WorldWideScience

Sample records for split stirling cryogenic

  1. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    Science.gov (United States)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  2. Split-Stirling Cryogenic Refrigerators For Detector Cooling

    Science.gov (United States)

    Lehrfeld, Daniel

    1983-08-01

    Unfortunately, for user and manufacturer both, the closed-cycle cryogenic cooler to date has deserved its reputation as the "weak-link" in IR systems. When the cooler requires service at intervals of a few hundred hours at best, the quality of the system it serves is unfairly diminished. This paper addresses technological advances in the art of Stirling-cycle coolers which will increasingly cause that image of military cryocoolers to change for the better. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (tne first all-linear, military, production cooler) developed in Holland, is explained. Three new machines are discussed. Both 1/4 watt and 1 watt (nominal capacity) at 80°K linear-resonant, free-dispLacer Stirling coolers designed for thousands of hours of service-free operation are examined. The third machine is an advanced 1/4 watt at 80°K Stirling cooler incorporating the same component improvements in its free-displacer while utilizing a crankshaft-driven compressor. All three are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars. The technologies of linear-resonant compressor and free-displacer expanders as embodied in these machines is discussed in sufficient detail that the reasons for their superior performance will he clear.

  3. The design of a small linear-resonant, split Stirling cryogenic refrigerator compressor

    Science.gov (United States)

    Ackermann, R. A.

    1985-01-01

    The development of a small linear-resonant compressor for use in a 1/4-watt, 78K, split Stirling cryogenic refrigerator is discussed. The compressor contains the following special features: (1) a permanent-magnet linear motor; (2) resonant dynamics; (3) dynamic balancing; and (4) a close-clearance seal between the compressor piston and cylinder. This paper describes the design of the compressor, and presents component test data and system test data for the compressor driving a 1/4-watt expander.

  4. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  5. Split-Stirling-cycle displacer linear-electric drive

    Science.gov (United States)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.

    1983-01-01

    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  6. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle

    International Nuclear Information System (INIS)

    Dong, Hui; Zhao, Liang; Zhang, Songyuan; Wang, Aihua; Cai, Jiuju

    2013-01-01

    Cryogenic generation is one of the most important ways to utilize cold energy during LNG (liquefied natural gas) regasification. This paper fundamentally investigates LNG cryogenic generation with the Stirling cycle method based on previous studies. A basic process of LNG cryogenic generation with the Stirling cycle was presented initially with seawater and LNG as heat source and heat sink. And its thermodynamic analysis was performed to verify the theoretical feasibility of the Stirling cycle method. The generating capacity, the exergy efficiency and the cold energy utilization efficiency of the basic process were also calculated. Subsequently, the influences of evaporation pressure on net work, equipment performance and comprehensive efficiency of cold energy utilization were discussed and the effect of LNG mass flow as well as the ambient temperature was also studied. Finally an improved process of LNG cryogenic generation with Stirling cycle method combined with an air liquefaction process is proposed as feasibility in improvements of the basic process. - Highlights: • We propose a basic process of LNG cryogenic generation with the Stirling cycle. • Seawater and LNG were applied as heat source and heat sink of the basic process. • The max generating capacity of the basic process is 51 kWh/tLNG. • The max cold energy utilization efficiency of the basic process is 0.56. • We also discussed some feasibilities of optimization of the basic cycle

  7. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  8. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity

    International Nuclear Information System (INIS)

    Szczygieł, Ireneusz; Stanek, Wojciech; Szargut, Jan

    2016-01-01

    LNG (liquefied natural gas) delivered by means of sea-ships is pressurized and then regasified before its introduction to the system of pipelines. The utilization of cryogenic exergy of LNG for electricity production without combustion of any its portion is analyzed. For the conversion of LNG cryogenic exergy into electricity, the Stirling engine is proposed to be applied. The theoretical thermodynamic model of Stirling engine has been applied. This model is used to investigate the influence of pinch temperature in heat exchangers, engine compression ratio and dead volumes ratios on the thermodynamic parameters of the Stirling engine. The results of simulation represent the input data for investigations of thermodynamic performance of the proposed system. In order to evaluate the thermodynamic performance of the proposed process, an exergy analysis has been applied. The exergy efficiency and influence of design and operational parameters on exergy losses are determined for each of the proposed system configurations. The obtained results represent the background for advanced exergy-based analyses, including thermo-ecological cost. - Highlights: • Application of Stirling engine in LNG regasification. • Thermodynamic model of Stirling engine for cryogenic exergy recovery is applied. • Sensitivity analysis of operational parameters on system behaviour is applied. • Exergy analysis is conducted.

  9. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Mohammadi, Amir H.; Feidt, Michel; Pourkiaei, Seyed Mohsen

    2014-01-01

    Highlights: • A parametric investigation of irreversible Stirling cryogenic refrigerator cycles is presented. • Both internal and external irreversibilities are included in this study, moreover, heat capacities of external reservoirs are involved. • Multi-objective evolutionary algorithm based on NSGA-II approach is utilized. • Three robust decision making approaches are utilized to determine final optimum solution. - Abstract: The main aim of this research article is a parametric demonstration of irreversible Stirling cryogenic refrigerator cycles that includes irreversibilities such as external and internal irreversibilities. In addition, through this study, finite heat capacities of external reservoirs are considered accordingly. To reach the addressed goal of this research, three objective functions that include the input power of the Stirling refrigerator, the coefficient of performance (COP) and cooling load (R L ) have been involved in optimization process simultaneously. The first aforementioned objective function has to minimize; the rest objective functions, on the other hand, have to maximize in parallel optimization process. Developed multi objective evolutionary approaches (MOEAs) based on NSGA-II algorithm is implemented throughout this work. Moreover, cold-side’s effectiveness of the heat exchanger, hot-side’s effectiveness of the heat exchanger, heat source’s heat capacitance rate, heat sink’s capacitance rate, temperature ratio ((T h )/(T c ) ), temperature of cold side are assigned as decision variables for decision making procedure. To gain a robust decision, different decision making approaches that include TOPSIS, LINMAP and fuzzy Bellman–Zadeh are used. Pareto optimal frontier was determined precisely and then three final outputs have been gained by means of the mentioned decision making approaches

  10. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2006-01-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed

  11. Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage

    International Nuclear Information System (INIS)

    Longsworth, R.C.

    1993-08-01

    A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K

  12. Stirling cryocoolers: Trends in development

    International Nuclear Information System (INIS)

    Walker, G.

    1986-01-01

    Following a lengthy period of development, Stirling refrigerators have emerged as the preferred system for the miniature cryocoolers used in infrared night-vision, missile guidance systems and other low capacity cryogenic sensors. Single stage expansion integral and split-Stirling refrigerators having capacities of 1/4 to 1 watt at 80 K are in series volume production. They are characterised by increasing reliability (multi-thousand hours operation). Future preference is anticipated for split-Stirling systems with close tolerance seals replacing rubbing contact seals and linear electric motors increasingly preferred as the compressor drive. Present difficulties with the cooler/sensor interface and of fluid leakage will be overcome by manufacture of integrated cooler-sensor units welded leak-proof and having no provision for field servicing. Eventual production is anticipated of throw-away, radio-tube-like, cryocooler/sensor units capable of plugging-in to ambient temperature circuits. Control of compression speed in accordance with load demand will be routine. The use of multi-stage expansion Stirling cryocoolers for superconducting electronics is anticipated with the development of the high-temperature superconducting materials having critical temperatures near 20 K and operating temperatures near 10 K. Availability of a reliable, compact, relatively low cost, 10 K refrigerator would eliminate the need for liquid helium cooling and open possibilities for application of superconducting electronics on a broad front for diverse military and civil purposes

  13. RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics

    Science.gov (United States)

    Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny

    2017-05-01

    The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.

  14. Linear motor driven Stirling coolers for military and commercial applications

    International Nuclear Information System (INIS)

    Berry, R.

    1992-01-01

    This paper discusses the design and performance of a miniature, closed cycle, split stirling, cryogenic cooler that provides 1 watt of cooling at 80 K. The compressor uses two opposed linear motors to drive opposed pistons and the expander uses a pneumatically driven displacer. A single electronics module and compressor has been developed to drive three different expanders that have nominal cold cylinder diameters of 5, 8 and 13 mm

  15. Innovative Stirling-Cycle Cryocooler for Long Term In-Space Storage of Cryogenic Liquid Propellants, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this Phase II SBIR project we will build and test a stirling-cycle cryocooler and coolant circulating subsystem for use with broad area cooling (BAC) systems...

  16. Cool down time optimization of the Stirling cooler

    Science.gov (United States)

    Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.

    2017-12-01

    The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.

  17. Innovative Stirling-Cycle Cryocooler for Long Term In-Space Storage of Cryogenic Liquid Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous studies have concluded that increasing effectiveness of long-term storage of cryogenic liquid propellants, primarily LO2 and LH2, offers the largest single...

  18. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  19. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  20. Stirling Laboratory Research Engine: Preprototype configuration report

    Science.gov (United States)

    Hoehn, F. W.

    1982-02-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  1. Miniaturized stirling type cooler

    International Nuclear Information System (INIS)

    Pundak, N.

    1988-01-01

    This patent describes a cryogenic Stirling type cooler system, an axially extending casing, a compressor unit located within the casing and including a crankshaft extending transversely of the casing axis, an expander and expander connecting rod arranged co-axially in and with the casing the casing including a cover having an axis in coaxial relation with the crankshaft, the casing and cover forming a sealed housing for the compressor unit and crankshaft. The cover consists of a cup-shaped non-magnetic partition, a drive for the compressor unit comprising a D.C. brushless motor including a stator, a rotor and driving electronics. The rotor located within the cover in the sealed housing and coupled directly to the crankshaft, the crankshaft connected to the expander and compressor connecting rods, the stator located outwardly of an encircling the cover in co-axial relation with the rotor. The drive electronics located outwardly of the casing, whereby the rotor is located within the sealed housing in driving engagement with the crankshaft while the stator is located outside the sealed housing for driving the rotor so that the rotor supplies rotational movement to the crankshaft which is converted by the crankshaft cam for driving the expander and compressor connecting rod

  2. Cryogenic Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion...

  3. Generalized Stirling transform

    OpenAIRE

    Rahmani, Mourad

    2012-01-01

    In this paper, algorithms are developed for computing the Stirling transform and the inverse Stirling transform; specifically, we investigate a class of sequences satisfying a two-term recurrence. We derive a general identity which generalizes the usual Stirling transform and investigate the corresponding generating functions also. In addition, some interesting consequences of these results related to classical sequences like Fibonacci, Bernoulli and the numbers of derangements have been deri...

  4. The Stirling Project

    Science.gov (United States)

    1987-01-01

    Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.

  5. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  6. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  7. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    Science.gov (United States)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  8. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  9. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  10. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  11. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  12. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  13. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  14. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  15. Stirling machine operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. [Stirling Technology Co., Richland, WA (United States); Dudenhoefer, J.E. [Lewis Research Center, Cleveland, OH (United States)

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  16. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  17. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  18. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  19. Stirling numbers and integer partitions | Merca | Quaestiones ...

    African Journals Online (AJOL)

    In this paper, we prove that the Stirling numbers of both kinds can be written as sums over integer partitions. As corollaries, we rewrite some identities with Stirling numbers of both kinds without Stirling numbers. Keywords: Integer partitions, symmetric functions, Stirling numbers ...

  20. Fermionic relatives of Stirling and Lah numbers

    International Nuclear Information System (INIS)

    Schork, Matthias

    2003-01-01

    In this paper certain 'fermionic' Stirling numbers introduced recently are discussed. Roughly speaking, these numbers are obtained by taking the 'fermionic' limit q →-1 of the q-deformed Stirling numbers. The usual Stirling numbers correspond in this language to the 'bosonic' limit q → 1. It is shown that the fermionic Stirling numbers are given by binomial coefficients and that they satisfy the same relations as the undeformed Stirling numbers. The fermionic relatives of Lah numbers are also very briefly discussed

  1. Cryogenic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Fourches, N.; Abbon, P.; Delagnes, E.; Le Meur, L.P.

    1995-04-01

    This study presents the cryogenic electronics, which is used in high energy physics with appropriate device. It discuss their ability to hardening against ionization radiation and neutrons. Some partial results on the operation of microelectronics devices at cryogenic temperature are given. (TEC). 33 refs., 13 figs.

  2. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

    International Nuclear Information System (INIS)

    Hermes, Christian J.L.; Barbosa, Jader R.

    2012-01-01

    Highlights: ► A Peltier, a Stirling, and two vapor compression refrigerators were compared. ► Tests were carried out to obtain key performance parameters of the systems. ► The overall 2nd-law efficiency was splited to take into account the internal and external irreversibilities. ► The Stirling and vapor compression refrigeration systems presented higher efficiencies. ► The thermoelectric device was not at the same efficiency level as the other coolers. -- Abstract: The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32 °C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

  3. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  4. The Stirling engine

    International Nuclear Information System (INIS)

    Dunn, P.D.

    1989-01-01

    The Stirling engine can be used with any heat source including direct flame, heating from oil, gas, wood or coal combustors, by solar and by nuclear energy. As an alternative to conventional combustors fuels such as coal, oil, gas, vegetable waste can be combusted in a fluidized bed. The engine can be heated by coupling it directly to one of these sources of heat or it can be separated from the heat source and the heat transported by a heat pipe. There is clearly considerable flexibility in the choice of heat source. A major economic penalty is the need for a high temperature heat exchanger to transfer the heat to the engine working fluid from the heat source. Since in order to achieve good heat transfer a large surface area is needed and hence a complicated arrangement of small bore piping. Since the working fluid is not consumed an expensive substance such as helium can be used; however, if the power is to be extracted by a mechanical shaft it is necessary to design a seal between the engine body and the output shaft which will not allow any significant loss of helium. The seal problem is still one of the major technical difficulties in the development of Stirling engines using Helium or Hydrogen as the working fluid. For this reason interest in using air as the working fluid in lower speed engines has revived. 14 refs, 19 figs

  5. Embryo splitting

    OpenAIRE

    Karl Illmensee; Mike Levanduski

    2010-01-01

    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  6. Stirling cryocooler test results and design model verification

    International Nuclear Information System (INIS)

    Shimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1990-01-01

    This paper reports on progress in developing a long-life Stirling cycle cryocooler for space borne applications. It presents the results from tests on a preliminary breadboard version of the cryocooler used to demonstrate the feasibility of the technology and to validate the regenerator design code used in its development. This machine achieved a cold-end temperature of 65 K while carrying a 1/2 Watt cooling load. The basic machine is a double-acting, flexure-bearing, split Stirling design with linear electromagnetic drives for the expander and compressors. Flat metal diaphragms replace pistons for both sweeping and sealing the machine working volumes. In addition, the double-acting expander couples to a laminar-channel counterflow recuperative heat exchanger for regeneration. A PC compatible design code was developed for this design approach that calculates regenerator loss including heat transfer irreversibilities, pressure drop, and axial conduction in the regenerator walls

  7. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  8. Power sum identities with generalized Stirling numbers

    OpenAIRE

    Boyadzhiev, Khristo N.

    2009-01-01

    Several combinatorial identities are presented, involving Stirling functions of the second kind with a complex variable. The identities involve also Stirling numbers of the first kind, binomial coefficients and harmonic numbers.

  9. Modular Stirling Power System (MSPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  10. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  11. RHIC cryogenics

    Energy Technology Data Exchange (ETDEWEB)

    Iarocci, M.A. E-mail: iarocci@bnl.gov; Brown, D.; Sondericker, J.; Wu, K.C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  12. Regenerator optimization for stirling cycle refrigeration

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1994-01-01

    A cryogenic regenerator for a Stirling cycle is discussed by minimizing the entropy gain as the criterion of performance. Only the gas losses are treated here. The authors argue that the optimum design corresponds to uniform channel flow with minimum turbulence. The optimization depends upon minimizing the sum of three sources of entropy generation, those due to transverse and parallel heat conduction and that due to friction with the wall. This leads to criteria for the width, length, and velocity of the gas, which for helium become W= 1.6x10 -4 T O /(σP O ) cm, L= 6.7x10 -5 T O /(σ 2 P O ) cm, and v/C s = σ/2 respectively where σ is the ratio (entropy gain)/(entropy transferred), C s is sound speed, P O is the pressure in atmospheres, and T O is the ratio of temperature to room temperature. The thermal properties of the channel wall must then accommodate the heat flow of the gas without substantially increasing the loss fraction. That problem is reserved to another paper

  13. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  14. Status of an advanced radioisotope space power system using free-piston Stirling technology

    International Nuclear Information System (INIS)

    White, M.A.; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-01-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  15. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  16. Micro CHP con motores Stirling

    OpenAIRE

    Aranceta Aguirre, Francisco Javier

    2017-01-01

    Situación actual dela legislación y la tecnología de micro CHP con especial enfoque en la utilización de motores stirling. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.

  17. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  18. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  19. Idealization of The Real Stirling Cycle

    OpenAIRE

    Červenka Libor

    2016-01-01

    The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT...

  20. Seal-less cryogenic expander

    International Nuclear Information System (INIS)

    Faria, L.E.; Christopher, E.H.

    1987-01-01

    In an expander for use in a split Stirling cycle refrigeration system of the type wherein a displacer moves with reciprocating motion inside an expander housing, and wherein a plunger force and a regenerator force are formed on the displacer, the plunger force cyclically varying and having a time of minimum and maximum plunger force amplitude, and the regenerator force cyclically varying and having a time of minimum and maximum regenerator force amplitude, the improvement is described comprising: (a) means for maintaining displacer forces, such that the maximum plunger force amplitude is substantially equal to the maximum regenerator force amplitude; and (b) means for adjusting a time difference, the time difference being the time between the time of maximum plunger force and the time of maximum regenerator force such that a measure of the cooling power of the refrigeration system is maximized

  1. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  2. Mod II Stirling engine overviews

    Science.gov (United States)

    Farrell, Roger A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given.

  3. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  4. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  5. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  6. Germanium detector with Stirling cryocooler for lunar gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Masanori; Hasebe, Nobuyuki; Hiramoto, Takuji; Miyachi, Takashi; Murasawa, Satoshi; Okada, Hiroyuki; Okudaira, Osamu; Yamashita, Naoyuki; Berezhnoy, Alexey A.; Shibamura, Eido; Takashima, Takeshi; D'Uston, Claude; Narasaki, Katsuhiro; Tsurumi, Keisuke; Kaneko, Hiroshi; Nakazawa, Michio; Mori, Kunishiro; Fujii, Masayuki

    2005-01-01

    The gamma-ray spectrometer (GRS) of Japanese lunar polar orbiter SELENE uses a Ge detector for the first time on a lunar mission. This spectrometer will observe lunar gamma rays for 1 year or more to determine chemical composition over the entire lunar surface. For cooling the Ge detector, we adopted a Stirling cryocooler. The SELENE GRS flight model was completed and an energy resolution of 3.0 keV (FWHM) at 1.33 MeV was achieved. This paper describes the details of the detector-cryogenic system and its performance

  7. Development of a small Stirling cycle cooler for spaceflight applications

    International Nuclear Information System (INIS)

    Werrett, S.T.; Bradshaw, T.W.; Davey, G.; Delderfield, T.W.; Peskett, G.D.

    1986-01-01

    This paper describes the development, from a previously proven design approach, of a robust and simple Stirling cycle cooler with long life potential. The need for a closed cycle refrigerator for use in a spacecraft borne infra-red radiometer is explained. The refrigerator is to supply 1 watt of cooling at 80 K for less than 80 watts of input power, be able to survive the launch environment and subsequently run for 26000 hours. Clearance seals achieved with a spring suspension developed from earlier space proven mechanisms have led to the production of a linear split Stirling cycle machine with no apparent life limiting features. A servo control system, in conjunction with moving coil motors and LVDT position sensors, permits running of balanced pairs of mechanisms. The working fluid, helium at a pressure of 1.2 MPa, is contained within titanium bodies having gold O-ring seals. A vacuum bakeout procedure, based upon experience and outgassing trials, reduces residual contaminant release to acceptable levels. A prototype refrigerator has been subjected to a vibration test and has subsequently run for 6000 hours with no detectable change in performance

  8. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  9. Advanced Stirling Regenerator and Heat Exchanger Assembly for Radioisotope Stirling Space Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SCCAQ Energy, LLC (SCCAQ), in collaboration with Temple University and Infinia Technology Corporation, proposes to develop an Advanced Stirling Regenerator and Heat...

  10. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  11. A miniature thermoacoustic stirling engine

    International Nuclear Information System (INIS)

    Zhou Gang; Li Qing; Li Zhengyu; Li Qiang

    2008-01-01

    A miniature thermoacoustic stirling engine was simulated and designed, having overall size of length 0.65 m and height of 0.22 m. The acoustic field generated in this miniature system has been described and analyzed. Some efforts had been paid to coupling and matching, and a miniature thermoacoustic engine and some extra experimental components have been constructed. Analysis and experimental results showed that to obtain better performance of the engine, the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power. It provided an effective way to miniaturize the thermoacoustic stirling heat engine. The experimental results showed that the engine had low onset temperature and high pressure amplitude and ratio. With the filling helium gas of 2 MPa and heating power of 637 W, the maximal peak to peak pressure amplitude and pressure ratio reached 2.2 bar and 1.116, respectively, which was able to drive a refrigerator, a heat pump or a linear electrical generator. The operating frequency of the engine was steady at 282 Hz

  12. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  13. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  14. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  15. General-purpose germanium gamma-ray detector cooled by two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Taguchi, Yoshito; Uchida, Toshio.

    1995-01-01

    In the conventional Ge γ-ray detector, it takes much time to keep liquid nitrogen in a cryostat of the detector. Recently, high-purity Ge-spectrometers cooled by a closed-cycle cryogenic refrigerator were developed. However, a noise reduction system to repress the vibration generated by such refrigerator became necessary, resulting to make it difficult to miniaturize the detector system equipped with the refrigerator. Thus, the authors attempted to develop a small, electrically cooled Ge γ-ray detector with a stirling refrigerator. Since the cooling capacity of the stirling type is low, a general-purpose electrically cooled Ge detector, of which relative efficiency of detection is 14% was developed. The energy resolution of this detector was just the same as that of a commercially obtainable detector cooled by liquid nitrogen. Since two stirling refrigerators were used for cooling down the detector element, the detector was small, light and portable. This Ge detector was found applicable to various γ-ray spectroscopy. (M.N.)

  16. Automotive Stirling engine: Mod II design report

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  17. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  18. Simple and Clear Proofs of Stirling's Formula

    Science.gov (United States)

    Niizeki, Shozo; Araki, Makoto

    2010-01-01

    The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.

  19. Milliwatt Radioisotope Stirling Convertor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sest, Inc. proposes to perform a detailed evaluation at the both convertor and component levels of a small, low electrical output power (50 to 500 mW) Stirling cycle...

  20. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  1. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  2. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  3. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  4. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  5. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Microcomputer simulation of Stirling cryocoolers

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, O.R.

    1989-01-01

    A design aid for Stirling cryocoolers is described. The design aid is a digital simulation program for use on microcomputers. It is written in the Fortran 77 language and is especially designed to be easy to use with no specialist expertise required and minimal training. The program is versatile in that it can be used for all known types and variations of Striling cryocoolers. It is quick and, in the comparisons with practical machines accomplished to date, is as accurate in predicting cryocooler performance as the more sophisticated simulation programmes. Copies of the program including a graphics package and an accompanying manual are available at nominal cost. Technical support and consulting assistance to implement the program can be provided

  7. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  8. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  9. James Stirling Regionalismo y modernidad

    Directory of Open Access Journals (Sweden)

    Javier de Esteban Garbayo

    2015-05-01

    Full Text Available ResumenEn los años treinta, la arquitectura moderna se había introducido en los más remotos lugares del mundo enfrentándose con la infinita idiosincrasia de lo local, y al mismo tiempo, el arquitecto, sintiendo las limitaciones de su estilo e intentando ampliar su vocabulario, se embarcó en un proceso de difusión, asimilación y personalización.La idea de una renovada época después de la posguerra británica, sería compartida por una joven generación de arquitectos con el fin de encontrar una nueva forma de modernidad.Si en sus proyectos domésticos de mediados de los cincuenta, James Stirling partió de una aproximación al regionalismo y a la 'tradición funcional' con el fin de renovar el lenguaje moderno, no abandonaría la idea 'programática' inicial de entender la arquitectura desde una consistencia formal y una lógica que combinaba 'una síntesis común del pasado reciente y una certera actitud hacia el futuro'. AbstractThirties, modern architecture had percolated into remote corners of the world, encountering the infinite idiosyncrasies of locality, and, at the same time, Architects, feelings the limitations of their style and becoming intent upon extending their vocabulary, embarked upon a process of diffusion, assimilation and personalitation.The idea of a renewed period after British postwar, was shared for a new young architects generationto find a new way of modernity.While in his mid fifties housing projects, James Stirling approached to 'regionalism' and 'the functional tradition' to renew the modern language, he wouldn't reject the programmatic idea to understand architecture from a logic and formal consistency that combine 'a common synthesis of the recent past and a certain attitude toward the future'.

  10. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  11. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  12. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-05-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  13. Analytical model for Stirling cycle machine design

    International Nuclear Information System (INIS)

    Formosa, F.; Despesse, G.

    2010-01-01

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

  14. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  15. A compendium of solar dish/Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Stine, W.B. [California State Polytechnic Univ., Pomona, CA (United States). Dept. of Mechanical Engineering; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  16. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  17. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    International Nuclear Information System (INIS)

    Nakano, K; Yumoto, K; Hiratsuka, Y

    2015-01-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper. (paper)

  18. Desarrollo de motores stirling para aplicaciones solares

    OpenAIRE

    García Menéndez, David

    2013-01-01

    Los sistemas de conversión termosolar basados en motores Stirling figuran entre las líneas de investigación actuales que pretenden contribuir al uso racional de la energía y al desarrollo sostenible. La presente Tesis Doctoral tiene como objetivo proporcionar criterios de análisis, diseño, fabricación y ensayo útiles para el desarrollo de motores Stirling alimentados con energía solar, a diferentes niveles de salto térmico. La metodología empleada está basada principalmente en técnicas...

  19. Analisis Pembangkit Listrik dengan Generator Stirling

    OpenAIRE

    Harry Iqbal Al-Fikri

    2014-01-01

    - In this study, using the Stirling Generator TE specification (temperature hot) = 350 C = 623 K, TC (Cold Temperature) = 50 C = 313 K, fluid work = 286 J / (Kg.K), and the angle between the cylinder expansion cylinder compression (dx) = 90 , the piston diameter (D) = 51 m = 0.051 m, length of step / Stroke (S) = 54 mm = 0.054 m, volume expansion (VE) and the compression volume (Vc) = 3.086 x 10 -4 m3, Stirling Speed ??= 750 rpm (assumed), maximum pressure = 325,266.95 Pa, Power = 401.18 Wa...

  20. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  1. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  2. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  3. The Stirling Lesson-Sampling Instruments.

    Science.gov (United States)

    White, D. R.

    A long-term Leverhulme Research Project was established at Stirling University in 1970 to investigate the potential of microteaching as a major ingredient in the preparation of graduate high school teachers in Scotland. Members of the research team developed systematic observation schedules for each of the skills, in order to sharpen the focus of…

  4. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  5. Measurements with a recuperative superfluid stirling refrigerator

    International Nuclear Information System (INIS)

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1996-01-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9 % 3 He- 4 He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed

  6. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  7. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  8. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  9. Developments for future implementation in Dish-Stirling technology

    OpenAIRE

    Monne, Carlos; Bravo, Yolanda; Alonso, Sergio; Moreno, Francisco; Munoz, Mariano

    2013-01-01

    The dish-Stirling technology for power generation, using a Stirling engine fed with a renewable energy such as solar, means a promising development regarding electricity generation. The dish-Stirling technology presents the highest efficiency, around 30%, in relation to other solar energy generation systems. However the technology status has not achieved enough advancement to be competitive with other renewable energy technologies. A state-of-the art review has been carried out in order to id...

  10. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-02-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed

  11. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-06-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  12. Development of 1 kW Stirling cryocooler using a linear compressor

    Science.gov (United States)

    Ko, J.; Kim, H.; Hong, Y. J.; Yeom, H.; In, S.; Park, S. J.

    2015-12-01

    Cryogenic cooling systems for HTS electric power devices require a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed a dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of the fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has a gamma-type configuration. The piston and displacer are supported with a flexure spring. A slit-type heat exchanger is adopted for the cold and warm-end, and the generated heat is rejected by cooling water. In the cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. The developed cryocooler reaches 47.8 K within 23.4 min. with no-load. Heat load tests shows a cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP.

  13. MODELLING AND FAILURE ANALYSIS OF FLEXURE SPRINGS FOR A STIRLING CRYOCOOLER

    Directory of Open Access Journals (Sweden)

    RAJESH V. R.

    2017-04-01

    Full Text Available In the range of milliwatt to a few watts cooling capacity, Stirling cycle and pulse tube coolers are most suitable for producing cryogenic temperatures owing to their eco-friendliness, high efficiency, cooling capacity to mass ratio etc. The compressor of a Stirling cooler is powered by a linear motor. The power piston of the cooler is held in position and moves to and fro with the support of so called flexure springs or flexure bearings. Flexures avoid direct contact between moving parts of the compressor of the cooler. Thus, if designed adequately to withstand fatigue, flexure bearings can easily outlast rolling element bearings and slider bearings. In this work, a computational analysis is used to study the performance of flexure spring by varying the geometrical parameters. Three of the most common spring materials namely, SS304, beryllium copper and spring steel are considered for analysis. The analysis was made by varying the parameters like spiral sweep angle, slot width, number of spirals and disc thickness. The influence of each of these parameters on the fatigue life of the spring has been investigated. The results suggest that flexure springs of three spiral arms would be the ideal choice for the selected cryocooler. The variation of stress developed with respect to different design parameters and fatigue damage factor are presented graphically.

  14. Development of 1 kW Stirling cryocooler using a linear compressor

    International Nuclear Information System (INIS)

    Ko, J; Kim, H; Hong, Y J; Yeom, H; In, S; Park, S J

    2015-01-01

    Cryogenic cooling systems for HTS electric power devices require a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed a dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of the fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has a gamma-type configuration. The piston and displacer are supported with a flexure spring. A slit-type heat exchanger is adopted for the cold and warm-end, and the generated heat is rejected by cooling water. In the cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. The developed cryocooler reaches 47.8 K within 23.4 min. with no-load. Heat load tests shows a cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP. (paper)

  15. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  16. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  17. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  18. Assessment of Stirling Technology Has Provided Critical Data Leading Toward Flight Readiness of the Stirling Converter

    Science.gov (United States)

    Thieme, Lanny G.

    2001-01-01

    The NASA Glenn Research Center is supporting the development of a Stirling converter with the Department of Energy (DOE, Germantown, Maryland) for an advanced Stirling Radioisotope Power System (SRPS) to provide spacecraft onboard electric power for NASA space science missions. A key technology assessment completed by Glenn and DOE has led to the SRPS being identified as a high-efficiency power source for such deep space missions as the Europa Orbiter and the Solar Probe. In addition, the Stirling system is now being considered for unmanned Mars rovers, especially where mission profiles may exclude the use of photovoltaic power systems, such as exploration at high Martian latitudes or for missions of long duration. The SRPS efficiency of over 20 percent will reduce the required amount of radioisotope by more than a factor of 3 in comparison to current radioisotope thermoelectric generators. This significantly reduces radioisotope cost, radiological inventory, and system cost, and it provides efficient use of scarce radioisotope resources. In support of this technology assessment, Glenn conducted a series of independent evaluations and tests to determine the technology readiness of a 55-We Stirling converter developed by Stirling Technology Company (Kennewick, Washington) and DOE. Key areas evaluated by Glenn included: 1) Radiation tolerance of materials; 2) Random vibration testing of the Stirling converter in Glenn's Structural Dynamics Lab to simulate operation in the launch environment; 3) Electromagnetic interference and compatibility (EMI/EMC) of the converter operating in Glenn's EMI lab; Independent failure modes, effects, and criticality analysis, and life and reliability 4. Independent failure modes, effects, and criticality analysis, and life and reliability assessment; and 5) SRPS cost estimate. The data from these evaluations were presented to NASA Headquarters and the Jet Propulsion Laboratory mission office by a joint industry/Government team

  19. Aural stealth of portable cryogenically cooled infrared imagers

    Science.gov (United States)

    Veprik, Alexander; Vilenchick, Herman; Broyde, Ramon; Pundak, Nachman

    2006-05-01

    Novel tactics for carrying out military and antiterrorist operations calls for the development of a new generation of portable infrared imagers, the focal plane arrays of which are maintained at a cryogenic temperature. The rotary Stirling cryogenic engines providing for this cooling are usually mounted directly upon the light thin-walled imager frame, which is used for optical alignment, mechanical stability and heat sinking. The known disadvantage of this design approach is that the wideband vibration export produced by the cooler results in structural resonances and therefore in excessive noise radiation from the above imagers. The "noisy" thermal imager may be detected from quite a long distance using acoustic equipment relying upon a high-sensitive unidirectional microphone or aurally spotted when used in a close proximity to the opponent force. As a result, aural stealth along with enhanced imagery, compact design, low power consumption and long life-times become a crucial figure of merit characterising the modern infrared imager. Achieving the desired inaudibility level is a challenging task. As a matter of fact, even the best examples of modern "should-be silent" infrared imagers are quite audible from as far as 50 meters away even when operating in a steady-state mode. The authors report on the successful effort of designing the inaudible at greater then 10 meters cryogenically cooled infrared imager complying with the stringent MIL-STD-1774D (Level II) requirements.

  20. Microminiature rotary Stirling cryocooler for compact, lightweight, and low-power thermal imaging systems

    Science.gov (United States)

    Filis, Avishai; Bar Haim, Zvi; Pundak, Nachman; Broyde, Ramon

    2009-05-01

    Novel compact and low power consuming cooled infrared thermal imagers as used in gyro-stabilized payloads of miniature unmanned aerial vehicles, Thermal small arms sights and tactical night vision goggles often rely on integral rotary micro-miniature closed cycle Stirling cryogenic engines. Development of EPI Antimonides technology and optimization of MCT technology allowed decreasing in order of magnitudes the level of dark current in infrared detectors thus enabling an increase in the optimal focal plane temperature in excess of 95K while keeping the same radiometric performances as achieved at 77K using regular technologies. Maintaining focal plane temperature in the range of 95K to 110K instead of 77K improves the efficiency of Stirling thermodynamic cycle thus enlarging cooling power and enabling the development of a mini micro cooler similar to RICOR's K562S model which is three times smaller, lighter and more compact than a standard tactical cryocooler like RICOR's K508 model. This cooler also features a new type of ball bearings and internal components which were optimized to fit tight bulk constraints and maintain the required life span, while keeping a low level of vibration and noise signature. Further, the functions of management the brushless DC motor and temperature stabilization are delivered by the newly developed high performance sensorless digital controller. By reducing Dewar Detector thermal losses and increasing the focal plane temperature, longer life time operation is expected as was proved with RICOR's K508 model. Resulting from this development, the RICOR K562S model cryogenic engine consumes 1.2 - 3.0 WDC while operating in the closed loop mode and maintaining the typical focal plane arrays at 200-100K. This makes it compatible with very compact battery packages allowing further reduction of the overall thermal imager weight thus making it comparable with the compatible uncooled infrared thermal imager relying on a microbolometer detector

  1. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  2. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  3. Construction of a thermoacoustic Stirling cooler

    International Nuclear Information System (INIS)

    Ueda, Yuki; Biwa, Tetsushi; Yazaki, Taichi; Mizutani, Uichiro

    2003-01-01

    An efficient thermoacoustic prime mover has been built by Backhaus and Swift (Nature 339 (1999) 335). They have demonstrated that this engine produces an acoustic power with the thermal efficiency of 30%. We succeed in developing a thermoacoustic Stirling cooler as its application by inserting a regenerator inside the prime mover. Since this cooler has no moving parts and has a potential to be an efficient device, it is a powerful tool to generate low temperatures

  4. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  5. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  6. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  7. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  8. Single-piston alternative to Stirling engines

    International Nuclear Information System (INIS)

    Glushenkov, Maxim; Sprenkeler, Martin; Kronberg, Alexander; Kirillov, Valeriy

    2012-01-01

    Highlights: ► Thermodynamic analysis of an unconventional heat engine. ► The engine has a number of advantages compared to state-of-the-art Stirling engines. ► The engine can to be fuelled with “difficult” fuels and used for micro-CHP systems. ► The energy conversion efficiency can be as high as 40–50%. ► A prototype of the engine was demonstrated. -- Abstract: Thermodynamic analysis of an unconventional heat engine was performed. The engine studied has a number of advantages compared to state-of-the-art Stirling engines. The main advantage of the engine proposed is its simplicity. A power piston is integral with a displacer and a heat regenerator. It allows solving the problem of the high-temperature sealing of the piston and the displacer typical of all types of Stirling engines. In addition the design proposed provides ideal use of the displacer volume eliminating heat losses from outside gas circuit. Both strokes of the piston are working ones in contrary to any other types of piston engines. The engine can be considered as maintenance-free as it has no piston rings or any other rubbing components requiring lubrication. The only seal is contactless and wear free. It is located in the cold part of the cylinder. As a result the leakage rate in operation can be one-two orders of magnitude as small as that in Stirling engines. Balancing of the engine is much easy compared to Stirling engines with two reciprocating masses because of the only moving part inside the engine cylinder. The engine suits ideally to be fuelled with “difficult” fuels such as bio oil and can be used as a prime mover for micro-CHP systems. The thermodynamic model developed incorporates non-ideal features of the cycle, such as specific regenerator efficiency, dead volumes and other geometrical parameters of the engine. The model shows that the energy efficiency is highly sensitive to regenerator performance. For realistic geometric and operating parameters and the

  9. Performance of the Southern California Edison Company Stirling dish

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C.W. [Southern California Edison Co., Rosemead, CA (United States); Stone, K.W. [Mako Enterprises, Huntington Beach, CA (United States)

    1993-10-01

    McDonnell Douglas Astronautics Company (MDAC) and United Stirling AB of Sweden (USAB) formed a joint venture in 1982 to develop and produce a Stirling dish solar generating system. In this report, the six year development and testing program continued by the Southern California Edison Company (SCE) is described. Each Stirling dish module consists of a sun tracking dish concentrator developed by the MDAC and a Stirling engine driven power conversion unit (PCU) developed by USAB. The Stirling dish system demonstrated twice the peak and daily solar-to-electric conversion efficiency of any other system then under development. This system continues to set the performance standard for solar to electric systems being developed in the early 1990`s. Test data are presented and used to estimate the performance of a commercial system.

  10. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  11. Impact Testing of a Stirling Converter's Linear Alternator

    Science.gov (United States)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  12. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  13. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  14. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  15. Adsorption in cryogenics

    International Nuclear Information System (INIS)

    Ravex, A.

    1989-01-01

    There are two main fields for application of physical adsorption in cryogenics: cryopumping and refrigeration. Cryopumping has known many developments but is now almost industrial. Basic principles, applications and realizations are presented, for instance, in nuclear fusion and particle physics. For refrigeration developments and realizations are rare but present potential space applications [fr

  16. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  17. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  18. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  19. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  20. Accomplishments in free-piston stirling tests at NASA GRC

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future

  1. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  2. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  3. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  4. CRYOGENIC PROCESSES IN LOESS

    Directory of Open Access Journals (Sweden)

    V. N. Konishchev

    2017-01-01

    Full Text Available This paper presents a new approach to the analysis of the genetic nature of the mineral substance of loessial rocks. At the present time, the prevailing view on this issue is the eolian accumulation of loess, while the influence of other factors of formation has not been practically taken into account. However, loess accumulation can be explained by other mechanisms, e.g., active processes of cryogenic weathering under a very harsh climate. The latter concept is based on the results of analysis of wedge-shaped structures in loess thickness, as well as numerous data of spore-pollen, microfaunistic, and other types of analysis. Further developing concepts of loess formation, the authors made an attempt to assess the degree of influence of cryogenic processes on the composition and structure of loess. The proposed method is based on a differentiated analysis of the distribution of the main rock-forming minerals (quartz and feldspars along the granulometric spectrum. Two criteria are proposed − the coefficient of cryogenic contrast and the heavy fraction coefficient (i.e., the coefficient of distribution of heavy minerals − which allow determining the degree of participation of cryogenic processes, as well as aeolian and aqueous sedimentation, in the formation of loessial rocks. This method was used to study two sections of loessial thickness − in the south of the Russian Plain and within the Loess Plateau of China. The results of the study revealed the role of cryogenic factors in the formation of the composition of the loess horizons of soil-loess sequences of different territories. Particularly clearly the effect of cryogenesis was manifested in the loess section in the south of the Russian Plain. In the section of the Loess Plateau, only the youngest deposits of the last formation stage are affected by cryogenesis. It follows that not only within the long-term periglacial permafrost zone, but also under the conditions of seasonal freezing

  5. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  6. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Dawson, R.; Blue, B.; Dunn, P.

    1993-12-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor primary lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  7. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1995-01-01

    In 1982 McDonnell Douglas Aerospace (MDA) and United Stirling AB (USAB) of Sweden formed a joint venture to develop and market a solar Stirling dish system. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing were characterized and modeled into a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing, and other maintenance outage time, operation and maintenance (O and M) costs, and equipment purchase cost. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  8. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1993-01-01

    In 1982 McDonnell Douglas Aerospace Space System (MDA-SS) and United Stirling AB of Sweden formed a joint venture to develop and market a solar Stirling dish unit. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing have been characterized and modeled in a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing and other maintenance outage time, operation and maintenance (O and M) costs and other cost models. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  9. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  10. Isotope powered stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. copyright 1995 American Institute of Physics

  11. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  12. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. Variable Conductance Heat Pipes for Radioisotope Stirling Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high temperature variable conductance heat pipe (VCHP) backup radiator, and integrate it into a Stirling radioisotope...

  15. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    R V Rao

    ; teaching– learning-based optimization algorithm. ... of an endoreversible Stirling heat engine and used finite time thermodynamics to optimize the ... mutation probability, real-parameter SBX parameter and real-parameter mutation parameter.

  16. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...... engines is, that the combustion of bio-fuels and transfer of the heat from the combustion gases to the Stirling engine need much more space than for natural gas as fuel. Because of the large differences in specific heat transfer on the inside and the outside of the heater tubes, the specific power......The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...

  17. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  18. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  19. White Paper on Dish Stirling Technology: Path Toward Commercial Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Stechel, Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Becker, Peter [Stirling Energy Systems, Scottsdale, AZ (United States); Messick, Brian [Stirling Energy Systems, Scottsdale, AZ (United States)

    2016-07-01

    Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.

  20. Normal ordering problem and the extensions of the Stirling grammar

    Science.gov (United States)

    Ma, S.-M.; Mansour, T.; Schork, M.

    2014-04-01

    The purpose of this paper is to investigate the connection between context-free grammars and normal ordered problem, and then to explore various extensions of the Stirling grammar. We present grammatical characterizations of several well known combinatorial sequences, including the generalized Stirling numbers of the second kind related to the normal ordered problem and the r-Dowling polynomials. Also, possible avenues for future research are described.

  1. Linear Generator for a Free Piston Stirling Engine

    OpenAIRE

    OROS (POP) Teodora Susana; VADAN Ioan; POP Radu; BRAD Claudiu

    2014-01-01

    In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM) simulation of magnetic field. The linear generator design starts with the characteristics of the rare e...

  2. q-analogs of the generalized Stirling and Bell numbers

    International Nuclear Information System (INIS)

    Mendez, M; Rodriguez, A

    2008-01-01

    Generalized Stirling numbers appear in a natural way as the coefficients of the normal ordering of a word in the Heisenberg-Weyl algebra of bosonic creation and annihilation operators. We introduce a new combinatorial model for the study of the q-analogs of the generalized Stirling numbers. Using this combinatorial model we obtain explicit formulas, recursive formulas and generating functions for those q-generalized Stiling numbers

  3. Development of a Theoretical Decoupled Stirling Cycle Engine

    OpenAIRE

    Cullen, Barry; McGovern, Jim

    2009-01-01

    The Stirling cycle engine is gaining increasing attention in the current energy market as a clean, quiet and versatile prime mover for use in such situations as solar thermal generation, micro cogeneration and other micro distributed generation situations. A theoretical Stirling cycle engine model is developed. Using a theoretical decoupled engine configuration in which working space swept volume, volume variation, phase angle and dead space ratio are controlled via a black-box electronic con...

  4. Superfluid Stirling-cycle refrigeration below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1991-01-01

    A new method for cooling below 1 K, the superfluid Stirling cycle, uses the gaslike thermodynamic properties of the 3 He solute in a superfluid 3 He- 4 He solution. The first prototype superfluid Stirling-cycle refrigerator cools to 0.6 K from a starting temperature of 1.2 K, with cooling powers at the lowest temperatures of a few tens of microwatts. The cycle works in both classical-gas and Fermi-gas regimes

  5. Thermodynamic optimization of a Stirling engine

    International Nuclear Information System (INIS)

    Campos, M.C.; Vargas, J.V.C.; Ordonez, J.C.

    2012-01-01

    A Stirling engine configuration consisting of two cylinders, a regenerator and a sliding disc actuating mechanism (“swashplate”) is considered in this paper. A mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer accounting for variable heat transfer coefficients, is developed. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance in the search for optimal parameters that lead to maximum cycle efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the two-way maximized system efficiency, η max,max , occurs when two system characteristic parameters, the ratio between the total swept volume during the expansion, and the total swept volume, φ, and the ratio between the heat transfer area of the hot side heat exchanger and the total heat exchange area, y, are optimally selected, i.e., (φ,y) opt ≅(0.5,0.4). The two-way maximized cycle efficiency found with respect to the optimized parameters is sharp, in the sense that a 225% variation of the calculated efficiency values was observed within the range of tested configurations in this study, and “robust” (i.e., relatively insensitive) to the variation of several parameters, thus stressing the importance to be considered in actual design. It is also found that the twice-maximized cycle efficiency and the total engine work output increase monotonically with the temperature of the hot source, T h . As a result, the model is expected to be a useful tool for simulation, design, and optimization of Stirling engines. -- Highlights: ► We present a model for the thermodynamic optimization of a Stirling engine. ► The system

  6. Safety Analysis for a Radioisotope Stirling Generator

    International Nuclear Information System (INIS)

    William D. Richins; Jeffrey M. Lacy; Stephen R. Novascone; Barbara H. Dolphin

    2007-01-01

    The Idaho National Laboratory INL is conducting safety analyses of Radioisotope Stirling Generators for the Department of Energy (NE-50) to support the use of these devices as terrestrial power sources. These systems are electrical power generators converting thermal energy from plutonium (238Pu) decay to electrical energy via a Stirling cycle generator. The design and function are similar to the RTG (Radioisotope Thermoelectric Generator) used in space missions since the early 1960's, with a more efficient Stirling cycle generator replacing the proven thermoelectric converter. The subject generator is the product of a collaborative effort by Lockheed Martin, Infinia, and the Glenn Research Center. This paper discusses the methods the INL is employing in the safety analysis effort, along with the software tools, lessons learned, and results. The overall goal of our safety analyses is to determine the probability of an accidental plutonium release over the life of the generator. Historical accident rates for various storage and transportation modes were investigated using event tree methods. Source terms were developed for these accidents including primarily impact, fire, and creep rupture. A negative result was defined as rupture of the tantalum alloy containment vessel surrounding the encapsulated plutonia pellet. Damage due to identified impact accidents was evaluated using non-linear finite element software tools. Material models, gathered from a wide variety of sources, included strain-rate and temperature dependencies on yield strength, strain hardening, and rupture. The overall simulation results predicted by our software tools will be validated by impact testing. Results from deterministic impact, fire, and creep rupture analyses were integrated into the probabilistic (Monte Carlo) risk assessment by correlation functions relating accident parameters to component damage. This approach presented challenges, which are addressed. Other significant issues

  7. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  8. Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2007-01-01

    The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.

  9. Proceedings of cryogenic optical systems and instruments IV

    International Nuclear Information System (INIS)

    Melugin, R.K.

    1990-01-01

    This book contains the proceedings of Cryogenic Optical systems and Instruments IV. Topics covered include: Cryogenic System Design and Optical Technology; Cryogenic Instruments, Sensors, and Detectors; Space Cryogenic Dewars and Coolers; and Cryogenic Mechanisms, Testing, and Structures

  10. A Cryogenic Flow Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  11. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  12. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  13. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  14. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  15. Creep rupture behavior of Stirling engine materials

    Science.gov (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  16. Congeneration system with a Stirling engine

    International Nuclear Information System (INIS)

    Meijer, R.J.; Meijer, E.J.; Godett, T.M.

    1991-01-01

    This patent describes a cogeneration system for producing process heat for useful purposes and electric energy. It comprises an electric generator; a Stirling cycle engine having an output shaft operatively coupled to the generator for driving the generator, the engine including at least one internal fuel combustor; means for circulating a cooling liquid about the generator and engine to extract heat therefrom; an exhaust system coupled with the engine for exhausting combustion gases from the engine, the exhaust system including a condensing heat exchanger for cooling the combustion gases below the condensing, temperature of the water vapor in the exhaust gases; means for directing the cooling liquid around the condensing heat exchanger to extract heat therefrom and heat the liquid; and means for directing the cooling liquid for useful purposes

  17. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  18. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  19. POTENZIALITA' DELLA MICROCOGENERAZIONE E PROGETTAZIONE DI UN MICROCOGENERATORE A CICLO STIRLING

    OpenAIRE

    MARCA, FEDERICO

    2012-01-01

    MICROCHP ANALYSIS, DEVELOPMENT AND TESTING OF A MICROCHP STIRLING ENGINE OF 1 KW POWER. ANALISI DEL POTENZIALE DELLA MICROCOGENERAZIONE IN AMBITO CIVILE E DOMESTICO, E PROGETTAZIONE E REALIZZAZIONE DI UN MICROCOGENERATORE A CICLO STIRLING DA 1 KW ELETTRICO.

  20. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  1. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  2. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  3. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  4. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    OpenAIRE

    Chieh-Li Chen; Chia-En Ho; Her-Terng Yau

    2012-01-01

    This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collec...

  5. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  6. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  7. Cryogenics maintenance strategy

    Science.gov (United States)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  8. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  9. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  10. Heat transfer measurements for Stirling machine cylinders

    Science.gov (United States)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

  11. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    International Nuclear Information System (INIS)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-01-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics

  12. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  13. Linear Resonance Compressor for Stirling-Type Cryocoolers Activated by Piezoelectric Stack-Type Elements

    International Nuclear Information System (INIS)

    Sobol, S; Grossman, G

    2015-01-01

    A novel type of a PZT- based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers was developed theoretically and built practically during this research. A resonance operation at relatively low frequency was achieved by incorporating the piezo ceramics into the moving part, and by reducing the effective piezo stiffness using hydraulic amplification. The detailed concept, analytical model and the test results of the preliminary prototype were reported earlier and presented at ICC17 [2]. A fine agreement between the simulations and experiments spurred development of the current actual compressor designed to drive a miniature Pulse Tube cryocooler, particularly our MTSa model, which operates at 103 Hz and requires an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. The paper concentrates on design aspects and optimization of the governing parameters. The small stroke to diameter ratio (about 1:10) allows for the use of a composite diaphragm instead of a clearance-seal piston. The motivation is to create an adequate separation between the working fluid and the buffer gas of the compressor, thus preventing possible contamination in the cryocooler. Providing efficiency and power density similar to those of conventional linear compressors, the piezo compressor may serve as a good alternative for cryogenic applications requiring extreme reliability and absence of magnetic field interference. (paper)

  14. Use of biomass as fuel for Stirling motors; Uso de biomassa como combustivel para acionamento de motores Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Robledo Wakin; Aradas, Maria Eugenia Coria; Cobas, Vladmir Rafael Melian; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mail: robledo@unifei.edu.br

    2004-07-01

    The search to increase the electrical generation, together with the need to decrease the pollution emission, has encouraged the alternative energy sources. Nowadays around the world there are a lot of alternative energy sources incentive programs. In Brazil have PROINFA - Alternative Energy Sources Incentive Program. An example of alternative energy sources is the use of biomass as combustible. In the electrical generation, the biomass can be used directly, having it's directly combustion, and transforming the thermal energy liberated in electrical energy, or can be transformed in gas or liquid, and after use technology as internal combustion engine and gas turbine to generate electricity with these combustibles. Few technologies can be used to generate electricity burning directly to the biomass. Among these technologies, have the Stirling engine. It is possible to use this engine because the Stirling engines are external combustion engines, and it has not contact between the work gas and the flue gas. In this way, the Stirling engine needs a heat source, independent of the combustible type that will be used, including solar source. In this work will be present this technology, the different kinds of Stirling engines according to their configuration, moreover will be present the ST 05 G Stirling engine, which is a 500 W engine, acquired by University Federal of Itajuba. Also are present the tests results of this engine, and the installation to work with wood waste as combustible. (author)

  15. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  16. Extended Operation Testing of Stirling Convertors in Support of Stirling Radioisotope Power System Development

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas

    2009-01-01

    100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.

  17. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph; Loparo, Kenneth

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  18. Overview of NASA supported Stirling thermodynamic loss research

    International Nuclear Information System (INIS)

    Tew, R.C.; Geng, S.M.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning

  19. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  20. Experimental study of the pressure characteristics in the Stirling refrigerator

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2001-01-01

    The linear compressor have been widely used for pressure wave generation in the Stirling cryocooler and Stirling type pulse tube cryocooler for tactical purpose. The linear compressor has small and compact structure, and long life due to having non-contact sealing mechanism and the pressure drop through regenerator was ver important role in the motion of displacer in the expander of the Stirling cryocooler. In this study, the characteristic of the linear compressor and the pressure drop through regenerator in the expander was experimentally investigated. The results show resonance of the compressor is very important to get maximum performance and the gas spring force in the compression space of the compressor has effect on the characteristic of resonance and the results show the pressure drop through regenerator is very small than operating pressure change

  1. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  2. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  3. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  4. Micro power/heat cogeneration incorporating a stirling engine

    International Nuclear Information System (INIS)

    Luft, S.

    2003-01-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [de

  5. Technical status of the Dish/Stirling Joint Venture Program

    Energy Technology Data Exchange (ETDEWEB)

    Bean, J.R. [Cummins Power Generation, Inc., Columbus, IN (United States); Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    Initiated in 1991; the Dish/Stirling Joint Venture Program (DSJVP) is a 5-year, $17.2 million joint venture which is funded by Cummins Power Generation, Inc. (CPG) of Columbus, Indiana and the United States Department of Energy`s (DOE) Solar Thermal and Biomass Power Division. Sandia National Laboratories administers and provides technical management for this contract on the DOE`s behalf. In January, 1995; CPG advanced to Phase 3 of this three-phase contract. The objective of the DSJVP is to develop and commercialize a 7-kW. Dish/Stirling System for remote power markets by 1997. In this paper, the technical status of the major subsystems which comprise the CPG 7-kW{sub e} Dish/Stirling System is presented. These subsystems include the solar concentrator, heat pipe receiver, engine/alternator, power conditioning, and automatic controls.

  6. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  7. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  8. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  9. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  10. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  11. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  12. Testing and optimization of the performance of a Stirling engine

    OpenAIRE

    Jiménez Abete, Aitziber

    2013-01-01

    En una primera parte, se describe la historia de los motores Stirling, así como sus perspectivas de futuro y sus ventajas e inconvenientes. A continuación se describen los diversos ciclos teóricos del motor, comparándolos entre ellos. La tercera parte trata sobre los motores Stirling reales: sus partes, posibles configuraciones, diferentes pérdidas que podemos encontrar en ellos y sobre las distintas variables de trabajo, así como su influencia en el rendimiento. En la cuarta p...

  13. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  14. Dynamic Computer Model of a Stirling Space Nuclear Power System

    Science.gov (United States)

    2006-05-04

    attention in terms of analysis and modeling. Thus a study of the Stirling option could produce some meaningful results in an area that has received...less attention . This is especially true for a model of large Stirling engines such as those used for the SP- 100 design. Creating a model using this...Exchanger Cross Section Area (m^2) nht=2750*4; %number of hot heat exchanger gas tubes htd=0.0013/2; %Hot Heat Exchanger gas tube diameter (m) htA =nht*pi

  15. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  16. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  17. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A

    2005-01-01

    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  18. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy

  19. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  20. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  1. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    R V Rao

    different heat sources and waste heat. It can utilize com- pressible fluid as a working fluid. The schematic diagram of. Stirling engine is shown in figure 1 [1]. ..... selection of material of construction for the hot end of the engine (heat absorbing part/heat receiver). The designer has to be careful while deciding the values of the ...

  2. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently ... The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of ...

  3. Enhanced thermodynamic modelling of a gamma-type Stirling engine

    International Nuclear Information System (INIS)

    Alfarawi, S.; AL-Dadah, R.; Mahmoud, S.

    2016-01-01

    Highlights: • Enhanced thermodynamic model for gamma-type Stirling engine was developed. • Validation against experiments was performed. • Influence of different parameters on engine performance was investigated. • Deeper insight into engine improvements was highlighted. • Effect of low temperature cooling on engine performance was addressed. - Abstract: Modelling can substantially contribute to the development of Stirling engines technology and help understanding the fundamental processes of the real cycle for further performance improvement. In the present work, an enhanced thermodynamic model for Gamma-type Stirling engine simulation was developed based on the reconfiguration of non-ideal adiabatic analysis. The developed model was validated against experimental measurements on Stirling engine prototype (ST05 CNC), available at University of Birmingham. Good agreement was found between the model and experiment in predicting the indicated power, shaft power and thermal efficiency at different operating conditions. A parametric study was carried out to investigate the effect of phase angle, gas type, regenerator matrix type and dead volume on engine performance. The feasibility of utilizing the stored cold energy of LN2 to maximize the shaft power was also presented. Results showed that shaft power can be significantly enhanced by 49% for helium and 35% for nitrogen when cooling temperature is lowered to −50 °C while heating temperature remains constant at 650 °C.

  4. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  5. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  6. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  7. A 9 K conical Stirling-cycle cryocooler

    International Nuclear Information System (INIS)

    Myrtle, K.; Winter, C.; Gygax, S.

    1982-01-01

    A low power closed cycle Stirling refrigerator with a conical glass-fibre reinforced epoxy displacer/regenerator and an external compressor is described. The single stage device has demonstrated cooling to 9 K directly from room temperature and may be used for cooling SQUID systems. (author)

  8. Operating single quantum emitters with a compact Stirling cryocooler.

    Science.gov (United States)

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  9. Tsallis p, q-deformed Touchard polynomials and Stirling numbers

    Science.gov (United States)

    Herscovici, O.; Mansour, T.

    2017-01-01

    In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.

  10. The κ-Generalizations of Stirling Approximation and Multinominal Coefficients

    Directory of Open Access Journals (Sweden)

    Tatsuaki Wada

    2013-11-01

    Full Text Available Stirling approximation of the factorials and multinominal coefficients are generalized based on the κ-generalized functions introduced by Kaniadakis. We have related the κ-generalized multinominal coefficients to the κ-entropy by introducing a new κ-product operation, which exists only when κ ≠ 0.

  11. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  12. Radioisotope power system based on derivative of existing Stirling engine

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-01-01

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA's LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines' waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure

  13. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  14. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  15. Degenerate r-Stirling Numbers and r-Bell Polynomials

    Science.gov (United States)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  16. Technology development for a Stirling radioisotope power system

    International Nuclear Information System (INIS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions

  17. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  18. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0011-0022. Keywords. Cometary ...

  19. A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K

    Science.gov (United States)

    Wang, Yanan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2018-03-01

    Vuilleumier (VM) type pulse tube cryocooler (PTC) utilizes the thermal compressor to drive the low temperature stage PTC. This paper presents the latest experimental results of a cryogen-free VM type PTC that operates in the temperature range below 10 K. Stirling type pre-coolers instead of liquid nitrogen provide the cooling power for the thermal compressor. Compared with previous configuration, the thermal compressor was improved with a higher output pressure ratio, and lead and HoCu2 spheres were packed within the regenerator for the low temperature stage PTC for a better match with targeted cold end temperature. A lowest no-load temperature of 7.58 K was obtained with a pressure ratio of 1.23, a working frequency of 3 Hz and an average pressure of 1.63 MPa. The experimental results show good consistency in terms of lowest temperature with the simulation under the same working condition.

  20. Study of temperature distribution in a Stirling engine regenerator

    International Nuclear Information System (INIS)

    Gheith, R.; Aloui, F.; Ben Nasrallah, S.

    2014-01-01

    Highlights: • A Gamma-Stirling engine is experimented to determine the optimal operation parameters. • A set of experiment reveals a difference of temperature between regenerator sides. • A phenomenon which consumes a part of the produced energy by the engine is highlighted. • A multi-objectif study based on experimental design methodology is developed. • The optimal set of operation parameters maximizing the engine power is proposed. - Abstract: A gamma Stirling engine is studied in this paper. A special care was accorded to the instrumentation of this engine and especially the instrumentation of the regenerator. A preliminarily set of experimental measurement reveals a difference of temperature between both regenerator sides. A second set of experiments was proposed to detect the influence of this phenomenon on Stirling engine performances. The asymmetry of heat transfer inside the Stirling engine regenerator’s is one of the important phenomenons which consume a part of the produced energy. Two experiments are made to find out the causes of this asymmetry. In order to know the influence of the different operation parameters on this new phenomenon the experimental design method is adopted. The experimental design is an alternative to identify the parameters sets allowing optimal Stirling engine performances. A central composite rotatable design was adopted for minimizing the asymmetry of temperature between both regenerator sides and maximizes the engine brake power. The selected four independent parameters are: heating temperature (300 °C–500 °C), initial filling pressure (3 bar–8 bar), cooling water flow rate (0.2 l/m–3 l/min) and operation time (4–20 min after study regime). The four adopted factors are experimentally varied. The results show that the heating temperature is the most significant factor for the studied phenomenon. The major damages caused by this phenomenon will be presented too

  1. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    International Nuclear Information System (INIS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  2. Small Stirling dynamic isotope power system for robotic space missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established

  3. Cryogenic engineering fifty years of progress

    CERN Document Server

    Reed, Richard

    2007-01-01

    Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.

  4. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  5. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...... gas and for utilisation of preheated air. A mathematical simulation model has been developed as a tool for the analyses of the Stirling engine gasifier system. The paper presents results from a simulation of the Stirling engine demonstration plant in a typical operating condition, and the result...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  6. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  7. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  8. Cryogenic safety organisation at CERN

    CERN Document Server

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  9. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  10. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  11. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Aladayleh, Wail; Alahmer, Ali

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  12. Temperature control of cryogenic systems

    International Nuclear Information System (INIS)

    Lessard, P.A.; Bartlett, A.J.; Peterson, J.F.

    1987-01-01

    A cryogenic refrigerator is described comprising: a refrigerator heat sink; a source of refrigerant gas under pressure; gas expansion means including a reciprocating piston in a cylinder for expanding the refrigerant gas in a gas expansion space within the cylinder to cool the gas and the refrigerator heat sink to cryogenic temperatures; means for selectively diverting refrigerant gas away from the gas expansion means; and a heat exchanger in thermal communication with the refrigerator heat sink for receiving diverted gas and conducting heat from the refrigerant gas into the refrigerator heat sink to warm the heat sink while keeping the diverted gas out of fluid communication with the gas expansion space

  13. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  14. Innovative Stirling Convertor for Distributed Electric Power from Thermal Energy Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SCCAQ Energy, LLC (SCCAQ) in collaboration with Temple University and Infinia Technology Corporation (ITC) proposes to develop a Reliable Stirling Convertor (RSC)...

  15. 400 W Stirling Convertor for kW-Class Space Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SCCAQ Energy, LLC (SCCAQ), in collaboration with Temple University and Infinia Technology Corporation (ITC), is pleased to propose a Stirling Kilopower Innovative...

  16. Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Antonakos, G.D.; Koronaki, I.P.

    2012-01-01

    In order to investigate the Stirling engine implementation technology, a Solo Stirling Engine V161 cogeneration module has been installed at the Laboratory of Applied Thermodynamics of National Technical University of Athens. A special thermodynamic analysis of the engine's performance has been conducted introducing and utilizing specially designed computing codes along with the thermal balance study of the unit. Measurements were conducted under different operational conditions concerning various heat load stages of the engine, working pressure, as well as electric power production. Analysis of the experimental results has shown that the overall performance of the Stirling unit proved very promising and quite adequate for various areal applications, equally competing with other CHP systems. The performance of the unit experienced significant stability all over the operating range. The power stand ratio 0.35 differentiates Stirling cogeneration units from others that use diverging technologies significantly. The energy savings using a Stirling CHP unit, in respect to the concurrent use of a thermal and an electrical system at the same equivalent power has revealed 36.8%. -- Highlights: ► Thermodynamic analysis of an a-type Stirling engine. ► Development of generated electrical and thermal power of the m-CHP Solo Stirling Unit to engine's load comparison. ► Stirling m-CHP until heat balance analysis. ► Evaluation of the Solo Stirling V161 unit efficiency.

  17. Dynamic model of Stirling engine crank mechanism with connected electric generator

    OpenAIRE

    Vlach R.; Sikora M.

    2009-01-01

    This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create ...

  18. The first law and the second law analysis of Stirling cycle cryocooler

    International Nuclear Information System (INIS)

    Peiyi, W.; Yalin, H.

    1989-01-01

    Stirling cycle cryocoolers have been widely used in research and high technology including civil and military applications. This paper presents two kinds of analysis of Stirling cryocooler. The first law analysis is a full computational simulation in which the thermodynamic processes with variable mass and heat transfer under oscillating gas flow are taken into account simultaneously. The second law analysis deals with the exergy analysis of variable mass processes. An illustrative calculation is for a practical Stirling cryocooler manufactured by Hangzhou Oxygen Plant Manufactory. These two kinds of analysis are better to reveal the real working processes occurring in the modern practical Stirling cryocoolers

  19. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  20. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  1. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  2. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  3. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  4. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  5. Sources of Cryogenic Data and Information

    Science.gov (United States)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  6. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  7. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  8. Desenvolvimento experimental de um motor stirling tipo gama.

    OpenAIRE

    Cruz, Vinicius Guimarães da

    2012-01-01

    O presente trabalho consiste no desenvolvimento experimental de um motor Stirling tipo gama. São apresentadas inicialmente as diferentes configurações deste tipo de motor (alfa, gama e beta), a definição do ciclo de Stirling e a modelagem matemática para cada configuração. Uma análise matemática é feita através da teoria de Schmidt, que é um método baseado na compressão e expansão isotérmica de um gás ideal, implementada em programa computacional permitindo determinar a dependência entre os p...

  9. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  10. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  11. Solar Stirling power generation - Systems analysis and preliminary tests

    Science.gov (United States)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  12. Performance of second generation 10-watt Stirling generator set

    International Nuclear Information System (INIS)

    Ross, B.; Ritter, D.

    1994-01-01

    The purpose of the Radioisotope Stirling Generator (RSG) development program is to devise a generator that produces at least 10 watts of DC power continuously with 58 to 60 watts of thermal input from a radioisotope. The first generation, or laboratory version, of a 10 watt Stirling generator set was described in previous IECEC proceedings. The second generation version of the generator set has been built and tested. The significant changes include the implementation of vacuum foil insulation with a much smaller volume, hermetic sealing, and elimination of most of the diagnostic instrumentation used for laboratory development. This paper describes the performance and operating characteristics of the second generation machine and compares it to the first generation machine. Endurance testing of the first generation machine and key components is also described

  13. The potential applications of a Stirling cycle cooler. Universiteit Oxford onderzoekt mogelijkheden Stirling-koeler

    Energy Technology Data Exchange (ETDEWEB)

    Hands, B.A. (Cryogenic Lab., Faculty of Engineering, Univ. of Oxford (United Kingdom))

    1993-04-01

    In 1978 the Cryogenic Laboratory of the Oxford University started a research program into the title cooling machine, based on a design of dr. Gordon Davey, who has been in charge of the research since that time. Already more than 20 Striling cycle coolers have been designed and constructed. Two of these machines are in operation trouble-free in space satellites, providing cooling for an infrared detector, which measures heat emissions. More applications are expected in the next few years (f.e. cooling of ceramic superconducting equipment, and so-called 'green' cooling for the industry and households). 5 figs., 6 refs.

  14. Optimization of Stirling and Ericsson cycles by solar radiation

    Science.gov (United States)

    Badescu, V.

    This paper considers a model consisting of a source of radiation (the sun) and two energy converters. The first converter (the absorber) transforms the solar radiation into heat while the second one (which is a Stirling or Ericsson engine) uses heat to produce mechanical work. Polarization coefficients were introduced to characterize the radiation emitted by two components of the system (the sun and the first converter). The maximum conversion efficiency of solar radiation into work was studied.

  15. Optimization design and performance analysis of a miniature stirling engine

    Science.gov (United States)

    You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng

    2017-10-01

    Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.

  16. Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method

    International Nuclear Information System (INIS)

    Fan Hong-Yi; Lou Sen-Yue

    2015-01-01

    Based on the operator Hermite polynomials method (OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications. As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials. (paper)

  17. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  18. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  19. Feasibility study of dish/stirling power systems in Turkey

    Science.gov (United States)

    Zilanlı, Gülin Acarol; Eray, Aynur

    2017-06-01

    In this study, two different commercial dish/stirling systems, SES (Stirling Energy Systems) and WGA-ADDS (WGAssociates - Advanced Dish Development System), are modeled using the "System Advisor Model" (SAM) modeling software in designated settlement areas. Both systems are modeled for the US state of Albuquerque, where they were designed, and Turkish provinces of Ankara, Van, Muğla, Mersin, Urfa and Konya. At first, the dish/stirling system is optimized according to the power output values and the system loss parameters. Then, the layout of the solar field is designed with an installed capacity of 600kW both of SES and WGA-ADDS systems, Upon securing the most suitable layout, the system is modeled for the aforementioned settlements using the optimum output values gathered from the parametric analysis. As a result of the simulation studies, the applicability of this model is discussed according to the power output and the efficiency. Although Turkey is located in an area called "the sun belt" where solar energy technologies can be used, there is no advanced application of these systems. This study aims to discuss the application of these systems in detail and to pave the way for future studies in this field.

  20. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  1. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 k......W, which has been reported before. The new 70 kW engine has eight cylinders, which are connected in a 2 x 4 double acting configuration. Like the four-cylinder engine, the eight-cylinder engine is designed as a hermetically sealed unit. A 75 kW asynchronous generator, which is incorporated...... transfer by radiation and heat transfer by convection. The convection part the heater has been optimised in order to obtain an equal distribution of heat transfer on each tube and at the same time maximise the heat transfer from the combustion products to the engine. In a double acting Stirling engine...

  2. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  3. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  4. The 23rd Stirling Physics Meeting

    Science.gov (United States)

    1998-01-01

    derived from a standard Tesla coil with a high-Q secondary. This is capable of delivering around a million volts, which produce fantastic lightning flashes. A volunteer from the audience was invited to enter a huge Faraday Cage which was then subjected to these high voltage sparks! For a while the door of the cage jammed but eventually the victim emerged unscathed! This is, of course, not just an entertainment. The Gusto show is taken into schools and targeted at lower secondary pupils about to make their subject choices. The team also gives large scale physics demonstration lectures and could play to 10 000 children in a month. So physics is fun and physics is relevant to everyday life! Support for physics teachers Lesley Glasser chaired the afternoon session, which she opened by introducing the Institute's Education Officer. The Stirling Meeting would not be the same without the `commercial slot' presented again so ably by Catherine Wilson. Physics teachers are an endangered species and the Institute is determined to do whatever it can to support them. Plans are afoot to make sure the Schools Lectures are modified, if necessary, to take account of the educational differences in Scotland. The London-based `Physics in Perspective' course not only introduces sixth-formers to some of the frontiers of physics but gives enough free time for them to visit places of interest in the city - from the Science Museum to Soho. `So they associate physics with enjoyment!' Another Scottish Update Course is planned for teachers, and a brand new glossy booklet, sent free to all schools, will show pupils that choosing physics is a `Smart Move'. Finally the Institute has just started a major post-16 curriculum project which will include a variety of support materials to keep teachers abreast of continuing developments in physics. Each year, IoP Teacher of Physics Awards are given to `outstanding teachers of physics who inspire others to continue with and enjoy their physics'. Ann Jarvie

  5. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  6. Simulation, design and thermal analysis of a solar Stirling engine using MATLAB

    International Nuclear Information System (INIS)

    Shazly, J.H.; Hafez, A.Z.; El Shenawy, E.T.; Eteiba, M.B.

    2014-01-01

    Highlights: • Modeling and simulation for a prototype of the solar-powered Stirling engine. • The solar-powered Stirling engine working at the low temperature range. • Estimating output power from the solar Stirling engine using Matlab program. • Solar radiation simulation program presents a solar radiation data using MATLAB. - Abstract: This paper presents the modeling and simulation for a prototype of the solar-powered Stirling engine working at the low temperature range. A mathematical model for the thermal analysis of the solar-powered low temperature Stirling engine with heat transfer is developed using Matlab program. The model takes into consideration the effect of the absorber temperature on the thermal analysis like as radiation and convection heat transfer between the absorber and the working fluid as well as radiation and convection heat transfer between the lower temperature plate and the working fluid. Hence, the present analysis provides a theoretical guidance for designing and operating of the solar-powered low temperature Stirling engine system, as well as estimating output power from the solar Stirling engine using Matlab program. This study attempts to demonstrate the potential of the low temperature Stirling engine as an option for the prime movers for Photovoltaic tracking systems. The heat source temperature is 40–60 °C as the temperature available from the sun directly

  7. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  8. Numerical simulation for the design analysis of kinematic Stirling engines

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The

  9. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  10. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1985-01-01

    This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application. 15 references

  11. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  12. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    Science.gov (United States)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  13. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system

  14. Dynamics and control of Stirling engines in a 15 kWe solar electric generation concept

    Science.gov (United States)

    Das, R. L.; Bahrami, K. A.

    1979-01-01

    This paper discusses the application of kinematic and free piston Stirling engines in a 15 kWe dish-electric approach for solar thermal electric generation. Initially, the principle of operation of Stirling engines in solar thermal electric generation is discussed. Then, under certain simplifying assumptions, mathematical models describing the dynamic operation of the kinematic and free piston Stirling engines are developed. It is found that the engine dynamics may be approximated by second order models. Control mechanisms for both types of Stirling engines are discussed. An approach based on the modulation of the working fluid mean pressure is presented. It is concluded that this approach offers a fast and effective means of control. The free piston Stirling engine, being a thermally driven mechanical oscillator, presents unique control requirements. These are discussed in this paper.

  15. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  16. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  17. Power characteristics of a Stirling radioisotope power system over the life of the mission

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.

    2001-01-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays

  18. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  19. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  20. Cryogenic MEMS Technology for Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of cryogenic microwave components, such as focal plane polarization modulators, first requires an RF MEMS switching technology that operates...

  1. Aerogel Insulation to Support Cryogenic Technologies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  2. Design of stirling engine operating at low temperature difference

    Directory of Open Access Journals (Sweden)

    Sedlák Josef

    2018-01-01

    Full Text Available There are many sources of free energy available in the form of heat that is often simply wasted. The aim of this paper is to design and build a low temperature differential Stirling engine that would be powered exclusively from heat sources such as waste hot water or focused solar rays. A prototype is limited to a low temperature differential modification because of a choice of ABSplus plastic as a construction material for its key parts. The paper is divided into two parts. The first part covers a brief history of Stirling engine and its applications nowadays. Moreover, it describes basic principles of its operation that are supplemented by thermodynamic relations. Furthermore, an analysis of applied Fused Deposition Modelling has been done since the parts with more complex geometry had been manufactured using this additive technology. The second (experimental part covers 4 essential steps of a rapid prototyping method - Computer Aided Design of the 3D model of Stirling engine using parametric modeller Autodesk Inventor, production of its components using 3D printer uPrint, assembly and final testing. Special attention was devoted to last two steps of the process since the surfaces of the printed parts were sandpapered and sprayed. Parts, where an ABS plus plastic would have impeded the correct function, had been manufactured from aluminium and brass by cutting operations. Remaining parts had been bought in a hardware store as it would be uneconomical and unreasonable to manufacture them. Last two chapters of the paper describe final testing, mention the problems that appeared during its production and propose new approaches that could be used in the future to improve the project.

  3. Test results and commercialization plans for long life Stirling generators

    International Nuclear Information System (INIS)

    Erbeznik, R.M.; White, M.A.

    1996-01-01

    Many optimistic predictions regarding commercialization of Stirling engines have been announced over the years, but to date no real successes have emerged. STC is excited to announce the availability of beta prototypes for its RemoteGen trademark family of free-piston Stirling generators. STC is working with suppliers, manufacturers, and beta customers to commercialize the RemoteGen family of generators. STC is proving that these machines overcome previously inhibiting barriers by providing long life, high reliability, cost effective mass production, and market relevance. Stirling power generators are generally acknowledged to offer much higher conversion efficiencies than direct energy conversion systems. Life and reliability, on the other hand, are generally considered superior for direct conversion systems, as established by the exceptional endurance records (though with degradation) for thermoelectric (TE) and photovoltaic (PV) systems. STC's unique approaches combine dynamic system efficiency with static system reliability. The RemoteGen family presently includes a 10-watt RG-10, a 350-watt RG-350, and with 1-kW and 3-kW sizes planned for the future. They all use the same basic configuration with flexure bearings, clearance seals, and moving iron linear alternators. The third generation RG-10 has entered limited production with a radioisotope-fueled version, and a niche market for a propane-fueled version has been identified. Market analysis has led STC to focus on early commercial production of the RG-350. The linear alternator power module portion of the RG-350 is also used in its sister BeCool trademark family of coolers as the linear motor. By using a common power module, both programs will benefit by each other's commercialization efforts. The technology behind the RemoteGen generators, test results, and plans for commercialization are described in this paper

  4. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  5. Screening of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  6. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  7. Third generation development of an 11-watt Stirling converter

    International Nuclear Information System (INIS)

    Montgomery, W.L.; Ross, B.A.; Penswick, L.B.

    1996-01-01

    This paper describes recent design enhancements, performance results, and development of an artificial neural network (ANN) model related to the Radioisotope Stirling Generator (RSG), an 11-watt converter designed for remote power applications. Design enhancements include minor changes to improve performance, increase reliability, facilitate fabrication and assembly for limited production, and reduce mass. Innovative modifications were effected to increase performance and improve reliability of the vacuum foil insulation (VFI) package and linear alternator. High and low operating temperature acceptance testing of the Engineering Model (EM) demonstrated the robust system characteristics. These tests were conducted for 1 week of operation each, with rejector temperatures of 95 C and 20 C, respectively. Endurance testing continues for a complete Stirling converter, the Development Model (DM), with over 25,000 hours of maintenance-free operation. Endurance testing of flexures has attained over 540 flexure-years and endurance testing of linear motors/alternators has achieved nearly 27,000 hours of operation without failure. An ANN model was developed and tested successfully on the DM. Rejection temperatures were varied between 3 C and 75 C while load voltages ranged between engine stall and displacer overstroke. The trained ANN model, based solely on externally measured parameters, predicted values of piston amplitude, displacer amplitude, and piston-displacer phase angle within ±2% of the measured values over the entire operating regime. The ANN model demonstrated its effectiveness in the long-term evaluation of free-piston Stirling machines without adding the complexity, reduced reliability, and increased cost of sophisticated diagnostic instrumentation

  8. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas

    2014-01-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  9. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  10. Split supersymmetry radiates flavor

    Science.gov (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas

    2014-09-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  11. NASA/DOE automotive Stirling engine project. Overview 1986

    Energy Technology Data Exchange (ETDEWEB)

    Beremand, D.G.; Shaltens, R.K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and midifications thereto, have accumulated over 15 000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  12. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  13. A Compendium of Solar Dish/Stirling Technology

    Science.gov (United States)

    1994-01-01

    systems and Plataforma Solar in Almeria, Spain, with the goal being plans to produce fourteen 7.5-kWe systems for testing to test the system’s long-term...Stuttgart (now dismantled), three at the Plataforma Solar in Almerfa, Spain, one at Pforzheim, Germany, and one for dish/Stirling testing at the ZSW in...Schlaich, Bergermann und Partner 7.5-meter stretched-membrane dish at the Plataforma Solar international test facility in Almeria, Spain. DESIGN Type Heat

  14. The Philips stirling refrigeration machine and her applications

    Energy Technology Data Exchange (ETDEWEB)

    Van der Ster, J.

    1989-08-01

    The Stirling refrigeration machine as developed and marketed by Philips has been quite successful. About 4000 units are installed. The most important application is the production of liquid nitrogen on relatively small scale. In the fifties and sixties the main applications were found in research laboratories. Since 1970 the system became more and more used outside laboratories. Artificial insemination of cattle was a very important market, especially in third world countries. This was a positive contribution to the efforts to solve the food problem in this developing countries. 6 figs., 7 refs., 1 tab.

  15. A miniature stirling cycle cooler for radiation detectors

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Penswick, L.B.

    1998-01-01

    Germanium spectrometers must be operated at liquid nitrogen temperatures. Other detectors operate better when cooled. Many applications, because of hostile environments, inaccessibility, remote location, long duration, etc., are compromised, or totally precluded, by the requirement for liquid nitrogen. A Stirling cycle refrigerator based on a linear motor design, which is acoustically and vibrationally quiet, does not require secondary cooling, and operates unattended for years, is under development. System design and specifications are presented. Applications to cooled laser monitoring equipment, SQUID-based detection systems, environmental cleanup and monitoring, medical diagnostics, non-destructive testing systems, communication equipment, computer electronics, and imaging systems are discussed. (author)

  16. Flexure bearing support, with particular application to stirling machines

    Science.gov (United States)

    Beckett, Carl D.; Lauhala, Victor C.; Neely, Ron; Penswick, Laurence B.; Ritter, Darren C.; Nelson, Richard L.; Wimer, Burnell P.

    1996-01-01

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial nonrotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions.

  17. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  18. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  19. Stochastic Stirling Engine Operating in Contact with Active Baths

    Science.gov (United States)

    Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric

    2017-04-01

    A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.

  20. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... an idealised model. Steady state periodic solutions to the model are found using a custom built shooting method that finds solutions that simultaneously satisfy cyclic boundary conditions and integral conditions. It has been found that true steady state periodic solutions to the model can be reliably...

  1. SP-100 advanced radiator designs for thermoelectric and Stirling applications

    International Nuclear Information System (INIS)

    Moriarty, M.P.; Determan, W.R.

    1989-01-01

    The authors advanced radiator designs employing carbon-carbon liquid metal heat pipe technology which can significantly reduce the mass of the heat rejection subsystem for high temperature space technology systems such as the SP-100. This technology is being developed to address the need for lightweight heat transfer components and structures for space applications. Heat pipe and subsystem designs were optimized for thermoelectric and Stirling engine bases SP-100 system designs. A multiple, deployed petal radiator concept was selected for the heat rejection subsystem design based upon minimum mass. Radiator stowage in the Space Transportation System cargo bay and deployment schemes were investigated for each of these optimized designs

  2. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  3. Stirling converters for space dynamic power concepts with 2 to 130 We output

    International Nuclear Information System (INIS)

    Ross, B.A.

    1995-01-01

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance

  4. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    International Nuclear Information System (INIS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC

  5. Longevity of cryogenically stored seeds.

    Science.gov (United States)

    Walters, Christina; Wheeler, Lana; Stanwood, Phillip C

    2004-06-01

    Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.

  6. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  7. Low Mn alloy steel for cryogenic service

    Science.gov (United States)

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  8. Self-Sealing Cryogenic Fitting

    Science.gov (United States)

    Jia, Lin Xiang; Chow, Wen Lung; Moslemian, Davood; Lin, Gary; Melton, Greg

    1994-01-01

    Self-sealing fitting for cryogenic tubes remains free of leakage from room temperature to liquid-helium temperature even at internal pressure as high as 2.7 MPa. Fitting comprises parts made of materials with different coefficients of thermal expansion to prevent leakage gaps from forming as temperature decreases. Consists of coupling nut, two flared tube ends, and flared O-ring spacer. Spacer contracts more than tube ends do as temperature decreases. This greater contraction seals tube ends more tightly, preventing leakage.

  9. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth

    2013-03-01

    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  10. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    Science.gov (United States)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  11. Design study of a kinematic Stirling engine for dispered solar electric power systems

    Science.gov (United States)

    1980-01-01

    The concept evaluation shows that the four cylinder double acting U type Stirling engine with annular regenerators is the most suitable engine type for the 15 kW solar application with respect to design, performance and cost. Results show that near term performance for a metallic Stirling engine is 42% efficiency. Further improved components show an impact on efficiency of the future metallic engine to 45%. Increase of heater temperature, through the introduction of ceramic components, contribute the greatest amount to achieve high efficiency goals. Future ceramic Stirling engines for solar applications show an efficiency of around 50%.

  12. Análisis de irreversibilidades en el comportamiento de un motor Stirling // Analysis of irreversibilities on performance of a Stirling engine

    Directory of Open Access Journals (Sweden)

    Juan José González-Bayón

    2011-05-01

    Full Text Available El objetivo de este estudio es determinar el efecto de las irreversibilidades (internas y externasdebidas a la transferencia de calor y las pérdidas de presión debidas a la fricción sobre elrendimiento de Segunda Ley de un motor Stirling de tipo considerando el volumen muerto. Elmotor Stirling es analizado usando un modelo matemático basado en las leyes de la termodinámicapara procesos con una velocidad finita. Se asume un modelo isotérmico de motor con volúmenes deespacio muerto en la zona caliente, zona fría y en el regenerador. Los resultados obtenidos muestranque a pesar de que teóricamente el motor Stirling posee un rendimiento igual al de Carnot, en lapráctica su rendimiento puede ser de 2 a 5 veces menor que éste, dependiendo de la eficiencia delregenerador, del volumen muerto, de la diferencia de temperatura entre fluido y focos térmicos y delas rpm a que se opere el motor.Palabras claves: motor Stirling, motor térmico regenerativo, análisis de irreversibilidades.____________________________________________________________________AbstractThe study aims to determine the effect of the internal and external irreversibilities caused by heattransfer and pressure losses due to friction on the Second Law performance of a Stirling engine tipewith death volume include. The Stirling engine is analyzed using a mathematical model based onthe laws of thermodynamics for processes with finite speed. It is assumed an isothermic model of themotor with death volume on hot zone, cold zone and regenerator. The results of this study show thatthe real cycle efficiency of the Sirling engine is approximately 2 to 5 times minor than the efficiency ofCarnot cycle as function of the regenerator efficiency, death volume, temperature difference betweenfluid and termic source and motor speed.Key words: stirling engine, regenerative heat engine, irreversibilities analysis.

  13. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  14. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...... operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also...... presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner...

  15. Progress in High Power Free-Piston Stirling Convertor Development

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Kirby, Raymond L.; Chapman, Peter A.; Walter, Thomas J.

    2008-01-01

    The U.S. Space Exploration Policy has established a vision for human exploration of the moon and Mars. One option for power for future outposts on the lunar and Martian surfaces is a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. A 25 kW convertor was developed in the 1990s under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in such a possible lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Foster-Miller, Inc. is developing the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  16. Many-objective thermodynamic optimization of Stirling heat engine

    International Nuclear Information System (INIS)

    Patel, Vivek; Savsani, Vimal; Mudgal, Anurag

    2017-01-01

    This paper presents a rigorous investigation of many-objective (four-objective) thermodynamic optimization of a Stirling heat engine. Many-objective optimization problem is formed by considering maximization of thermal efficiency, power output, ecological function and exergy efficiency. Multi-objective heat transfer search (MOHTS) algorithm is proposed and applied to obtain a set of Pareto-optimal points. Many objective optimization results form a solution in a four dimensional hyper objective space and for visualization it is represented on a two dimension objective space. Thus, results of four-objective optimization are represented by six Pareto fronts in two dimension objective space. These six Pareto fronts are compared with their corresponding two-objective Pareto fronts. Quantitative assessment of the obtained Pareto solutions is reported in terms of spread and the spacing measures. Different decision making approaches such as LINMAP, TOPSIS and fuzzy are used to select a final optimal solution from Pareto optimal set of many-objective optimization. Finally, to reveal the level of conflict between these objectives, distribution of each decision variable in their allowable range is also shown in two dimensional objective spaces. - Highlights: • Many-objective (i.e. four objective) optimization of Stirling engine is investigated. • MOHTS algorithm is introduced and applied to obtain a set of Pareto points. • Comparative results of many-objective and multi-objectives are presented. • Relationship of design variables in many-objective optimization are obtained. • Optimum solution is selected by using decision making approaches.

  17. Performance Measurement of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.

  18. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  19. Stirling engines using working fluids with strong real gas effects

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.

    2010-01-01

    Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.

  20. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  1. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  2. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  3. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  4. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  5. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  6. Split ring resonator for the Argonne superconducting heavy ion booster

    International Nuclear Information System (INIS)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit

  7. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Yamaguchi, I. [Meiji University, Tokyo (Japan); Naito, Y.; Momose, Y. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  8. Experimental study on the Stirling refrigerator for cooling of infrared detector

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Koh, D. Y.; Kim, J. H.; Yu, B. K.

    2001-01-01

    A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD Stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. A Free Piston and Free Displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery and Materials). In order to evaluate the feasibility of using a linear motor driving cryocooler, prototype Stirling cryocooler with a nominal cooling capacity of 0.5W at 80K was designed, fabricated and tested. The prototype has achieved no load temperature of 51K and cooling power of 0.33W

  9. High Specific Power Multiple-Cylinder Alpha Free-Piston Stirling Engine, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will result in a design of a 30 kWe dual opposed alpha free-piston Stirling engine power conversion system for space applications, and provide...

  10. Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a displacement dwell mechanism for increasing Stirling engine power output and efficiency. The dwell mechanism allows for deviations from a sinusoidal...

  11. Development and Validation of Linear Alternator Models for the Advanced Stirling Convertor

    Science.gov (United States)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2015-01-01

    Two models of the linear alternator of the Advanced Stirling Convertor (ASC) have been developed using the Sage 1-D modeling software package. The first model relates the piston motion to electric current by means of a motor constant. The second uses electromagnetic model components to model the magnetic circuit of the alternator. The models are tuned and validated using test data and also compared against each other. Results show both models can be tuned to achieve results within 7 of ASC test data under normal operating conditions. Using Sage enables the creation of a complete ASC model to be developed and simulations completed quickly compared to more complex multi-dimensional models. These models allow for better insight into overall Stirling convertor performance, aid with Stirling power system modeling, and in the future support NASA mission planning for Stirling-based power systems.

  12. Novel Ring-Configuration Double-Acting Free-Piston Stirling Convertor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA SBIR-2015 Topic S3.01 seeks to evaluate and advance Stirling convertors as a potentially more efficient alternative to the radioisotope-heated thermoelectric...

  13. Novel Modular Double-Acting Free-Piston Stirling Convertor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We will build and test a stirling-cycle convertor for generating electrical power from the heat output of a radioisotope heat source (GPHS), addressing evolving NASA...

  14. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  15. Throttling Cryogen Boiloff To Control Cryostat Temperature

    Science.gov (United States)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  16. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications

    Science.gov (United States)

    Mason, Lee S.; Schreiber, Jeffrey G.

    2007-01-01

    Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.

  17. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine

    OpenAIRE

    Ahmadi, Mohammad; Ahmadi, Mohammad-Ali; Mehrpooya, Mehdi; Rosen, Marc

    2015-01-01

    Different variables affect the performance of the Stirling engine and are considered in optimization and designing activities. Among these factors, torque and power have the greatest effect on the robustness of the Stirling engine, so they need to be determined with low uncertainty and high precision. In this article, the distribution of torque and power are determined using experimental data. Specifically, a novel polynomial approach is proposed to specify torque and power, on the basis of p...

  18. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  19. Summary of ISABELLE cryogenic systems workshop

    International Nuclear Information System (INIS)

    Brown, D.P.

    1976-05-01

    Twenty-four people participated in the ISABELLE Cryogenic System Workshop which was held on June 2 and 3, 1976. The magnet cooling system for ISABELLE, as described in the new proposal, utilizes supercritical helium as the refrigerant instead of pool-boiling helium as in earlier proposals. This new and more cost-effective system was described in detail with discussion of the design parameters for the refrigerator itself, turbomachinery required and the refrigerant distribution system. The testing and prototype development program for ISABELLE cryogenic system components was also reviewed. A small cryogenic turbocompressor/expander system is now on order for testing with an ISABELLE half-cell

  20. Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center

    Science.gov (United States)

    Blaze-Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.

  1. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  2. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Liao, Tianjun; Lin, Jian

    2015-01-01

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  3. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston stirling engine activities

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1985-01-01

    An overview of the 1985 (NASA) Lewis Research Center free-piston Stirling engine activities in support of the SP-100 Program is presented. The SP-100 program is being conducted in support of the Department of Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE), and NASA. This effort is keyed on the design, fabrication, assembly, and testing of a 25 kW /SUB e/ Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr goal endurance test conducted on a 2 kW /SUB e/ free-piston Stirling/ linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kW /SUB e/ free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application

  4. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  5. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    Science.gov (United States)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  6. Experimental Study on a Stirling Cycle Machine of 100W Design Capacity

    Science.gov (United States)

    Otaka, Toshio; Kodama, Itaru; Ota, Masahiro

    Environmental concerns are causing commonly used chlorofluorocarbon (CFC) refrigerants to be phased out of production. The less ozone-depleting HCFC's are regulating. The green house effecting HFC's are also likely to be regulated and banned in the next period. Accordingly, attention is drawn to the Stirling refrigerator, which is a perfect Freon free refrigerator. Moreover, The Stirling cycle has the highest theoretical cycle efficiency corresponding to the value of the Carnot cycle among the proposed thermodynamic cycles. The green house effect by carbon dioxide issue would make better recognizing the importance of efficient use of energy in terms of high energy conservation measures. The authors have designed and developed a 100 W class Stirling refrigerator for household use. And the prototype machine has been integrated with a 100 litter class refrigerator. The operating characteristics of this Stirling unit or the prototype machine have been evaluated. Moreover, the authors evaluated the machine driving engine mode using ultra-low temperature media. As a result, the operational characteristics of the Stirling cycle machine have been clarified with respect to design factors. These results demonstrate that the Stirling cycle machine is one of the promising candidates as a new refrigeration system or a new generation system.

  7. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  8. Cryogenic Milling of Titanium Powder

    Directory of Open Access Journals (Sweden)

    Jiří Kozlík

    2018-01-01

    Full Text Available Ti Grade 2 was prepared by cryogenic attritor milling in liquid nitrogen and liquid argon. Two types of milling balls were used—stainless steel balls and heavy tungsten carbide balls. The effect of processing parameters on particle size and morphology, contamination of powder and its microhardness was investigated. Milling in liquid nitrogen was not feasible due to excessive contamination by nitrogen. Minor reduction of particle size and significant alterations in particle morphology depended on type of milling balls and application of stearic acid as processing control agent. Heavily deformed ultra-fine grained (UFG internal microstructure of powder particles was observed by the method of “transmission Kikuchi diffraction”.

  9. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  10. Reliability Demonstration Approach for Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Ha, CHuong; Zampino, Edward; Penswick, Barry; Spronz, Michael

    2010-01-01

    Developed for future space missions as a high-efficiency power system, the Advanced Stirling Radioisotope Generator (ASRG) has a design life requirement of 14 yr in space following a potential storage of 3 yr after fueling. In general, the demonstration of long-life dynamic systems remains difficult in part due to the perception that the wearout of moving parts cannot be minimized, and associated failures are unpredictable. This paper shows a combination of systematic analytical methods, extensive experience gained from technology development, and well-planned tests can be used to ensure a high level reliability of ASRG. With this approach, all potential risks from each life phase of the system are evaluated and the mitigation adequately addressed. This paper also provides a summary of important test results obtained to date for ASRG and the planned effort for system-level extended operation.

  11. Stirling engine power control and motion conversion mechanism

    Science.gov (United States)

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  12. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  13. Perspectives of Stirling engines use for distributed generation in Brazil

    International Nuclear Information System (INIS)

    Corria, Maria Eugenia; Cobas, Vladimir Melian; Silva Lora, Electo

    2006-01-01

    This work presents an evaluation of the development of Stirling engines and the advantages and the main obstacles against their widespread introduction in energy-generation practices. It also shows how the economic, technical and environmental characteristics presented by these engines support their insertion in the energy sector. An economic and environmental evaluation of this technology aiming at introducing it in the Brazilian energy scenario is also presented. Changes in legislation, financing and technology within the next few years must encourage the implementation of alternative generation technologies that present lower environmental impacts. Also, tendencies and economical studies are presented, trying to find the optimal condition for this technology to be feasible. The option regarding the trading of carbon credits when biomass is used as fuel is analyzed as well

  14. A Cryogenic Flow Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  15. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  16. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  17. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  18. Advanced Insulation Techniques for Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  19. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  20. A simple low-cost cryogenic controller

    International Nuclear Information System (INIS)

    Mitchell, I.V.; Bartram, C.P.

    1977-01-01

    A simple, inexpensive cryogenic temperature controller is described. Temperatures from 78 K to 300 K are maintained to 0.1 K. A novel feature, using a power transistor for the heating element, is discussed. (Auth.)

  1. Cryogenic Propellant Storage and Handling Efficiency Improvement

    Data.gov (United States)

    National Aeronautics and Space Administration — Stennis Space Center (SSC) is NASA’s top annual consumer of cryogenic propellants. Improvements in ground propellant system operations at SSC require having the...

  2. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James

    2002-01-01

    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  3. Lightweight Inflatable Cryogenic Tank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  4. Status of the LBNF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Fermilab; Adamowski, M. [Fermilab; Bremer, J. [CERN; Delaney, M. [Fermilab; Diaz, A. [CERN; Doubnik, R. [Fermilab; Haaf, K. [Fermilab; Hentschel, S. [Fermilab; Norris, B. [Fermilab; Voirin, E. [Fermilab

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  5. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  6. Comparative analysis of linear motor geometries for Stirling coolers

    Science.gov (United States)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  7. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  8. Characterization of the power and efficiency of Stirling engine subsystems

    International Nuclear Information System (INIS)

    García, D.; González, M.A.; Prieto, J.I.; Herrero, S.; López, S.; Mesonero, I.; Villasante, C.

    2014-01-01

    Highlights: • We review experimental data from a V160 engine developed for cogeneration. • We also investigate the V161 solar engine. • The possible margin of improvement is evaluated for each subsystem. • The procedure is based on similarity models and thermodynamic models. • The procedure may be of general interest for other prototypes. - Abstract: The development of systems based on Stirling machines is limited by the lack of data about the performance of the various subsystems that are located between the input and output power sections. The measurement of some of the variables used to characterise these internal subsystems presents difficulties, particularly in the working gas circuit and the drive mechanism, which causes experimental reports to rarely be comprehensive enough for analysing the whole performance of the machine. In this article, we review experimental data from a V160 engine developed for cogeneration to evaluate the general validity; we also investigate one of the most successful prototypes used in dish-Stirling systems, the V161 engine, for which a seemingly small mechanical efficiency value has been recently predicted. The procedure described in this article allows the possible margin of improvement to be evaluated for each subsystem. The procedure is based on similarity models, which have been previously developed through experimental data from very different prototypes. Thermodynamic models for the gas circuit are also considered. Deduced characteristic curves show that both prototypes have an advanced degree of development as evidenced by relatively high efficiencies for each subsystem. The analyses are examples that demonstrate the qualities of dimensionless numbers in representing physical phenomena with maximum generality and physical meaning

  9. Commercially Available Capacitors at Cryogenic Temperatures

    OpenAIRE

    Teyssandier, F.; Prêle, D.

    2010-01-01

    Commercially available capacitors are not specified for operation at 77 K or 4 K, and some devices showed a dramatic decrease of capacitance at cryogenic temperature. Furthermore, for voltage biasing of cryogenic low impedance sensors it is very important to know parasitic resistance. In this case, the parasitic Equivalent Series Resistance (ESR) of the capacitor used for the AC-biasing is a bottleneck of the voltage biasing. Involved in TES development and SQUID multiplexing, we have charact...

  10. Modified Apollo cryogenic oxygen tank design

    Science.gov (United States)

    Vanleuven, K.

    1971-01-01

    Assessment of the Apollo 13 mission indicated that some design changes to be incorporated into Apollo cryogenic oxygen storage tanks. These changes broadly fit into three categories. They were: (1) deletion of the fluid equilibration motors and redesign of heater assembly, (2) material changes for internal tank wiring and density sensor, and (3) the addition of a heater assembly temperature sensor. Development of a cryogenic oxygen tank incorporating these changes is presented.

  11. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  12. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-05-01

    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  13. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  14. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  15. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    Science.gov (United States)

    Keung, C.; Patt, P. J.; Starr, M.; Sweet, R. C.; Bourdillon, L. A.; Figueroa, R.; Hartmann, M.; Mcfarlane, R.

    1990-01-01

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.

  16. Developing Cryogenic Heat Exchangers for Selective Cabin Air Separation

    Data.gov (United States)

    National Aeronautics and Space Administration — Two HEXs will be designed that will interface with in-house Stirling cryo coolers: the residual H2O/VOC cold trap, and the CO2 deposition chamber. We’ll calculate...

  17. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  18. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.

    2018-01-12

    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  19. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  20. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  1. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  2. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  3. Future cryogenic switchgear technologies for superconducting power systems

    Science.gov (United States)

    Xu, C.; Saluja, R.; Damle, T.; Graber, L.

    2017-12-01

    This paper introduces cryogenic switchgear that is needed for protection and control purposes in future multi-terminal superconducting power systems. Implementation of cryogenic switchgear is expected to improve system reliability and minimize overall volume and weight, but such switchgear is not available yet. Design of cryogenic switchgear begins by referring to conventional circuit breakers, a brief review of state-of-the-art switchgear technologies is presented. Then, promising cryogenic interruption media are identified and analysed with respect to physical and dielectric properties. Finally, we propose several cryogenic circuit breaker designs for potential aerospace, marine and terrestrial applications. Actuation mechanism for cryogenic switchgear is also investigated.

  4. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  5. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  6. Cryogenic Deflashing for Rubber Products

    Directory of Open Access Journals (Sweden)

    Abhilash M.

    2018-01-01

    Full Text Available Deflashing is the process of removal of excess flashes from the rubber products. Initially deflashing was a manual operation where dozen of workers, seated at small work stations would take each part and trim the excess rubber off with scissors, knives or by grinding. Still the same method is employed in most of the rubber industry. The drawbacks of this method are demand inconsistent and repeatable quality. Work done by hand is often inconsistent. There are commercially available cryogenic deflashing machine but they are too expensive hence cost effectiveness is also a prime factor. The objective of this paper is to develop a technique, to identify the media through which the flashes can be removed easily and effectively. Based on the test results obtained from testing of five different types of media, ABCUT Steel media gave best results. The testing of the ABCUT Steel media on rubber samples like O-rings, grommet tail door, bottom bush etc. shows good results.

  7. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  8. Mass Driver Two - Cryogenic module

    Science.gov (United States)

    Fine, K.; Williams, F.; Mongeau, P.; Kolm, H.

    1979-01-01

    The cryogenic module of Mass Driver Two comprises a 3.25 inch (82.55 mm) OD bucket with two 44 kilo-ampere-turn coils made with .028 inch (.71 mm) diam niobium-titanium multi-filamentary cable in a copper matrix, impregnated with lead alloy for thermal inertia, as well as the service station to refrigerate, energize and eject the bucket. The station is housed in a six inch flanged pyrex cross which connects to the four inch pyrex tube of the mass driver itself. The bucket is refrigerated by being forced against a copper braid cradle attached to the bottom of a liquid helium reservoir which protrudes into the cross from above. The bucket is energized inductively by turning off two superconducting coils which are also attached to the helium reservoir, and which have maintained the correct flux linkage through the bucket coils during their cool-down through the critical temperature. Once charging is completed, the clamping pressure is released and the bucket is injected into the mass driver by means of two normal-conductor pulse coils surrounding the horizontal branches of the cross.

  9. Fort Huachuca to Benefit from New Solar Technology: Dish-Stirling System Couples Solar Power with Engine to Generate Electricity

    National Research Council Canada - National Science Library

    1995-01-01

    ... in partnership with industry. A prototype dish-Stirling solar system, which consists of a large dish of solar concentrators and a Stirling heat engine, will be installed at Fort Huachuca in July and should be in operation about two weeks later...

  10. Emotional and Psychological Well-Being in Children: The Development and Validation of the Stirling Children's Well-Being Scale

    Science.gov (United States)

    Liddle, Ian; Carter, Greg F. A.

    2015-01-01

    The Stirling Children's Well-being Scale (SCWBS) was developed by the Stirling Council Educational Psychology Service (UK) as a holistic, positively worded measure of emotional and psychological well-being in children aged eight to 15 years. Drawing on current theories of well-being and Positive Psychology, the aim was to provide a means of…

  11. Design, Analysis and Optimization of a Solar Dish/Stirling System

    Directory of Open Access Journals (Sweden)

    Seyyed Danial Nazemi

    2016-02-01

    Full Text Available In this paper, a mathematical model by which the thermal and physical behavior of a solar dish/Stirling system was investigated, then the system was designed, analysed and optimized. In this regard, all of heat losses in a dish/Stirling system were calculated, then, the output net-work of the Stirling engine was computed, and accordingly, the system efficiency was worked out. These heat losses include convection and conduction heat losses, radiation heat losses by emission in the cavity receiver, reflection heat losses of solar energy in the parabolic dish, internal and external conduction heat losses, energy dissipation by pressure drops, and energy losses by shuttle effect in displacer piston in the Stirling engine. All of these heat losses in the parabolic dish, cavity receiver and Stirling engine were calculated using mathematical modeling in MatlabTM software. For validation of the proposed model, a 10 kW solar dish/Stirling system was designed and the simulation results were compared with the Eurodish system data with a reasonable degree of agreement. This model is used to investigate the effect of geometric and thermodynamic parameters including the aperture diameter of the parabolic dish and the cavity receiver, and the pressure of the compression space of the Stirling engine, on the system performance. By using the PSO method, which is an intelligent optimization technique, the total design was optimized and the optimal values of decision-making parameters were determined. The optimization has been done in two scenarios. In the first scenario, the optimal value of each designed parameter has been changed when the other parameters are equal to the designed case study parameters. In the second scenario, all of parameters were assumed in their optimal values. By optimization of the modeled dish/Stirling system, the total efficiency of the system improved to 0.60% in the first scenario and it increased from 21.69% to 22.62% in the second

  12. Demagnetization Tests Performed on a Linear Alternator for a Stirling Power Convertor

    Science.gov (United States)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2012-01-01

    The NASA Glenn Research Center (GRC) is conducting in-house research on rare-earth permanent magnets and linear alternators to assist in developing free-piston Stirling convertors for radioisotope space power systems and for developing advanced linear alternator technology. This research continues at GRC, but, with the exception of Advanced Stirling Radioisotope Generator references, the work presented in this paper was conducted in 2005. A special arc-magnet characterization fixture was designed and built to measure the M-H characteristics of the magnets used in Technology Demonstration Convertors developed under the 110-W Stirling Radioisotope Generator (SRG110) project. This fixture was used to measure these characteristics of the arc magnets and to predict alternator demagnetization temperatures in the SRG110 application. Demagnetization tests using the TDC alternator on the Alternator Test Rig were conducted for two different magnet grades: Sumitomo Neomax 44AH and 42AH. The purpose of these tests was to determine the demagnetization temperatures of the magnets for the alternator under nominal loads. Measurements made during the tests included the linear alternator terminal voltage, current, average power, magnet temperatures, and stator temperatures. The results of these tests were found to be in good agreement with predictions. Alternator demagnetization temperatures in the Advanced Stirling Convertor (ASC-developed under the Advanced Stirling Radioisotope Generator project) were predicted as well because the prediction method had been validated through the SRG110 alternator tests. These predictions led to a specification for maximum temperatures of the ASC pressure vessel.

  13. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  14. Operational data and thermodynamic modeling of a Stirling-dish demonstration installation in desert conditions

    Science.gov (United States)

    Nilsson, Martin; Jamot, Jakob; Malm, Tommy

    2017-06-01

    To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.

  15. Assessment of Stirling engine potential in total and integrated energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, T.J.; Bratis, J.C.; Davis, A.; Lee, C.

    1979-02-01

    The development of Stirling engines for stationary power applications in Total Energy Systems is attractive for two main reasons: high potential engine efficiency, and fuel flexibility especially in the use of coal and coal-derived fuels. Total Energy applications are unique in that they offer an option for using fuel energy most effectively on a local basis by recovering the rejected heat from electric power generation to meet thermal requirements within a community. These thermal requirements include space heating, cooling, and hot water service demands. The advantages and disadvantages of large Stirling engines in Total, or Integrated, Energy Systems are discussed and the performance and cost characteristics of such engines are analyzed and compared with the main competitors (diesel engines and gas turbines) for such applications. The comparisons are made through simplified and detailed systems analyses. Lastly, based on the systems studied and intercomparisons of competing technologies, the requirements for the development of a large Stirling engine are outlined along with a suggested developmental program. From this study it is clear that, given the attributes of the competing technologies involved, the main advantage of the Stirling engine lies in its ability to use fuels other than distillates. This attribute must be developed further in order to provide engine technologies which can burn abundant fuels such as coal or coal-derived fuels. Secondarily, the potentially high efficiency of Stirlings would be especially advantageous in applications where a high electrical-to-thermal-energy demand ratio exists.

  16. Performance optimum analysis of an irreversible molten carbonate fuel cell–Stirling heat engine hybrid system

    International Nuclear Information System (INIS)

    Chen, Liwei; Zhang, Houcheng; Gao, Songhua; Yan, Huixian

    2014-01-01

    A new hybrid system mainly consists of a molten carbonate fuel cell (MCFC) and a Stirling heat engine is established, where the Stirling heat engine is driven by the high-quality waste heat generated in the MCFC. Based on the electrochemistry and non-equilibrium thermodynamics, analytical expressions for the efficiency and power output of the hybrid system are derived by taking various irreversible losses into account. It shows that the performance of the MCFC can be greatly enhanced by coupling a Stirling heat engine to further convert the waste heat for power generation. By employing numerical calculations, not only the influences of multiple irreversible losses on the performance of the hybrid system are analyzed, but also the impacts of some operating conditions such as the operating temperature, input gas compositions and operating pressure on the performance of the hybrid system are also discussed. The investigation method in the present paper is feasible for some other similar energy conversion systems as well. - Highlights: • A model of MCFC–Stirling heat engine hybrid system is established. • Analytical expressions for the efficiency and power output are derived. • MCFC performance can be greatly enhanced by coupling a Stirling heat engine. • Effects of some operating conditions on the performance are discussed. • Optimum operation regions are subdivided by multi-objective optimization method

  17. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    International Nuclear Information System (INIS)

    Brandhorst, Henry W. Jr.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described

  18. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, Greg [Cool Energy, Inc., Boulder, CO (United States); Weaver, Samuel P. [Cool Energy, Inc., Boulder, CO (United States)

    2013-03-27

    Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of US power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one

  19. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    Science.gov (United States)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  20. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  1. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  2. In-Space Cryogenic VOST Connect/Disconnect, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel cryogenic coupling will be designed and modeled. Intended for in-space use at cryogenic propellant depots, the coupling is based on patented Venturi-Offset...

  3. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  4. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  5. Low evaporation rate storage media for cryogenic liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Considerable design work has been devoted to the development of cryogenic liquid storage containers. Containers which hold cryogenic liquids such as liquid nitrogen,...

  6. Advanced Sprayable Composite Coating for Cryogenic Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA solicitation X10 "Cryogenic Propellant Storage and Transfer" under subtopic X.01 "Cryogenic Fluid...

  7. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  8. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  9. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  10. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  11. Update on Extended Operation of Stirling Convertors in Thermal Vacuum at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore M.

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Infinia Corporation, and NASA Glenn Research Center (GRC) have been developing a Stirling Radioisotope Generator (SRG) for use as a power system on space science missions. This generator would make use of Stirling cycle energy conversion to achieve higher efficiency than currently used alternatives. A test has been initiated at GRC to demonstrate functionality of Stirling conversion in a thermal vacuum environment over an extended period of time. The test article resembles the configuration of the SRG, but was designed without the requirement of low mass. Throughout the 8700 cumulative hours of operation, modifications to the supporting hardware were required to attain the desired operating conditions. These modifications, the status of testing, and the data recorded will be discussed in this paper.

  12. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  13. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  14. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    Science.gov (United States)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  15. An experimental study for the phase shift between piston and displacer in the Stirling cryocooler

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Son, H. K.; Yu, B. K.

    2002-01-01

    The small cryocooler is being widely applied to the areas of infrared detector, superconductor filter, satellite communication, and cryopump. The cryocooler working on the Stirling cycle are characterized by small size, lightweight, low power consumption and high reliability. For these reasons, FPFD (Free Piston Free Displacer) Stirling cryocooler is widely used not only tactical infrared imaging camera but also medical diagnostic apparatus. In this study, Stirling cryocooler actuated by the dual linear motor is designed and manufactured. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of the displacer is measured by laser optic method, and phase shift between piston and displacer is discussed. Finally, when the phase shift between displacements of the piston and displacer is 45 .deg., operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance

  16. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  17. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  18. Analytical expression for an optimised link bar mechanism for a beta-type Stirling engine

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2007-01-01

    The design of a mechanism for kinematic beta-type Stirling engines, where the displacer piston and the working piston share the same cylinder, is complicated. A well-known solution is the rhombic drive, but this solution depends on oil lubrication because of the gear wheels connecting the two...... counter rotating crank shafts. In a hermetically sealed Stirling engine it is an advantage to avoid oil in the crank case, making the application of the rhombic drive difficult. In this paper, another crank mechanism is presented, which has been developed for a 9 kW single cylinder engine. The new crank...... mechanism is a further development of the mechanism in a previous 9 kW engine. The crank mechanism for the beta-type Stirling engine is based on two four-link straight line mechanisms pointing up and down, respectively. The mechanism pointing upwards is connected to the working piston, while the mechanism...

  19. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    due to the slow burning of the fuel. To avoid sintering of ash the flame temperature in a biomass burner has to be quite low. The flame temperature can be lowered by using a high excess air rate; however this will lower system efficiency and needs a large air preheater. By using combustion gas...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...

  20. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Mohammadi, Amir H.; Dehghani, Saeed

    2013-01-01

    Highlights: • The optimal power of an endoreversible Stirling cycle is investigated. • In the endoreversible cycle, external heat transfer processes are considered irreversible. • Optimal temperature of the heat source leading to a maximum power for the cycle is detained. • Effect of design parameters on the power and its corresponding thermal efficiency is studied. - Abstract: In this communication, the optimal power of an endoreversible Stirling cycle with perfect regeneration is investigated. In the endoreversible cycle, external heat transfer processes are irreversible. Optimal temperature of the heat source leading to a maximum power for the cycle is detained. Moreover, effect of design parameters of the Stirling engine on the maximized power of the engine and its corresponding thermal efficiency is studied

  1. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  2. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  3. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  4. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  5. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  6. Development of cast ferrous alloys for Stirling engine application

    International Nuclear Information System (INIS)

    Lemkey, F.D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum

  7. Stirling engine---available tools for long-life assessment

    International Nuclear Information System (INIS)

    Halford, G.R.; Bartolotta, P.A.

    1991-01-01

    A review is presented of the durability approaches applicable to long-time life assessment of Stirling engine hot-section components. The crucial elements are: (i) experimental techniques for generating long-time materials property data (both monotonic and cyclic flow and failure properties), (ii) analytic representations of slow strain rate material stress-strain response characteristics (monotonic and cyclic constitutive relations) at high temperatures and low stresses and strains, (iii) analytic creep-fatigue-environmental interaction life prediction methods applicable to long lifetimes at high temperatures and small stresses and strains, and (iv) experimental verification of life predictions. Long-lifetime design criteria for materials of interest are woefully lacking. Designing against failures due to creep, creep-rupture, fatigue, environmental attack, and creep-fatigue-environmental interaction will require considerable extrapolation. Viscoplastic constitutive models and time-temperature parameters will have to be calibrated for the hot-section materials of interest. Analysis combined with limited verification testing in a short-time regime will be required to build confidence in long-term durability models. A strong need exists for improved long-lifetime durability models

  8. Stirling engine with hydraulic power output for powering artificial hearts

    International Nuclear Information System (INIS)

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  9. Stirling engine or heat pump having an improved seal

    Science.gov (United States)

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  10. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  11. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  12. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  13. Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization

    International Nuclear Information System (INIS)

    Formosa, Fabien; Fréchette, Luc G.

    2013-01-01

    This work explores the scaling effects for FPSE (free piston Stirling engines), which are known for their simple architecture and potentially high thermodynamic performances. Scaling laws are given and their potential for miniaturization is highlighted. A simple model which allows the design of the geometrical parameters of the heat exchangers, the regenerator and the masses of the pistons is proposed. It is based on the definition of six characteristic dimensionless groups. They are derived from the physics underlying the behavior of the free piston Stirling machine and their relevancy is backed up by comparisons between documented Stirling engines from the literature. Keeping constant values for each group throughout the scaling range theoretically ensures constant performance. The main losses of Stirling engine (heat conduction loss, reheat loss in the regenerator, pressure drop and gas-spring hysteresis) can be expressed as a function of the geometrical and operating parameters. Additionally, the consequences of leakage due to the manufacturing precision of pistons architectures are underlined. From the proposed scaling laws, potential power and efficiency of Stirling cycle engines at a millimeter scale can be anticipated. It appears that the power density increases with miniaturization. It is also shown that the dynamic masses related to the engine size are increased when scaling down and that the gap leakage presents the highest detrimental effects on the efficiency. These results call for dedicated architectures for micro-engines. - Highlights: • Similitude strategy is applied to Stirling engines and allows preliminary design. • New scaling laws are derived. • The power density can be increased with miniaturization. • The gap between the piston and casing is highly detrimental to the performances. • High engine operating pressure is required when miniaturizing

  14. Thermodynamic model to study a solar collector for its application to Stirling engines

    International Nuclear Information System (INIS)

    Abdollahpour, Amir; Ahmadi, Mohammad H.; Mohammadi, Amir H.

    2014-01-01

    Highlights: • A thermodynamic model is presented to study a solar collector for its application to Stirling engines. • The parabolic collector is analyzed based on optical and thermal. • Effects of changing some conditions and parameters are studied. - Abstract: Energy production through clean and green sources has been paid attention over the last decades owing to high energy consumption and environmental emission. Solar energy is one of the most useful energy sources. Due to high investment cost of centralized generation of electricity and considerable loss in the network, it is necessary to look forward to decentralized electricity generation technologies. Stirling engines have high efficiency and are able to be coupled with solar energy which cannot be applied in internal combustion engines. Solar Stirling engines can be commercialized and used to generate decentralized electricity in small to medium levels. One of the most important steps to set up an efficient solar Stirling engine is choosing and designing the collector. In this study, a solar parabolic collector with 3500 W of power for its application to Stirling engines was designed and analyzed (It is the thermal inlet power for a Stirling engine). We studied the parabolic collector based on optical and thermal analysis. In this case, solar energy is focused by a concentrating mirror and transferred to a pipe containing fluid. MATLAB software was used for obtaining the parameters of the collector, with respect to the geographic, temporal, and environmental conditions, fluid inlet temperature and some other considerations. After obtaining the results of the design, we studied the effects of changing some conditions and parameters such as annular space pressure, type of the gas, wind velocity, environment temperature and absorber pipe coating

  15. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  16. Thermoelectric Module Performance in Cryogenic Temperature

    Science.gov (United States)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    Performance of thermoelectric (TE) modules for the TE power conversion system combined with open rack type LNG vaporizer (ORV) is discussed. Most of the conventional BiTe TE modules suffer sudden decrease of the power at cryogenic temperature as low as -160°C. This is called as Mayer-Marschall effect. Authors investigated the cause of this effect and found TE modules that could avoid such effect. Performance data of such TE modules obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the ORV is presented.

  17. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  18. Amplifier development for multiplexed cryogenic detectors

    Science.gov (United States)

    Kiviranta, Mikko

    2012-12-01

    We make some considerations on the question of driving the cable from the cryogenic stage of refrigerators to the room temperature, in the case of multiplexed detector array systems where a high total Shannon information capacity is required. We have constructed large SQUID arrays for the purpose, some of which exhibit lower than 5 × 10-8 Φ0 Hz-1/2 flux noise at 4.2 K and do not require magnetic shielding in a typical laboratory environment. The option of using class-D amplifiers to reduce the cryogenic heat load is briefly reviewed.

  19. Heat-pipe heat transport system for Stirling space power converter

    Science.gov (United States)

    Alger, Donald L.

    Life issues relating to a sodium-heat-pipe heat transport system are discussed. The heat-pipe system provides heat, at a temperature of 1050 K, to a 50-kWe Stirling engine/linear alternator power converter called the Stirling space power converter. Because corrosion of heat-pipe materials in contact with sodium can affect the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion processes likely to be operative in the heat pipe. Approaches that are being taken to minmize these corrosion processes are discussed.

  20. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    Science.gov (United States)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  1. Bernoulli-Carlitz and Cauchy-Carlitz numbers with Stirling-Carlitz numbers

    OpenAIRE

    Kaneko, Hajime; Komatsu, Takao

    2017-01-01

    Recently, the Cauchy-Carlitz number was defined as the counterpart of the Bernoulli-Carlitz number. Both numbers can be expressed explicitly in terms of so-called Stirling-Carlitz numbers. In this paper, we study the second analogue of Stirling-Carlitz numbers and give some general formulae, including Bernoulli and Cauchy numbers in formal power series with complex coefficients, and Bernoulli-Carlitz and Cauchy-Carlitz numbers in function fields. We also give some applications of Hasse-Teichm...

  2. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S.

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  3. Design of the 4-215 D. A. automotive Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    van Giessel, R.; Reinink, F.

    1977-01-01

    The Stirling engine holds out prospects of achieving a low pollution, quiet automotive power plant with excellent fuel economy and multi-fuel capability. N. V. Philips, of Holland, has been working with Ford Motor Company since 1972 on a joint program to build, test, and develop a conceptual version of the engine to determine its real potential. A description is given of the approach taken in the design of a four-cylinder double-acting 170-hp Stirling engine with a swash-plate drive, suitable for passenger car installation. Performance and steady-state fuel economy measured on a dynamometer are also presented.

  4. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative...

  5. Performance of the preferred self-supporting radioisotope power system with STC 55-W Stirling converters

    International Nuclear Information System (INIS)

    Or, C.; Carpenter, R.; Schock, A.; Kumar, V.

    2000-01-01

    Orbital has designed various self-supporting radioisotope power system options utilizing STC 55-W Stirling converters for possible application to NASA's Europa Orbiter mission. The preferred generator design with mechanical coupling though the heat source housing was analyzed. The various parameters studied include radiator facesheet thickness, radiator size, separation distance between spacecraft and radiators, Sun angle, and mission phase with different solar constants and radioisotope thermal power. Analytical results show that the Europa EOM power goal of 210 W e can be met comfortably with the preferred power system of 2 generators, each with 2 GPHS modules and 2 STC 55-W Stirling converters

  6. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  7. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  8. Parallel BLAST on split databases.

    Science.gov (United States)

    Mathog, David R

    2003-09-22

    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/

  9. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  10. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  11. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  12. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  13. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good

  14. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  15. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  16. Solid State Circuits for Cryogenic Operation

    Science.gov (United States)

    Petrac, D.; Spencer, R. L.

    1983-01-01

    Tests confirm operation of five commercial semiconductor devices at cryogenic temperatures. The five devices - one tunnel diode, one field-effect transistor, and three CMOS integrated circuits - all perform well in circuits immersed in liquid-helium bath. For some tests, bath temperature was reduced to 1,25K by pumping.

  17. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  18. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  19. Cryogenic carbonates in cave environments: A review

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Onac, B. P.; Persoiu, A.

    2008-01-01

    Roč. 187, č. 1 (2008), s. 84-96 ISSN 1040-6182 Institutional research plan: CEZ:AV0Z30130516 Keywords : cryogenic cave carbonate * cave * Romania * stable Isotopes * isotope fractionation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.482, year: 2008

  20. Testing the LHC magnet cryogenic systems

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The magnets in the LHC will be cooled to 1.9 K (- 270.3°C). To keep this 27 km long machine at such a low temperatures requires one of the largest refrigeration systems in the world. These pictures show the cryogenics plant in the testing area.

  1. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  2. Modelización gráfica y simulación de un motor Stirling

    OpenAIRE

    Carroggio Cabestany, Alberto

    2015-01-01

    El siguiente trabajo presenta primeramente a los motores Stirling, realizando una breve explicación de su funcionamiento y características. Una vez conocidos, se centra en los motores Stirling con configuración Alfa. Se establece un proceso de diseño de motores Stirling tipo Alfa con el que poder hacer frente a cálculos matemáticos que ayudan a conocer las características del motor diseñado antes de su fabricación. Se realizan un estudio térmico y cinemático de forma que se conozcan las...

  3. Neural network-based control of an intelligent solar Stirling pump

    International Nuclear Information System (INIS)

    Tavakolpour-Saleh, A.R.; Jokar, H.

    2016-01-01

    In this paper, an ANN (artificial neural network) control system is applied to a novel solar-powered active LTD (low temperature differential) Stirling pump. First, a mathematical description of the proposed Stirling pump is presented. Then, optimum operating frequencies of the converter corresponding to different operating conditions (i.e. different sink and source temperatures and water heads) are investigated using the proposed mathematical framework. It is found that the proposed complex mathematical scheme has a very slow convergence and thus, is not appropriate for real-time implementation of the model-based controller. Consequently, a NN (neural network) model with a lower complexity is proposed to learn the simulation data obtained from the mathematical model. The designed neural network controller is thus applied to a digital processor to effectively tune the converter frequency so that a maximum output power is acquired. Finally, the performance of the proposed mechatronic system is evaluated experimentally. The experimental results clearly demonstrate the feasibility of pumping water at low temperature difference under variable operating conditions using the proposed intelligent Stirling converter. - Highlights: • A novel intelligent solar-powered active LTD Stirling pump was introduced. • A neural network controller was used to tune the converter speed. • The intelligent converter was able to adapt itself to different operating conditions. • It was possible to excite the water column with its resonance mode. • Experimental results showed the effectiveness of the proposed converter.

  4. Multi-objective optimization of Stirling engine using non-ideal adiabatic method

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Ahmadi, Mohammad H.

    2014-01-01

    Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method

  5. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which...

  6. Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data

    International Nuclear Information System (INIS)

    Geng, S.M.; Tew, R.C.

    1994-01-01

    Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free-piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine-specific calibration to bring predictions and experimental data into agreement

  7. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    DEFF Research Database (Denmark)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie

    2016-01-01

    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four...

  8. Thermoacoustic model of a modified free piston Stirling engine with a thermal buffer tube

    International Nuclear Information System (INIS)

    Yang, Qin; Luo, Ercang; Dai, Wei; Yu, Guoyao

    2012-01-01

    This article presents a modified free-piston Stirling heat engine configuration in which a thermal buffer tube is added to sandwich between the hot and cold heat exchangers. Such a modified configuration may lead to an easier fabrication and lighter weight of a free piston. To analyze the thermodynamic performance of the modified free piston Stirling heat engine, thermoacoustic theory is used. In the thermoacoustic modelling, the regenerator, the free piston, and the thermal buffer tube are given at first. Then, based on linear thermoacoustic network theory, the thermal and thermodynamic networks are presented to characterize acoustic pressure and volume flow rate distributions at different interfaces, and the global performance such as the power output, the heat input and the thermal efficiency. A free piston Stirling heat engine with several hundreds of watts mechanical power output is selected as an example. The typical operating and structure parameters are as follows: frequency around 50 Hz, mean pressure around 3.0 MPa, and a diameter of free piston around 50 mm. From the analysis, it was found that the modified free-piston Stirling heat engine has almost the same thermodynamic performance as the original design, which indicates that the modified configuration is worthy to develop in future because of its mechanical simplicity and reliability.

  9. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    Science.gov (United States)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-01-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  10. A novel method to hit the limit temperature of Stirling-type cryocooler

    Science.gov (United States)

    Wang, Jue; Pan, Changzhao; Zhang, Tong; Luo, Kaiqi; Zhou, Yuan; Wang, Junjie

    2018-02-01

    The Stirling-type cryocooler with its compact size and high efficiency is always expected to obtain its temperature limit of below 3 K. However, the pressure drop losses caused by high-frequency oscillation create large obstacles for this objective. This paper reports a novel thermal-driven Stirling-type cryocooler to obtain the lowest temperature of a Stirling-type cryocooler. The advantages of a thermal-driven cryocooler (Vuilleumier cryocooler) and pulse tube cryocooler are combined with a new type of cryocooler, called the Vuilleumier gas-coupling pulse tube hybrid cryocooler (VM-PT). A prototype of the VM-PT was recently developed and optimized in our laboratory. By using helium-4 as the working gas and magnetic regenerative materials (HoCu2 and Er3Ni), the lowest temperature of 2.5 K was obtained, which can be regarded as an important breakthrough for the Stirling-type cryocooler to achieve its limit temperature of below 3 K. It can supply >30 mW cooling power at 4.2 K and >500 mW cooling power at 20 K simultaneously. Theoretically, it is feasible to use this VM-PT for cooling the superconducting devices in space applications.

  11. Comparison of the externally heated air valve engine and the helium Stirling engine

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    Highlights: • Air EHVE produces comparable power as equivalent helium Stirling engine. • No heat regenerator used in the EHVE, standard lubrication system. • External combustion engine combined with forced flow added (super-charging). • EHVE uses typical piston engine body design and governing cam system. • Possible use of different fuels: oil, coal, gas also sun and nuclear energy. - Abstract: A two-stroke, externally heated valve engine (EHVE) with a heater, a cooler and two blowers is simulated. The engine is entirely different from a typical Stirling engine. The pressure ratio p max /p min of its cycle is higher, but the engine volume and the mean value of the heat exchanger wall temperatures are the same. The power and efficiency of the EHVE and Stirling engines under the same maximum pressures are compared. The results show that the EHVE engine reaches almost the same level of performance as the Stirling engine, while using only available atmospheric air, rather than helium

  12. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    Science.gov (United States)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  13. John Stirling and the Classical Approach to Style in 18th Century England.

    Science.gov (United States)

    Moran, Michael G.

    Most 18th-century rhetoricians viewed style as the expression of a writer's individual character and thought, placing little emphasis on the lists of figures common in many 17th-century rhetorics. John Stirling and others, however, continued the 17th-century tradition that reduced rhetoric largely to style and emphasized classical figures of…

  14. Start-up and control method and apparatus for resonant free piston Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  15. Comparison of the Net Work Output between Stirling and Ericsson Cycles

    Directory of Open Access Journals (Sweden)

    Rui F. Costa

    2018-03-01

    Full Text Available In this paper, we compare Stirling and Ericsson cycles to determine which engine produces greater net work output for various situations. Both cycles are for external heat engines that utilize regenerators, where the difference is the nature of the regeneration process, which is constant volume for Stirling and constant pressure for Ericsson. This difference alters the performance characteristics of the two engines drastically, and our comparison reveals which one produces greater net work output based on the thermodynamic parameters. The net work output equations are derived and analysed for three different scenarios: (i equal mass and temperature limits; (ii equal mass and pressure or volume; and (iii equal temperature and pressure or volume limits. The comparison is performed by calculating when both cycles produce equal net work output and then analysing which one produces greater net work output based on how the parameters are varied. In general, the results demonstrate that Stirling engines produce more net work output at higher pressures and lower volumes, and Ericsson engines produce more net work output at lower pressures and higher volumes. For certain scenarios, threshold values are calculated to illustrate precisely when one cycle produces more net work output than the other. This paper can be used to inform the design of the engines and to determine when a Stirling or Ericsson engine should be selected for a particular application.

  16. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  17. Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.; Wong, Wayne A.

    2009-01-01

    Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC s and ultimately, the ASRG.

  18. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  19. Raw and Central Moments of Binomial Random Variables via Stirling Numbers

    Science.gov (United States)

    Griffiths, Martin

    2013-01-01

    We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…

  20. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium

    International Nuclear Information System (INIS)

    Bert, Juliette; Chrenko, Daniela; Sophy, Tonino; Le Moyne, Luis; Sirot, Frédéric

    2014-01-01

    A Stirling engine with nominal output power of 1 kW is tested using air and helium as working gases. The influence of working pressure, engine speed and temperature of the hot source is studied, analyzing instantaneous gas pressure as well as instantaneous and stationary temperature at different positions to derive the effective power. A zero dimensional finite-time thermodynamic, three zones model of a generic Stirling engine is developed and successfully validated against experimental gas temperature and pressure in each zone, providing the effective power. This validation underlines the interest of different working gases as well as different geometric configurations for different applications. Furthermore, the validated model allows parametric studies of the engine, with regard to geometry, working gas and engine kinematics. It is used in order to optimize the kinematic of a Stirling engine for different working points and gases. - Highlights: • A Stirling engine of 1 kW is tested using air and helium as working gas. • Effects of working pressure, speed and temperature on power are studied. • A zero dimensional finite-time thermodynamic, three zones model of it is validated. • The validated model is used for parametric studies and optimization of the engine