed in the heated injector. Here the compounds of interest (that have adsorbed onto the fibre) are thermally desorbed and analysed by GC-MS. After three minutes the fibre is extracted and is ready for a new analysis. The SPME technique has already found many applications in food and environmental analysis. Many of the analytes investigated in this research are listed Italian legislation as possible pollutants of drinking waters and their presence and concentrations require monitoring. The list of compounds included in this work is reported in Table 1

  1. A Headspace Solid Phase Microextraction (HS-SPME method for the chromatographic determination of alkylpyrazines in cocoa samples

    Directory of Open Access Journals (Sweden)

    Pini Gláucia F.

    2004-01-01

    Full Text Available A Headspace Solid Phase Microextraction (HS-SPME procedure for isolation and determination of alkylpyrazines in cocoa liquor, using Gas Chromatography with Flame Ionization Detection (GC-FID for the separation and detection of the analytes, is presented here. The HS-SPME operational conditions were optimized using extractions of samples spiked with known amounts of alkylpyrazines typically found on cocoa products. The maximum extraction efficiency was obtained using SPME fibers coated with 65 µm Carbowax/divinylbenzene. Additionally, the best results were achieved with extraction temperature of 60 ºC, 15 min of sample/headspace equilibration time and 45 min extraction time. It was also observed that suspending the samples in saturated aqueous NaCl solution during extractions resulted in a significant increment on the peak areas. This procedure was found to be effective to determine the so-called pyrazinic ratios (quotient between peak areas of alkylpyrazines, which are useful as quality parameters for cocoa liquor.

  2. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    Science.gov (United States)

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Further research on the photo-SPME of triclosan

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Prado, Lucia; Llompart, Maria; Lores, Marta; Fernandez-Alvarez, Maria; Garcia-Jares, Carmen; Cela, Rafael [Universidad de Santiago de Compostela, Departamento de Quimica Analitica, Nutricion y Bromatologia. Facultad de Quimica, Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela (Spain)

    2006-04-15

    In this study the photoinduced degradation of triclosan has been investigated by photo-solid-phase microextraction (photo-SPME). In photo-SPME, photodegradation is carried out on the SPME fibre containing the target compound. Triclosan was extracted from aqueous solutions by use of polydimethylsiloxane SPME fibres and these were subsequently exposed to UV irradiation (power 8 W, wavelength 254 nm) for different times (from 2 to 60 min). The photodegradation kinetics of triclosan were investigated, the photoproducts generated were tentatively identified, and the photochemical behaviour of these products was studied by use of this on-fibre approach followed by gas chromatographic-mass spectrometric analysis. Eight photoproducts were tentatively identified, including chlorinated phenols, chlorohydroxydiphenyl ethers, 2,8-dichlorodibenzo-p-dioxin, and a possible dichlorodibenzodioxin isomer or dichlorohydroxydibenzofuran. The main photodegradation mechanisms were postulated and photodegradation pathways proposed. The effect of pH on triclosan degradation and on triclosan-to-dioxin conversion was also investigated. Triclosan degradation occurred, and generation of 2,8-dichlorodibenzo-p-dioxin was confirmed, throughout the pH range studied (from 3 to 9). (orig.)

  4. Role of nanoparticles in analytical solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.

    2013-01-01

    Solid phase microextraction (SPME) is commonly used to measure the free concentration of fairly hydrophobic substances in aqueous media on the basis of their partitioning between sample solution and a solid phase. Here we study the role of nanoparticles that may sorb the analyte in the sample

  5. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  6. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  7. An interior needle electropolymerized pyrrole-based coating for headspace solid-phase dynamic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib [Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)], E-mail: bagheri@sharif.edu; Babanezhad, Esmaeil; Khalilian, Faezeh [Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2009-02-23

    A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the scanning electron microscopy (SEM). The developed method was applied to the trace level extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample. In order to enhance the extraction efficiency and increase the partition coefficient of analytes, the stainless steel needle was cooled at 5 deg. C, while the sample solution was kept at 80 deg. C. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.002-0.01 ng mL{sup -1}. The relative standard deviations (R.S.D.) at a concentration level of 0.1 ng mL{sup -1} were obtained between 7.54 and 11.4% (n = 6). The calibration curves of PAHs showed linearity in the range of 0.01-10 ng mL{sup -1}. The proposed method was successfully applied to the extraction of some selected PAHs from real-life water samples and the relative recoveries were higher than 90% for all the analytes.

  8. Modified HS-SPME for determination of quantitative relations between low-molecular oxygen compounds in various matrices.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-09-07

    Similar quantitative relations between individual constituents of the liquid sample established by its direct injection can be obtained applying Polydimethylsiloxane (PDMS) fiber in the headspace solid phase microextraction (HS-SPME) system containing the examined sample suspended in methyl silica oil. This paper proves that the analogous system composed of sample suspension/emulsion in polyethylene glycol (PEG) and Carbowax fiber allows to get similar quantitative relations between components of the mixture as those established by its direct analysis, but only for polar constituents. It is demonstrated for essential oil (EO) components of savory, sage, mint and thyme, and of artificial liquid mixture of polar constituents. The observed differences in quantitative relations between polar constituents estimated by both applied procedures are insignificant (Fexp < Fcrit). The presented results indicates that wider applicability of the system composed of a sample suspended in the oil of the same physicochemical character as that of used SPME fiber coating strongly depends on the character of interactions between analytes-suspending liquid and analytes-fiber coating. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determination of UV filters in high ionic strength sample solutions using matrix-compatible coatings for solid-phase microextraction.

    Science.gov (United States)

    An, Jiwoo; Anderson, Jared L

    2018-05-15

    A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2

  10. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  11. Sorbent Nanotechnologies for Water Cleaning

    Science.gov (United States)

    Ahmed, Snober

    Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.

  12. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  13. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    Science.gov (United States)

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Sorbents for the oxidation and removal of mercur

    Science.gov (United States)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  15. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  16. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  17. Passive Sampling and Analysis of Naphthalene in Internal Combustion Engine Exhaust with Retracted SPME Device and GC-MS

    Directory of Open Access Journals (Sweden)

    Nassiba Baimatova

    2017-07-01

    Full Text Available Exhaust gases from internal combustion engines are the main source of urban air pollution. Quantification of Polycyclic aromatic hydrocarbons (PAHs in the exhaust gases is needed for emissions monitoring, enforcement, development, and testing of control technologies. The objective was to develop quantification of gaseous naphthalene in diesel engine exhaust based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME fiber coating and analysis on gas chromatography-mass spectrometry (GC-MS. Extraction of naphthalene with retracted fibers followed Fick’s law of diffusion. Extracted mass of naphthalene was proportional to Cg, t, Dg, T and inversely proportional to Z. Method detection limit (p = 0.95 was 11.5 ppb (0.06 mg·m−3 at t = 9 h, Z = 10 mm and T = 40 °C, respectively. It was found that the % mass extracted of naphthalene by SPME needle assembly depended on the type of fiber. Storage time at different temperatures did not affect analyte losses extracted by polydimethylsiloxane (PDMS 100 µm fiber. The developed method was tested on exhaust gases from idling pickup truck and tractor, and compared side-by-side with a direct injection of sampled exhaust gas method. Time-weighted average (TWA concentrations of naphthalene in exhaust gases from idling pickup truck and a tractor ranged from 0.08 to 0.3 mg·m−3 (15.3–53.7 ppb.

  18. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  19. Ultra trace analysis of PAHs by designing simple injection of large amounts of analytes through the sample reconcentration on SPME fiber after magnetic solid phase extraction.

    Science.gov (United States)

    Khodaee, Nader; Mehdinia, Ali; Esfandiarnejad, Reyhaneh; Jabbari, Ali

    2016-01-15

    A simple solventless injection method was introduced based on the using of a solid-phase microextraction (SPME) fiber for injection of large amounts of the analytes extracted by the magnetic solid phase extraction (MSPE) procedure. The resulted extract from MSPE procedure was loaded on a G-coated SPME fiber, and then the fiber was injected into the gas chromatography (GC) injection port. This method combines the advantages of exhaustive extraction property of MSPE and the solvent-less injection of SPME to improve the sensitivity of the analysis. In addition, the analytes were re-concentrated prior to inject into the gas chromatography (GC) inlet because of the organic solvent removing from the remaining extract of MSPE technique. Injection of the large amounts of analytes was made possible by using the introduced procedure. Fourteen polycyclic aromatic hydrocarbons (PAHs) with different volatility were used as model compounds to investigate the method performance for volatile and semi-volatile compounds. The introduced method resulted in the higher enhancement factors (5097-59376), lower detection limits (0.29-3.3pgmL(-1)), and higher sensitivity for the semi-volatile compounds compared with the conventional direct injection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC-MS/olfactometry.

    Science.gov (United States)

    Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R

    2005-01-01

    A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.

  1. Low-Cost Sorbents: A Literature Summary

    National Research Council Canada - National Science Library

    Bailey, Susan

    1997-01-01

    The capital and regeneration costs of activated carbon and ion exchange media suggest that better process economics may be achieved with disposable sorbents for the treatment of metals-contaminated...

  2. Microextração por fase sólida SPME, Solid Phase Micro-Extration

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Pires Valente

    2000-08-01

    Full Text Available Fundamental aspects of Solid Phase Micro-Extraction (SPME are discussed in the present paper. The application of SPME as a microtechnique of sample preparation for gas chromatographic analysis is considered and related to existing theoretical models. Both research prototypes and commercial SPME devices are considered.

  3. Application of robust NiTi-ZrO2-PEG SPME fiber in the determination of haloanisoles in cork stopper samples

    International Nuclear Information System (INIS)

    Budziak, Dilma; Martendal, Edmar; Carasek, Eduardo

    2008-01-01

    In this study, a novel solid-phase microextraction (SPME) fiber obtained using sol-gel technology was applied in the determination of off-flavor compounds (2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA) and pentachloroanisole (PCA)) present in cork stopper samples. A NiTi alloy previously electrodeposited with zirconium oxide was used as the substrate for a poly(ethylene glycol) (PEG) coating. Scanning electronic microscopy showed good uniformity of the coating and allowed the coating thickness to be estimated as around 17 μm. The optimization of the main parameters influencing the extraction efficiency, such as cork sample mass, sodium chloride mass, extraction temperature and extraction time were optimized using a full factorial design, followed by a Doehlert design. The optimum conditions were: 20 min of extraction at 70 deg. C using 60 mg of the cork sample and 10 mL of water saturated with sodium chloride in a 20 mL amber vial with constant magnetic stirring. Satisfactory detection limits between 2.5 and 5.1 ng g -1 were obtained, as well as good precision (R.S.D. in the range of 5.8-12.0%). Recovery tests were performed on three different cork samples, and values between 83 and 119% were obtained. The proposed SPME fiber was compared with commercially available fibers and good results were achieved, demonstrating its applicability

  4. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  5. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Regeneration dynamics of potassium-based sediment sorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-wei; Diao, Yong-fa; Wang, Lin-lin; Shi, Xiao-fang; Tai, Xiao-yan [Donghua University, Shanghai (China)

    2013-08-15

    Simulating regeneration tests of Potassium-Based sorbents that supported by Suzhou River Channel Sediment were carried out in order to obtain parameters of regeneration reaction. Potassium-based sediment sorbents have a better morphology with the surface area of 156.73 m{sup 2}·g{sup −1}, the pore volume of 357.5x10{sup −3} cm{sup 3}·g{sup −1} and the distribution of pore diameters about 2-20 nm. As a comparison, those of hexagonal potassium-based sorbents are only 2.83 m{sup 2}g{sup −1}, 7.45x10{sup −3} cm{sup 3}g{sup −1} and 1.72-5.4 nm, respectively. TGA analysis shows that the optimum final temperature of regeneration is 200 and the optimum loading is about 40%, with the best heating rate of 10 .deg. C·min{sup −1}. By the modified Coats-Redfern integral method, the activation energy of 40% KHCO{sub 3} sorbents is 102.43 kJ·mol{sup −1}. The results obtained can be used as basic data for designing and operating CO{sub 2} capture process.

  7. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua, E-mail: jhzhan@sdu.edu.cn

    2016-06-07

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  8. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua

    2016-01-01

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  9. HS-SPME-GC-MS Analysis of onion (Allium cepa L. and shallot (Allium ascalonicum L.

    Directory of Open Access Journals (Sweden)

    D’Auria, M.

    2017-06-01

    Full Text Available The volatile organic compounds of onion and shallot were determined via HS-SPME-GC-MS. The main components were dipropyldisulphide and allylpropyldisulphide. Thiopropanal S-oxide were detected only in onion volatiles. In shallot is interesting the presence of 2-methyl-2-pentenal, a compound with an intense fruity aroma, that can characterize the different aroma between onion and shallot. The SPME-GC-MS analysis of shallot after absorption on the SPME fiber at 50°C showed the presence of new compounds, whose structures have been discussed.

  10. Nuevos desarrollos metodológicos en SPME

    OpenAIRE

    Ríos Acevedo, John Jairo

    2016-01-01

    La Microextracción en fase sólida (SPME) ha experimentado un rápido desarrollo desde su introducción hace más de 20 años teniendo un gran impacto sobre las prácticas de muestreo y preparación de muestra en áreas como análisis químico, bioanálisis, los alimentos y las ciencias ambientales. Sin embargo, en otras áreas como análisis clínico, ciencias farmacéuticas y médicas, se espera un crecimiento en sus aplicaciones. El objetivo fundamental de la presente investigación ha sido la implementaci...

  11. Application of inorganic sorbents for sewage purification from copper

    International Nuclear Information System (INIS)

    Yelizarova, I.A.; Tomchuk, T.K.; Kalinin, N.F.; Vol'khin, V.V.; Levichek, M.S.; Gulyaeva, E.I.

    1986-01-01

    Article presents the results of elaboration of synthesis methods of sorbent on the base of phosphate and magnesium hydroxide. As a result of study the technology of sorbent production with optimal properties was elaborated.

  12. Long Life Moving-Bed Zinc Titanate Sorbent

    International Nuclear Information System (INIS)

    Copeland, Robert J.; Cesario, Mike; Feinberg, Daniel A.; Sibold, Jack; Windecker, Brian; Yang, Jing

    1997-01-01

    The objective of this work was to develop and test long-life sorbents for hot gas cleanup. Specifically, we measured the sulfur loading at space velocities typically used for absorption of H 2 S and regenerated the sorbent with diluted air for multiple cycles. Based on the experimental results, we prepared a conceptual design of the sorbent-fabrication system, and estimated the cost of sorbent production and of sulfur removal

  13. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  14. Topical Report 5: Sorbent Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  15. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  16. Influence of lignin on properties of wood-inorganic sorbents

    International Nuclear Information System (INIS)

    Remez, V.P.; Charina, M.V.; Klass, S.M.; Shubin, A.S.; Tkachev, K.V.; Isaeva, O.F.

    1986-01-01

    Present article is devoted to influence of lignin on properties of wood-inorganic sorbents. The influence of component composition of matrix on sorption properties of sorbents and their stability in different mediums is studied. The dependence of sorption capacity of sorbent on component matrix composition and its porous structure is defined.

  17. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods.

    Science.gov (United States)

    Ziółkowska, Angelika; Wąsowicz, Erwin; Jeleń, Henryk H

    2016-12-15

    Among methods to detect wine adulteration, profiling volatiles is one with a great potential regarding robustness, analysis time and abundance of information for subsequent data treatment. Volatile fraction fingerprinting by solid-phase microextraction with direct analysis by mass spectrometry without compounds separation (SPME-MS) was used for differentiation of white as well as red wines. The aim was to differentiate between varieties used for wine production and to also differentiate wines by country of origin. The results obtained were compared to SPME-GC/MS analysis in which compounds were resolved by gas chromatography. For both approaches the same type of statistical procedure was used to compare samples: principal component analysis (PCA) followed by linear discriminant analysis (LDA). White wines (38) and red wines (41) representing different grape varieties and various regions of origin were analysed. SPME-MS proved to be advantageous in use due to better discrimination and higher sample throughput. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of fatty acids and volatile compounds in fruits of rosehip(Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques

    OpenAIRE

    MURATHAN, ZEHRA TUĞBA; ZARIFIKHOSROSHAHI, MOZGAN; KAFKAS, NESİBE EBRU

    2016-01-01

    In this study, we aimed to compare fatty acid and volatile compound compositions of four rosehip species, namely Rosa pimpinellifolia, R. Villosa, R. Canina, and R. Dumalis, by gas chromatography with flame ionization detector (GC/FID) and headspace and immersion solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS and Im-SPME/GC-MS) techniques. The total lipid contents in fruits of the rosehip species varied from 5.83% (R. Villosa) to 7.84% (R. Dumalis). A total of...

  19. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  20. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  1. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  2. Non-carbon sorbents for mercury removal from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, G.O.; Dubovik, M.; Cesario, M. [TDA Research Inc., Wheat Ridge, CO (United States)

    2005-07-01

    TDA Research Inc. is developing a new sorbent that can effectively remove mercury from flue gases. It is made of non-carbon based materials and will therefore not alter the properties of the fly ash. The sorbent can be produced as an injectable powder. The paper summarises the initial testing results of the new sorbent. The sorbent exhibited 7.5 to 11.0 mg/g mercury absorption capacity under representative flue gas streams depending on the operating temperature and gas hourly space velocity. The sorbent also showed resistance to sulfur poisoning by sulfur dioxide. 6 refs., 3 figs., 1 tab.

  3. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  4. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    Science.gov (United States)

    2017-12-13

    Textiles modified in this manner have been shown to reduce or eliminate transport of chemical warfare agents and simulants across the fabric barrier...B.J. Johnson; B.J. Melde; M.H. Moore; A.P. Malanoski; J.R. Taft, "Improving sorbents for glycerol capture in biodiesel refinement," Materials 10

  5. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass

  6. Method of making ionic liquid mediated sol-gel sorbents

    Science.gov (United States)

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  7. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  8. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  9. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    Highlights: • Different sorbents were activated by Ag + -ions and modified sorbents were determined by sorption capacities, in range of values: 42.06–3.28 mg/g. • Granulated activated carbon (GAC), natural zeolit (Z) and titanium dioxide (T) activated by Ag + -ions were tested against E. coli, S. aureus and C. albicans. • The most successful bacteria removal was obtained using Ag/Z against S. aureus and E. coli, while the yeast cell reduction reached unsatisfactory effect for all three activated sorbents. • XRD, XPS and FE-SEM analysis showed that the chemical state of the silver activating agent affects the antimicrobial activity, as well as the structural properties of the material. • An overall microbial cell reduction, which is performed by separated antimicrobial tests on the Ag + -activated surface and Ag + -ions in aquatic solutions, is a consequence of both mechanisms. - Abstract: This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag + -ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag + -ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests – Ag + -ions desorbed from the activated surface to the

  10. Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples.

    Science.gov (United States)

    Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Zhu, Fang; Xu, Weiqin; Su, Chengyong; Ouyang, Gangfeng

    2017-09-01

    The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH 2 )-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH 2 -MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025-0.83 ng L -1 for synthetic musks (SMs) and 0.051-0.97 ng L -1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH 2 -MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH 2 -MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane-divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH 2 -MIL-53(Al) primarily through π-π interactions, electron donor-electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME-gas chromatography-mass spectrometry methods based on NH 2 -MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3-115% for SMs and 77.4-117% for OCPs. These results indicate that the NH 2 -MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.

  11. New polymer bounces into sorbent market

    International Nuclear Information System (INIS)

    Roy, K.A.

    1991-01-01

    Spectacular spills like the Exxon Valdez capture headlines and dominate conversation, but most releases involve quantities too small to attract media attention. For these spills, companies often rely on sorbents to collect the oil and dispose it. These devices come in a variety of shapes, sizes and absorbent materials, including a new generation of products that offers solid results-literally. This paper reports on the Solidifier which absorbs oil, as well as chlorinated solvents, hydrocarbons and PCBs, and, as the name implies, solidifies into a rubber-like material. A polymer used extensively in the rubber industry is the key to the sorbent's success. Oil and other contaminants, act like catalysts. They dissolve into the polymer, causing its molecules to bond together and form a rubber-like mass. No. 2 diesel fuel oil can be bounced on the floor after it solidifies

  12. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  13. Application of solid phase micro extraction (SPME) in profiling hydrocarbons in oil spill cases

    International Nuclear Information System (INIS)

    Zuraidah Abdullah Munir; Norashikin Saim; Nurul Huda Mamat Ghani

    2008-01-01

    In environmental forensic, it is extremely important to have a fast and reliable method in identifying sources of spilled oil and petroleum products. In this study, solid phase micro extraction (SPME) method coupled to gas chromatography-mass spectrometry was developed for the analysis of hydrocarbons in diesel and petroleum contaminated soil samples. Optimization of SPME parameters such as extraction time, extraction temperature and desorption time, was performed using 100-μm poly dimethylsiloxane (PDMS) fiber. These parameters were studied at three levels by means of a central composite experimental design and the optimum experimental conditions were determined using response surface method. The developed SPME method was applied to determine the profiles of hydrocarbons in several oil contaminated soil sample. The SPME method was also used to study the effects of weathering on the profiles of hydrocarbons in unleaded gasoline, diesel and kerosene contaminated soil samples. After several days, significant losses of the lighter hydrocarbons were observed compared to the heavier ones. From these data, SPME method can be used to differentiate possible candidate sources in oil spill cases. (author)

  14. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions.

    Science.gov (United States)

    Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica

    2018-01-01

    Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    Science.gov (United States)

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  16. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  17. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  18. JV Task 92 - Alcoa/Retec SFE and SPME

    Energy Technology Data Exchange (ETDEWEB)

    Steven Hawthorne

    2009-02-15

    This report summarizes the work performed by the Energy & Environmental Research Center (EERC) under the U.S. Department of Energy Jointly Sponsored Research Program JV Task 92, which is a continuation of JV9. Successful studies performed in 1999 through the end of 2008 demonstrated the potential for using selective supercritical fluid extraction (SFE) and a solid-phase microextraction (SPME) method for measuring sediment pore water polycyclic aromatic hydrocarbons (PAHs) to mimic the bioavailability of PAHs from manufactured gas plant and aluminum smelter soils and sediments both in freshwater and saltwater locations. The studies that the EERC has performed with the commercial partners have continued to generate increased interest in both the regulatory communities and in the industries that have historically produced or utilized coal tar products. Both ASTM International and the U.S. Environmental Protection Agency (EPA) have accepted the pore water method developed at the EERC as standard methods. The studies have demonstrated the effectiveness of our techniques in predicting bioavailability of PAHs from ca. 250 impacted and background field sediments and soils. The field demonstrations from the final years of the project continued to build the foundation data for acceptance of our methods by the regulatory communities. The JV92 studies provide the single largest database in the world that includes measures of PAH bioavailability along with biological end points. These studies clearly demonstrated that present regulatory paradigms based on equilibrium partitioning greatly overpredict bioavailability. These investigations also laid the foundation for present (non-JV) studies being applied to PAHs and polychlorinated biphenyls (PCBs) at EPA Superfund sites, investigations into PAH and PCB bioavailability at U.S Department of Defense sites, and the application of the techniques to investigating the bioavailability of chlorinated dioxins and furans from impacted

  19. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  20. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  1. SPME GC/MS Analysis of Three Ornithogalum L. species from Turkey

    Directory of Open Access Journals (Sweden)

    Gülin Renda

    2016-01-01

    Full Text Available In this study, a solid phase micro extraction (SPME method with gas chromatography-mass spectrometry (GC-MS was used for analysis of volatile compounds in flowers and bulbs of three Ornithogalum species. The samples of flowers and bulbs of Ornithogalum sigmoideum, Ornithogalum orthophyllum, Ornithogalum oligophyllum was separately analyzed by SPME-GC-MS. A comparison of volatile compounds was made between species and the parts studied. A total of 70 compounds were identified and different volatile compounds were determined in distinct parts of the species. The major volatile organic compound of the flowers of O. sigmoideum and O. ornithogalum was furan (54.5% and 57.0% respectively. For O. oligophyllum the major volatile organic compound was nonanal (19.2%. Analyses revealed that SPME-GC-MS method is appropriate for the analysis of volatile compounds of Ornithogalum species.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  3. Properties and reactivity of reactivated calcium-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Davini, P. [Pisa University, Pisa (Italy). Dept. of Chemical Engineering

    2002-04-01

    Calcium-based sorbents used in the process of high temperature desulfurisation of flue gases are partly regenerable by hydration with steam; the best results are obtained for treatment temperatures of approximately 300{degree}C. The regeneration process, and the consequent increase in the sorbent consumption can be correlated to the surface characteristics (BET surface area, porosity and pore size distribution) of the sorbents themselves. In particular, the presence of suitable pore structure, also having pores large enough to let molecules easily penetrate the inner part of the sorbent particles, is very important. 27 refs., 9 figs., 2 tabs.

  4. Simple test guidelines for screening oilspill sorbents for toxicity

    International Nuclear Information System (INIS)

    Blenkinsopp, S.A.; Sergy, G.; Doe, K.; Jackman, P.; Huybers, A.

    1998-01-01

    Environment Canada's Emergencies Science Division has established a program to develop a standard test method suitable for evaluating the toxicity of common sorbent materials. Sorbents are used to absorb or adsorb spilled oil and other hazardous materials. They vary widely in composition and packaging. They are often treated with oleophilic and hydrophobic compounds to improve performance and have been used in large quantities during oil spills. Until now, their potential toxicity has never been considered. Three tests have been evaluated to determine how appropriate they are in screening the toxicity of sorbents. Seven toxicity test recommendations for sorbents were presented. 7 refs., 3 tabs., 2 figs

  5. Sorbent selection and design considerations for uranium trapping

    International Nuclear Information System (INIS)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF 6 from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications

  6. Comparative analysis of the aroma chemicals of Melissa officinalis using hydrodistillation and HS-SPME techniques

    Directory of Open Access Journals (Sweden)

    Shakeel-u- Rehman

    2017-05-01

    Full Text Available Headspace solid-phase micro extraction (HS-SPME coupled with gas chromatography–mass spectrometry (GC–MS has been used for the chemical analysis of Melissa officinalis (leaves cultivated in Institute Germplasm. The HS-SPME analysis led to the identification of 22 components constituting 99.1% of the total volatile constituents present in the leaves whereas its hydrodistillate led to the identification of 24 volatile constituents constituting 98.1% of the volatile material. The chemical composition of the SPME and hydrodistilled extract of M. officinalis leaves comprised mainly of oxygenated monoterpenes (78.5% and 57.8% respectively and sesquiterpene hydrocarbons (14.9% and 29.7% respectively. The major components identified in the HS-SPME extract were citronellal (31.1%, citronellol (18.3%, β-caryophyllene (12.0%, (E-citral (11.9%, (Z-citral (9.6%, geraniol (3.6%, (Z-β-ocimene (3.1% and 1-octen-3-ol (2.0% whereas hydrodistilled essential oil was rich in (Z-citral (19.6%, β-caryophyllene (13.2%, (E-citral (11.2%, citronellal (10.2%, germacrene-d (8.3%, δ-3-carene (5.0%, 6-methyl-5-hepten-2-one (3.7% and citronellyl acetate (3.7%. The comparative analysis of volatile constituents of M. officinalis leaf extract using HS-SPME and hydrodistillation techniques shows both qualitative as well as quantitative differences. The current study is the first report involving rapid analysis of volatile components of M. officinalis by HS-SPME.

  7. Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Arantes Furtado, Filipe; Vieira Coelho, Gerson Luiz

    2012-01-01

    Highlights: ► Two approaches were proposed using SPME on determination of infinite dilution activity coefficients. ► Infinite dilution activity coefficients of nine solutes in solvent furfural at T = (298.15, 308.15, and 318.15) K. ► Fiber–gas partition coefficients of nine solutes on PDMS at T = (298.15, 308.15, and 318.15) K. ► Optical microscopy analysis and statistical tests to measure possible damages on fiber coating. ► Advantages and limitations of methodology proposed were discussed. - Abstract: A new methodology using the headspace solid phase microextraction (HS-SPME) technique has been used to evaluate the infinite dilution activity coefficient (γ 12 ∞ ) of nine hydrocarbons (alkanes, cycloalkanes, and aromatics) in furfural solvent. The main objective of this study was to validate a faster and lower cost methodology expanding the use of HS-SPME to determine infinite dilution activity of solutes in organic solvents. Two approaches were proposed for the determination of γ 12 ∞ in order to use this technique (HS-SPME). In addition, the fiber–gas partition coefficients (K fg ) for each analyte at each of the studied temperatures were determined. The activity and partition coefficients have been reported at temperatures of (298.15, 308.15, and 318.15) K. The data were compared with the literature infinite dilution data determined by other methods such as liquid–gas chromatography (GLC) and gas stripping. Partial molar excess enthalpies of mixing at infinite dilution for each solute have been determined. The fibers were tested before and after each experiment, using statistical methods to ensure that their properties do not change during the experiments. The fibers were also analyzed by optical microscopy to evaluate possible surface damage by comparing them with new fibers. The activity coefficient values correlated well with the data in the literature and showed average deviations less than 10%.

  8. Is Solid Phase Microextraction (SPME) an appropriate method for extraction of volatile oxidation products from complex food systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  9. Solid phase microextraction (SPME) for extraction of volatile oxidation products from complex food systems – Pros and cons

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  10. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  11. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART).

    Science.gov (United States)

    Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz

    2017-07-05

    The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.

  12. A rapid screening procedure for the analysis of proliferation compounds in complex matrices using solid phase microextraction (SPME) and SPME with in-situ derivatization

    International Nuclear Information System (INIS)

    Alcaraz, A.; Hulsey, S.S.; Andresen, B.D.

    1995-01-01

    A variety of methods have been established using advanced chromatographic techniques and new detection systems for the analysis of chemical signatures associated with nuclear and chemical weapon (CW) proliferation. Most of these analytical methods are used in the laboratory and seldom applied in the field. The Chemical Weapons Convention (an international treaty to ban chemical weapons) may require the rapid on-site analysis of environmental samples which contain CW agents, their precursors, and/or their degradation products. In addition to the fact that certain countries are involved in CW non-compliance, there is a current uncertainty regarding nuclear proliferation. This also creates new demands on sample work-up and analytical instrumentation use in the field. The isolation and identification of unique chemical signatures in complex samples such as soils, waste tanks, and decontamination solutions would determine non-compliance. However, a primary area of detection research continues to be sample preparation. Most of the established sample cleanup technologies involve liquid/liquid, Soxhlet, or most recently, solid phase extraction (SPE). Despite the success of these traditional sample preparation techniques, they are time consuming and require multi-step procedures (especially when preparing samples for gas chromatographic mass-spectrometric analysis). The goal of this work is to demonstrate the advantages of utilizing SPME and SPME in-situ derivatization techniques to eliminate time consuming steps necessary to prepare a sample for on-site GC-MS. The authors' approach was to compare two SPME fibers and to develop methods to facilitate the isolation of polar and moderately polar proliferation compounds from complex environmental samples. This work will help to evaluate current SPME technologies for use during on-site environmental monitoring analysis

  13. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  14. New Methyltrimethoxysilane-(3-Mercaptopropyl)- Trimethoxysilane Coated Hollow Fiber-Solid Phase Micro extraction for Hexanal and Heptanal Analysis

    International Nuclear Information System (INIS)

    Siti Munirah Abd Wahib; Mohd Marsin Sanagi

    2016-01-01

    Determination of volatile organic compounds (VOCs) in various matrices is often accomplished using solid phase micro extraction (SPME) as a superior mode of extraction. Alternatively, another configuration of solid phase micro extraction (SPME) namely hollow fiber-solid phase micro extraction (HF-SPME) is a great approach to redress some limitations of the ordinary SPME fibers including fiber breakage, coating stripping and sample carry over. The HF-SPME technique highlights the use of hollow polypropylene (PP) membrane to hold and protect the adsorbent inside its lumen. Unlike the conventional SPME, the inexpensive HF device can be disposed after single use. Introducing extracting phase via sol-gel technology has gained great interest owing to its simple preparation method and promising way to obtain materials with good characteristics. In the present work, a new hybrid silica material based on methyltrimethoxysilane-(3-mercaptopropyl)trimethoxysilane (MTMOS-MPTMOS) was introduced as a new extractant of HF-SPME and the effectiveness of the proposed method was tested for analysis of hexanal and heptanal as the target VOC analytes. Preparation of the HF-SPME MTMOS-MPTMOS was simple in which the hybrid material was synthesized via sol-gel method and was self-polymerized in small segments of HF. Parameters affecting the efficiency of the HF-SPME MTMOS-MPTMOS in extracting both aldehydes were thoroughly investigated and analyzed by gas chromatography-flame ionization detection (GC-FID). It was found that the highest efficiency was achieved as the extraction was conducted in 30 min at a stirring rate of 1000 rpm in a 10 mL of sample solution whereby the back-extraction was performed via vortex for 3 min using 100 μL methanol as desorption solvent. Under the optimal conditions, linearity was observed over a range of 0.020-10.00 μg mL"-"1 with detection limits of 0.015 μg mL"-"1 and 0.010 μg mL"-"1 for hexanal and heptanal, respectively. The applicability of the HF-SPME

  15. TRUEX process solvent cleanup with solid sorbents

    International Nuclear Information System (INIS)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs

  16. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    Science.gov (United States)

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments

    International Nuclear Information System (INIS)

    Harwood, Amanda D.; Landrum, Peter F.; Weston, Donald P.; Lydy, Michael J.

    2013-01-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. - Highlights: ► Can use bioavailability-based methods for pyrethroids in sediments. ► Tenax was a more sensitive technique. ► Tenax extractable concentrations relate to invertebrate mortality. - This research provides an important first step in using bioavailability-based techniques for estimating the bioavailability and toxicity of hydrophobic pesticides in field sediments.

  18. SPME as a tool in WEA - CONCAWE Contribution to OSPAR Demonstration Project 2005 - 2006

    NARCIS (Netherlands)

    Leslie, H.A.

    2006-01-01

    This document represents a compilation of various data and deliverables from the study programme. An executive summary is followed by the presentation of data generated in an interlaboratory study of effluents assessed using both EGOM-LLE and biomimetic SPME methods.

  19. Development of a GC-MS-SPME Method for the Determination of Amines in Meteorites

    Science.gov (United States)

    Hilts, R. W.; Skelhorne, A. W.; Simkus, D.; Herd, C. D. K.

    2016-08-01

    A GC-MS-SPME analytical method for the direct determination of amines in aqueous solution has been developed. The key step in the procedure is the conversion of the amines into their non-volatile ammonium salts by protonation with HCl.

  20. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    Science.gov (United States)

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®

  1. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Benhabib, K.; Town, R.M.; Leeuwen, van H.P.

    2009-01-01

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the

  2. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  3. Detoxication and recycling of radioactive waters using selective mineral sorbents

    International Nuclear Information System (INIS)

    Berak, L.

    1980-01-01

    Activated BaSO 4 (designated AB 70) was proposed for use in decontaminating concentrated calcium salt solutions containing a small amount of 226 Ra. The AB 70 concentration factor amounts to 2x1a 3 . A sorption contactor for applying the powder sorbent was proposed and will be tested. The AB 70 sorbent liberates small amounts of sulphates into the decontaminated solution, and thus another suitable mineral sorbent was sought. A new sorbent could be synthetized and tested, called RAS-1 whose Ra/Ca selectivity is comparable to that of AB 70 while its Ra/Ba selectivity is considerably higher. The RAS-1 sorbent is also suitable for radiochemical separation in the analysis and concentration of Ra. (Ha)

  4. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  5. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  6. NIFSIL - a composite sorbent for caesium - properties and application

    International Nuclear Information System (INIS)

    Rajec, P.; Orechovska, J.

    1998-01-01

    Samples of the potassium-nickel ferrocyanides K 2 NiFe(CN) 6 , KNi 1,5 Fe(CN) 6 and Ni 2 Fe(CN) 6 were prepared and their properties studied with respect to their use as sorbents for caesium. Caesium is fixed on mixed alkaline-nickel ferrocyanide without structural change. The capacity of Cs retention never reached the theoretic value corresponding to a total release of the monovalent ions of the solid. High distribution coefficients (K D in the order of 10 4 cm 3 /g) determined in batch experiments show that these sorbents have a very high affinity for caesium ions, even in the presence of competing K + , Na + and Ca 2+ ions. The sorbents have a good chemical stability in a wide pH-range (2-12). The irradiation of some sorbent samples with high energy gamma-rays ( 60 Co) of a total dose of 1.10 5 Gy caused no remarkable changes in the sorbent properties (K D , sorption capacity and kinetics, mechanical stability). The sorbents were also tested for 85 Sr and 239 Pu and the results carried out under dynamic and batch experiments have shown that sorbents are not suitable for removal of these radionuclides. Potassium nickel hexacyanoferrate incorporated in silica-gel matrix could compete with others sorbents based on insoluble hexacyanoferrates, has the advantage of good radiation stability and suitable granulometry. The sorbent was prepared on a pilot scale with a capacity about 1000 kg per year with the prospect that it could be easily upgraded to an industrial scale

  7. Octahedral molecular sieve sorbents and catalysts

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  8. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  9. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion

  10. Development of a Microfluidic Open Interface with Flow Isolated Desorption Volume for the Direct Coupling of SPME Devices to Mass Spectrometry.

    Science.gov (United States)

    Tascon, Marcos; Alam, Md Nazmul; Gómez-Ríos, Germán Augusto; Pawliszyn, Janusz

    2018-02-20

    Technologies that efficiently integrate the sampling and sample preparation steps with direct introduction to mass spectrometry (MS), providing simple and sensitive analytical workflows as well as capabilities for automation, can generate a great impact in a vast variety of fields, such as in clinical, environmental, and food-science applications. In this study, a novel approach that facilitates direct coupling of Bio-SPME devices to MS using a microfluidic design is presented. This technology, named microfluidic open interface (MOI), which operates under the concept of flow-isolated desorption volume, consists of an open-to-ambient desorption chamber (V ≤ 7 μL) connected to an ionization source. Subsequently, compounds of interest are transported to the ionization source by means of the self-aspiration process intrinsic of these interfaces. Thus, any ionization technology that provides a reliable and constant suction, such as electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), or inductively coupled plasma ionization (ICP), can be hyphenated to MOI. Using this setup, the desorption chamber is used to release target compounds from the coating, while the isolation of the flow enables the ionization source to be continuously fed with solvent, all without the necessity of employment of additional valves. As a proof of concept, the design was applied to an ESI-MS/MS system for experimental validation. Furthermore, numerical simulations were undertaken to provide a detailed understanding of the fluid flow pattern inside the interface, then used to optimize the system for better efficiency. The analytical workflow of the developed Bio-SPME-MOI-MS setup consists of the direct immersion of SPME fibers into the matrix to extract/enrich analytes of interest within a short period of time, followed by a rinsing step with water to remove potentially adhering proteins, salts, and/or other interfering compounds. Next, the fiber is inserted into the

  11. Poly(Dimethylsiloxane)-Poly(Vinyl Alcohol) Coated Solid Phase Micro extraction Fiber for Chloropyrifos Analysis

    International Nuclear Information System (INIS)

    Wan Aini Wan Ibrahim; Nor Fairul Zukry Ahmad Rasdy; Norfazilah Muhamad

    2016-01-01

    Traditional liquid - liquid extraction of pesticides consumes large volumes of organic solvent which are hazardous to the operator and is not environment friendly. Solid phase micro extraction (SPME) is a solvent less extraction method which is safer to the operator and is environmental friendly. A sol-gel hybrid fibre coating material, poly(dimethylsiloxane)-poly(vinyl alcohol) (PDMS-PVA) was synthesized and used in head space solid phase micro extraction (HS-SPME) of chloropyrifos. The thickness of the synthesised PDMS-PVA fiber coating was 13.5 μm and it is thermally stable up to 400 degree Celsius. The PDMS-PVA sol-gel hybrid fiber was also stable to two organic solvents tested; acetonitrile and dichloromethane (1 hour dipping) and showed no significant changes in extraction performance for chloropyrifos. Extracted chloropyrifos was analysed using gas chromatography electron capture detector (GC-ECD). Optimum SPME parameters affecting the PDMS-PVA HS-SPME performance namely extraction time (15 min), extraction temperature (50 degree Celsius), desorption time (5 min), desorption temperature (260 degree Celsius) and stirring rate (120 rpm) were used for extraction. It was found that HSSPME using PDMS-PVA sol-gel fiber gave significantly better extraction performance of chloropyrifos compared to commercial 100 μm PDMS fiber. The PDMS-PVA fiber showed excellent operational performances such as temperature stability (up to 380 degree Celsius), coating lifetime (up to 170 times use) and organic solvent stability. The PDMS-PVA-HS-SPME method showed excellent recovery for chloropyrifos from tomatoes (98.0 %, 5.9 % RSD) at 0.01 μg/ g spiked level (5 times lower than maximum residue limit set by European Union). (author)

  12. In vitro evaluation of new biocompatible coatings for solid-phase microextraction: implications for drug analysis and in vivo sampling applications.

    Science.gov (United States)

    Vuckovic, Dajana; Shirey, Robert; Chen, Yong; Sidisky, Len; Aurand, Craig; Stenerson, Katherine; Pawliszyn, Janusz

    2009-04-13

    A new line of solid-phase microextraction (SPME) coatings suitable for use with liquid chromatography applications was recently developed to address the limitations of the currently available coatings. The proposed coatings were immobilized on the metal fiber core and consisted of a mixture of proprietary biocompatible binder and various types of coated silica (octadecyl, polar embedded and cyano) particles. The aim of this research was to perform in vitro assessment of these new SPME fibers in order to evaluate their suitability for drug analysis and in vivo SPME applications. The main parameters examined were extraction efficiency, solvent resistance, preconditioning, dependence of extraction kinetics on coating thickness, carryover, linear range and inter-fiber reproducibility. The performance of the proposed coatings was compared against commercial Carbowax-TPR (CW-TPR) coating, when applicable. The fibers were evaluated for the extraction of drugs of different classes (carbamazepine, propranolol, pseudoephedrine, ranitidine and diazepam) from plasma and urine. The analyses were performed using liquid chromatography-tandem mass spectrometry. The results show that the fibers perform very well for the extraction of biological fluids with no sample pre-treatment required and can also be used for in vivo sampling applications of flowing blood. A coating thickness of 45 microm was found to be a good compromise between extraction capacity and extraction kinetics. Due to the high extraction efficiency of these coatings, pre-equilibrium SPME with very short extraction times (2 min) can be employed to increase sample throughput. Inter-fiber reproducibility was drugs examined in plasma, which is a significant improvement over polypyrrole coatings reported in literature, and permits single fiber use for in vivo applications.

  13. Evaluation of 137Cs sorbents for fixation in concrete

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1976-01-01

    As part of the long-term waste management program at the Savannah River Laboratory, several 137 Cs sorbents were evaluated for incorporation into concrete. The sorbents studied were: Linde AW-300, AW-500, 13-X, and SK-40; Norton Zeolon 200, 500, and 900; clinoptilolite; and vermiculite. The parameters studied were sorption kinetics, leachability, and compressive strength of the concrete. The best sorbents identified were Linde AW-500 and Norton Zeolon 900. In all tests, these two sorbents performed almost identically; sorption kinetics were acceptable; both strengthened the concrete, and both gave relatively leach-resistant concrete. Vermiculite that had been heated to collapse its lattice around 137 Cs gave the most leach-resistant concrete. However, it sorbed cesium slowly, and the resulting concrete was very weak. When silica gel was added to concrete to react with free calcium, the addition had no effect on cesium leachability

  14. Novel Sorbent to Clean Up Biogas for CHPs

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gökhan O. [TDA Research, Incorporated, Wheat Ridge, CO (United States); Jayataman, Ambalavanan [TDA Research, Incorporated, Wheat Ridge, CO (United States); Schaefer, Matthew [TDA Research, Incorporated, Wheat Ridge, CO (United States); Ware, Michael [TDA Research, Incorporated, Wheat Ridge, CO (United States); Hunt, Jennifer [FuelCell Energy, Inc., Danbury, CT (United States); Dobek, Frank [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  15. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval; Olanrewaju, Kayode O.; Bessho, Naoki; Breedveld, Victor; Koros, William J.

    2013-01-01

    and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers

  16. Solid Phase Microextraction (SPME in Determination of Pesticide Residues in Soil Samples

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2011-01-01

    Full Text Available The basic principles and application possibilities of the methods based on solid phase microextraction (SPME in the analysis of pesticide residues in soil samples are presented in the paper. The most important experimental parameters which affect SPME efficacy inpesticide determination (type and thickness of microextraction fiber, duration of microextraction,temperature at which it is conducted, effect of addition of salts (the effect of efflorescence,temperature and time of desorption, the choice of optimal solvent for pesticide exctraction from the soil and the optimal number of extraction steps, as well as general guidelines for their optimization are also shown. In the end, current applications of SPMEmethods in the analysis of pesticide residues in soil samples are presented.

  17. Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2013-11-01

    Full Text Available Solid phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted to maximize release while not generating new compounds that are absent in the original sample. Queso Fresco, a fresh non-melting cheese, may be heated at 60 °C for 30 min; in contrast, compounds are produced in milk when exposed to light and elevated temperatures, so milk samples are heated as little as possible. Products such as dehydrated whey protein are more stable and can be exposed to longer periods (60 min of warming at lower temperature (40 °C without decomposition, allowing for capture and analysis of many minor components. The techniques for determining the volatiles in dairy products by SPME and GC-MS have to be optimized to produce reliable results with minimal modifications and analysis times.

  18. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R 2 =0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil. Copyright © 2017. Published by Elsevier Inc.

  19. Determination of Sesquiterpenes in Wines by HS-SPME Coupled with GC-MS

    OpenAIRE

    Cincotta, Fabrizio; Verzera, Antonella; Tripodi, Gianluca; Condurso, Concetta

    2015-01-01

    The sesquiterpene compounds present in red wines were characterized and quantified by Headspace Solid-Phase Microextraction in combination with Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS). Sixteen sesquiterpenes were identified, mainly hydrocarbons but also derived oxygenated compounds. Sesquiterpenes were acyclic, monocyclic, byciclic and tryciclic. Sesquiterpenes were detected in SIM (selected ion monitoring) mode using their characteristics ions. All the sesquiterpenes were identi...

  20. Optimization of Solid Phase Micro-Extraction (SPME for Monitoring Occupational Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    H. Heidari

    2009-08-01

    Full Text Available AbstractBackground and Objectives: Analytical methods for volatile organic compounds (VOCs in different samples need extraction of compounds, by applying hazardous solvents. Solid phase micro-extraction (SPME is a solvent-free equilibrium extraction method, in which proper calibration can allow quantitative determinations of VOCs at a very good sensitivity without the use of any organic solvent. VOCs are generally present in urine only at trace levels, therefore, a sensitive procedure is needed for their trace determinations. Throughout this study, headspace solid phase micro-extraction (HS-SPME was followed by GC-FID for ethyl benzene in spiked urine was optimized.Methods: In this study, the parameters influencing SPME and gas chromatography of ethyl benzene, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were investigated. Results: Extraction procedure was performed at 30°C for 6 min, using 0.2 gml-1 of NaCl in the sample solution. The sample volume and sample pH were optimized at 5 ml and 7 (neutral pH, respectively. Desorption of the ethyl benzene was carried out for 60 sec. at 250°C. The method was also validated with three different spiked urine samples and illustrated an appropriate reproducibility over six consecutive days as well as six within-day experiments. During this investigation, parameters of accuracy, linearity, and detection limits of the procedure were also evaluated.Conclusion: The developed method of HS- SPME-GC-FID proved to be a simple, convenient, and practical procedure, and was successfully used for measuring of ethyl benzene in spiked urine.

  1. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  2. Water purification from radionuclides with using fibroid sorbents

    International Nuclear Information System (INIS)

    Khaydarov, R. A.; Gapurova, O.U.; Khaydarov, R.R.

    2005-01-01

    Full text: Purification waste water and drinking water from radionuclides, heavy metal ions, organic contamination is one of the important problems today. For solving this problem we have created three types of fibroid sorbents on the base of Polyester: cationic and anionic exchange and carbonic. Main properties of these sorbents are described in this article. For example characteristics of the sorbents for removing radionuclides Co-60,57, Zn-65, Sr-89,90, Cs-134,137, etc., radionuclides containing organic molecules M-P-32, M-I-131, M-Mo-99+Tc-99m, M-C-14, etc., heavy metal ions Zn, Ni, Cu, Sb, Pb, Cd, Cr, U, etc., organic molecules (pesticides, phenols, dioxin, benzene, toluene, etc.) were investigated. Influence of pH on percent removal, influence of K, Na and another ions concentrations in the liquid on the percent removal, decreasing of the saturation capacity from number of regeneration and another characteristics are described. Static exchange capacity of the cationic sorbents is 1-2 mg-equ/g and anionic - 0.5-1 mg-equ/g. Capacity of the carbonic sorbents for benzene is 100 mg/g. Time of chemical balance setting is 1-2 s. The sorbents are effective in removing the low concentrations of contamination from the water (lower than 100-200 mg/l) and the air (lower than 100 mg/m 3 ). The use of sorbents in drinking water filters and mini-systems is described. The industrial water purification system consists of coagulating unit, sorbent unit and disinfectant unit. The systems are used in atomic power stations, electroplating plants, matches plants, leather and skin treating plants, car-washing stations, etc

  3. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  5. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  6. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside.

    Science.gov (United States)

    Goryński, Krzysztof; Goryńska, Paulina; Górska, Agnieszka; Harężlak, Tomasz; Jaroch, Alina; Jaroch, Karol; Lendor, Sofia; Skobowiat, Cezary; Bojko, Barbara

    2016-10-25

    Solid phase microextraction (SPME) is a technology where a small amount of an extracting phase dispersed on a solid support is exposed to the sample for a well-defined period of time. The open-bed geometry and biocompatibility of the materials used for manufacturing of the devices makes it very convenient tool for direct extraction from complex biological matrices. The flexibility of the formats permits tailoring the method according the needs of the particular application. Number of studies concerning monitoring of drugs and their metabolites, analysis of metabolome of volatile as well as non-volatile compounds, determination of ligand-protein binding, permeability and compound toxicity was already reported. All these applications were performed in different matrices including biological fluids and tissues, cell cultures, and in living animals. The low invasiveness of in vivo SPME, ability of using very small sample volumes and analysis of cell cultures permits to address the rule of 3R, which is currently acknowledged ethical standard in R&D labs. In the current review systematic evaluation of the applicability of SPME to studies required to be conduct at different stages of drug discovery and development and translational medicine is presented. The advantages and challenges are discussed based on the examples directly showing given experimental design or on the studies, which could be translated to the models routinely used in drug development process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  8. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  9. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  10. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  11. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  12. Metal-organic aerogel as a coating for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir; Shahvar, Ali

    2017-06-22

    An iron-based metal-organic aerogel was synthesized using metal-organic framework nanoparticles and applied as a fiber coating for solid-phase microextraction (SPME). Chemical, thermal and morphological characteristics of the material were investigated. Headspace SPME followed by gas chromatography-electron capture detection was used for the determination of chlorobenzenes in the environmental samples. The key experimental factors affecting the extraction efficiency of the analytes, such as ionic strength, extraction and desorption temperature, and extraction time were investigated and optimized. The applicability of the coating for the extraction of chlorobenzenes from the environmental samples including river and tap water, sludge, and coastal soil was evaluated. The detection limits were in the range of 0.1–60 ng L{sup −1}. The relative standard deviations were between 2.0 and 5.0%. The extraction recovery of the analytes was in the range of 88–100%. Compared to the commercial PDMS fiber, the present fiber showed better extraction efficiency. - Highlights: • Metal-organic aerogel was synthesized and used as a novel fiber coating for SPME. • The new coating material showed high surface area and good thermal stability. • GC-ECD was used for determination of chlorobenzenes in environmental samples. • The method showed fast extraction and better efficiency than PDMS commercial fiber.

  13. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-07-03

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  14. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie; Lively, Ryan P.; Lee, Jong Suk; Koros, William J.

    2013-01-01

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  15. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    Science.gov (United States)

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  17. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection.

    Science.gov (United States)

    Wang, Jun-Xia; Jiang, Dong-Qing; Gu, Zhi-Yuan; Yan, Xiu-Ping

    2006-12-22

    Determination of polybrominated diphenyl ethers (PBDEs) in environmental samples has raised great concerns due to the widespread use of PBDEs and their potential risk to humans. Solid-phase microextraction (SPME) is a fast, simple, cost-effective, and green sample preparation technique and is widely used for environmental analysis, but reports on the application of SPME for determination of PBDEs are very limited, and only a few publications dealing with commercial SPME fibers are available for extraction of PBDEs. Herein, we report a novel SPME method using multiwalled carbon nanotubes (MWCNTs) as the SPME fiber coating for gas chromatography with electron-capture detection (GC-ECD) of PBDEs in environmental samples. The MWCNTs coating gave much higher enhancement factors (616-1756) than poly (5% dibenzene-95% dimethylsiloxane) coating (139-384) and activated carbon coating (193-423). Thirty-minute extraction of 10 mL of sample solution using the MWCNTs coated fiber for GC-ECD determination yielded the limits of detection of 3.6-8.6 ng L(-1) and exhibited good linearity of the calibration functions (r(2)>0.995). The precision (RSD%, n=4) for peak area and retention time at the 500 ng L(-1) level was 6.9-8.8% and 0.6-0.9%, respectively. The developed method was successfully applied for the analysis of real samples including local river water, wastewater, and milk samples. The recovery of the PBDEs at 500 ng L(-1) spiked in these samples ranged from 90 to 119%. No PBDEs were detected in the river water and skimmed milk samples, whereas in the wastewater sample, 134-215 ng L(-1) of PBDEs were found. The PBDEs were detected in all whole fat milk samples, ranging from 13 to 484 ng L(-1). In a semiskimmed milk sample, only BDE-47 was found at 21 ng L(-1).

  18. Tributyl phosphate removal from reprocessing off-gas streams using a selected sorbent

    International Nuclear Information System (INIS)

    Parker, G.B.

    1980-01-01

    Laboratory experiments used small laboratory-scale columns packed with selected sorbent materials to remove tributyl phosphate (TBP) and iodine at conditions approaching those in actual reprocessing off-gas streams. The sorbent materials for TBP removal were placed upstream of iodine sorbent materials to protect the iodine sorbent from the deleterious effects of TBP. Methyl iodide in an airstream containing 30% TBP in normal paraffin hydrocarbons (NPH) and water vapor was metered to two packed columns of sorbents simultaneously (in parallel). One column contained a segment of 8-in. x 14-in. mesh alumina sorbent for TBP removal, the other did not. The measure of the effectiveness of TBP sorbent materials for TBP removal was determined by comparing the iodine retention of the iodine sorbent materials in the two parallel columns. Results from an 18 wt % Ag substituted mordenite iodine sorbent indicated that the iodine retention capacity of the sorbent was reduced 60% by the TBP and that the column containing iodine sorbent material protected by the alumina TBP sorbent retained 30 times more iodine than the column without TBP sorbent. TBP concentration was up to 500 mg/m 3 . Similar experiments using a 7 wt % Ag impregnated silica gel indicated that the TBP vapor had little effect on the iodine retention of the silica gel material. The stoichiometric maximum amount of iodine was retained by the silica gel material. Further experiments were conducted assessing the effects of NO 2 on iodine retention of this 7 wt % Ag sorbent. After the two columns were loaded with iodine in the presence of TBP (in NPH), one column was subjected to 2 vol % NO 2 in air. From visual comparison of the two columns, it appeared that the NO 2 regenerated the silica gel iodine sorbent and that iodine was washed off the silica gel iodine sorbent leaving the sorbent in the original state

  19. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy

    International Nuclear Information System (INIS)

    Kazemi, Elahe; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-01

    phase extraction is developed for the separation and preconcentration of trace amounts of fluoxetine before its determination by mode-mismatched thermal lens spectroscopy. - Highlights: • Development of a novel mixed hemimicelles dispersive micro solid phase extraction. • Utilization of IL coated magnetic graphene as efficient sorbent for SPME of fluoxetine. • Application of homemade mode-mismatched TLS for quantification of the fluoxetine. • Developed method showed the merits of very low LOD, rapidity and environmentally friendly.

  20. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Elahe; Haji Shabani, Ali Mohammad [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Abbasi, Amir [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Rashidian Vaziri, Mohammad Reza [Laser and Optics Research School, 14155-1339, Tehran (Iran, Islamic Republic of); Behjat, Abbas [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-28

    dispersive micro solid phase extraction is developed for the separation and preconcentration of trace amounts of fluoxetine before its determination by mode-mismatched thermal lens spectroscopy. - Highlights: • Development of a novel mixed hemimicelles dispersive micro solid phase extraction. • Utilization of IL coated magnetic graphene as efficient sorbent for SPME of fluoxetine. • Application of homemade mode-mismatched TLS for quantification of the fluoxetine. • Developed method showed the merits of very low LOD, rapidity and environmentally friendly.

  1. Screening for γ-Nonalactone in the Headspace of Freshly Cooked Non-Scented Rice Using SPME/GC-O and SPME/GC-MS

    Directory of Open Access Journals (Sweden)

    Jie Yu Chen

    2009-08-01

    Full Text Available The determination of γ-nonalactone as one of the important odor-active compounds in freshly cooked non-scented rice is reported. It was evaluated by gas chromatography-olfactometry (GC-O analysis and identified by gas chromatography-mass spectrometry (GC-MS analysis in the headspace above the freshly cooked non-scented rice samples extracted by using a modified headspace solid-phase microextraction (SPME method. This component had a mass spectrum with a characteristic ion peak at m/z 85 (100% and a linear retention index (RI of 2,023 on a DB Wax column, consistent with those of an authentic sample of γ-nonalactone. The odor characterization of a strong, sweet, coconut-like aroma of this compound was also validated by GC-O comparison with the authentic compound.

  2. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  3. Oil spill sorbents: Testing protocol and certification listing program

    International Nuclear Information System (INIS)

    Cooper, D.; Gausemel, I.

    1993-01-01

    Environment Canada's Emergencies Engineering Division is spearheading a program in conjunction with the Canadian General Standards Board that would see the development of a certification and listing program in addition to a national standard for the testing of sorbent materials. Funding for this program is provided by Environment Canada (EC), Canadian Coast Guard (CCG), Marine Spill Response Corporation (MSRC), US Coast Guard (USCG), and US Minerals Management Service (MMS). The test methods are based upon those defined by the American Society for Testing and Materials and previous test methods developed by Environment Canada for our series of reports entitled Selection Criteria and Laboratory Evaluation of Oil Spill Sorbents. This series, which was started in 1975, encompasses a number of commercially available oil spill sorbents tested with different petroleum products and hydrocarbon solvents. The testing program will categorize the sorbents according to their operating characteristics. The main categories are oil spills on water, oil spills on land, and industrial use. The characteristics to be evaluated with the new test protocols include initial and maximum sorption capacities, water pickup, buoyancy, reuse potential, retention profile, disintegration (material integrity), and ease of application and retrieval. In the near future are plans to incorporate changes to the test that would involve increasing the list of test liquids to encompass spills in an industrial setting, in addition to testing sorbent booms and addressing the disposal problem

  4. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  5. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  6. Ecologically pure sorbents for power system of Myanmar

    Science.gov (United States)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  7. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  8. Sorbent application on the base of chitosan for radionuclides separation

    International Nuclear Information System (INIS)

    Pivarciova, L.

    2016-01-01

    Radioactive waste contains enormous amounts of radionuclides, which pollute the environment and can cause serious chemical and radiological toxicity threats to lower and higher living organism. Alternative process for the removal of heavy metal ions and radionuclides is sorption, which utilizes various certain natural materials of biological origin. Amino-polysaccharide-based sorbents e.g. chitosan represent suitable materials for binding of metal oxo-anion species because of numerous functional groups -OH and -NH_2 because of their suitable H-bond donor and acceptor sites. The sorbents on the base chitosan prepared through chemical modification were used for removal and separation certain radionuclides from aqueous media. The aim of this work was the study of physicochemical properties of prepared sorbents. The specific surface of sorbents was characterized with BET methods. Point of zero charge was identified with potentiometric titration. The size of particles and shape of sorbents were determined by scanning electron microscope. The sorption experiments for selected radionuclides were conducted under static and dynamic conditions. The effect of various parameters on the sorption "9"9"mTc, "6"0Co and the effect of pH on the separation of radionuclide mixture in the solution were studied. (author)

  9. New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Nanocrystalline mixed metal oxides (MMO of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47 respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene.

  10. Development and validation of an SPME-GC method for a degradation kinetics study of propiconazole I, propiconazole II and tebuconazole in blueberries in Concordia, the main production area of Argentina.

    Science.gov (United States)

    Munitz, Martín S; Medina, María B; Montti, María I T

    2017-05-01

    An analytical method for the simultaneous determination of propiconazole isomers and tebuconazole residues in blueberries was developed using solid-phase microextraction (SPME) coupled to gas chromatography. Confirmation was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The SPME fibre coating selected was CWX-DVB, and the pH was adjusted to 7 with NaOH. The method is selective with adequate precision and high accuracy and sensitivity. Recoveries ranged between 97.4% and 98.9% for all compounds; and detection and quantification limits were respectively 0.21 and 0.49 μg kg -1 for propiconazole I; 0.16 and 0.22 μg kg -1 for propiconazole II; and 0.16 and 0.48 μg kg -1 for tebuconazole. The degradation of these fungicides in blueberries followed first-order rate kinetics. The half-life times for flowering and fruit set applications were respectively 4.0 and 10.3 days for propiconazole I, 4.0 and 11.4 days for propiconazole II, and 3.5 and 12.4 days for tebuconazole.

  11. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    Science.gov (United States)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  12. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples.

    Science.gov (United States)

    Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S

    2016-10-01

    A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.

  13. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Shamizadeh, Mohammad; Moradian, Rostam; Astinchap, Bandar

    2014-01-01

    Highlights: • Co 3 O 4 nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co 3 O 4 nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared

  14. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Cao Dandan; Lue Jianxia; Liu Jingfu; Jiang Guibin

    2008-01-01

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H 2 O 2 (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a ∼1.2 μm thick nanostructured coating consisting of ∼100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L -1 ), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L -1 ), and good linearity (coefficient of estimation R 2 = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  15. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dandan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Environmental Science Division, School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Lue Jianxia [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2008-03-17

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H{sub 2}O{sub 2} (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a {approx}1.2 {mu}m thick nanostructured coating consisting of {approx}100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L{sup -1}), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L{sup -1}), and good linearity (coefficient of estimation R{sup 2} = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  16. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  17. Optimization of Solid Phase Micro-Extraction (SPME for Monitoring Occupational Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    H Heidari

    2012-05-01

    Full Text Available

    Background and Objectives: Analytical methods for volatile organic compounds (VOCs in different samples need extraction of compounds, by applying hazardous solvents. Solid phase micro-extraction (SPME is a solvent-free equilibrium extraction method, in which proper calibration can allow quantitative determinations of VOCs at a very good sensitivity without the use of any organic solvent. VOCs are generally present in urine only at trace levels, therefore, a sensitive procedure is needed for their trace determinations. Throughout this study, headspace solid phase micro-extraction (HS-SPME was followed by GC-FID for ethyl benzene in spiked urine was optimized.

    Methods: In this study, the parameters influencing SPME and gas chromatography of ethyl benzene, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were investigated.

    Results: Extraction procedure was performed at 30°C for 6 min, using 0.2 gml-1 of NaCl in the sample solution. The sample volume and sample pH were optimized at 5 ml and 7 (neutral pH, respectively. Desorption of the ethyl benzene was carried out for 60 sec. at 250°C. The method was also validated with three different spiked urine samples and illustrated an appropriate reproducibility over six consecutive days as well as six within-day experiments. During this investigation, parameters of accuracy, linearity, and detection limits of the procedure were also evaluated.

    Conclusion: The developed method of HS- SPME-GC-FID proved to be a simple, convenient, and practical procedure, and was successfully used for measuring of ethyl benzene in spiked urine.

  18. VOLATILE COMPOUNDS OF LITHRAEA CAUSTICA (LITRE) DETERMINATED BY SOLID PHASE MICRO-EXTRACTION (SPME)

    OpenAIRE

    GARBARINO, JUAN A; SALVATORE, GIUSEPPE; PIVANOVO, MARISA; CHAMY, MARÍA CRISTINA; NICOLETTI, MARCELLO; DE IOANNES, ALFREDO

    2002-01-01

    The head space of the aerial parts of Lithraea caustica was analyzed by Solid Phase Micro-Extraction (SPME) technique, obtaining as main volatile compounds the monoterpenes, myrcene, a -pinene, , p-cymene and limonene, as well as the sesquiterpene caryophylene. De las partes áereas de Lithraea caustica y usando la técnica de Micro-Extracción en Fase Sólida (MEFS), fueron identificados y cuantificados los principales compuestos volátiles: los monoterpenos, mirceno, a -pineno, p-cimeno y lim...

  19. Analysis of flavor-related compounds from tabacco using SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.B.; Lee, S.G. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2001-04-01

    The flavor-related compounds contained in tobacco were analyzed by selected ion monitoring (SIM) method using headspace SPME gas chromatography-mass spectrometry (GC-MS). Flavor-related compounds were estragole, pulegone, trans-anethole, safrole, piperonal, eugenol, methyleugenol, coumarin, trans-isoeugenol, trans-methyleugenol and myristicin More than one of the flavor-related compounds were detected in the range of 0.001-1.3 {mu}g/g from all brands of tobacco studied. The recovery was ranged from 89.1 to 102.9% and relative standard deviation was ranged from 2.6 to 25.2%. (author). 19 refs., 4 tabs., 2 figs.

  20. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    Science.gov (United States)

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  1. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  2. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  3. Itaconic acid based potential sorbent for uranium recovery

    International Nuclear Information System (INIS)

    Kalyan, Y.; Naidu, G.R.K.; Das, Sadananda; Pandey, A.K.; Reddy, A.V.R.

    2010-01-01

    Cross-linked hydrogels and adsorptive membranes containing Itaconic acid, Acrylamide, Penta erythritol tetra acrylate and α, α-dimethyl- α-phenyl aceto phenone were prepared by UV-initiated bulk polymerization. These hydrogels and adsorptive membranes were characterized for pH uptake, sorption and desorption kinetics and selectivity towards uranium. The sorption ability of the sorbents towards uranyl ion was thoroughly examined. The developed itaconic acid based sorbents were evaluated for the recovery of uranium from lean sources like sea water. (author)

  4. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  5. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    Science.gov (United States)

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  6. Optimization of Biochemical Screening Methods for Volatile and Unstable Sesquiterpenoids Using HS-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Trine Bundgaard Andersen

    2015-06-01

    Full Text Available HS-SPME-GC-MS has been suggested as a fast and robust analytical platform for the product characterization of sesquiterpene synthases. The choice of fiber and injection temperature can have a significant effect on the observed product profile, due to the chemical rearrangements that can occur on the fiber material. Here we present a systematic study on the effects of fiber choice and injection port temperature on the observed sesquiterpenoid profile of four sesquiterpene synthases expressed in Nicotiana benthamiana. We found that the absorbent material PDMS was much less likely to support acid-induced rearrangement of sesquiterpenoids when compared to the adsorbent materials PDMS/DVB, PDMS/CAR, and PDMS/CAR/DVB. Furthermore, utilizing an injection port temperature at 160 °C almost eliminated the inherent thermal instability of germacrene sesquiterpenoids. Thus, for fast screening of sesquiterpene synthases, the results suggest that PDMS fibers and an injection temperature of 160 °C provide a fast and reproducible HS-SPME GC-MS method when using H2 as carrier gas.

  7. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation.

    Science.gov (United States)

    Musumeci, Lauren E; Ryona, Imelda; Pan, Bruce S; Loscos, Natalia; Feng, Hui; Cleary, Michael T; Sacks, Gavin L

    2015-07-06

    Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH), 3-mercaptohexylacetate (3-MHA), and 4-mercapto-4-methyl-2-pentanone (4-MMP)) are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS). We describe a method in which thiols are converted to pentafluorobenzyl (PFB) derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME) and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%-109%) and precision (5%-11% RSD) were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines), V. labruscana (Niagara), and Vitis spp. (Cayuga White). Mean 4-MMP concentrations in New York Niagara (17 ng/L) were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  8. SPME-Based Ca-History Method for Measuring SVOC Diffusion Coefficients in Clothing Material.

    Science.gov (United States)

    Cao, Jianping; Liu, Ningrui; Zhang, Yinping

    2017-08-15

    Clothes play an important role in dermal exposure to indoor semivolatile organic compounds (SVOCs). The diffusion coefficient of SVOCs in clothing material (D m ) is essential for estimating SVOC sorption by clothing material and subsequent dermal exposure to SVOCs. However, few studies have reported the measured D m for clothing materials. In this paper, we present the solid-phase microextraction (SPME) based C a -history method. To the best of our knowledge, this is the first try to measure D m with known relative standard deviation (RSD). A thin sealed chamber is formed by a circular ring and two pieces of flat SVOC source materials that are tightly covered by the targeted clothing materials. D m is obtained by applying an SVOC mass transfer model in the chamber to the history of gas-phase SVOC concentrations (C a ) in the chamber measured by SPME. D m 's of three SVOCs, di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and tris(1-chloro-2-propyl) phosphate (TCPP), in a cotton T-shirt can be obtained within 16 days, with RSD less than 3%. This study should prove useful for measuring SVOC D m in various sink materials. Further studies are expected to facilitate application of this method and investigate the effects of temperature, relative humidity, and clothing material on D m .

  9. Sorption of europium (3) by polymer sorbents with grafted heterocyclic nitrogen-containing groupings

    International Nuclear Information System (INIS)

    Bel'tyukova, S.V.; Kravchenko, T.B.; Balamtsarashvili, G.M.; Roska, A.S.

    1990-01-01

    On polymer sorbents (copolymer of styrene-divinylbenzene) with grafted heterocyclic nitrogen-containing functional groupings of tetrazole, triazole and imidazole (sorbents 1,2,3, respectively). It is stated that europium sorption takes place from neutral solutions in presence of organic solvents. Luminescent properties of europium on sorbent are used to develope methods of its determination in high purity lanthanide and yttrium oxides. Europium determination limits consist 7.5·10 -5 μg/ml on 1 and 3 sorbents and 1.5·10 -4 μg/ml on sorbent 2, S p value is 0.089 and 0.075, respectivaly

  10. Novel composite sorbent AAm/MA hydrogels containing starch and ...

    Indian Academy of Sciences (India)

    A novel polymer/clay composite sorbent based on acrylamide/maleic acid, starch and clay such as kaolin was synthesized with free radical solution polymerization by using ammonium persulfate/,,','-tetramethylethylenediamine as redox initiating pair in the presence of poly(ethylene glycol)diacrylate as a crosslinker.

  11. New Composite Sorbents for Caesium and Strontium Ions Sorption

    Directory of Open Access Journals (Sweden)

    Mykola Kartel

    2017-06-01

    Full Text Available Composite lignocellulose-inorganic sorbents derived from plant residues of agriculture and food industry, modified with ferrocyanides of d-metals and hydrated antimony pentoxide were prepared. Caesium and strontium ions removal from water was tested by radiotracer method. Sorption of heavy metal ions, methylene blue, gelatin, vitamin B12 was also studied.

  12. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  13. Comments on "Ceria-Zirconia High-Temperature Desulfurization Sorbents".

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2006-01-01

    Roč. 45, č. 4 (2006), s. 1548-1549 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen sulfide * desulfurization * cerium sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2006

  14. Natural sorbents for decontamination of objects of urban territories

    International Nuclear Information System (INIS)

    Movchan, N.; Fedorenko, Yu.; Zlobenko, B.; Spigoun, A.

    1996-01-01

    This paper gives an information about the use of film coverings, based on natural sorbents, in decontamination of buildings, contaminated after the Chernobyl accident. This method has incontrovertible advantages in the beginning period after the accident and can be used for cleaning considerable areas of urban territories

  15. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  16. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  17. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    Science.gov (United States)

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated

  18. Characterization of Fish Sauce Aroma Impact Compounds Using GC-MS, SPME-Osme-GCO, and Stevens' Power Law Exponents

    Science.gov (United States)

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) couple...

  19. HS-SPME-GC-MS ANALYSIS OF VOLATILE AND SEMI-VOLATILE COMPOUNDS FROM DRIED LEAVES OF Mikania glomerata Sprengel

    Directory of Open Access Journals (Sweden)

    Esmeraldo A. Cappelaro

    2015-03-01

    Full Text Available This paper reports on the identification of volatile and semi-volatile compounds and a comparison of the chromatographic profiles obtained by Headspace Solid-Phase Microextraction/Gas Chromatography with Mass Spectrometry detection (HS-SPME-GC-MS of dried leaves of Mikania glomerata Sprengel (Asteraceae, also known as 'guaco.' Three different types of commercial SPME fibers were tested: polydimethylsiloxane (PDMS, polydimethylsiloxane/divinylbenzene (PDMS/DVB and polyacrylate (PA. Fifty-nine compounds were fully identified by HS-SPME-HRGC-MS, including coumarin, a marker for the quality control of guaco-based phytomedicines; most of the other identified compounds were mono- and sesquiterpenes. PA fibers performed better in the analysis of coumarin, while PDMS-DVB proved to be the best choice for a general and non-selective analysis of volatile and semi-volatile guaco-based compounds. The SPME method is faster and requires a smaller sample than conventional hydrodistillation of essential oils, providing a general overview of the volatile and semi-volatile compounds of M. glomerata.

  20. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS

    NARCIS (Netherlands)

    Kenessov, B.N.; Koziel, J.A.; Grotenhuis, J.T.C.; Carlsen, L.

    2010-01-01

    The paper describes a novel SPME-based approach for sampling and analysis of transformation products of highly reactive and toxic unsymmetrical dimethylhydrazine (UDMH) which is used as a fuel in many Russian, European, Indian, and Chinese heavy cargo carrier rockets. The effects of several

  1. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  2. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Directory of Open Access Journals (Sweden)

    Edward J. Anthony

    2010-08-01

    Full Text Available This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  3. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  5. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  6. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  7. Comparison of different types of coatings in headspace solid phase micro extraction for the analysis of pesticide residues in vegetables and fruits

    International Nuclear Information System (INIS)

    Chai, Mee Kin; Tan, Guan Huat

    2008-01-01

    Despite the continuing development of solid-phase micro extraction (SPME) fiber coatings, their selection presents some difficulties for analytes in choosing the appropriate fiber for a particular application. There are many types of SPME coatings available commercially. The most widely used for determination of pesticide residues in vegetable and fruits are polydimethylsiloxane (PDMS) and polyacrylate (PA). A headspace solid phase micro extraction (HS-SPME) procedure using these two commercialized fibers (PDMS and PA) is presented for the determination of selected groups of organo chlorine and organophosphorus pesticides. The extraction performances of these compounds were compared using these two fibers. The optimal experimental procedures for the adsorption and desorption of pesticides were determined. An explanation for the extraction differences is suggested based on the different thickness, polarity of the polymeric film of fibers and the different extracting matrices. In addition, the higher detector response of the pesticides after addition of aliquots of water and an organic solvent to the vegetable and fruit samples are also discussed. The SPME fibers were reusable until a maximum of 120 extractions. Finally, the optimized procedures were applied successfully for the determination of these compounds in vegetable and fruits samples. Mean recoveries for all pesticides were between 75.0-97 % with RSD below 7 %. (author)

  8. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  9. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    Directory of Open Access Journals (Sweden)

    Kenneth G. Furton

    2007-08-01

    Full Text Available Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs. Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  10. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg; Frandsen, Henrik Lauritz; Fromberg, Arvid

    2015-01-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers the naturalness of a raspberry...... flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. 27 food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry...... distribution of the R and S isomer. Two products were labelled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products labelled to contain both raspberry juice and flavor showed...

  11. Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Kimura, Minako; Yabe, Yoshito; Tsukamoto, Daisuke; Sakamoto, Masaya; Horibe, Isao; Okuno, Yoshiharu

    2008-01-01

    The profile of volatile organic compounds (VOCs) released from Glomerella cingulata using solid phase microextraction (SPME) with different fibers, Polydimethylsiloxane (PDMS), Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), Carboxen/Polydimethylsiloxane (CAR/PDMS) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), was investigated. C4-C6 aliphatic alcohols were the predominant fraction of VOCs isolated by CAR/PDMS fiber. Sesquiterpene hydrocarbons represented 20.3% of VOCs isolated by PDMS fiber. During the growth phase, Ochracin was produced in the large majority of VOCs. 3-Methylbutanol and phenylethyl alcohol were found in the log phase of it. Alcohols were found in cultures of higher age, while sesquiterpenes were found to be characteristic of initial growth stage of G. cingulata.

  12. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    Science.gov (United States)

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Changes in SPME-extracted volatile compounds from Iberian ham during ripening

    Directory of Open Access Journals (Sweden)

    García, Carmen

    2009-07-01

    Full Text Available A headspace SPME procedure was tested to study the evolution of volatile compounds during the ripening of Iberian hams from pigs reared in a Montanera system (outdoorbased, with acorn and pasture available and a HO-Pienso system (indoor-based, with a high oleic acid concentrate. The effect of the ripening time on volatile compounds was more marked than the effect of feeding system. Most volatile compounds affected by the ripening time were compounds that come from Strecker and Maillard reactions, which increased significantly ( p Un procedimiento de microextración en fase sólida (SPME en espacio de cabeza fue ensayado para estudiar la evolución de los compuestos volátiles durante la curación de Jamones Ibéricos de cerdos criados en régimen de montanera (en libertad, con bellotas y pasto disponible y un sistema OH-Pienso (estabulados, con un pienso alto en ácido oléico. El efecto del tiempo de curación en los compuestos volátiles fue más marcado que el efecto de la alimentación. La mayoría de los compuestos volátiles afectados por el tiempo de curación fueron compuestos que proceden de la reacción de Strecker y Maillard, que se incrementaron significativamente (p p < 0.05. Algunos de ellos (ácido butanoico, 2,6- dimetilpiracina y 1-octen-3-ol fueron más abundantes en jamones de Montanera que en jamones de Pienso. Estas pequeñas diferencias podrían ser importantes porque los compuestos involucrados han sido identificados como aromas del jamón Ibérico.

  14. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation

    Directory of Open Access Journals (Sweden)

    Lauren E. Musumeci

    2015-07-01

    Full Text Available Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH, 3-mercaptohexylacetate (3-MHA, and 4-mercapto-4-methyl-2-pentanone (4-MMP are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS. We describe a method in which thiols are converted to pentafluorobenzyl (PFB derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%–109% and precision (5%–11% RSD were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines, V. labruscana (Niagara, and Vitis spp. (Cayuga White. Mean 4-MMP concentrations in New York Niagara (17 ng/L were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  16. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  17. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  18. The effect of preparation of biogenic sorbent on zinc sorption

    Directory of Open Access Journals (Sweden)

    Jana Jenčárová

    2011-12-01

    Full Text Available The aim of this study is to prepare biogenic sulphides by using bacteria for the removal of zinc cations from their solutions. Theproduction was realized in a bioreactor under anaerobic conditions at 30 °C. Sorbents were prepared by sulphate-reducing bacteria indifferent nutrient medium modifications, under two modes of bacteria cultivation. Created precipitates of iron sulphides were removedfrom the liquid phase of the cultivation medium by filtration, dried and used for the sorption experiments.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  20. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  2. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  4. Graphene deposited onto aligned zinc oxide nanorods as an efficient coating for headspace solid-phase microextraction of gasoline fractions from oil samples.

    Science.gov (United States)

    Wen, Congying; Li, Mengmeng; Li, Wangbo; Li, Zizhou; Duan, Wei; Li, Yulong; Zhou, Jie; Li, Xiyou; Zeng, Jingbin

    2017-12-29

    The content of gasoline fraction in oil samples is not only an important indicator of oil quality, but also an indispensable fundamental data for oil refining and processing. Before its determination, efficient preconcentration and separation of gasoline fractions from complicated matrices is essential. In this work, a thin layer of graphene (G) was deposited onto oriented ZnO nanorods (ZNRs) as a SPME coating. By this approach, the surface area of G was greatly enhanced by the aligned ZNRs, and the surface polarity of ZNRs was changed from polar to less polar, which were both beneficial for the extraction of gasoline fractions. In addition, the ZNRs were well protected by the mechanically and chemically stable G, making the coating highly durable for use. With headspace SPME (HS-SPME) mode, the G/ZNRs coating can effectively extract gasoline fractions from various oil samples, whose extraction efficiency achieved 1.5-5.4 and 2.1-8.2 times higher than those of a G and commercial 7-μm PDMS coating respectively. Coupled with GC-FID, the developed method is sensitive, simple, cost effective and easily accessible for the analysis of gasoline fractions. Moreover, the method is also feasible for the detection of gasoline markers in simulated oil-polluted water, which provides an option for the monitoring of oil spill accident. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  6. Different sorbents in calcium looping cycle for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Cyclic CO{sub 2} capture using commercial pure micro CaCO{sub 3} and nano CaCO{sub 3} is investigated in this paper which focuses on the different characteristics two different sorbents during high temperature reactions. The results indicate that the nano CaCO{sub 3} sorbent has higher carbonation conversions and carbonation rates than the micro CaCO{sub 3} sorbent in the cyclic reactions. Furthermore, nano sorbent can retain its fast carbonation rates at the beginning dozens of seconds during each cycle. In contrast, the carbonation rates of micro sorbent diminish with the increase of cycle number. But, unfortunately, CaO derived from nano CaCO3 sorbent sinter much easily. Its grains, which are composed of numerous spherical nanocrystallites, experience dramatic morphological changes during high temperature reactions.

  7. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  8. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Tse-Tsung; Chen, Chung-Yu; Li Zuguang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2012-01-01

    Highlights: ► Ionic liquid (IL), ([C 4 MIM][PF 6 ]), was rapid synthesized by microwave radiation. ► Trace chlorophenols in landfill leachate were extract by SPME coated IL. ► The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 MIM][PF 6 ]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L −1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L −1 . The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L −1 . The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.

  9. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tse-Tsung; Chen, Chung-Yu [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); Li Zuguang [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang (China); Yang, Thomas Ching-Cherng [Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan (China); Lee, Maw-Rong, E-mail: mrlee@dragon.nchu.edu.tw [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Ionic liquid (IL), ([C{sub 4}MIM][PF{sub 6}]), was rapid synthesized by microwave radiation. Black-Right-Pointing-Pointer Trace chlorophenols in landfill leachate were extract by SPME coated IL. Black-Right-Pointing-Pointer The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography-mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography-mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 Degree-Sign C for 4 min. Linearity was observed from 0.1 to 1000 {mu}g L{sup -1} with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 {mu}g L{sup -1}. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 {mu}g L{sup -1}. The results demonstrate that the IL-SPME-GC/MS method is highly effective in

  10. Validace HPLC metody stanovení piroxikamu v plasmě s využitím SPME a deproteinace

    OpenAIRE

    Kuželová, Kristýna

    2015-01-01

    Validation of HPLC evaluatoin of piroxicam in plasma using SPME and precipitation Rigorous Thesis Mgr. Kristýna Kuželová Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Department of Pharmaceutical Chemistry and Drug Control, Heyrovského 1203, Hradec Králové The purpose of this thesis was bioanalytical evalution of piroxicam using High Performance Liquid Chromatagraphy (HPLC). Piroxicam was isolated from plasma using SPME and protein precipitacion. Plasma was adjusted to ...

  11. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  12. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC(number s ign)3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO(sub 2). Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO(sub 2)/20% H(sub 2)O, and lowest subsequent to calcination in pure CO(sub 2) at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO(sub 2) in the simulated flue gas. CO(sub 2) evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC(number s ign)3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  15. Use of biomass sorbents for oil removal from gas station runoff.

    Science.gov (United States)

    Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux

    2004-11-01

    The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.

  16. Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances

    Directory of Open Access Journals (Sweden)

    Pijarowski Piotr Marek

    2014-06-01

    Full Text Available A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.

  17. IMMOBILIZATION OF MICROALGAE ON THE SURFACE OF NEW CROSS-LINKED POLYETHYLENIMINE-BASED SORBENTS.

    Science.gov (United States)

    Vasilieva, Svetlana; Shibzukhova, Karina; Morozov, Alexey; Solovchenko, Alexei; Bessonov, Ivan; Kopitsyna, Maria; Lukyanov, Alexander; Chekanov, Konstantin; Lobakova, Elena

    2018-04-11

    We report on the use of the polyethylenimine-based (PEI) sorbents for immobilization and harvesting of microalgae (MA) cells. Specific materials assessed were porous solid polymers from highly-branched PEI synthesized by cross-linking with epichlorohydrin (ECH) or diethylene glycol diglycidyl ether (DGDE). We estimated the effect of PEI/cross-linker ratio on the MA attachment and biocompatibility of the sorbents with the MA cells. A decrease in the cross-linker percentage resulted in the enhancement of the immobilization efficiency but impaired the cell viability as was manifested by inhibition of the photosynthetic activity of the MA cells. The rate of Chlorella vulgaris cell attachment to the sorbents with ECH was faster as compared to that of the PEI-DGDE-based polymers. The cells immobilized on the PEI-ECH sorbents showed a more profound decline in their viability (assessed via photosynthetic activity). The sorbents with 60% of DGDE were characterized by high immobilization efficiency. These sorbents supported a prolonged cultivation of the immobilized MA without impairing their viability and metabolic activity. We conclude that the sorbents with a lower percentage of DGDE (<30%) and sorbents with ECH are suitable for harvesting of the MA cells intended for immediate downstream processing, potentially without the cell desorption. To the best of our knowledge, this is the first report on successful application of PEI-based sorbents in microalgal biotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. HS-SPME AS AN EFFICIENT TOOL FOR DISCRIMINATING CHEMOTYPES OF Lippia alba (Mill. N. E. Brown

    Directory of Open Access Journals (Sweden)

    Aiêrta C. C. da Silva

    Full Text Available Lippia alba (Mill. N. E. Brown (Verbenaceae is a medicinal plant for which several biological activities are reported, such as sedative, anxiolytic, anti-ulcer, antifungal, antimicrobial, antioxidant, antispasmodic, anti-nociceptive and anti-inflammatory. It is characterized by the production of essential oils which have been used to classify the plant in different chemotypes. In the Northeast region of Brazil, the presence of three chemotypes are reported: myrcene-citral (chemotype I, limonene-citral (chemotype II and carvone-limonene (chemotype III. In this work, headspace-solid phase microextraction (HS-SPME was used on the analysis of the volatile organic compounds (VOCs of three chemotypes of L. alba from the Northeast region of Brazil, and compared to the essential oils of the plants extracted by hydrodistillation. Volatile compounds from each chemotype were more effectively differentiated when extracted by HS-SPME than by hydrodistillation.

  19. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  20. Extraction with SPME and Synthesis of 2-Methyl-6-vinylpyrazine by a ‘One Pot’ Reaction Using Microwaves

    Directory of Open Access Journals (Sweden)

    René Arzuffi

    2009-06-01

    Full Text Available A synthesis of 2-methyl-6-vinylpyrazine was carried out by way of a ‘one pot’ reaction. In order to establish the efficiency of this synthesis the extraction of the volatiles released by male papaya fruit flies was performed by SPME (solid phase micro-extraction. The compound was separated and identified using GC/MSD (gas chromatography/mass spectrometry detector.

  1. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    Science.gov (United States)

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.

  3. Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques

    Directory of Open Access Journals (Sweden)

    Batoul Benyelles

    2014-12-01

    Full Text Available The composition of essential oil extracted from Rhaponticum acaule L. roots growing wild in Algeria was studied by hydrodistillation (HD and by Head-Space Solid Phase Micro-Extraction (HS-SPME. Quantitative but not qualitative differences have been found in the chemical composition of both analysed samples depending on the extraction method. However, the oil obtained from R. acaule roots shows that aliphatic alcohols were found to be the major class (69.2%, followed by the terpenes (5.5%, alkenes (5.2% and alkynes (4.0%. In both cases the analysis were carried out using Gas Chromatography (GC and Gas Chromatography–Mass Spectrometry (GC–MS. Our study shows that HS-SPME extraction could be considered as an alternative technique for the isolation of volatiles from plant. 25 components were identified in oil vs. 39 in the HS-SPME. However the oil composition of roots was mainly represented by a variety of aliphatic hydrocarbons (alcohols, aldehydes and ketones and terpenes which are known for their antimicrobial activities.

  4. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    Directory of Open Access Journals (Sweden)

    Kazuki Saito

    2013-04-01

    Full Text Available Plants produce various volatile organic compounds (VOCs, which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS. We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.

  5. Determination of tetrachloroethylene and other volatile halogenated organic compounds in oil wastes by headspace SPME GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, D.; Bezzi, R.; Torri, C.; Galletti, P.; Tagliavini, E. [Bologna Univ., Ravenna (Italy). Lab. of Chemistry, C.I.R.S.A

    2007-09-15

    Oil wastes and slops are complex mixtures of hydrocarbons, which may contain a variety of contaminants including tetrachloroethylene (perchloroethylene, PCE) and other volatile halogenated organic compounds (VHOCs). The analytical determination of PCE at trace levels in petroleum-derived matrices is difficult to carry out in the presence of large amounts of hydrocarbon matrix components. In the following study, we demonstrate that headspace solid-phase microextraction (HS-SPME) combined with GC-MS analysis can be applied for the rapid measurement of PCE concentration in oil samples. The HS-SPME method was developed using liquid paraffin as matrix matching reference material for external and internal calibration and optimisation of experimental parameters. The limit of quantitation was 0.05 mg kg{sup -1}, and linearity was established up to 25 mg kg{sup -1}. The HS-SPME method was extended to several VHOCs, including trichloroethylene (TCE) in different matrices and was applied to the quantitative analysis of PCE and TCE in real samples.

  6. Optimization of an analytical methodology for the determination of alkyl- and methoxy-phenolic compounds by HS-SPME in biomass smoke

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Francisco J.; Afonso, Ana M.; Gonzalez, Venerando; Ayala, Juan H. [University of La Laguna, Campus de Anchieta, Department of Analytical Chemistry, Nutrition and Food Science, La Laguna (Spain)

    2006-08-15

    A sampling and analysis method for the determination of 21 phenolic compounds in smoke samples from biomass combustion has been developed. The smoke is used to make smoked foods, following an artisanal procedure used in some parts of the Canary Islands. The sampling system consists of a Bravo H air sampler, two impingers, each one containing an aqueous solution of sodium hydroxide 0.1 mol L{sup -1}, followed by a silica gel trap. The variables optimized to reach the best sampling conditions were volume of absorbent solution and sampling flow. Under the optimum conditions, 100 mL of absorbent solution of NaOH 0.10 mol L{sup -1} and 2 L min{sup -1} for the sampling flow, sampling efficiencies are higher than 80%. Analysis of phenolic compounds was carried out by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Five different fiber coatings were employed in this study. By means of a central composite design, extraction time, salt concentration, and pH of the solution were optimized: 65-{mu}m carbowax-divinylbenzene, extraction time 90 min, concentration in NaCl of 35% (m/v), and pH 2 yielded the highest response. Detection limits of phenol and their alkyl derivatives, guaiacol and eugenol, are between 1.13 and 4.60 ng mL{sup -1}. 3-Methoxyphenol, 2,6-dimethoxyphenol, and vanillin have detection limits considerably higher. Good linearity (R {sup 2}{>=}0.98) was observed for all calibration curves in the established ranges. The reproducibility of the method (RSD, relative standard deviation) was found to oscillate between 7 and 18% (generally close or lower than 10%). (orig.)

  7. Development of composite calcium hydroxide sorbent in mechanical operations and evaluation of its basic sorption properties

    Directory of Open Access Journals (Sweden)

    Gara Paweł

    2017-01-01

    Full Text Available This article presents the results of research carried out on the possibility of obtaining composite calcium hydroxide sorbent in the process of two-step granulation, containing additional compounds of Al, Mg and Fe, and their textural and sorption studies. For this purpose, attempts were undertaken to compact commercial calcium hydroxide powder with six additives in the laboratory roll press. The resulting compacts were crushed and sieved in order to achieve the assumed sieve fraction. Based on the obtained results, basic parameters of the process of formation of composite sorbent have been determined. Both, the selected composite sorbents fractions and additives were subsequently subjected to textural studies (determination of the specific surface area and porosity and sorption capacity performance. In addition, for the better interpretation of the results, thermogravimetric studies were carried out both for the additives and composite sorbents, as well as the grain size distribution of the additives. The results of the physicochemical tests of the obtained composite sorbents were compared with analogic results from the study on fine-grained hydroxide sorbent without additives and carbonate sorbent. The presented results showed that in a two-step granulation process it is possible to obtain the granular Ca(OH2 sorbent, as well as composite sorbents possessing better SO2 sorption capacity in comparison to the powder Ca(OH2 and/or to the calcium carbonate sorbent. This can be attributed to the combination of capability of the sorbent to appropriate thermal decomposition and the formation of a group of pores in the range of 0.07-0.3 microns.

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  9. The spectroscopic study of building composites containing natural sorbents.

    Science.gov (United States)

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  11. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  12. The use of clays as sorbents and catalysts

    International Nuclear Information System (INIS)

    McCabe, R.W.

    1998-01-01

    The paper attempts to show the structural, physical and chemical properties of clay minerals relate to their laboratory, industrial and environmental uses as sorbents and catalysts. A brief review of the formulae and structures of clays and their relationship to their chemical and physical properties follows. Clay minerals are also useful in environmental protection as they can adsorb crude oils from spills and they are used, sometimes mixed into concrete, as containment barriers for radionuclides caesium 137 and strontium 90. Clay soils can also act as natural barriers to the migration of radionuclides in the environment

  13. SPME-GC-MS analysis of commercial henna samples (Lawsonia inermis L.).

    Science.gov (United States)

    Mengoni, Tamara; Peregrina, Dolores Vargas; Censi, Roberta; Cortese, Manuela; Ricciutelli, Massimo; Maggi, Filippo; Di Martino, Piera

    2016-01-01

    The aim of this work was to provide a characterisation of volatile constituents from different commercial batches of henna (Lawsonia inermis) leaves of different geographic origin. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for the purpose. A total of 72 components were identified by GC-MS in the headspace of different henna samples which proved to differ considerably from each other, because they were characterised by different classes of components, mainly aliphatic compounds (9.0-64.7%), terpenoids (5.8-45.5%) and aromatics (7.9-45.2%), with alkanes (0.9-18.5%), aldehydes (2.1-18.8%) and carboxylic acids (3.1-29.3%), monoterpenes (3.4-30.0%) and sesquiterpenes (0.8-23.7%) and phenyl propanoids (0.6-43.1%), being the most abundant, respectively. Major representatives of these groups were n-hexadecane (0.5-4.7%), (2E)-hexenal (0.5-11.7%) and acetic acid (2.8-24.5%), limonene (0.8-14.7%), carvol (3.8-7.1%), geranyl acetone (1.4-7.9%) and (E)-caryophyllene (3.3-8.4%), and (E)-anethole (0.6-35.0%), respectively. We assume that factors such as the manufacturing process, the storage conditions and the different geographic origin of the samples may contribute to such variability.

  14. Determination of Sesquiterpenes in Wines by HS-SPME Coupled with GC-MS

    Directory of Open Access Journals (Sweden)

    Fabrizio Cincotta

    2015-07-01

    Full Text Available The sesquiterpene compounds present in red wines were characterized and quantified by Headspace Solid-Phase Microextraction in combination with Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS. Sixteen sesquiterpenes were identified, mainly hydrocarbons but also derived oxygenated compounds. Sesquiterpenes were acyclic, monocyclic, byciclic and tryciclic. Sesquiterpenes were detected in SIM (selected ion monitoring mode using their characteristics ions. All the sesquiterpenes were identified by mass spectral data, linear retention indices (LRI, literature data and injection of standards where available. Quantitative results were obtained using the method of standard additions. The method showed an average LOD = 0.05 µg L−1 and LOQ = 0.15 µg L−1. The monocyclic sesquiterpene with the germacrene skeleton, Germacrene D and the bicyclic sesquiterpene with the muurolane skeleton, α-muurolene were present in all the wine samples analysed. Syrah wines were the samples richest in sesquiterpenes in agreement with their typical spicy and woody notes. The results evidenced the possibility to use sesquiterpenes for wine authenticity and traceability.

  15. Analysis of Five Earthy-Musty Odorants in Environmental Water by HS-SPME/GC-MS

    Directory of Open Access Journals (Sweden)

    Zhen Ding

    2014-01-01

    Full Text Available The pressing issue of earthy and musty odor compounds in natural waters, which can affect the organoleptic properties of drinking water, makes it a public health concern. A simple and sensitive method for simultaneous analysis of five odorants in environmental water was developed by headspace solid-phase microextraction (HS-SPME coupled to chromatography-mass spectrometry (GC-MS, including geosmin (GSM and 2-methylisoborneol (2-MIB, as well as dimethyl trisulfide (DMTS, β-cyclocitral, and β-ionone. Based on the simple modification of original magnetic stirrer purchased from CORNING (USA, the five target compounds can be separated within 23 min, and the calibration curves show good linearity with a correlation coefficient above 0.999 (levels = 5. The limits of detection (LOD are all below 1.3 ng L−1, and the relative standard deviation (%RSD is between 4.4% and 9.9% (n = 7 and recoveries of the analytes from water samples are between 86.2% and 112.3%. In addition, the storage time experiment indicated that the concentrations did not change significantly for GSM and 2-MIB if they were stored in canonical environment. In conclusion, the method in this study could be applied for monitoring these five odorants in natural waters.

  16. Fingerprint of volatiles from plant extracts based on SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Ezequias P. Siqueira

    Full Text Available The Laboratory of Chemistry of Natural Products has an ex situ collection of extracts from organisms of the biodiversity aiming at bioprospecting. Nowadays the collection has about 4000 extracts from 1000 different species. Extracts are used to identify new bioactive compounds that could be useful for developing new drugs against neglected diseases like leishmaniosis, Chagas disease, malaria and tuberculosis. After biologic assays, the bioactive extracts need to be prepared in larger quantity to allow isolation and characterization of the bioactive component. At this time, it is important to not only confirm the bioactivity of new extract but also check if its composition is similar to the old one. It was evaluated the ability of Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry analysis (SPME-GC-MS. It was used the AMDIS (Automatic Mass Spectral Deconvolution and Identification System software as tools to collect and to compare the chromatographic profiles of each extract (fingerprint. Forty six samples were analyzed, it was possible to infer from the composition of each sample and common compounds. Nine groups of samples, collected at different time, were analyzed and seasonal modifications between then could be elucidated. The results showed that this methodology can be used to monitor the composition of extracts, allowing to monitor chemical changes that may occur during storage periods and to investigate the occurrence of a determined component in different extracts.

  17. ANALYTICAL APPROACH OF THE VOLATILE FRACTION OF Solanum quitoense BY HS-SPME/GC-MS

    Directory of Open Access Journals (Sweden)

    EDUARDO CORPAS IGUARÁN

    2017-07-01

    Full Text Available The species of lulo fruit (Solanum quitoense, predominant in Colombia, is a promising fruit for both national and international market due to its flavor and nutritional characteristics, which generated the interest to know the volatile composition of its pulp. After adjusting, the chromatographic conditions necessary to analyze volatile fraction of this fruit, the effect of the temperature and time of adsorption was measured through the headspace - solid phase microextraction (HS-SPME and gas chromatography - mass spectrometry (GC-MS, on the area of volatile compounds of S. quitoense, by applying the experimental design of a factor. The descriptive analysis suggested that the adsorption at 60°C and 30 minutes promoted optimal recovery of volatiles as well as internal standard (1-Octanol, with recovery of 99,66% at 60ºC, while the non-parametric test Kruskal-Wallis showed statistical differences in the effect of time (P= 0,018, but not of the temperature adsorption (P= 0,058 upon the volatiles compounds area. A predominance of esters (48,98%, aldehydes (18,37%, and alcohols (14,29% was observed and also were found compounds of greatest area such as 3-hexen-1-ol acetate, acetic acid methyl ester, and acetic acid hexyl ester. These metabolites determine the characteristic aroma from lulo pulp and influence the consumer preference.

  18. Volatile emerging contaminants in melon fruits, analysed by HS-SPME-GC-MS.

    Science.gov (United States)

    Cincotta, Fabrizio; Verzera, Antonella; Tripodi, Gianluca; Condurso, Concetta

    2018-03-01

    The aim of this research was to develop and validate a headspace-solid phase micro-extraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method for the determination of volatile emerging contaminants in fruit. The method showed good precision (RSD ≤ 14%) and satisfactory recoveries (99.1-101.7%) and LOD and LOQ values ranging between 0.011-0.033 μg kg -1 and 0.037-0.098 μg kg -1 , respectively. The method was applied to investigate the content of volatile emerging contaminants in two varieties of melon fruit (Cucumis melo L.) cultivated adjoining high-risk areas. Glycol ethers, BHT, BHA and BTEX (benzene, toluene, ethylbenzene and xylene) were determined in melon fruit pulps for the first time, with different sensitivities depending on sample and variety. Although the amount of the volatile contaminants in the melon samples were in the order of µg kg -1 , the safety of vegetable crops cultivated near risk areas should be more widely considered. The results showed that this accurate and reproducible method can be useful for routine safety control of fruits and vegetables.

  19. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS.

    Science.gov (United States)

    Hansen, Anne-Mette S; Frandsen, Henrik L; Fromberg, Arvid

    2016-05-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers, the naturalness of a raspberry flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. Twenty-seven food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry jam, dried raspberries, and sodas declared to contain natural aroma all contained almost only R-(E)-α-ionone supporting the content of natural raspberry aroma. Six out of eight sweets tested did not indicate a content of natural aroma on the labeling which was in agreement with the almost equal distribution of the R and S isomer. Two products were labeled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products that were labeled to contain both raspberry juice and flavor showed equal amounts of both enantiomers, indicating the presence of synthetic flavor.

  20. Study of flavour compounds from orange juices by HS-SPME and GC-MS

    Science.gov (United States)

    Schmutzer, G.; Avram, V.; Covaciu, F.; Feher, I.; Magdas, A.; David, L.; Moldovan, Z.

    2013-11-01

    The flavour of the orange juices, which gives the taste and odour of the product, is an important criterion about the products quality for consumers. A fresh single strength and two commercial orange juices (obtained from concentrate) flavour profile were studied using a selective and sensitive gas chromatography - mass spectrometry (GC-MS) analytical system, after a solvent free, single step preconcentration and extraction technique, the headspace solid phase microextraction (HP-SPME). In the studied orange juices 55 flavour compounds were detected and classified as belonging to the esters, alcohols, ketones, monoterpenes and sesquiterpenes chemical families. The fresh single strength orange juice was characterized by high amount of esters, monoterpenes and sesquiterpenes. Limonene and valencene were the most abundant flavours in this fresh natural orange juice. Alcohols and ketones were found in higher concentration in the commercial orange juices made from concentrate, than in the single strength products. Nevertheless, in commercial juices the most abundant flavour was limonene and α-terpineol. The results highlight clear differences between fresh singles strength orange juice and juice from concentrate. The orange juices reconstructed from concentrate, made in Romania, present low quantity of flavour compounds, suggesting the absence or a low rearomatization process, but extraneous components were not detected.

  1. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    International Nuclear Information System (INIS)

    Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa

    2014-01-01

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO 2 ). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g −1 , respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO 2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and detection

  2. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Zawisza, Beata [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland); Talik, Ewa [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa [University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice (Poland)

    2014-06-27

    Highlights: • Graphene oxide (GO) covalently bonded to the spherical silica. • Very stable sorbent for SPE of metal ions. • Excellent contact with solution due to the softness and flexibility of GO nanosheets. • Several adsorption–elution cycles without any loss of adsorptive properties. • High adsorption capacity due to the wrinkled structure of GO nanosheets. - Abstract: Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO{sub 2}). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g{sup −1}, respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO{sub 2} was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and

  3. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  4. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  5. Synthesis of hydroxide type sorbents from industry high-iron wastes

    International Nuclear Information System (INIS)

    Stepanenko, E.K.; Smirnov, A.L.

    1986-01-01

    Article presents the results of studies on possibility of using of technological iron containing wastes for the obtaining of hydroxide type sorbents in granular form. The scheme of technology of synthesis of hydroxide type sorbents from high-iron wastes is elaborated.

  6. Evaluation of hydrous ferric oxide loaded activated carbon as a granular composite sorbent for radiostrontium

    International Nuclear Information System (INIS)

    Samanta, S.K.

    1997-01-01

    A composite sorbent was prepared in granular form by depositing hydrous ferric oxide inside the pores of activated carbon. The composite sorbent was found to show excellent sorption of radiostrontium in the presence of high sodium concentration under alkaline conditions. (author). 3 refs., 2 figs., 1 tab

  7. Cross-linked poly(tetrahydrofuran) as promising sorbent for organic solvent/oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Yati, Ilker; Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal, E-mail: hayalsonmez@gtu.edu.tr

    2016-05-15

    Highlights: • Poly(tetrahydrofuran) based sorbents were prepared. • PTHF sorbents demonstrate reusability at least for ten times. • PTHF based sorbents show fast and quick absorption-desorption process. • 19 g of oil can be absorbed by 1 g of PTHF based sorbent. - Abstract: In this study, a series of different molecular weights of poly(tetrahydrofuran) (PTHF), which is one of the most important commercial polymers around the world, was condensed with tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) to generate a cross-linked 3-dimensional network in order to obtain organic solvent/oil sorbents having high swelling capacity. The prepared sorbents show high and fast swelling capacity in oils such as dichloromethane (DCM), tetrahydrofuran (THF), acetone, t-butyl methyl ether (MTBE), gasoline, euro diesel, and crude oil. The recovery of the absorbed oils from contaminated surfaces, especially from water, and the regeneration of the sorbents after several applications are effective. The characterization and thermal properties of the sorbents are identified by Fourier transform infrared spectroscopy (FTIR), solid-state {sup 13}C and {sup 29}Si cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermal gravimetric analyses (TGA), respectively. The new usage area of PTHF is emerged by the preparation of PTHF-based network structure with high oil absorption capacity and having excellent reusability as an oil absorbent for the removal of organic liquids from the spill site.

  8. Synthesis and test of sorbents based on calcium aluminates for SE-SR

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F.

    2014-01-01

    Highlights: • Synthesis strategy of CaO incorporation into calcium aluminates was approached. • Three innovative sorbents (M1, M2, M3) were synthesized and characterized. • Sorption capacity of developed sorbents was evaluated in multi-cycle processes. • M3 sorbent showed best performance, much higher than conventional CaO ones. • M3 sorbent functionality in SE-SR process was verified. - Abstract: Greenhouse gases emission of power generation plants will be continuously tightened to achieve European targets in terms of CO 2 emissions. In particular, the switching to a sustainable power generation using fossil fuels will be strongly encouraged in the future. In this context, sorption-enhanced steam reforming (SE-SR) is a promising process because it can be implemented as a CCS pre-combustion methodology. The purpose of this study is to develop and test innovative materials in order to overcome main limitations of standard CaO sorbent, usually used in the SE-SR process. The investigated innovative sorbents are based on incorporation of CaO particles into inert materials which significantly reduce the performance degradation. In particular, sorbent materials based on calcium aluminates were considered, investigating different techniques of synthesis. All synthesized materials were packed, together with the catalyst, in a fixed bed reactor and tested in sorption/regeneration cycles. Significant improvements were obtained respect to standard CaO regarding sorption capacity stability exhibited by the sorbent

  9. Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

    Directory of Open Access Journals (Sweden)

    Javad Esmaili

    2014-07-01

    Full Text Available In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mgCO2/(gr sorbent. The stability of sorbent capture capacity was higher than the reference sorbent. The SO2 impurity decreased sorbent capacity about 10%. The free carbon had a small effect on sorbent capacity after 5 cycles. After 5 cycles of adsorption and regeneration, the changes in the pore volume and surface area were 0.020 cm3/gr and 5.5 m2/gr respectively. Small changes occurred in the pore size distribution and surface area of sorbent after 5 cycles.

  10. Effect of characteristic of sorbents on their sulfur capture capability at a fluidized bed condition

    Energy Technology Data Exchange (ETDEWEB)

    Leming Cheng; Bo Chen; Ni Liu; Zhongyang Luo; Kefa Cen [Zhejiang University, Hangzhou (China). Clean Energy and Environment Engineering Key Lab of Ministry of Education, Institute for Thermal Power Engineering

    2004-05-01

    This research was intent for finding relationships among physical and/or chemical properties of sorbents and their sulfur capture capability at a fluidized bed condition. Three limestones and two seashells were chosen as a SO{sub 2} sorbent. Characteristics of sorbents were evaluated based on atomic absorption spectrophotometer, scanning electron microscope and mercury-penetration porosimeter analyses. Their sulfur capture capabilities were measured on a fluidized bed test system at 800, 850, 900 and 950{sup o}C. Conversion of the sobents was computed and analyzed depending on the sorbents' morphology and microstructure analysis. Results showed pore size and specific surface might have large influence on sorbents' desulfurization ability in the range of 800 950{sup o}C. 14 refs., 6 figs., 4 tabs.

  11. Experimental research on combustion fluorine retention using calcium-based sorbents during coal combustion (II)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Q.; Ma, X.; Liu, J.; Wu, X.; Zhou, J.; Cen, K. [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering

    2008-12-15

    Fluoride pollution produced by coal burning can be controlled with the calcium-based sorbent combustion fluorine technique in which calcium-based sorbents are mixed with the coal or sprayed into the combustion chamber. In a fixed bed tube furnace combustion experiment using one calcium-based natural mineral, limestone and one calcium-based building material, it was shown that the calcium-based sorbent particle grain size and pore structure have a big influence on the combustion fluorine retention effect. Reducing the calcium-based sorbent particle grain size and improving the calcium sorbent structure characteristics at very high temperature to enhance the fluorine retention effect is the important approach to the fluorine retention agent development. 8 refs., 1 fig., 5 tabs.

  12. Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices

    International Nuclear Information System (INIS)

    Bartosova, A.; Rajec, P.; Reich, M.

    2003-01-01

    A sorbent based on Aliquat 336 anchored on hydrophobised silica gel support as an ion exchanger was prepared. Prepared sorbent was suitable for separation of technetium-99 from environmental matrices. The sorbent properties, sorption characteristic and distribution coefficient of 99 mTcO 4 - in various medium was studied. The chemical yield of Tc during separation process was determined using 99m Tc tracer and gamma measurement. Typical sorption recoveries of Tc for this sorbent from 0.1 M HNO 3 were more than 98 %. Typical desorption recoveries using 8 M HNO 3 were in the range 92 - 96 %. The commercial TEVA Spec resin from Eichrom Industries for comparison purpose was used as well. It was found that the prepared sorbent is suitable for separation of technetium from environmental matrices. (authors)

  13. Enhanced capture of elemental mercury by bamboo-based sorbents

    International Nuclear Information System (INIS)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-01-01

    Highlights: ► The KI-modified BC has excellent capacity for elemental mercury removal. ► The chemisorption plays a dominant role for the modified BC materials. ► The BC-I has strong anti-poisoning ability with the presence of NO or SO 2 . - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO 2 on gas-phase Hg 0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents’ BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO 2 could inhibit Hg 0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  14. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  15. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles: Characterization and application

    International Nuclear Information System (INIS)

    Tahmasebi, Elham; Yamini, Yadollah

    2012-01-01

    Graphical abstract: Self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe 3 O 4 -Ag core-shell nanoparticles and application of it for solid phase extraction of PAHs. Highlights: ► A novel sorbent for magnetic solid-phase extraction of PAHs was introduced. ► Silver was coated on Fe 3 O 4 nanoparticles (MNPs) by reduction of AgNO 3 with NaBH 4 . ► Bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid self-assembled on silver coated MNPs. ► Size, morphology, composition and properties of the nanoparticles were characterized. ► Extraction efficiency of the sorbent was investigated by extraction of five PAHs. - Abstract: A novel sorbent for magnetic solid-phase extraction by self-assembling of organosulfur compound, (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid), onto the silver-coated Fe 3 O 4 nanoparticles was introduced. Due to the formation of covalent bond of S-Ag, the new coating on the silver surface was very stable and showed high thermal stability (up to 320 °C). The size, morphology, composition, and properties of the prepared nanoparticles have also been characterized and determined using scanning electron microscopy (SEM), energy-dispersive X-ray analyzer (EDX), dynamic light scattering (DLS), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). Extraction efficiency of the new sorbent was investigated by extraction of five polycyclic aromatic hydrocarbons (PAHs) as model compounds. The optimum extraction conditions for PAHs were obtained as of extraction time, 20 min; 50 mg sorbent from 100 mL of the sample solution, and elution with 100 μL of 1-propanol under fierce vortex for 2 min. Under the optimal conditions, the calibration curves were obtained in the range of 0.05–100 μg L −1 (R 2 > 0.9980) and the LODs (S/N = 3) were obtained in the range of 0.02–0.10 μg L −1 . Relative standard deviations (RSDs) for intra- and inter-day precision were 2.6–4.2% and 3.6–8

  16. Polypyrrole/hexagonally ordered silica nanocomposite as a novel fiber coating for solid-phase microextraction

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Abolghasemi, Mir Mahdi; Fattahpour, Peyman

    2011-01-01

    Highlights: → The polypyrrole/SBA15) nanocomposite was used as a novel coating for SPME fiber. → The proposed fiber was used for the extraction of polycyclic aromatic hydrocarbons. → The proposed SPME fiber is thermal stable, and it has a low limit of detection. → The SPME fiber was applied in polluted river water and wastewater samples. - Abstract: A highly porous fiber coated polypyrrole/hexagonally ordered silica (PPy/SBA15) materials were prepared for solid-phase microextraction (SPME). The PPy/SBA15 nanocomposite was synthesized by an in situ polymerization technique. The resulting material was characterized by the scanning electron microscopy, thermogravimetric analysis and differential thermal analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, desorption time and desorption temperature. In optimum conditions (extraction temperature 70 deg. C, extraction time 20 min, ionic strength 20% (W V -1 ), stirring rate 500 rpm, desorption temperature 270 deg. C, desorption time 5 min) the repeatability for one fiber (n = 3), expressed as relative standard deviation (R.S.D. %), was between 5.0% and 9.3% for the tested compounds. The quantitation limit for the studied compounds were between 13.3 and 66.6 pg mL -1 . The life span and stability of the PPy/SBA15 fiber are good, and it can be used more than 50 times at 260 deg. C without any significant change in sorption properties. The developed method offers the advantage of being simple to use, with shorter analysis times, lower cost of equipment, thermal stability of fiber and high

  17. Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface.

    Science.gov (United States)

    Liu, Chang; Gómez-Ríos, Germán Augusto; Schneider, Bradley B; Le Blanc, J C Yves; Reyes-Garcés, Nathaly; Arnold, Don W; Covey, Thomas R; Pawliszyn, Janusz

    2017-10-23

    Mass spectrometry (MS) based quantitative approaches typically require a thorough sample clean-up and a decent chromatographic step in order to achieve needed figures of merit. However, in most cases, such processes are not optimal for urgent assessments and high-throughput determinations. The direct coupling of solid phase microextraction (SPME) to MS has shown great potential to shorten the total sample analysis time of complex matrices, as well as to diminish potential matrix effects and instrument contamination. In this study, we demonstrate the use of the open-port probe (OPP) as a direct and robust sampling interface to couple biocompatible-SPME (Bio-SPME) fibres to MS for the rapid quantitation of opioid isomers (i.e. codeine and hydrocodone) in human plasma. In place of chromatography, a differential mobility spectrometry (DMS) device was implemented to provide the essential selectivity required to quantify these constitutional isomers. Taking advantage of the simplified sample preparation process based on Bio-SPME and the fast separation with DMS-MS coupling via OPP, a high-throughput assay (10-15 s per sample) with limits of detection in the sub-ng/mL range was developed. Succinctly, we demonstrated that by tuning adequate ion mobility separation conditions, SPME-OPP-MS can be employed to quantify non-resolved compounds or those otherwise hindered by co-extracted isobaric interferences without further need of coupling to other separation platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment.

    Science.gov (United States)

    Zeng, Eddy Y; Tsukada, David; Diehl, Dario W

    2004-11-01

    Solid-phase microextraction (SPME) has been used as an in situ sampling technique for a wide range of volatile organic chemicals, but SPME field sampling of nonvolatile organic pollutants has not been reported. This paper describes the development of an SPME-based sampling method employing a poly(dimethylsiloxane) (PDMS)-coated (100-microm thickness) fiber as the sorbent phase. The laboratory-calibrated PDMS-coated fibers were used to construct SPME samplers, and field tests were conducted at three coastal locations off southern California to determine the equilibrium sampling time and compare the efficacy of the SPME samplers with that of an Infiltrex 100 water pumping system (Axys Environmental Systems Ltd., Sidney, British Columbia, Canada). p,p'-DDE and o,p'-DDE were the components consistently detected in the SPME samples among 42 polychlorinated biphenyl congeners and 17 chlorinated pesticidestargeted. SPME samplers deployed attwo locations with moderate and high levels of contamination for 18 and 30 d, respectively, attained statistically identical concentrations of p,p'-DDE and o,p'-DDE. In addition, SPME samplers deployed for 23 and 43 d, respectively, at a location of low contamination also contained statistically identical concentrations of p,p'-DDE. These results indicate that equilibrium could be reached within 18 to 23 d. The concentrations of p,p'-DDE, o,p'-DDE, or p,p'-DDD obtained with the SPME samplers and the Infiltrex 100 system were virtually identical. In particular, two water column concentration profiles of p,p'-DDE and o,p'-DDE acquired by the SPME samplers at a highly contaminated site on the Palos Verdes Shelf overlapped with the profiles obtained by the Infiltrex 100 system in 1997. The field tests not only reveal the advantages of the SPME samplers compared to the Infiltrex 100 system and other integrative passive devices but also indicate the need to improve the sensitivity of the SPME-based sampling technique.

  19. Sorption of structurally different ionized pharmaceutical and illicit drugs to a mixed-mode coated microsampler.

    Science.gov (United States)

    Peltenburg, Hester; Timmer, Niels; Bosman, Ingrid J; Hermens, Joop L M; Droge, Steven T J

    2016-05-20

    The mixed-mode (C18/strong cation exchange-SCX) solid-phase microextraction (SPME) fiber has recently been shown to have increased sensitivity for ionic compounds compared to more conventional sampler coatings such as polyacrylate and polydimethylsiloxane (PDMS). However, data for structurally diverse compounds to this (prototype) sampler coating are too limited to define its structural limitations. We determined C18/SCX fiber partitioning coefficients of nineteen cationic structures without hydrogen bonding capacity besides the charged group, stretching over a wide hydrophobicity range (including amphetamine, amitriptyline, promazine, chlorpromazine, triflupromazine, difenzoquat), and eight basic pharmaceutical and illicit drugs (pKa>8.86) with additional hydrogen bonding moieties (MDMA, atenolol, alprenolol, metoprolol, morphine, nicotine, tramadol, verapamil). In addition, sorption data for three neutral benzodiazepines (diazepam, temazepam, and oxazepam) and the anionic NSAID diclofenac were collected to determine the efficiency to sample non-basic drugs. All tested compounds showed nonlinear isotherms above 1mmol/L coating, and linear isotherms below 1mmol/L. The affinity for C18/SCX-SPME for tested organic cations without Hbond capacities increased with longer alkyl chains, ranging from logarithmic fiber-water distribution coefficients (log Dfw) of 1.8 (benzylamine) to 5.8 (triflupromazine). Amines smaller than benzylamine may thus have limited detection levels, while cationic surfactants with alkyl chain lengths >12 carbon atoms may sorb too strong to the C18/SCX sampler which hampers calibration of the fiber-water relationship in the linear range. The log Dfw for these simple cation structures closely correlates with the octanol-water partition coefficient of the neutral form (Kow,N), and decreases with increased branching and presence of multiple aromatic rings. Oxygen moieties in organic cations decreased the affinity for C18/SCX-SPME. Log Dfw values of

  20. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    Science.gov (United States)

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  1. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  2. Comparison of Spot and Time Weighted Averaging (TWA Sampling with SPME-GC/MS Methods for Trihalomethane (THM Analysis

    Directory of Open Access Journals (Sweden)

    Don-Roger Parkinson

    2016-02-01

    Full Text Available Water samples were collected and analyzed for conductivity, pH, temperature and trihalomethanes (THMs during the fall of 2014 at two monitored municipal drinking water source ponds. Both spot (or grab and time weighted average (TWA sampling methods were assessed over the same two day sampling time period. For spot sampling, replicate samples were taken at each site and analyzed within 12 h of sampling by both Headspace (HS- and direct (DI- solid phase microextraction (SPME sampling/extraction methods followed by Gas Chromatography/Mass Spectrometry (GC/MS. For TWA, a two day passive on-site TWA sampling was carried out at the same sampling points in the ponds. All SPME sampling methods undertaken used a 65-µm PDMS/DVB SPME fiber, which was found optimal for THM sampling. Sampling conditions were optimized in the laboratory using calibration standards of chloroform, bromoform, bromodichloromethane, dibromochloromethane, 1,2-dibromoethane and 1,2-dichloroethane, prepared in aqueous solutions from analytical grade samples. Calibration curves for all methods with R2 values ranging from 0.985–0.998 (N = 5 over the quantitation linear range of 3–800 ppb were achieved. The different sampling methods were compared for quantification of the water samples, and results showed that DI- and TWA- sampling methods gave better data and analytical metrics. Addition of 10% wt./vol. of (NH42SO4 salt to the sampling vial was found to aid extraction of THMs by increasing GC peaks areas by about 10%, which resulted in lower detection limits for all techniques studied. However, for on-site TWA analysis of THMs in natural waters, the calibration standard(s ionic strength conditions, must be carefully matched to natural water conditions to properly quantitate THM concentrations. The data obtained from the TWA method may better reflect actual natural water conditions.

  3. Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS.

    Science.gov (United States)

    Bakaikina, Nadezhda V; Kenessov, Bulat; Ul'yanovskii, Nikolay V; Kosyakov, Dmitry S

    2018-07-01

    Determination of transformation products (TPs) of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in soil is highly important for environmental impact assessment of the launches of heavy space rockets from Kazakhstan, Russia, China and India. The method based on headspace solid-phase microextraction (HS SPME) and gas chromatography-mass spectrometry is advantageous over other known methods due to greater simplicity and cost efficiency. However, accurate quantification of these analytes using HS SPME is limited by the matrix effect. In this research, we proposed using internal standard and standard addition calibrations to achieve proper combination of accuracies of the quantification of key TPs of UDMH and cost efficiency. 1-Trideuteromethyl-1H-1,2,4-triazole (MTA-d3) was used as the internal standard. Internal standard calibration allowed controlling matrix effects during quantification of 1-methyl-1H-1,2,4-triazole (MTA), N,N-dimethylformamide (DMF), and N-nitrosodimethylamine (NDMA) in soils with humus content < 1%. Using SPME at 60 °C for 15 min by 65 µm Carboxen/polydimethylsiloxane fiber, recoveries of MTA, DMF and NDMA for sandy and loamy soil samples were 91-117, 85-123 and 64-132%, respectively. For improving the method accuracy and widening the range of analytes, standard addition and its combination with internal standard calibration were tested and compared on real soil samples. The combined calibration approach provided greatest accuracies for NDMA, DMF, N-methylformamide, formamide, 1H-pyrazole, 3-methyl-1H-pyrazole and 1H-pyrazole. For determination of 1-formyl-2,2-dimethylhydrazine, 3,5-dimethylpyrazole, 2-ethyl-1H-imidazole, 1H-imidazole, 1H-1,2,4-triazole, pyrazines and pyridines, standard addition calibration is more suitable. However, the proposed approach and collected data allow using both approaches simultaneously. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  7. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  8. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Science.gov (United States)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  9. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  10. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  11. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  12. Evaluation of silk-floss fiber and dog fur as sorbent materials for the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Lucas P. dos [Universidade Federal do Parana (PGMec/UFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Dubiella, Juliana [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Programa Institucional de Bolsas de Iniciacao Cientifica; Perotta, Larissa [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa Interdisciplinar em Engenharia de Petroleo e Gas Natural; Satyanarayana, Kestur G. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Flores-Sahagun, Thais Sydenstricker [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    In this study silk-floss and dog fur were tested as sorbent materials for oils and the results were compared with peat, a commercial sorbent. Sorption tests were carried out in dry and aqueous systems, with and without stirring for different periods of time (5-1440 min). Density, hydrophobicity, buoyancy and water uptake by the fibers of the impregnated sorbents have been determined. The use of silk-floss and dog fur was also tested in columns to purify water containing toluene, benzene, motor oil or sunflower oil. Breakthrough curves during 120 min were drawn for each material with the samples (oily water or water containing benzene or toluene) and were analyzed by ultraviolet spectroscopy. It was concluded that the silk-floss is the best sorbent material (65.3 g oil/g sorbent) followed by the dog fur (34.6 g oil/g sorbent) and peat (19.5 g oil/g sorbent), for sorption time of 1 h in dynamic condition. The efficiency of the pollutant removal from water with the use of adsorption columns was high for both materials although the use of dog fur was preferable because of the slight superiority in efficiency compared to silk-floss and also, due to the easier packing of the dog fur in the column. (author)

  13. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.

  14. A quantitative approach for pesticide analysis in grape juice by direct interfacing of a matrix compatible SPME phase to dielectric barrier discharge ionization-mass spectrometry.

    Science.gov (United States)

    Mirabelli, Mario F; Gionfriddo, Emanuela; Pawliszyn, Janusz; Zenobi, Renato

    2018-02-12

    We evaluated the performance of a dielectric barrier discharge ionization (DBDI) source for pesticide analysis in grape juice, a fairly complex matrix due to the high content of sugars (≈20% w/w) and pigments. A fast sample preparation method based on direct immersion solid-phase microextraction (SPME) was developed, and novel matrix compatible SPME fibers were used to reduce in-source matrix suppression effects. A high resolution LTQ Orbitrap mass spectrometer allowed for rapid quantification in full scan mode. This direct SPME-DBDI-MS approach was proven to be effective for the rapid and direct analysis of complex sample matrices, with limits of detection in the parts-per-trillion (ppt) range and inter- and intra-day precision below 30% relative standard deviation (RSD) for samples spiked at 1, 10 and 10 ng ml -1 , with overall performance comparable or even superior to existing chromatographic approaches.

  15. Headspace solid-phase microextraction (HS-SPME) and liquid-liquid extraction (LLE): comparison of the performance in classification of ecstasy tablets. Part 2.

    Science.gov (United States)

    Bonadio, Federica; Margot, Pierre; Delémont, Olivier; Esseiva, Pierre

    2008-11-20

    Headspace solid-phase microextraction (HS-SPME) is assessed as an alternative to liquid-liquid extraction (LLE) currently used for 3,4-methylenedioxymethampethamine (MDMA) profiling. Both methods were compared evaluating their performance in discriminating and classifying samples. For this purpose 62 different seizures were analysed using both extraction techniques followed by gas chromatography-mass spectroscopy (GC-MS). A previously validated method provided data for HS-SPME, whereas LLE data were collected applying a harmonized methodology developed and used in the European project CHAMP. After suitable pre-treatment, similarities between sample pairs were studied using the Pearson correlation. Both methods enable to distinguish between samples coming from the same pre-tabletting batches and samples coming from different pre-tabletting batches. This finding emphasizes the use of HS-SPME as an effective alternative to LLE, with additional advantages such as sample preparation and a solvent-free process.

  16. Quantitation of (R)- and (S)-linalool in beer using solid phase microextraction (SPME) in combination with a stable isotope dilution assay (SIDA).

    Science.gov (United States)

    Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter

    2003-11-19

    A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.

  17. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    International Nuclear Information System (INIS)

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza

    2015-01-01

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L −1 , whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  18. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  19. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  20. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  1. Application of TIO2 as A sorbent for radioactive waste

    International Nuclear Information System (INIS)

    Zamroni, H.; Las, T.; Kamarz, H.

    1997-01-01

    The sorption properties of the neodymium has been studied by using TiO 2 sorbent. The experiment was carried out by batch methods to investigate the kinetic sorption, effect of pH and effect of NaNO 3 concentration in the solution. Neodymium uses for a model of trivalent actinide treated by TiO 2 which was known as materials having high thermal and radiation stabilities as well as potentially used for immobilization of waste with cement or vitrification. the results show that the optimum of kinetic sorption was obtained after one day experiment to reach the equilibrium in sorption on pH 4, and the increasing of NaNO 3 concentrations will increase the sorption of neodymium in solution (author)

  2. Phosphorus organic extragents and sorbents of radioactive a heavy metals

    International Nuclear Information System (INIS)

    Trofimov, B.A.; Gusarova, N.K.; Malysheva, S.F.; Sukhov, B.G.

    2002-01-01

    A fundamentally new method for activation of phosphorus in heterogenous super-base media including the conditions of mechanical, ultrasonic and X-ray activation, opening up a new way to C-P bond formation is developed. The method is opens principally new possibilities for direct atom-economic synthesis of previously unknown or difficult to obtain organophosphorus compounds (primary, secondary, tertiary phosphines and phosphine oxides) from elemental phosphorus and orga-nyl halides, electrophilic alkenes, acetylenes and oxiranes. Thus, the phosphothion and phosphorylation of organic compounds with elemental phosphorus, phosphines and phosphine oxides opens the principal new approach to the synthesis of specific and selective extra-gents, sorbents and complex-forming agents which can be used in the processes of purification and disinfecting of soil and water from radioactive and heavy metals

  3. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    Science.gov (United States)

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  4. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  5. Efficient CO2 sorbents based on silica foam with ultra-large mesopores

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Choi, Brian Hyun; Giannelis, Emmanuel P.

    2012-01-01

    A series of high-capacity, amine impregnated sorbents based on a cost-effective silica foam with ultra-large mesopores is reported. The sorbents exhibit fast CO2 capture kinetics, high adsorption capacity (of up to 5.8 mmol g-1 under 1 atm of dry CO2), as well as good stability over multiple adsorption-desorption cycles. A simple theoretical analysis is provided relating the support structure to sorbent performance. © 2012 The Royal Society of Chemistry.

  6. Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes

    International Nuclear Information System (INIS)

    Vijayan, S.; Belikov, K.; Drapailo, A.

    2011-01-01

    The challenge in the remediation of 90 Sr-contaminated waters arises from the need to achieve very high removal efficiencies to meet discharge targets from waste effluents containing relatively high concentrations of non-radioactive cations. Low-cost natural zeolites are not selective for strontium over other divalent cations, notably such ions as calcium; and produce low 90 Sr removal performance, and large volumes of spent sorbent waste. The synthesis and use of selective, synthetic inorganic sorbents could prove to be a feasible approach for high 90 Sr removal efficiencies, and much smaller volumes of secondary solid waste generation. The essential advantages of inorganic sorbents include their stability and resistance to radiation, and the potential for producing stable waste forms such as vitrified glass or ceramics for disposal. However, the cost of strontium-specific sorbents is prohibitive for large-scale applications at present. This paper is a review of the reported information on removal mechanisms and performance of Sr-specific inorganic sorbents. The analysis has revealed promising performance, efficiency and selectivity for strontium removal from solutions containing low and high concentrations of salts. The leading sorbents are crystalline silicotitanate and oxides of metals such as titanium. An initial assessment has also been made of the performance of calixarene-based macrocyclic compounds. These are known for their selectivity for strontium in solvent extraction processes. From the initial strontium removal results in bench-scale tests using different solid substrates, impregnated with calixarene derivatives, only sodium-mordenite impregnated with calyx[8]arene octamide gave an overall strontium removal efficiency in the range of 90 to 95% in the presence of 3.5 ppm calcium. There was no improvement observed for strontium-removal efficiency or selectivity over calcium in the calixarene-impregnated inorganic sorbent matrix. In several tests, the

  7. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  9. Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa

    2014-06-27

    Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO2). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g(-1), respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption-elution cycles can be performed without any loss of adsorptive properties. The GO@SiO2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200-250) and detection limits (0.084 and 0.27 ng mL(-1) for Cu(II) and Pb(II), respectively). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Diagnostic value of enzyme linked immuno-sorbent assay for cytomegalovirus disease.

    Directory of Open Access Journals (Sweden)

    Priya K

    2002-07-01

    Full Text Available BACKGROUND: Since interpretation of results of enzyme linked immuno-sorbent assay (ELISA for diagnosis of Cytomegalovirus (CMV infection in India is difficult, its diagnostic value required evaluation. AIMS: To evaluate the diagnostic value of ELISA against polymerase chain reaction (PCR in CMV disease. SETTINGS AND DESIGN: Results of ELISA test for CMV antibodies in CMV-DNA PCR positive and negative patients and normal healthy blood donors were analysed. METHODS AND MATERIAL: Anti-CMV antibodies were assayed by ELISA on the sera of 26 CMV PCR positive and 21 PCR negative patients and 35 normal healthy blood donors. STATISTICAL ANALYSIS: Chi square and Fischer exact test were used for statistical analysis. RESULTS: Anti-CMV antibodies (IgG or IgG and IgM were present in 20 (76.9% of 26 PCR positive and 13 (61.9% of 21 PCR negative patients. ELISA was negative in six (23.1% of 26 PCR positive patients. Of the 28 paediatric patients, ELISA was positive in 14 (73.7% of 19 PCR positive and three (33.3% of nine PCR negative patients showing a statistically significant difference (Chi square test, P value 0.038. Among the 19 patients having complications after organ transplant, ELISA showed anti-CMV antibodies in six (85.7% of seven PCR positive and 11 (91.7% of 12 PCR negative patients showing no significant difference. CMV-DNA was not detected in the buffy coat of 35 sero-positive blood donors. CONCLUSION: ELISA has no diagnostic value in the detection of CMV activation although it may help in the differential diagnosis of CMV infection in the paediatric age group.

  11. Supported modified hydrotalcites as sorbent for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Meis, N.

    2010-02-15

    The average concentration of CO2 in the atmosphere has been increasing since the start of the industrial revolution in the 18th century from 280 ppm to 385 ppm nowadays, and continues to increase because of the enormous human usage of fossil fuels (oil, gas, coal). This can strongly affect the climate, causing the Earth's surface to warm up, the so called 'amplified greenhouse effect'. To alleviate these environmental concerns regarding the current CO2 emissions into the atmosphere, Carbon Capture and Storage (CCS) is investigated as one of the possible routes. Due to the acidic character of CO2, basic oxides are expected to be suitable sorbents. Hydrotalcite, a natural clay, is specifically suitable for pre-combustion capture (250- 400{sup o}C), due to its acceptable sorption capacity and facile regeneration. The influence of lateral platelet size ({+-}40 nm - 2 {mu}m), the use of a support (carbon nanofibers, CNF) and addition of a promoter (alkali carbonate: K{sub 2}CO{sub 3}/Na{sub 2}CO{sub 3}) on the CO2 capture properties of HT was investigated. There was no significant difference in the CO2 sorption capacities at 523K for all unsupported HTs, regardless the platelet size of the HT precursor ({+-}0.1 mmol.g{sup -1}). The use of activated, promoted (alkali carbonate) hydrotalcites showed a much higher capacity ({+-}0.3 mmol.g{sup -1}) at 523K. In addition, the capacities of the activated supported HT at 523K were significantly increased compared to the activated unsupported HT (1.3-2.5 mmol.g{sup -1} HT). The alkali-loaded supported HTs showed capacities slightly higher than the capacity of supported unpromoted HT. The increase in capacity for the promoted and/or supported HTs points to a higher concentration of defects (low-coordination of oxygen sites) on the surface of the activated (alkali-)loaded HTs compared to the unloaded and unsupported HT. The higher concentration of adsorption for the promoted (supported) HTs, might be caused by the

  12. Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions

    DEFF Research Database (Denmark)

    Styrishave, Bjarne; Mortensen, Mads; Krogh, Paul Henning

    2008-01-01

    The porewater concentrations of pyrene were estimated by a negligible depletive solid-phase microextraction (SPME) method. The effects of organic matter (OM) and soil aging on the bioavailability of pyrene in soil were investigated by generation of reproductive effect concentrations (EC50...... increased with increasing OM and aging of the soil. The increase of the OM content in the soil reduced the extractability of pyrene by SPME, as well as the toxicity of pyrene. An aging effect was demonstrated in Askov soil, EC50 values increased with increased contact time. The amounts of pyrene extracted...

  13. Efficient solid-phase microextraction of triazole pesticides from natural water samples using a Nafion-loaded trimethylsilane-modified mesoporous silica coating of type SBA-15

    International Nuclear Information System (INIS)

    Abolghasemi, Mir Mahdi; Hassani, Sona; Bamorowat, Mehdi

    2016-01-01

    A mesoporous silica surface of type SBA-15 was made more hydrophobic by modification with ethoxytrimethylsilane to obtain a hybrid organic–inorganic mesoporous nanocomposite, which then was impregnated with Nafion. The resulting nanocomposite was used as a fiber coating for solid-phase microextraction (SPME). The trimethylsilyl-modified Nafion/SBA-15 nanocomposite with high surface area was characterized by SEM and FTIR. It was immobilized on a stainless steel wire in order to fabricate a fiber for SPME. This fiber was evaluated for its suitability for extracting triazolic agrochemicals from water samples before their quantification through a combination of gas chromatography and mass spectrometry. Experimental conditions for fiber coating, extraction time, stirring rate, ionic strength, pH value, desorption temperature and desorption time were optimized. Under optimum conditions, the repeatability for one fiber (for n = 3) ranges from 4.3 to 5.6 % (relative standard deviation). The detection limits are between 50 and 90 pg⋅mL −1 . The method is simple, fast, low-cost (in terms of equipment), and the fiber used for SPME has high thermal stability and good recovery. (author)

  14. Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid-phase microextraction fiber prior to GC/MS.

    Science.gov (United States)

    Wang, Xiaoyu; Wang, Yuan; Qin, Yaqiong; Ding, Li; Chen, Yi; Xie, Fuwei

    2015-08-01

    A simple method has been developed for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke. The procedure is based on employing a homemade graphene-coated solid-phase microextraction (SPME) fiber for extraction prior to GC/MS. In comparison to commercial 100-μm poly(dimethyl siloxane) (PDMS) fiber, the graphene-coated SPME fiber exhibits advantageous cleanup and preconcentration efficiencies. By collecting the particulate phase 5 cigarettes, the LODs and LOQs of 16 target PAHs were 0.02-0.07 and 0.07-0.22 ng/cigarette, respectively, and all of the linear correlation efficiencies were larger than 0.995. The validation results also indicate that the method has good repeatability (RSD between 4.2% and 9.5%) and accuracy (spiked recoveries between 80% and 110%). The developed method was applied to analyze two Kentucky reference cigarettes (1R5F and 3R4F) and six Chinese brands of cigarettes. In addition, the PAH concentrations in the particulate phase of the smoke from the 1R5F Kentucky cigarettes were in good agreement with recently reported results. Due to easy operation and good validation results, this SPME-GC/MS method may be an excellent alternative for trace analysis of PAHs in cigarette smoke. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  16. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS

    KAUST Repository

    Caupos, Emilie

    2014-10-04

    Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOMvaried from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOMand DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

  17. A sensitive method using SPME pre-concentration for the quantification of aromatic amines in indoor air.

    Science.gov (United States)

    Lucaire, Vincent; Schwartz, Jean-Jacques; Delhomme, Olivier; Ocampo-Torres, Ruben; Millet, Maurice

    2018-03-01

    Monitoring the levels of aliphatic and aromatic amines (AA) in indoor air is important to protect human health because of exposure to these compounds through diet and inhalation. A sampling and analytical method using XAD-2 cartridges and gas chromatography coupled to mass spectrometry used for assessing 25 AA in different smoking and non-smoking indoor environment was developed. After sampling and delivering 1 m 3 of air (6-8 h sampling), an adsorbent was ultrasonically extracted with acetonitrile, concentrated to 1 mL and diluted in 25 mL of water (pH = 9; 5% NaCl), and then extracted for 40 min at 80 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber and injected in a GC/MS system. With this method, 22 of the 25 AA can be analyzed with detection limits up to five times lower than that of classic liquid injection. Benzylamine, 3-aminophenol, and 4-aminophenol were not detected with the solid-phase micro-extraction (SPME) method. It can be assumed that aminophenols required a derivatization step for their analysis by GC as these molecules were not detected regardless of the injection mode used. Graphical abstract Analysis of aromatic amines in indoor air by SPME-GC/MS.

  18. Using disposable solid-phase microextraction (SPME) to determine the freely dissolved concentration of polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia Fang; Cui Xinyi; Wang Wei; Delgado-Moreno, Laura; Gan, Jay

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants (BFRs). The ubiquity and persistence of PBDEs in sediment have raised concerns over their environmental fate and ecological risks. Due to strong affinity for sediment organic matter, environmental fate and bioavailability of PBDEs closely depend on their phase distribution. In this study, disposable polydimethylsiloxane (PDMS) fiber was used to derive the freely dissolved concentration (C free ) of PBDEs in sediment porewater as a measurement of bioavailability. The PDMS-to-water partition coefficient (log K PDMS ) was 5.46–5.83 for BDE 47, 99, and 153. In sediments, PBDEs were predominantly sorbed to the sediment phase, with C free accounting for free of PBDEs decreased as their bromination or sediment organic carbon content increased. The strong association with dissolved organic matter (DOM) implies a potential for facilitated offsite transport and dispersion in the environment that depends closely on the stability of sediment aggregates. - Highlights: ► A disposable SPME method was developed for measuring C free of PBDEs in sediment. ► C free decreased with increasing congener bromination or sediment OC content. ► C free of PBDEs accounted for DOC values suggest a high probability for DOM-facilitated offsite transport. - A SPME method based on disposable PDMS fibers was developed for measuring the freely dissolved concentration of PBDEs (C free ) in sediment porewater.

  19. Development of an SPME-GC-MS/MS method for the determination of pesticides in rainwater: Laboratory and field experiments

    International Nuclear Information System (INIS)

    Sauret-Szczepanski, Nathalie; Mirabel, Philippe; Wortham, Henri

    2006-01-01

    A solid-phase microextraction - coupled to a gas chromatography - ion trap tandem mass spectrometry (SPME-GC-MS/MS) method was developed for the quantitative determination in rainwater of 8 pesticides amongst the most used in France and 3 triazines metabolites. The main factors affecting the SPME process were studied. Using a 3 mL sample, the method developed showed good linearity for concentrations ranging from 0.05 to 50 μg L -1 with correlation coefficients between 0.997 and 0.9999 and relative standard deviations (% RSD) below 14%. The study of matrix effects showed that rainwater was too diluted to have any significant influence on the extraction efficiency. To validate the method, a field campaign was carried out on the rain events, which occurred in Strasbourg during a one-year period. The rain concentrations showed patterns of high pesticide concentrations during spring months, which were correlated to the spraying periods of most of these substances. - Solid-phase microextraction efficiency of pesticides in rainwater was optimized

  20. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavouring products.

    Science.gov (United States)

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-12-01

    For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.

  1. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    Science.gov (United States)

    Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  2. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Yan-Qin Yang

    Full Text Available In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME followed by gas chromatography-mass spectrometry (GC-MS was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA and hierarchical clustering analysis (HCA. Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  3. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers.

    Science.gov (United States)

    Deng, Chunhui; Song, Guoxin; Hu, Yaoming

    2004-12-01

    Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for characterization of volatile compounds emitted from two varieties Osmanthus flowers of O. fragrans var. latifolius and O. fragrans var. thunbergii. The SPME parameters were studied, the optimum conditions of a 65 microm carbowax/divinylbenzene (CW/DVB), extraction temperature of 22 degrees C and extraction time of 10 min were obtained and applied to extraction of the volatile emissions. Fourteen compounds released from both varieties of Osmanthus flowers were separated and identified by GC-MS, which mainly included alpha-linalool, beta-linalool, trans-linalool oxide, cis-linalool oxide, alpha-lonone, beta-lonone, capraldehyde and decalactone. By comparing their peak areas, we found that the sums of the fourteen compounds from the two Osmanthus flowers were very close, while the relative contents of individual volatile compounds in the two emissions were very different. The relative content of alpha-linalool and beta-linalool in O. fragrans var. latifolius were 39.46% and 0.51%, while in O. fragrans var. thunbergii were 9.53% and 27.71%. Due to their different relative contents, the two varieties of flower have different fragrances.

  4. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.

    Science.gov (United States)

    Prades, Alexia; Assa, Rebecca Rachel Ablan; Dornier, Manuel; Pain, Jean-Pierre; Boulanger, Renaud

    2012-09-01

    Coconut (Cocos nucifera L.) water is a refreshing tropical drink whose international market has recently been growing. However, little is yet known about its physicochemical composition, particularly its aroma. This study set out to characterise the volatile profile of water from five coconut varieties. Aroma compounds were characterised by headspace solid phase microextraction gas chromatography (HS-SPME-GC) analysis. An experimental design was established to optimise SPME conditions, leading to an equilibration time of 10 min followed by an extraction time of 60 min at 50 °C. Accordingly, immature coconut water from WAT (West African Tall), PB121 (MYD × WAT Hybrid), MYD (Malayan Yellow Dwarf), EGD (Equatorial Guinea Green Dwarf) and THD (Thailand Aromatic Green Dwarf) palms was analysed and described. Ketones were mainly present in the Tall and Hybrid varieties, whereas aldehydes were most abundant in the Dwarf palms. Tall coconut water was characterised by a high lactone content. THD exhibited a high ethyl octanoate level. The cluster analysis of the volatile fraction from the five coconut cultivars was found to be related to their genetic classification. The volatile compounds of immature coconut water from five varieties were characterised for the first time. Volatile profile analysis could be a useful tool for the selection of Dwarf coconut varieties, which are mainly consumed as a beverage. Copyright © 2012 Society of Chemical Industry.

  5. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Altun, Zeki; Abdel-Rehim, Mohamed

    2008-01-01

    Microextraction by packed sorbent (MEPS) is a new technique for sample preparation that can be connected on-line with LC or GC. In MEPS, approximately 1-2 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be packed or coated to provide selective and suitable sampling conditions. The new method is very promising for extraction of drugs and metabolites from biological samples. In this paper, some factors affecting the performance of MEPS such as recovery, carry-over, leakage, washing volume and elution volume were studied using C18 and hydroxylated polystyrene-divinylbenzene copolymer (ENV+) as sorbents. Radioactively labelled bupivacaine in plasma samples was used as test analyte. For the extraction of this drug, using methanol/water 95:5 (v/v) (0.25% ammonium hydroxide) was used as elution solvent. The analyte response increased with increasing the elution volume and it was linear upp up to 100 μL utilizing liquid scintillation counter. Further, for concentrating the sample, we found that MEPS may be used such that the sample can be drawn through the needle, up and down, several times. The analyte leakage increases as the volume washing increases, though higher washing volumes may also result in cleaner extracts. To eliminate analyte carry-over, the sorbents were washed first with 3 x 250 μL elution solution and then with 3 x 250 μL washing solution. In addition, the reproducibility measurements show relatively good relative standard deviation (RSD) % values concerning analyte recovery and analyte leakage. The present study provides an understanding of basic aspects when optimizing methods for MEPS. In this study, MEPS was used off-line with liquid scintillation counter and on-line with LC-MS/MS

  6. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Zeki [Karlstad University, Faculty of Technology and Science, SE-651 88 Karlstad (Sweden); Abdel-Rehim, Mohamed [Karlstad University, Faculty of Technology and Science, SE-651 88 Karlstad (Sweden); Clinical Pharmacology and DMPK, AstraZeneca R and D Soedertaelje, SE-151 85 Soedertaelje (Sweden)], E-mail: Mohamed.Abdel-Rehim@Astrazeneca.com

    2008-12-23

    Microextraction by packed sorbent (MEPS) is a new technique for sample preparation that can be connected on-line with LC or GC. In MEPS, approximately 1-2 mg of the solid packing material is inserted into a syringe (100-250 {mu}L) as a plug. Sample preparation takes place on the packed bed. The bed can be packed or coated to provide selective and suitable sampling conditions. The new method is very promising for extraction of drugs and metabolites from biological samples. In this paper, some factors affecting the performance of MEPS such as recovery, carry-over, leakage, washing volume and elution volume were studied using C18 and hydroxylated polystyrene-divinylbenzene copolymer (ENV+) as sorbents. Radioactively labelled bupivacaine in plasma samples was used as test analyte. For the extraction of this drug, using methanol/water 95:5 (v/v) (0.25% ammonium hydroxide) was used as elution solvent. The analyte response increased with increasing the elution volume and it was linear upp up to 100 {mu}L utilizing liquid scintillation counter. Further, for concentrating the sample, we found that MEPS may be used such that the sample can be drawn through the needle, up and down, several times. The analyte leakage increases as the volume washing increases, though higher washing volumes may also result in cleaner extracts. To eliminate analyte carry-over, the sorbents were washed first with 3 x 250 {mu}L elution solution and then with 3 x 250 {mu}L washing solution. In addition, the reproducibility measurements show relatively good relative standard deviation (RSD) % values concerning analyte recovery and analyte leakage. The present study provides an understanding of basic aspects when optimizing methods for MEPS. In this study, MEPS was used off-line with liquid scintillation counter and on-line with LC-MS/MS.

  7. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed E., E-mail: memahmoud10@yahoo.com [Faculty of Sciences, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria (Egypt); Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S. [Faculty of Sciences, Alexandria University, P.O. Box 426, Ibrahimia, 21321, Alexandria (Egypt); Abdel-Fattah, Tarek M. [Applied Research Center Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606 (United States)

    2017-04-15

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe{sub 3}O{sub 4}) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe{sub 3}O{sub 4}-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7–14.1 nm. The surface area was identified as 389 m{sup 2}/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe{sub 3}O{sub 4}-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe{sub 3}O{sub 4}-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations. - Highlights: •A novel magnetic nanosorbent was designed and synthesized. •Nano-Fe{sub 3}O{sub 4}) was coated with nanolayer of activated carbon. •The particle size of magnetic nanosorbent in the range of 8.65–14.06 nm. •Optimization of experimental controlling factors. •Maximum percentage removal uranyl ions was established at pH 5.0.

  8. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  9. Sorbents for waste water purification from radionuclides and other toxic substances

    International Nuclear Information System (INIS)

    Maddalone, R.F.; MakKlenason, L.Ts.

    1996-01-01

    The TRW firm (USA) developed the system for sorption and disposal of radionuclides, heavy metals and organic substances, based on utilization of carbon sorbents. The sorbent is produced through processing natural coal by alkali-salt solution and has a large specific pores surface (up to 1000 m 2 /g). The sorbent carboxyl ionogenic groups are able of absorbing heavy metals cations from waste waters. Sorption by uranium constituted 30 mg/l. The sorbent with absorbed substances may be burnt (it contains no sulfur) or delivered for vitrification. The volume of disposed materials constitutes in comparison with existing techniques for uranium isotopes 420000 : 1. The costs are reduced up to 0.26 doll/m 2 of reprocessed water. 2 refs., 2 figs., 4 tabs

  10. Application of magnetic sorbent in the removal of cadmium from soils

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2006-12-01

    Full Text Available A contamination of soil by heavy metals is a common problem at many metalliferous mining sites. There are various treatment processes for the cleanup of soil contaminated with heavy metals. A method designed for the decontamination of soil polluted by Cd is described. The method utilizes a magnetic sorbent – sludges from the hydrometallurgic processing of nickel mineral, activated by milling. The influence of sorbent concentration, pH and microwave energy on the sorption capacity and content of Cd ions in a soil was studed. The effectiveness of Cd desorption from the soil was 75 %, the maximal sorption capacity of sorbent was 9,8 mg/g. The content of Cd in water is function of pH and the concentration of sorbent. The influence of microwave energy (90 W was negligible.

  11. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.

    Science.gov (United States)

    Annunciado, T R; Sydenstricker, T H D; Amico, S C

    2005-11-01

    Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.

  12. Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent

    KAUST Repository

    Naidu, Gayathri; Loganathan, Paripurnanda; Jeong, Sanghyun; Johir, Md.Abu Hasan; To, Vu Hien Phuong; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-01-01

    Sea water reverse osmosis (SWRO) brine contains significant quantity of Rb. As an economically valuable metal, extracting Rb using a suitable and selective extraction method would be beneficial. An inorganic sorbent, copper based potassium

  13. Experimental investigation of various vegetable fibers as sorbent materials for oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Annunciado, T.R.; Sydenstricker, T.H.D.; Amico, S.C. [Federal University of Parana, Curitiba, (Brazil). Department of Mechanical Engineering

    2005-11-15

    Oil spills are a global concern due to their environmental and economical impact. various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85 g oil/g sorbent (in 24 hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application. (author)

  14. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  15. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  16. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei [Far Eastern Federal Univ., Vladivostok (Russian Federation); Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Ozyorsk Technical Institute MEPHI, Ozersk (Russian Federation); Tokar, Eduard [Far Eastern Federal Univ., Vladivostok (Russian Federation); Zemskova, Larisa [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2016-11-01

    An organomineral sorbent based on mixed nickel-potassium ferrocyanide and chitosan to be used in removal of Cs-137 radionuclide from highly mineralized media with high pH has been fabricated. The synthesized sorbent was applied to remove Cs-137 from model solutions under static and dynamic conditions. The effects of contact time, pH, and presence of sodium ions and complexing agents in the process of Cs-137 removal have been investigated. The sorbent is distinguished by increased stability to the impact of alkaline media containing complexing agents, whereas the sorbent capacity in solutions with pH 11 exceeds 1000 bed volumes with the Cs-137 removal efficiency higher than 95%.

  17. 21 CFR 876.5600 - Sorbent regenerated dialysate delivery system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... dialyzer. The device is used with the extracorporeal blood system and the dialyzer of the hemodialysis... dialysate conditions. The sorbent cartridge may include absorbent, ion exchange and catalytic materials. (b...

  18. Application of fibrous complexing sorbents for trace elements preconcentration and separation

    International Nuclear Information System (INIS)

    Zakhartchenko, E.A.; Myasoedova, G.V.

    2003-01-01

    This article demonstrates the application of the 'filled' fibrous sorbents for preconcentration and separation of platinum metals, as well as heavy metals and radionuclides. The POLYORGS complexing sorbents and ion-exchangers were used as fillers. Dynamic preconcentration conditions should be set for complete sorption of the elements: diameter and mass of the sorbent disk or the column as well as flow rate of the solution. These conditions depend on specific features of materials to be analysed and the requirements of the experimental task or detection method. Extensive alteration of features as well as perfect kinetic properties and high selectivity of the 'filled' sorbents confirm their applicability for trace elements preconcentration and separation in technology and analytical chemistry. (authors)

  19. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  20. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange

    2017-10-01

    Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.

  1. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene

    International Nuclear Information System (INIS)

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2010-01-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n = 6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n = 4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 μm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 μm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28 ± 0.01 ng mL -1 .

  2. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  3. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  4. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  5. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    OpenAIRE

    Wilson, Lee D.; Mohamed, Mohamed H.; Berhaut, Christopher L.

    2011-01-01

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g), CDI-X cop...

  6. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  7. Adsorption of Radioactive Chromium onto Iron Oxide Coated Sand

    International Nuclear Information System (INIS)

    Tadros, N.

    2008-01-01

    Iron oxide coated sand (IOCS) has been prepared and used as granular sorbent for 51 Cr radionuclide at different and specified concentration Ievels in aqueous solutions of constant ph value. Effect of different parameters such as: ph variation, contact time, 51 Cr ion concentration and variation of temperature on the adsorption of the radionuclide onto IOCS material have been discussed. At high ph value about 9()% of 51 Cr is adsorbed onto IOCS from the aqueous solution, The sorption capability of 51 Cr and the effect of ion concentration on the adsorbitivity have been discussed. Adsorption isotherms of Langmuir and Freundlich were expressed and their adsorption isotherm parameters are tabulated

  8. Graphene-supported zinc oxide solid-phase microextraction coating with enhanced selectivity and sensitivity for the determination of sulfur volatiles in Allium species.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2012-10-19

    A graphene-supported zinc oxide (ZnO) solid-phase microextraction (SPME) fiber was prepared via a sol-gel approach. Graphite oxide (GO), with rich oxygen-containing groups, was selected as the starting material to anchor ZnO on its nucleation center. After being deoxidized by hydrazine, the Zn(OH)2/GO coating was dehydrated at high temperature to give the ZnO/graphene coating. Sol-gel technology could efficiently incorporate ZnO/graphene composites into the sol-gel network and provided strong chemical bonding between sol-gel polymeric SPME coating and silica fiber surface, which enhanced the durability of the fiber and allowed more than 200 replicate extractions. Results indicated that pure ZnO coated fiber did not show adsorption selectivity toward sulfur compounds, which might because the ZnO nanoparticles were enwrapped in the sol-gel network, and the strong coordination action between Zn ion and S ion was therefore blocked. The incorporation of graphene into ZnO based sol-gel network greatly enlarged the BET surface area from 1.2 m2/g to 169.4 m2/g and further increased the adsorption sites. Combining the superior properties of extraordinary surface area of graphene and the strong coordination action of ZnO to sulfur compounds, the ZnO/graphene SPME fiber showed much higher adsorption affinity to 1-octanethiol (enrichment factor, EF, 1087) than other aliphatic compounds without sulfur-containing groups (EFsPDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibers. Several most abundant sulfur volatiles in Chinese chive and garlic sprout were analyzed using the ZnO/graphene SPME fiber in combination with gas chromatography-mass spectrometry (GC-MS). Their limits of detection were 0.1-0.7 μg/L. The relative standard deviation (RSD) using one fiber ranged from 3.6% to 9.1%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 4.8-10.8%. The contents were in the range of 1.0-46.4 μg/g with recoveries of 80.1-91.6% for four main

  9. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor

    International Nuclear Information System (INIS)

    Dou Binlin; Song Yongchen; Liu Yingguang; Feng Cong

    2010-01-01

    The gas-solid reaction and breakthrough curve of CO 2 capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO 2 gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO 2 level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO 2 capture at 550 deg. C. Calcium oxide sorbent after reaction can be easily regenerated at 900 deg. C by pure N 2 flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO 2 were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  10. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  11. Simulation of mercury capture by sorbent injection using a simplified model.

    Science.gov (United States)

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  12. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  13. Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.

    2018-04-01

    In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.

  14. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  15. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  16. Release of iodine radionuclides from gas media in a system of selective block sorbents

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Miroshnikov, V.S.; Mel'nikov, V.A.; Chetverikov, V.V.

    1979-01-01

    A scheme of extracting iodine radionuclides from gas flows in a system of selective sorbents has been developed. The method provides separation of three forms of iodine: the aerosol component, the elementary iodine and organic-iodine compounds. Aerosols are trapped by a mechanical filter made of porous polytetrafluoroethylene with pores of no more than 1 μm. Silver-based sorbents for the elementary iodine are made by sintering the granular polytetrafluoroethylene (the size of granules is 0.1-0.5 mm) with of finely dispersed solver (5% mass). Organic iodine compounds are extracted by a silica sorbent impregnated with silver nitrate. The efficiency of sorbents was tested in gas flows with a known content of 131 I in the form of elementary iodine and methyl iodide. The results of experiments show that the efficiency of sorption of elementary iodine by a metallic-silver sorbent and of methyl iodide by a SiO 2 /AgNO 3 sorbent constitutes no less than 99% at a flow rate of up to 200 l/h. The iodine has been extracted at a flow rate of 100 l/h during 100 hours and for that time the efficiency of the iodine sorbtion has not changed. The suggested variant of extracting iodine radionuclides from gaseous media can be used both for fast control of iodine content in gas blowoffs and for researches aimed at studying the distribution of iodine forms in steam-and-gas media depending on nuclear plant operating conditions

  17. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a Catalyst/Sorbent for Methane Reforming

    Energy Technology Data Exchange (ETDEWEB)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all

  19. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    Science.gov (United States)

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  20. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe{sub 3}O{sub 4} as a sorbent for preconcentration and determination of trace amounts of copper

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali, E-mail: mirabi2012@yahoo.com [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Shokuhi Rad, Ali, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Khodadad, Hadiseh [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-09-01

    Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2–600 ng ml{sup −1} with detection limit of 0.2 ng ml{sup −1}. Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results. - Highlights: • Fe{sub 3}O{sub 4} nano-magnetic improved by SDS/dithiooxamide. • It can be used in both the pre-concentration function and detecting of Cu ions. • This modified surface shows high adsorptive characteristics. • This procedure is relatively simple, fast and imposes less test analysis expenses.

  1. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper

    International Nuclear Information System (INIS)

    Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh

    2015-01-01

    Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2–600 ng ml −1 with detection limit of 0.2 ng ml −1 . Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results. - Highlights: • Fe 3 O 4 nano-magnetic improved by SDS/dithiooxamide. • It can be used in both the pre-concentration function and detecting of Cu ions. • This modified surface shows high adsorptive characteristics. • This procedure is relatively simple, fast and imposes less test analysis expenses

  2. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    Science.gov (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  3. Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique

    International Nuclear Information System (INIS)

    Huang, Siming; He, Shuming; Xu, Hao; Wu, Peiyan; Jiang, Ruifen; Zhu, Fang; Luan, Tiangang; Ouyang, Gangfeng

    2015-01-01

    An on-site active solid-phase microextraction (SPME) sampling technique coupled with gas chromatography-mass spectrometry (GC–MS) for sampling and monitoring 16 polycyclic aromatic hydrocarbons (PAHs) and 8 organochlorine pesticides (OCPs) in seawater was developed. Laboratory experiments demonstrated that the sampling-rate calibration method was practical and could be used for the quantification of on-site sampling. The proposed method was employed for field tests which covered large amounts of water samples in the Pearl River Estuary in rainy and dry seasons. The on-site SPME sampling method can avoid the contamination of sample, the losses of analytes during sample transportation, as well as the usage of solvent and time-consuming sample preparation process. Results indicated that the technique with the designed device can address the requirement of modern environment water analysis. In addition, the sources, bioaccumulation and potential risk to human of the PAHs and OCPs in seawater of the Pearl River Estuary were discussed. - Highlights: • SPME on-site active sampling technique was developed and validated. • The technique was employed for field tests in the Pearl River Estuary. • 16 PAHs and 8 OCPs in the seawater of Pearl River Estuary were monitored. • The potential risk of the PAHs and OCPs in Pearl River Estuary were discussed. - An on-site active SPME sampling technique was developed and successfully applied for sampling and monitoring 16 PAHs and 8 OCPs in the Pearl River Estuary

  4. Sol-gel-based SPME fiber as a reliable sampling technique for studying biogenic volatile organic compounds released from Clostridium tetani.

    Science.gov (United States)

    Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem

    2017-11-01

    A novel and efficient headspace solid-phase microextraction (HS-SPME) method, followed by gas chromatography mass spectrometry (GC-MS), was developed to study volatile organic compounds (VOCs) emerging from microorganisms. Two homemade SPME fibers, a semi-polar poly (dimethylsiloxane) (PDMS) fiber, and a polar polyethylene glycol (PEG) fiber, along with two commercial fibers (PDMS and PDMS/DVB) were used to collect VOCs emerging from Clostridium tetani which was cultured in different media. The adsorbed VOCs were desorbed and identified, in vitro, using GC-MS. The adsorption efficiency was improved by optimizing the time duration of adsorption and desorption. About 50 components were identified by the proposed method. The main detected compounds appeared to be sulfur containing compounds such as butanethioic acid S-methyl ester, dimethyl trisulfide, and dimethyl tetrasulfide. These volatile sulfur containing compounds are derived from amino acids containing the sulfur element, which probably coexist in the mentioned bacterium or are added to the culture media. The developed HS-SPME-GC-MS method allowed the determination of the chemical fingerprint of Clostridium tetani volatile constituents, and thus provides a new, simple, and reliable tool for studying the growth of microorganisms. Graphical abstract Investigation of biogenic VOCs released from Clostridium tetani using SPME-GC-MS.

  5. Rapid sampling of BTEX in air by SPME in the city of Nice and at the Nice-Cote d'Azur airport

    International Nuclear Information System (INIS)

    Tumbiolo, S.; Gal, J.F.; Maria, P.Ch.; Laborde, P.; Teton, S.

    2006-01-01

    This article presents the results of a tentative application of Solid Phase Micro Extraction (SPME) to the analysis of BTEX (benzene, toluene, ethyl-benzene and xylenes) at the μg/m 3 level in indoor and outdoor air. The salient features of the method validation are reported. Sampling by QUALITAIR using Radiello passive samplers, was carried out from 2001 to 2004 in the city of Nice and its airport. Urban traffic impact was proved, but a link between BTX concentrations and the variations of airport activities was not clearly established. During the same period, several samplings were performed using SPME. Taking into account the short (30 minutes) sampling time, rapid changes of BTEX concentrations were evidenced, as for example the start of airplane engines. As field studies have shown, SPME technique appears as a method of choice for fast qualitative analysis and quantitative determination of Volatile Organic Compounds (VOC). The small dimensions of the SPME sampling system and the short sampling time let envisage its utilisation for the rapid diagnostic and the monitoring of indoor air quality. (author)

  6. Multivariate statistical analysis of hemlock (Tsuga) volatiles by SPME/GC/MS: insights into the phytochemistry of the hemlock woolly adelgid (Adelges tsugae Annand)

    Science.gov (United States)

    Anthony Lagalante; Frank Calvosa; Michael Mirzabeigi; Vikram Iyengar; Michael Montgomery; Kathleen Shields

    2007-01-01

    A previously developed single-needle, SPME/GC/MS technique was used to measure the terpenoid content of T. canadensis growing in a hemlock forest at Lake Scranton, PA (Lagalante and Montgomery 2003). The volatile terpenoid composition was measured over a 1-year period from June 2003 to May 2004 to follow the annual cycle of foliage development from...

  7. Development of Novel Sorbents for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenbin [Univ. of Chicago, IL (United States); Taylor-Pashow, Kathryn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  8. Biochar from Coffee Residues: A New Promising Sorbent

    Science.gov (United States)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the

  9. Development of Novel Sorbents for Uranium Extraction from Seawater

    International Nuclear Information System (INIS)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-01

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  10. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  11. Decontamination Efficacy of Candidate Nanocrystalline Sorbents with Comparison to SDS A-200 Sorbent: Reactivity and Chemical Agent Resistant Coating Panel Testing

    Science.gov (United States)

    2010-11-01

    o c © — r~ t-~ — oc O ir> r-^ TT ^t TJ-’ — o vc r» r- r-» t-~ r-- (•- vo flj c o •a c 3 — sO — ^O — vC — O^ O (N ro V...i o APPENDIX B 36 60 ON NO o o s. — Z : • PL E a. X r °- u f- — t t ^ E ^/j E. ° r * C^ o & rt ^— ; tO d | TD L c E- ° es t...8217 u. % APPENDIX B 54 H c S-m., -E ao "C ^-^ — ’-> 1 s. 0 c A X - u — li- „_ ra - Sfj Z. o o- _ c* c — 3 o TD : n

  12. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  13. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  14. Efficient separations and processing crosscutting program: Develop and test sorbents

    International Nuclear Information System (INIS)

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task open-quotes Develop and Test Sorbents,close quotes the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy's Office of Environmental Management's Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A ampersand M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A ampersand M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report

  15. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  16. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  17. Thermal and Chemical Stability of Crystalline Silicotitanate Sorbent

    International Nuclear Information System (INIS)

    Taylor, P.A.; Mattus, C.H.

    1999-01-01

    The Savannah River Site (SRS) is evaluating technologies for removing cesium-137 (137Cs) from the supemate solutions stored in the high-level waste tanks at the site. Crystalline silicotitanate sorbent (IONSIV IE-9 1 lo, UOP Molecular Sieves; Mount Laurel, NJ) is very effective for removing cesium from high-salt solution, such as the SRS supemates, and is currently being used at Oak Ridge National Laboratory to remove radioactive cesium from similar solutions, Because of the extremely high loading of 137Cs that would be expected for the large columns of crystalline silicotitanate (CST) that would be used for treating the SRS supemate, any loss of flow or cooling to the columns could result in high temperatures within the column from radiolytic heating. The ability of CST to retain previously loaded cesium while in contact with SRS tank supemates at various temperatures was determined by performing bench scale simulant tests using CST samples that were loaded with stable cesium and radi oactive cesium tracer. These results were compared with those obtained from loading tests at the same temperatures

  18. Development and application of charcoal sorbents for cryopumping fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-06-01

    Progress has been made in defining the capabilities of charcoal as the most promising absorbent to be used in cryopumps for fusion power application. The capabilities of alternative methods of cryopumping helium have been examined in a literature survey and by test, and the results are described here. Considerations include pumping speed, capacity to accumulate pumped gas, ease of reconditioning, use of alternative materials and tolerance to the fusion environment. Vacuum pumps for future fusion devices must handle large quantities of helium/hydrogen isotopes and other impurities. Cryopumps or turbomolecular pumps have demonstrated the capability on a small scale, and each has an important advantage: TMPs do not accumulate gases; cryopumps can separate helium from other effluents. This paper includes a review of a method for selecting charcoals for helium cryopumping, testing of a continuously operating cryopump system, and definition of a design that is based on the requirements of the Next European Torus. Tritium limits are satisfied. The pump design incorporates the charcoal sorbent system that has been recently developed and is based on a reasonable extrapolation of current state-of-the-art. Evaluation of alternative methods of separating helium and other gases led to selection of a movable barrier as the preferred solution. (orig.).

  19. Determinação do coeficiente de atividade em diluição infinita de hidrocarbonetos em furfural a 298,15 K por SPME-GC/FID

    Directory of Open Access Journals (Sweden)

    Filipe Arantes Furtado

    2010-01-01

    Full Text Available In this work a new method (SPME-GC/FID was developed to analyze the activity of binary liquid mixtures. The purpose is to demonstrate that SPME is capable to be used to determinate activity coefficients at infinite dilution knowing the fiber properties, with a lower cost than the conventional methods encountered in literature such as GLC. The activity coefficients at infinite dilution in furfural for n-hexane, n-heptane and cyclohexane at 298.15 K was determined using SPME and deviations of literature data was about 7%.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  2. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  3. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  4. Effective Uranium (VI) Sorption from Alkaline Solutions Using Bi-Functionalized Silica-Coated Magnetic Nanoparticles

    International Nuclear Information System (INIS)

    Chen, X.; He, L.; Liu, B.; Tang, Y.

    2015-01-01

    High temperature gas reactor is one of generation IV reactors that can adapt the future energy market, of which the preparation of fuel elements will produce a large amount of radioactive wastewater with uranium and high-level ammonia. Sorption treatment is one of the most important method to recover uranium from wastewater. However, there are few report on uranium sorbent that can directly be applied in wastewater with ammonia. Therefore, the development of a sorbent that can recover uranium in basic environment will greatly decrease the cost of fuel element production and the risk of radioactive pollution. In this work, ammonium-phosphonate-bifunctionalized silica-coated magnetic nanoparticles has been developed for effective sorption of uranium from alkaline media, which are not only advantaged in the uranium separation from liquid phase, but also with satisfactory adsorption rate, amount and reusability. The as-prepared sorbent is found to show a maximum uranium sorption capacity of 70.7 mg/g and a fast equilibrium time of 2 h at pH 9.5 under room temperature. Compared with the mono-functionalized (phosphonate alone and ammonium alone) particles, the combination of the bi-functionalized groups gives rise to an excellent ability to remove uranium from basic environment. The sorbent can be used as a promising solid phase candidate for highly-efficient removal of uranium from basic solution. (author)

  5. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  6. Caracterización de los compuestos del aroma en rones colombianos por HS-SPME-GC-MS-O

    Directory of Open Access Journals (Sweden)

    Jazmín Osorio Monsalve

    2016-11-01

    Full Text Available Se identificaron por primera vez 46 compuestos volátiles olfativamente activos con actividad aromática significativa presentes en rones comerciales de Colombia. Lo anterior, mediante microextracción en fase sólida en modo espacio de cabeza (HS-SPME, acoplada a cromatografía de gases con detectores de espectrometría de masas y olfatometría (GC-MS-O. Dentro de los compuestos identificados se encuentran ésteres, compuestos aromáticos, alcoholes, acetales, lactonas y furfural. De esos 46 compuestos, nueve están presentes en todos los rones estudiados y algunos otros son característicos solo de la marca.

  7. An Innovative Rapid Method for Analysis of 10 Organophosphorus Pesticide Residues in Wheat by HS-SPME-GC-FPD/MSD.

    Science.gov (United States)

    Du, Xin; Ren, YongLin; Beckett, Stephen J

    2016-01-01

    The rapid detection of pesticide residues in wheat has become a top food security priority. A solvent-free headspace solid-phase microextraction (HS-SPME) has been evaluated for rapid screening of organophosphorus pesticide (OPP) residues in wheat with high sensitivity. Individual wheat samples (1.7 g), spiked with 10 OPPs, were placed in a 4 mL sealed amber glass vial and heated at 60°C for 45 min. During this time, the OPP residues were extracted with a 50 μm/30 μm divinylbenzene (DVB)/carboxen (CAR)/plasma desorption mass spectroscopy polydimethylsiloxane (PDMS) fiber from the headspace above the sample. The fiber was then removed and injected into the GC injection port at 250°C for desorption of the extracted chemicals. The multiple residues were identified by a GC mass spectrometer detector (GC-MSD) and quantified with a GC flame photometric detector (GC-FPD). Seven spiked levels of 10 OPPs on wheat were analyzed. The GC responses for a 50 μm/30 μm DVB/CAR/PDMS fiber increased with increasing spiking levels, yielding significant (R(2) > 0.98) linear regressions. The lowest LODs of the multiple pesticide standards were evaluated under the conditions of the validation study in a range of levels from 0 (control) to 100 ng of pesticide residue per g of wheat that separated on a low-polar GC capillary column (Agilent DB-35UI). The results of the HS-SPME method were compared with the QuEChERS AOAC 2007.01 method and they showed several advantages over the latter. These included improved sensitivity, selectivity, and simplicity.

  8. A screening method for polycyclic aromatic hydrocarbons determination in water by headspace SPME with GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Zuazagoitia, D.; Millan, E.; Garcia, R. [Univ. of Pais Vasco, Donostia-San Sebastian (Spain). Dept. of Applied Chemistry

    2007-11-15

    A simple method for determination of polycyclic aromatic hydrocarbons (PAHs) in water using headspace solid-phase microextraction (HS-SPME) with gas chromatography-flame ionisation detector (GC-FID) was developed. In order to obtain the convenient experimental conditions for HS-SPME extraction an experimental design with two steps was accomplished. A 2{sup 6-2} fractional factorial design and central composite design (CCD) considering three significant factors were used. Naphthalene, anthracene and fluoranthene were chosen as representatives of two, three and four aromatic rings, and the global response of three PAHs was used for the results, evaluation. The chosen extraction conditions were: 85 {mu}m polyacrylate fibre; 50 C temperature; 60 min time; 20 mL-dissolution volume (in 40 mL glass vial); without salt addition; and 2 min desorption time. The procedure was extended to other seven PAHs (acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, chrysene and benzo(a)anthracene) and the analytical characteristics were checked. The limit of detection (LOD) was from 0.08 (anthracene) to 0.20 {mu}g L{sup -1} (naphthalene). The precision expressed as relative standard deviation (RSD in %) using 50 {mu}g L{sup -1} of each analyte ranged from 6.8 to 17 %. The method was applied to the analysis of the surface waters and leaching waters of contaminated soils from Gipuzkoa (North Spain). The PAHs were not detected in surface water samples. Most of the PAHs were found in the leachates from contaminated soils showing a maximum global value of 75.5 {mu}g L{sup -1}. (orig.)

  9. Phytoscreening for chlorinated solvents using rapid in vitro SPME sampling: Application to urban plume in Verl, Germany

    Science.gov (United States)

    Limmer, M.A.; Balouet, J.-C.; Karg, F.; Vroblesky, D.A.; Burken, J.G.

    2011-01-01

    Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times. ?? 2011 American Chemical Society.

  10. Cork as a new (green) coating for solid-phase microextraction: Determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2013-01-01

    Highlights: ► Cork as a new coating for solid-phase microextraction was proposed. ► Good results were achieved, demonstrating the applicability of the cork as coating for SPME. ► The efficiency of cork fiber was very similar to commercially available fibers. -- Abstract: A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L −1 , respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L −1 with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME

  11. A sublimate sorbent for stir-bar sorptive extraction of aqueous endocrine disruptor pesticides for gas chromatography-electron capture detection.

    Science.gov (United States)

    Huang, Yu-Wen; Lee, Hua Kwang; Shih, Hou-Kuang; Jen, Jen-Fon

    2018-06-06

    A dumbbell-shaped magnetic stir-bar with sublimate sorbent was prepared for the stir bar sorptive extraction (SBSE) of pesticides in an aqueous sample prior to gas chromatography-micro-electron capture detection (GC-μECD). Cyclododecane (CDD) was coated onto a magnetic stir-bar surface as a sublimate sorbent, and steel balls were placed on both ends to form a dumbbell-shaped magnetic stir-bar for SBSE. Four EDC pesticides including chlorpyrifos, ethion, bromopropylate, and λ-cyhalothrin in aqueous samples were selected as model species to examine the proposed SBSE and the following desorption. The parameters studied were those affecting the extraction efficiencies including the coating (solvent for CDD and thickness), extraction (sample pH, stirring rate, time, and salting out effect), dissolution solvent volume, and the loss of CDD sublimated in air. The maximum extraction efficiency was obtained under the following conditions. The stir bar (with CDD thickness of 5.2 μm) was added into a 10 mL sample solution (at pH 7) for a 20-min extraction at 600 rpm. Then, the stir bar was gently removed from the sample solution, disassembled, and immersed into a 0.2 mL insert tube consisting of 3 μL hexane to dissolve; 1 μL was used for GC-ECD analysis. The linear ranges were 0.005-5 μg L -1 with coefficients of determination ranging from 0.9950 - 0.9994. Detection limits (based on S/N = 3) of the four EDCs were 0.4-4.5 ngL -1 with a relative standard deviation (RSD) of 2.4-6.3%, and quantitation limits (based on S/N = 5) were 1-15 ngL -1 . The relative recoveries of the spiked samples were in the range of 83.2-98.7% with RSDs of 2.1-8.4% in farm field waters. The proposed sublimation sorbent obtained excellent enrichment factors (101-834) and provided a simple, rapid, sensitive, and eco-friendly sample preparation method. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  13. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  15. Application of engineered sorbent barriers Summary of Laboratory Data for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.

    1989-09-01

    Laboratory studies were conducted in FY 1988 Pacific Northwest Laboratory to determine the effect of contact time, pH, solution to solid ratio, and particle size on the performance of a number of materials in adsorbing radioactive cobalt, strontium, and cesium. The laboratory studies were conducted to provide background information useful in designing an engineered sorbent barrier, which restricts the migration of radionuclides from low-level waste sites. Understanding how the variables affect the adsorption of ions on the sorbent materials is the key to estimating the performance of sorbent barriers under a variety of conditions. The scope of the studies was limited to three radionuclides and four sorbent materials, but the general approach can be used to evaluate other radionuclides and conditions. The sorbent materials evaluated in this study included clinoptilolite, activated carbon, bentonite clay, and Savannah River soil. The clinoptilolite and activated carbon were identified in previous studies as the most cost-effective materials for sorption of the three radionuclides under consideration. The bentonite clay was evaluated as a component of the barrier that could be used to modify the permeability of the barrier system. The Savannah River soil was used to represent soil from a humid site. 3 refs., 14 figs., 1 tab.

  16. Waste Derived Sorbents and Their Potential Roles in Heavy Metal Remediation Applications

    Directory of Open Access Journals (Sweden)

    Chiang Y. W.

    2013-04-01

    Full Text Available Inorganic waste materials that have the suitable inherent characteristics could be used as precursors for the synthesis of micro- and mesoporous materials, which present great potential to be re-utilized as sorbent materials for heavy metal remediation. Three inorganic waste materials were studied in the present work: water treatment residuals (WTRs from an integrated drinking water/wastewater treatment plant, and fly ash and bottom ash samples from a municipal solid waste incinerator (MSWI. These wastes were converted into three sorbent materials: ferrihydrite-like materials derived from drying of WTRs, hydroxyapatite-like material derived from ultrasound assisted synthesis of MSWI fly ash with phosphoric acid solution, and a zeolitic material derived from alkaline hydrothermal conversion of MSWI bottom ash. The performance of these materials, as well as their equivalent commercially available counterparts, was assessed for the adsorption of multiple heavy metals (As, Cd, Co, Ni, Pb, Zn from synthetic solutions, contaminated sediments and surface waters; and satisfactory results were obtained. In addition, it was observed that the combination of sorbents into sorbent mixtures enhanced the performance levels and, where applicable, stabilized inherently mobile contaminants from the waste derived sorbents.

  17. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  18. Performance of a novel synthetic Ca-based solid sorbent suitable for desulfurizing flue gases in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pacciani, R.; Muller, C.R.; Davidson, J.F.; Dennis, J.S.; Hayhurst, A.N. [University of Cambridge, Cambridge (United Kingdom). Dept. of Chemical Engineering & Biotechnology

    2009-08-05

    The extent and mechanism of sulfation and carbonation of limestone, dolomite, and chalk, were compared with a novel, synthetic sorbent (85 wt % CaO and 15 wt % Ca{sub 12}A{sub l14}O{sub 33}), by means of experiments undertaken in a small, electrically heated fluidized bed. The sorbent particles were used either (I) untreated, sieved to two particle sizes and reacted with two different concentrations of SO{sub 2}, or (ii) after being cycled 20 times between carbonation, in 15 vol % CO{sub 2} in N2, and calcination, in pure N2, at 750 degrees C. The uptake of untreated limestone and dolomite was generally low (<0.2 g(SO{sub 2})/g(sorbent)), confirming previous results, However, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO{sub 2}, and their final uptake was significantly higher (>0.5 g(SO{sub 2})/g(sorbent)) and essentially independent of the particle size. Here, comparisons are made on the basis of the sorbents in the calcined state. The capacities for the uptake of SO{sub 2}, on a basis of unit mass of calcined sorbent, were comparable for the chalk and the synthetic sorbent. However, previous work has demonstrated the ability of the synthetic sorbent to retain its capacity for CO{sub 2} over many cycles of carbonation and calcination: much more so than natural sorbents such as chalk and limestone. Accordingly, the advantage of the synthetic sorbent is that it could be used to remove CO{sub 2} from flue gases and, at the end of its life, to remove SO{sub 2} on a once-through basis.

  19. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  20. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.

    2007-01-01

    , calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding......The influence of six sorbents on aerosol formation during the combustion of straw in a 100 MW boiler on a Danish power plant has been studied in full-scale. The following sorbents were studied: ammonium sulfate, monocalcium phosphate, Bentonite, ICA5000, clay, and chalk. Bentonite and ICA5000...... are mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate...

  2. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS from Aqueous Solutions on Different Sorbents

    Directory of Open Access Journals (Sweden)

    Smol Marzena

    2014-12-01

    Full Text Available This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon. The highest efficiency (98.1% was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  3. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at

  4. Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases

    Science.gov (United States)

    Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng

    2016-01-12

    A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.

  5. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  6. Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup

    Directory of Open Access Journals (Sweden)

    Ola Abdelwahab

    2014-03-01

    Full Text Available Oil spills have a global concern due to its environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. However, plant biomass is renewable resource that can be converted into useful materials and energy. Luffa, an agricultural waste, was used as a sorbent material. The present study examines the adsorption capacity of raw luffa fibers for different types of oil and water pickup. The investigation revealed that the efficiency of fibers to remove crude oil from sea water was related to the surface properties of the fibers, concentration of the oil, amount of the fibers, as well as the temperature of the crude oil. The results show high sorption efficiency of luffa fibers for different kinds of oil. This sorbent also exhibited a good reusability since the decrease in sorption efficiency did not exceed 50% of the initial value after three sorption cycles.

  7. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  8. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    Science.gov (United States)

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  9. Strategic Design and Optimization of Inorganic Sorbents for Cesium, Strontium and Actinides

    International Nuclear Information System (INIS)

    Maginn, Edward J.

    2009-01-01

    The primary objective of the Notre Dame component of the project was computational in nature. The goal was to provide a design tool for the synthesis of optimized sorbents for the removal of cesium, strontium and actinides from nuclear waste solutions. Molecular modeling enables us to observe and better understand the molecular level interactions that govern the selectivity of specific radionuclides in a particular sorbent. The research focused on the development and validation of a suitable and transferable model for all the cations and ion exchangers of interest, nd then subsequent simulations which determined the siting and mobility of water and cations. Speciic accomplishments include: (1) improving existing intermolecular force fields to accurately model the sorbents of interest; (2) utilizing energy-minimizations and molecular dynamics simulations for structural prediction of CST and niobium-substituted CST materials; (3) determining Na+/water positions in polyoxoniobate materials using molecular dynamics simulations; and (4) developing Hybrid Monte Carlo methods for improved structural prediction.

  10. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  11. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  12. Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream

    Science.gov (United States)

    Olson, Edwin S.; Pavlish, John Henry

    2017-05-30

    The present invention relates to carbon nanocomposite sorbents. The present invention provides carbon nanocomposite sorbents, methods for making the same, and methods for separation of a pollutant from a gas that includes that pollutant. Various embodiments provide a method for reducing the mercury content of a mercury-containing gas.

  13. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    Science.gov (United States)

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  14. The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension

    Science.gov (United States)

    Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...

  15. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    Science.gov (United States)

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...

  16. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases

    International Nuclear Information System (INIS)

    Zhu, J.L.; Wang, Y.H.; Zhang, J.C.; Ma, R.Y.

    2005-01-01

    It is indicated that modified carbon is a practical sorbent for removal of NO and SO 2 from waste gases by the adsorption method. The ideal compositions for the prepared sorbent were 4.0 wt.% and 2.5 wt.% Na 2 CO 3 and KOH at the experimental conditions, respectively, shortened as ACNaK 2.5 . Experimental investigation showed that the sorbent had a comparatively high breakthrough adsorption capacity of NO and SO 2 , about 5.8 g (NO + SO 2 )/100 g sorbent. It is indicated that a relatively high adsorption temperature would benefit the sorbent adsorption capacities on NO and SO 2 at a certain space velocity and pressure. Further study revealed that the ACNaK 2.5 sorbent had good regenerability at the experimental conditions, which implied that the ACNaK 2.5 sorbent would be a useful sorbent for simultaneous removal of NO and SO 2 from waste gases by adsorption

  17. Multifunctional humate-based magnetic sorbent: Preparation, properties and sorption of Cu (II), phosphates and selected pesticides

    Czech Academy of Sciences Publication Activity Database

    Janoš, P.; Kormunda, M.; Novák, František; Životský, O.; Fuitová, J.; Pilařová, V.

    2013-01-01

    Roč. 73, č. 1 (2013), s. 46-52 ISSN 1381-5148 Grant - others:GA ČR(CZ) GAP106/12/1116 Program:GA Institutional support: RVO:60077344 Keywords : magnetic sorbent * humate-based sorbent * heavy metals * phosphate * pesticides Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.822, year: 2013

  18. TG-FTIR measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening

    NARCIS (Netherlands)

    Smal, I.M.; Yu, Qian; Veneman, Rens; Fränzel-Luiten, B.; Brilman, Derk Willem Frederik

    2014-01-01

    Capturing atmospheric CO2 using solid sorbents is gaining interest. As ambient air normally contains much more (up to 100 times) water than CO2, a selective sorbent is desirable as co-adsorption will most likely occur. In this study, a convenient method based on an TG-FTIR analysis system is

  19. Technology assessment guide for application of engineered sorbent barriers to low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.; Depner, J.P.

    1989-06-01

    An engineered sorbent barrier (ESB) uses sorbent materials (such as activated carbon or natural zeolites) to restrict migration of radionuclides from low-level waste sites. The permeability of the ESB allows moisture to pass while the sorbent material traps or absorbs contaminants. In contrast, waste sites with impermeable barriers could fill with water, especially those waste sites in humid climates. A sorbent barrier can be a simple, effective, and inexpensive method for restricting radionuclide migration. This report provides information and references to be used in assessing the sorbent barrier technology for low-level waste disposal. The ESB assessment is based on sorbent material and soil properties, site conditions, and waste properties and inventories. These data are used to estimate the thickness of the barrier needed to meet all performance requirements for the waste site. This document addresses the following areas: (1) site information required to assess the need and overall performance of a sorbent barrier; (2) selection and testing of sorbent materials and underlying soils; (3) use of radionuclide transport models to estimate the required barrier thickness and long-term performance under a variety of site conditions; (4) general considerations for construction and quality assurance; and (5) cost estimates for applying the barrier. 37 refs., 6 figs., 2 tabs.

  20. The study of sorption of cesium radionuclides by 'T-55' ferrocyanide sorbent from various types of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Semenischev, V.S.; Voronina, A.V.; Bykov, A.A.

    2013-01-01

    The sorption of caesium by T-55 sorbent from different types of liquid radioactive wastes is studied. It is shown that the sorbent can be used for extraction of cesium from high level acidic and saline solutions and also for decontamination of caesium contaminated waters containing surfactants and EDTA. (author)

  1. Calcium looping technology using improved stability nanostructured sorbent for cyclic CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    One of the post-combustion CO{sub 2} capture technologies that have sufficiently been proved to be the best candidates for practical large scale post-combustion application is the calcium looping cycle. However, the CO{sub 2} capture capacity of a calcium-based sorbent derived from natural limestone decays through long-term cyclic utilization; thus, the development of novel sorbents to achieve a high CO{sub 2} capture capacity is an critical challenge for the calcium looping cycle technology. In this paper, we report the preparation and character of a new calcium-based sorbent produced via the combustion of a dry gel. The results show that the novel calcium-based sorbent has a much higher residual carbonation conversion as well as a better performance of anti-sintering when compared with the calcium-based sorbent derived from commercial micrometer grade CaCO{sub 3} and nanometer grade CaCO{sub 3}. It is reasonable to propose that the different final carbonation performances are induced by their different pore structures and BET surface areas rather than by different particle sizes. Compared with the commercial nano CaO, the morphology of the new sorbent shows a more rough porous appearance with hollow nanostructure. During carbonation, CO{sub 2} diffused more easily through the hollow structure than through a solid structure to reach the unreacted CaO. Besides, there is less chance for the hollow nanostructured particles to be merged together during the high temperature reactions.

  2. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water

    International Nuclear Information System (INIS)

    Nkansah, Marian Asantewah; Christy, Alfred A.; Barth, Tanja; Francis, George William

    2012-01-01

    Highlights: ► Effect of contact time on sorption PAH by LECA. ► Effect of mass of sorbent (LECA) on sorption of PAH. ► Sorption Isotherms for PAH-LECA interaction. - Abstract: Lightweight expanded clay aggregate (LECA) has been explored as a sorbent for the removal of PAHs (phenanthrene, fluoranthene and pyrene) from water. The efficacy of LECA as a sorbent for PAHs was assessed using contact time, mass of sorbent and sorption isotherms in a series of batch experiments. Maximum (optimum) sorption was reached at 21 h after which the amount of PAHs sorbed remained almost constant. Batch experiments were conducted by shaking a 100 ml solution mixture of individual PAHs (containing 0.02 mg/L) with LECA. The maximum sorption was 70.70, 70.82 and 72.12%, respectively for phenanthrene, fluoranthene and pyrene when a mass of 0.2 g of sorbent was used. There was an increase in sorption as a result of an increase in mass of sorbent until a maximum was reached at a mass of 4.0 g LECA with 92.61, 93.91 and 94.15% sorption of phenanthrene, fluoranthene and pyrene respectively. Sorption data were fitted to the linearised forms of the Freundlich and Langmuir isotherm models to determine the water-LECA partitioning coefficient. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process while the hydrophobicity of the PAHs also influenced the sorption capacity. LECA can be used as an alternative method for aqueous PAHs removal.

  3. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  4. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  5. Synthesis and characterization of sulfur functionalized graphene oxide nanosheets as efficient sorbent for removal of Pb2+, Cd2+, Ni2+ and Zn2+ ions from aqueous solution: A combined thermodynamic and kinetic studies

    Science.gov (United States)

    Pirveysian, Mahtab; Ghiaci, Mehran

    2018-01-01

    A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.

  6. Determination of semi-volatile additives in wines using SPME and GC-MS.

    Science.gov (United States)

    Sagandykova, Gulyaim N; Alimzhanova, Mereke B; Nurzhanova, Yenglik T; Kenessov, Bulat

    2017-04-01

    Parameters of headspace solid-phase microextraction, such as fiber coating (85μm CAR/PDMS), extraction time (2min for white and 3min for red wines), temperature (85°C), pre-incubation time (15min) were optimized for identification and quantification of semi-volatile additives (propylene glycol, sorbic and benzoic acids) in wines. To overcome problems in their determination, an evaporation of the wine matrix was performed. Using the optimized method, screening of 25 wine samples was performed, and the presence of propylene glycol, sorbic and benzoic acids was found in 22, 20 and 6 samples, respectively. Analysis of different wines using a standard addition approach showed good linearity in concentration ranges 0-250, 0-125, and 0-250mg/L for propylene glycol, sorbic and benzoic acids, respectively. The proposed method can be recommended for quality control of wine and disclosing adulterated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    Science.gov (United States)

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  9. Development of disposal sorbents for chloride removal from high-temperature coal-derived gases

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G.N.; Wood, B.J.; Canizales, A. [and others

    1995-11-01

    The objective of this program is to develop alkali-based disposable sorbents capable of reducing HCl vapor concentrations to less than 1 ppmv in coal gas streams at temperatures in the range 400{degrees} to 750{degrees}C and pressures in the range 1 to 20 atm. The primary areas of focus of this program are investigation of different processes for fabricating the sorbents, testing their suitability for different reactor configurations, obtaining kinetic data for commercial reactor design, and updating the economics of the process.

  10. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  11. Experimentation of netlike hydro gel nitrogen containing polymer sorbents for biological liquids purification

    International Nuclear Information System (INIS)

    Karieva, Z.M.; Karimova, N. Kh.

    2003-01-01

    The high efficiency of hydrogels synthesized earlier in comparison with Pharmacopoeia sorbents are interesting to study comprehensively for the number of the toxins of biological liquids. Taking into considerations the high electoral sorption ability of ethynilpiperidol polymers to the hydro phobic interaction it may be suggested that they have a high detoxication ability. The detoxication characteristics of studied polymers have advantages over the known sorbents. Experiences with animals showed that in identical conditions of experiment in application of netlike polymers the survival grew 90%. Synthesis and investigations of netlike hydrogels polymer materials on nitrogen containing monomers of ethynil piperidol were given in the work. (author)

  12. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  13. Removal of H/sub 2/S from hot gas in the presence of Cu-containing sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, T.; Kawashima, H.; Tomita, A.; Palmer, A.; Furimsky, E.

    1989-01-01

    Three solids containing Cu oxides were tested as sorbents for H/sub 2/S removal from hot gas at 600 degrees C. The formation of a surface layer of sulphides on pellet exterior affected Cu utilization for the sorbent prepared from Cu oxides alone. This improved for the sorbent prepared by impregnation of zeolite with Cu oxides, although complete utilization of Cu was not achieved. The combination of Cu oxides with SiO/sub 2/ gave the most efficient sorbent. Oxidation of H/sub 2/S to SO/sub 2/ on admission of hot gas to the fixed bed was a common observation for all sorbents. The addition of steam to hot gas suppressed the SO/sub 2/ formation. 9 refs., 6 figs., 4 tabs.

  14. Data summary report for M.W. Kellogg Z-sorb sorbent tests. CRADA 92-008 Final report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. This report presents results pertaining to Phillips Petroleum`s Z-Sorb III sorbent.

  15. A new and efficient Solid Phase Microextraction approach for analysis of high fat content food samples using a matrix-compatible coating.

    Science.gov (United States)

    De Grazia, Selenia; Gionfriddo, Emanuela; Pawliszyn, Janusz

    2017-05-15

    The current work presents the optimization of a protocol enabling direct extraction of avocado samples by a new Solid Phase Microextraction matrix compatible coating. In order to further extend the coating life time, pre-desorption and post-desorption washing steps were optimized for solvent type, time, and degree of agitation employed. Using optimized conditions, lifetime profiles of the coating related to extraction of a group of analytes bearing different physical-chemical properties were obtained. Over 80 successive extractions were carried out to establish coating efficiency using PDMS/DVB 65µm commercial coating in comparison with the PDMS/DVB/PDMS. The PDMS/DVB coating was more prone to irreversible matrix attachment on its surface, with consequent reduction of its extractive performance after 80 consecutive extractions. Conversely, the PDMS/DVB/PDMS coating showed enhanced inertness towards matrix fouling due to its outer smooth PDMS layer. This work represents the first step towards the development of robust SPME methods for quantification of contaminants in avocado as well as other fatty-based matrices, with minimal sample pre-treatment prior to extraction. In addition, an evaluation of matrix components attachment on the coating surface and related artifacts created by desorption of the coating at high temperatures in the GC-injector port, has been performed by GCxGC-ToF/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Measurement of Activity Coefficients at Infinite Dilution for Alcohols in [BMIM][CH3SO4] using HS-SPME/GC-FID

    Directory of Open Access Journals (Sweden)

    A. M. Elias

    Full Text Available ABSTRACT The activity coefficient at infinite dilution (&IN1 and distribution ratios at infinite dilution (&IN2 were determined for alkanols (methanol, ethanol, 1-propanol, 1-butanol, 2-butanol, and 2-methyl-2-propanol in the ionic liquid (IL 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][CH3SO4] by HS-SPME (Headspace - Solid Phase Micro Extraction at four temperatures (298.15, 313.15, 333.15, and 353.15K using headspace - solid phase microextraction (SPME-HS. The results showed significant agreement with literature data. In addition, partial molar excess enthalpies at infinite dilution (&IN3, excess Gibbs energies (&IN4, and excess entropies (&IN5 were calculated from the (&IN6 values.

  17. Applications of Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry (SPME-GC/MS in the Study of Grape and Wine Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Annarita Panighel

    2014-12-01

    Full Text Available Volatile compounds are responsible for the wine “bouquet”, which is perceived by sniffing the headspace of a glass, and of the aroma component (palate-aroma of the overall flavor, which is perceived on drinking. Grape aroma compounds are transferred to the wine and undergo minimal alteration during fermentation (e.g., monoterpenes and methoxypyrazines; others are precursors of aroma compounds which form in winemaking and during wine aging (e.g., glycosidically-bound volatile compounds and C13-norisoprenoids. Headspace solid phase microextraction (HS-SPME is a fast and simple technique which was developed for analysis of volatile compounds. This review describes some SPME methods coupled with gas chromatography/mass spectrometry (GC/MS used to study the grape and wine volatiles.

  18. SO{sub 2} retention by reactivated CaO-based sorbent from multiple CO{sub 2} capture cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO{sub 2} capture cycles, for use in SO{sub 2} capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, {gt} 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when {gt} 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO{sub 4} with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH){sub 2} crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. These results allow the proposal of a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO{sub 2} capture, sorbent reactivation, and SO{sub 2} retention. 26 refs., 4 figs., 2 tabs.

  19. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  20. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS as a process analytical technology (PAT) tool for monitoring the cultivation of C. tetani.

    Science.gov (United States)

    Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem

    2018-04-15

    Vaccine production is a biological process in which variation in time and output is inevitable. Thus, the application of Process Analytical Technologies (PAT) will be important in this regard. Headspace solid - phase microextraction (HS-SPME) coupled with GC-MS can be used as a PAT for process monitoring. This method is suitable to chemical profiling of volatile organic compounds (VOCs) emitted from microorganisms. Tetanus is a lethal disease caused by Clostridium tetani (C. tetani) bacterium and vaccination is an ultimate way to prevent this disease. In this paper, SPME fiber was used for the investigation of VOCs emerging from C. tetani during cultivation. Different types of VOCs such as sulfur-containing compounds were identified and some of them were selected as biomarkers for bioreactor monitoring during vaccine production. In the second step, the portable dynamic air sampling (PDAS) device was used as an interface for sampling VOCs by SPME fibers. The sampling procedure was optimized by face-centered central composite design (FC-CCD). The optimized sampling time and inlet gas flow rates were 10 min and 2 m L s -1 , respectively. PDAS was mounted in exhausted gas line of bioreactor and 42 samples of VOCs were prepared by SPME fibers in 7 days during incubation. Simultaneously, pH and optical density (OD) were evaluated to cultivation process which showed good correlations with the identified VOCs (>80%). This method could be used for VOCs sampling from off-gas of a bioreactor to monitoring of the cultivation process. Copyright © 2018. Published by Elsevier B.V.

  1. Analysis of the volatiles in the headspace above the plasmodium and sporangia of the slime mould (Physarum polycephalum) by SPME-GCMS

    OpenAIRE

    Kateb, Huda al; Costello, Ben de Lacy

    2013-01-01

    Solid phase micro-extraction (SPME) coupled with Gas Chromatography Mass Spectrometry (GC-MS) was used to extract and analyse the volatiles in the headspace above the plasmodial and sporulating stages of the slime mould Physarum Polycephalum. In total 115 compounds were identified from across a broad range of chemical classes. Although more (87) volatile organic compounds (VOCs) were identified when using a higher incubation temperature of 75oC, a large number of compounds (79) were still ide...

  2. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  3. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  4. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan; Lee, Dai Woon [Yonsei Univ., Seoul (Korea, Republic of); Hwang, Seung Man; Heo, Gwi Suk [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.