WorldWideScience

Sample records for split genes chemical

  1. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  2. Species Tree Inference from Gene Splits by Unrooted STAR Methods.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2018-01-01

    The method was proposed by Liu and Yu to infer a species tree topology from unrooted topological gene trees. While its statistical consistency under the multispecies coalescent model was established only for a four-taxon tree, simulations demonstrated its good performance on gene trees inferred from sequences for many taxa. Here, we prove the statistical consistency of the method for an arbitrarily large species tree. Our approach connects to a generalization of the STAR method of Liu, Pearl, and Edwards, and a previous theoretical analysis of it. We further show utilizes only the distribution of splits in the gene trees, and not their individual topologies. Finally, we discuss how multiple samples per taxon per gene should be handled for statistical consistency.

  3. Split-hand/split-foot malformation with paternal mutation in the p63 gene.

    NARCIS (Netherlands)

    Witters, I.; Bokhoven, J.H.L.M. van; Goossens, A.; Assche, F.A. van; Fryns, J.P.

    2001-01-01

    We report the prenatal diagnosis at 16 weeks' gestation of bilateral split-hand/split-foot malformation (SHSFM) with severe lobster claw deformity of hands and feet in a male fetus without associated malformations. A minor manifestation of SHSFM was present in the father with only mild bilateral

  4. A split hand-split foot (SHFM3) gene is located at 10q24{yields}25

    Energy Technology Data Exchange (ETDEWEB)

    Gurrieri, F.; Genuardi, M.; Nanni, L.; Sangiorgi, E.; Garofalo, G. [Catholic Univ. of Rome (Italy)] [and others

    1996-04-24

    The split hand-split foot (SHSF) malformation affects the central rays of the upper and lower limbs. It presents either as an isolated defect or in association with other skeletal or non-skeletal abnormalities. An autosomal SHSF locus (SHFM1) was previously mapped to 7q22.1. We report the mapping of a second autosomal SHSF locus to 10q24{yields}25 region. Maximum lod scores of 3.73, 4.33 and 4.33 at a recombination fraction of zero were obtained for the loci D10S198, PAX2 and D10S1239, respectively. An 19 cM critical region could be defined by haplotype analysis and several genes with a potential role in limb morphogenesis are located in this region. Heterogeneity testing indicates the existence of at least one additional autosomal SHSF locus. 36 refs., 3 figs., 3 tabs.

  5. An Integrated Photoelectrochemical-Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

    DEFF Research Database (Denmark)

    Zong, Xu; Han, Jingfeng; Seger, Brian

    2014-01-01

    Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...

  6. An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium

    Science.gov (United States)

    Palmer, Grant

    1987-01-01

    An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.

  7. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation

    Directory of Open Access Journals (Sweden)

    Asmat Ullah

    2018-01-01

    Full Text Available Abstract Split-hand/split-foot malformation (SHFM, also known as ectrodactyly is a rare genetic disorder. It is a clinically and genetically heterogeneous group of limb malformations characterized by absence/hypoplasia and/or median cleft of hands and/or feet. To date, seven genes underlying SHFM have been identified. This study described four consanguineous families (A-D segregating SHFM in an autosomal recessive manner. Linkage in the families was established to chromosome 12p11.1–q13.13 harboring WNT10B gene. Sequence analysis identified a novel homozygous nonsense variant (p.Gln154* in exon 4 of the WNT10B gene in two families (A and B. In the other two families (C and D, a previously reported variant (c.300_306dupAGGGCGG; p.Leu103Argfs*53 was detected. This study further expands the spectrum of the sequence variants reported in the WNT10B gene, which result in the split hand/foot malformation.

  8. Quasi-chemical theory of F-(aq): The "no split occupancies rule" revisited

    Science.gov (United States)

    Chaudhari, Mangesh I.; Rempe, Susan B.; Pratt, Lawrence R.

    2017-10-01

    We use ab initio molecular dynamics (AIMD) calculations and quasi-chemical theory (QCT) to study the inner-shell structure of F-(aq) and to evaluate that single-ion free energy under standard conditions. Following the "no split occupancies" rule, QCT calculations yield a free energy value of -101 kcal/mol under these conditions, in encouraging agreement with tabulated values (-111 kcal/mol). The AIMD calculations served only to guide the definition of an effective inner-shell constraint. QCT naturally includes quantum mechanical effects that can be concerning in more primitive calculations, including electronic polarizability and induction, electron density transfer, electron correlation, molecular/atomic cooperative interactions generally, molecular flexibility, and zero-point motion. No direct assessment of the contribution of dispersion contributions to the internal energies has been attempted here, however. We anticipate that other aqueous halide ions might be treated successfully with QCT, provided that the structure of the underlying statistical mechanical theory is absorbed, i.e., that the "no split occupancies" rule is recognized.

  9. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium

    Science.gov (United States)

    Palmer, Grant

    1988-01-01

    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  10. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2016-10-01

    Full Text Available In this paper, a complementary split-ring resonator (CSRR-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol’s concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.

  11. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck for selecting differentially expressed genes related to vascular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cheng-Quan Yang

    Full Text Available Corky split vein caused by boron (B deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd and 3(rd phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  12. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V. [Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Shukla, S.; Saxena, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai (India); Lee, G.-H. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Alwarappan, S., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in [CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows that 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  13. Selective sweep on human amylase genes postdates the split with Neanderthals

    Science.gov (United States)

    Inchley, Charlotte E.; Larbey, Cynthia D. A.; Shwan, Nzar A. A.; Pagani, Luca; Saag, Lauri; Antão, Tiago; Jacobs, Guy; Hudjashov, Georgi; Metspalu, Ene; Mitt, Mario; Eichstaedt, Christina A.; Malyarchuk, Boris; Derenko, Miroslava; Wee, Joseph; Abdullah, Syafiq; Ricaut, François-Xavier; Mormina, Maru; Mägi, Reedik; Villems, Richard; Metspalu, Mait; Jones, Martin K.; Armour, John A. L.; Kivisild, Toomas

    2016-01-01

    Humans have more copies of amylase genes than other primates. It is still poorly understood, however, when the copy number expansion occurred and whether its spread was enhanced by selection. Here we assess amylase copy numbers in a global sample of 480 high coverage genomes and find that regions flanking the amylase locus show notable depression of genetic diversity both in African and non-African populations. Analysis of genetic variation in these regions supports the model of an early selective sweep in the human lineage after the split of humans from Neanderthals which led to the fixation of multiple copies of AMY1 in place of a single copy. We find evidence of multiple secondary losses of copy number with the highest frequency (52%) of a deletion of AMY2A and associated low copy number of AMY1 in Northeast Siberian populations whose diet has been low in starch content. PMID:27853181

  14. Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study.

    Science.gov (United States)

    Titov, Evgenii; Saalfrank, Peter

    2016-05-19

    Molecular photoswitches such as azobenzenes, which undergo photochemical trans ↔ cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule-surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based coupled-cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an example: The low-lying singlet excited states in the isolated trans monomer and dimer as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further

  15. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins.

    Directory of Open Access Journals (Sweden)

    Cheri A Schaaf

    2009-07-01

    Full Text Available The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.

  16. Embryo splitting

    OpenAIRE

    Karl Illmensee; Mike Levanduski

    2010-01-01

    Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board appr...

  17. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  18. Genetic transformation of the tomato pathogen Pyrenochaeta lycopersici allowed gene knockout using a split-marker approach.

    Science.gov (United States)

    Aragona, Maria; Valente, Maria Teresa

    2015-05-01

    Pyrenochaeta lycopersici, as other soil-transmitted fungal pathogens, generally received little attention compared to the pathogens affecting the aerial parts of the plants, although causing stunt and important fruit yield reduction of agronomic relevant crops. The scope of this study was to develop a system allowing to investigate the functional role of P. lycopersici genes putatively involved in the corky root rot of tomato. A genetic transformation system based on a split-marker approach was developed and tested to knock out a P. lycopersici gene encoding for a lytic polysaccharide monooxygenase (Plegl1) induced during the disease development. The regions flanking Plegl1 gene were fused with the overlapping parts of hygromycin marker gene, to favour homologous recombination. We were able to obtain four mutants not expressing the Plegl1 gene though, when tested on a susceptible tomato cultivar, Plegl1 mutants showed unaltered virulence, compared with the wild-type strain. The strategy illustrated in the present work demonstrated for the first time that homologous recombination occurs in P. lycopersici. Moreover, a transformation system mediated by Agrobacterium tumefaciens was established and stable genetic transformants have been obtained. The transformation systems developed represent important tools for investigating both the role of genes putatively involved in P. lycopersici interaction with host plant and the function of other physiological traits which emerged to be genetically expanded from the recent genome sequencing of this fungus.

  19. Symbiotic Gene Activation is Interrupted by Endocrine Disrupting Chemicals

    OpenAIRE

    Jennifer E. Fox; Matthew E. Burow; John A. McLachlan

    2001-01-01

    Endocrine disrupting chemicals (EDCs) include organochlorine pesticides, plastics manufacturing by-products, and certain herbicides[1]. These chemicals have been shown to disrupt hormonal signaling in exposed wildlife, lab animals, and mammalian cell culture by binding to estrogen receptors (ER-α and ER-β) and affecting the expression of estrogen responsive genes[2,3]. Additionally, certain plant chemicals, termed phytoestrogens, are also able to bind to estrogen receptors and modulate gene e...

  20. Hsp27 gene in Drosophila ananassae subgroup was split by a ...

    Indian Academy of Sciences (India)

    heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense responseagainst fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologousHsp27nucleotide sequencesfrom differentDrosophilaspecies were amplified by PCR and reverse transcription ...

  1. Hsp27 gene in Drosophila ananassae subgroup was split by a ...

    Indian Academy of Sciences (India)

    Abstract. In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR ...

  2. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  3. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2009-02-01

    Full Text Available Abstract Background Analyses based on phylogenetic and ultrastructural data have suggested that euglenids (such as Euglena gracilis, trypanosomatids and diplonemids are members of a monophyletic lineage termed Euglenozoa. However, many uncertainties are associated with phylogenetic reconstructions for ancient and rapidly evolving groups; thus, rare genomic characters become increasingly important in reinforcing inferred phylogenetic relationships. Findings We discovered that the iron-sulfur subunit (SdhB of mitochondrial succinate dehydrogenase is encoded by a split and rearranged nuclear gene in Euglena gracilis and trypanosomatids, an example of a rare genomic character. The two subgenic modules are transcribed independently and the resulting mRNAs appear to be independently translated, with the two protein products imported into mitochondria, based on the presence of predicted mitochondrial targeting peptides. Although the inferred protein sequences are in general very divergent from those of other organisms, all of the required iron-sulfur cluster-coordinating residues are present. Moreover, the discontinuity in the euglenozoan SdhB sequence occurs between the two domains of a typical, covalently continuous SdhB, consistent with the inference that the euglenozoan 'half' proteins are functional. Conclusion The discovery of this unique molecular marker provides evidence for the monophyly of Euglenozoa that is independent of evolutionary models. Our results pose questions about the origin and timing of this novel gene arrangement and the structure and function of euglenozoan SdhB.

  4. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  5. An efficient gene disruption method using a positive-negative split-selection marker and Agrobacterium tumefaciens-mediated transformation for Nomuraea rileyi.

    Science.gov (United States)

    Su, Yu; Wang, Zhongkang; Shao, Changwen; Luo, Yuanli; Wang, Li; Yin, Youping

    2018-01-16

    Targeted gene disruption via Agrobacterium tumefaciens-mediated transformation (ATMT) and homologous recombination is the most common method used to identify and investigate the functions of genes in fungi. However, the gene disruption efficiency of this method is low due to ectopic integration. In this study, a high-efficiency gene disruption strategy based on ATMT and the split-marker method was developed for use in Nomuraea rileyi. The β-glucuronidase (gus) gene was used as a negative selection marker to facilitate the screening of putative transformants. We assessed the efficacy of this gene disruption method using the NrCat1, NrCat4, and NrPex16 genes and found that the targeting efficiency was between 36.2 and 60.7%, whereas the targeting efficiency using linear cassettes was only 1.0-4.2%. The efficiency of negative selection assays was between 64.1 and 82.3%. Randomly selected deletion mutants exhibited a single copy of the hph cassette. Therefore, high-throughput gene disruption could be possible using the split-marker method and the majority of ectopic integration transformants can be eliminated using negative selection markers. This study provides a platform to study the function of genes in N. rileyi.

  6. Symbiotic Gene Activation is Interrupted by Endocrine Disrupting Chemicals

    Directory of Open Access Journals (Sweden)

    Jennifer E. Fox

    2001-01-01

    Full Text Available Endocrine disrupting chemicals (EDCs include organochlorine pesticides, plastics manufacturing by-products, and certain herbicides[1]. These chemicals have been shown to disrupt hormonal signaling in exposed wildlife, lab animals, and mammalian cell culture by binding to estrogen receptors (ER-α and ER-β and affecting the expression of estrogen responsive genes[2,3]. Additionally, certain plant chemicals, termed phytoestrogens, are also able to bind to estrogen receptors and modulate gene expression, and as such also may be considered EDCs[4]. One example of phytoestrogen action is genistein, a phytochemical produced by soybeans, binding estrogen receptors, and changing expression of estrogen responsive genes which certain studies have linked to a lower incidence of hormonally related cancers in Japanese populations[5]. Why would plants make compounds that are able to act as estrogens in the human body? Obviously, soybeans do not intentionally produce phytoestrogens to prevent breast cancer in Japanese women.

  7. Chemical memory reactions induced bursting dynamics in gene expression.

    Science.gov (United States)

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  8. Fast gas chromatographic residue analysis in animal feed using split injection and atmospheric pressure chemical ionisation tandem mass spectrometry.

    Science.gov (United States)

    Tienstra, M; Portolés, T; Hernández, F; Mol, J G J

    2015-11-27

    Significant speed improvement for instrumental runtime would make GC–MS much more attractive for determination of pesticides and contaminants and as complementary technique to LC–MS. This was the trigger to develop a fast method (time between injections less than 10 min) for the determination of pesticides and PCBs that are not (or less) amenable to LC–MS. A key factor in achieving shorter analysis time was the use of split injection (1:10) which allowed the use of a much higher initial GC oven temperature. A shorter column (15 m), higher temperature ramp, and higher carrier gas flow rate (6 mL/min) further contributed to analysis-time reduction. Chromatographic resolution was slightly compromised but still well fit-for-purpose. Due to the high sensitivity of the technique used (GC–APCI-triple quadrupole MS/MS), quantification and identification were still possible down to the 10 μg/kg level, which was demonstrated by successful validation of the method for complex feed matrices according to EU guidelines. Other advantages of the method included a better compatibility of acetonitrile extracts (e.g. QuEChERS) with GC, and a reduced transfer of co-extractants into the GC column and mass spectrometer.

  9. Chemical bonding and quadrupole splittings of 57Fe Moessbauer spectrum in active sites of oxyhemoglobin as calculated by Xα-discrete variation method

    International Nuclear Information System (INIS)

    Yuryeva, E. I.

    2008-01-01

    Results of quantum-chemical X α -discrete variation method (X α -DVM) calculations of interaction parameters between iron (II) and oxygen molecule in active sites of α- and β-subunits of oxyhemoglobin are presented within three models: without extra electron and in spin-unrestricted mode (model I); without extra electron and in spin-restricted mode (model II); with extra electrons in spin-unrestricted mode (model III). The electronic structure and 57 Fe quadrupole splitting ΔE Q for the active site of α- and β-subunits (within model I) and only of the α-subunit (within models II and III) of oxyhemoglobin are calculated. The differences in ΔE Q values for these three models are discussed.

  10. Chemical bonding and quadrupole splittings of {sup 57}Fe Moessbauer spectrum in active sites of oxyhemoglobin as calculated by X{sub {alpha}}-discrete variation method

    Energy Technology Data Exchange (ETDEWEB)

    Yuryeva, E. I., E-mail: yuryeva@ihim.uran.ru [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (Russian Federation)

    2008-07-15

    Results of quantum-chemical X{sub {alpha}}-discrete variation method (X{sub {alpha}}-DVM) calculations of interaction parameters between iron (II) and oxygen molecule in active sites of {alpha}- and {beta}-subunits of oxyhemoglobin are presented within three models: without extra electron and in spin-unrestricted mode (model I); without extra electron and in spin-restricted mode (model II); with extra electrons in spin-unrestricted mode (model III). The electronic structure and {sup 57}Fe quadrupole splitting {Delta}E{sub Q} for the active site of {alpha}- and {beta}-subunits (within model I) and only of the {alpha}-subunit (within models II and III) of oxyhemoglobin are calculated. The differences in {Delta}E{sub Q} values for these three models are discussed.

  11. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  12. ToxCast Data Expands Universe of Chemical-Gene Interactions (SOT)

    Science.gov (United States)

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. Thi...

  13. Gene silencing by chemically modified siRNAs.

    Science.gov (United States)

    Engels, Joachim W

    2013-03-25

    RNA interference (RNAi) has not only already risen as a gold standard for validating gene function in basic science studies, but also holds great promise as a new therapeutic paradigm. Advantages of RNAi-based therapeutics include relatively fast initial screening and the ability to target proteins not yet addressable by traditional drug design strategies. In this review we describe the development of chemically modified small inhibiting siRNAs and their application as potential therapeutics during the past decade. Focus is on proper siRNA design, choice of chemical modification and how to circumvent immunogenicity as well as off-target effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Navigating the fungal polyketide chemical space: from genes to molecules.

    Science.gov (United States)

    Chooi, Yit-Heng; Tang, Yi

    2012-11-16

    The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.

  15. Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures

    DEFF Research Database (Denmark)

    Manuguerra, Ilenia; Croce, Stefano; El-Sagheer, Afaf H.

    2018-01-01

    Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA...

  16. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  17. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-01-01

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  18. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    Science.gov (United States)

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  19. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  20. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  1. Comparison of X-ray photoelectron spectroscopy multiplet splitting of Cr 2p peaks from chromium tris(β-diketonates) with chemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Conradie, J.; Erasmus, E., E-mail: erasmuse@ufs.ac.za

    2016-01-15

    Graphical abstract: Synopsis and pictogram for Table of contents The Cr 2p{sub 3/2} peaks obtained from X-ray photoelectron spectra (XPS) of a series of chromium(III) β-diketonato complexes were fitted with calculated multiplet peaks. The ratio of the fac and mer isomers obtained from XPS compared very well with the Boltzmann calculated ratio. The electronegativity of the R-groups on the β-diketonato ligand influences the XPS peak positions. - Highlights: • β-diketonato complexes Cr(RCOCHCOR’){sub 3} • Cr 2p{sub 3/2} XPS peaks fitted with calculated multiplet peaks. • Different calculated multiplet peaks fit the Cr 2p{sub 3/2} peak for fac and mer isomers. • XPS peak positions influenced by the electronegativity of the R- and R'-group. - Abstract: X-ray photoelectron spectra (XPS) measurements of a series of chromium(III) β-diketonato complexes of the Cr 2p spectra was fitted with calculated multiplet peaks. The XPS of these Cr(III) complexes did not exhibit fine structure, however, well-defined line shapes could be fitted to the Cr 2p{sub 3/2} envelope. The splitting patterns obtained for the Cr(III) β-diketonato complexes compared well with the multiplet splitting predicted by Gupta and Sen for the free Cr(III) ion. The Cr(III) β-diketonato complexes containing unsymmetrically substituted β-diketonato ligands, which display both the fac and mer isomers, could be fitted with two sets of multiplets and were useful in determining the ratio between the fac and mer isomers, which was compared with the Boltzman calculated ratio obtained from density functional theory energies. The obtained binding energy of the first multiplet splitting peak of the Cr 2p{sub 3/2} envelope was found to be dependent on the combined Gordy group electronegativity of the R-groups substituted on the β-diketonato ligand (RCOCHCOR′){sup −}.

  2. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    Science.gov (United States)

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    Science.gov (United States)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  4. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, D.A. van; Goeman, J.J.; Jong, E. de; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  5. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, van D.A.M.; Goeman, J.J.; Jong, de E.; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    Background: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  6. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    Science.gov (United States)

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  8. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  9. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    Directory of Open Access Journals (Sweden)

    Lode Godderis

    Full Text Available Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes, we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti- apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  10. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    International Nuclear Information System (INIS)

    D’Cruz, Bessy; Samuel, Jadu; George, Leena

    2014-01-01

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H 2 evolution and was found to be 1.514 mmol/g/h

  12. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    Science.gov (United States)

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.

  13. Structural basis of photosynthetic water-splitting

    International Nuclear Information System (INIS)

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn 4 CaO 5 -cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed

  14. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential antiandrog......Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were...

  15. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  16. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential antiandrog......Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were......-on laboratory time. This assay is a powerful tool for the efficient and accurate determination and quantification of the effects of antiandrogens on reporter gene transcription, To extend the application of FuGene, the reagent was shown to be superior compared to Lipofectin for transfecting MCF7 human breast...

  17. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach.

    Science.gov (United States)

    Yuan, Fei; Zhou, You; Wang, Meng; Yang, Jing; Wu, Kai; Lu, Changhong; Kong, Xiangyin; Cai, Yu-Dong

    2015-01-01

    Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer.

  18. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Science.gov (United States)

    2013-01-01

    Background Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the

  19. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  20. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  1. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  2. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    Science.gov (United States)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  3. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology.

    Science.gov (United States)

    Hill, David P; Adams, Nico; Bada, Mike; Batchelor, Colin; Berardini, Tanya Z; Dietze, Heiko; Drabkin, Harold J; Ennis, Marcus; Foulger, Rebecca E; Harris, Midori A; Hastings, Janna; Kale, Namrata S; de Matos, Paula; Mungall, Christopher J; Owen, Gareth; Roncaglia, Paola; Steinbeck, Christoph; Turner, Steve; Lomax, Jane

    2013-07-29

    The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl.

  4. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Hettne Kristina M

    2013-01-01

    Full Text Available Abstract Background Availability of chemical response-specific lists of genes (gene sets for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM, and that these can be used with gene set analysis (GSA methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human and 588 (mouse gene sets from the Comparative Toxicogenomics Database (CTD. We tested for significant differential expression (SDE (false discovery rate -corrected p-values Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  5. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); J. Boorsma (Jeffrey); D.A.M. van Dartel (Dorien A M); J.J. Goeman (Jelle); E.C. de Jong (Esther); A.H. Piersma (Aldert); R.H. Stierum (Rob); J. Kleinjans (Jos); J.A. Kors (Jan)

    2013-01-01

    textabstractBackground: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with

  6. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data.

    Science.gov (United States)

    Hettne, Kristina M; Boorsma, André; van Dartel, Dorien A M; Goeman, Jelle J; de Jong, Esther; Piersma, Aldert H; Stierum, Rob H; Kleinjans, Jos C; Kors, Jan A

    2013-01-29

    Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other

  7. The delayed effect of mustard gas on housekeeping gene expression in lung biopsy of chemical injuries.

    Science.gov (United States)

    Eghtedardoost, Marzieh; Hassan, Zuhair Mohammad; Askari, Nayereh; Sadeghipour, Alireza; Naghizadeh, Mohammad Mahdi; Ghafarpour, Sara; Ghazanfari, Tooba

    2017-09-01

    Sulfur mustard (SM) was used as a chemical weapon in Iraq-Iran war. Exposed people have major complications in important organs such as pulmonary system. Some studies have shown that SM could affect the expression of endogenous genes and non-housekeeping genes, time dependently. To understand the accurate molecular mechanism of the delayed effect of SM, the identification of the gene expression pattern in these patients is essential. Hence, we have evaluated mRNA expression of four common housekeeping genes (ACTIN, PGK1, β2m, GAPDH) in SM-exposed and non-exposed (control) formalin-fixed, paraffin-embedded (FFPE) human lung tissues. Paraffin block of lung biopsy of SM-exposed people (11 cases) and people without exposure to SM as control group (9 cases) have been selected. The mRNA expression of four endogenous control genes has been evaluated by qRT-PCR. The stability value of each gene was calculated by different methods. It was found that ACTIN mRNA has the highest expression (30.26±2.87) and PGK1 has the lowest standard deviation (SD) (30.885±2.215) between pooled groups. The best correlation was between ACTIN and PGK1 expressions. The M value has shown that ACTIN and then PGK1 are the most stable housekeeping genes among. The results obtained from the GeNorm and NormFinder have indicated that the pair ACTIN- PGK1 is the most suitable choice for endogenous control genes. ACTIN and PGK1 genes are stable in studied lung tissues and are the better than two other housekeeping genes. In addition, mustard gas does not affect their expression in long term.

  8. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  9. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

    NARCIS (Netherlands)

    Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A.

    2016-01-01

    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar

  10. Aspects of Split Supersymmetry

    CERN Document Server

    Arkani-Hamed, N; Giudice, Gian Francesco; Romanino, A

    2005-01-01

    We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an $R$ symmetry, characterize the class of theories where the unavoidable $R$-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongo...

  11. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  12. Detection of oestrogenic chemicals by assaying the expression level of oestrogen regulated genes

    DEFF Research Database (Denmark)

    Jørgensen, M; Hummel, R; Bévort, M

    1998-01-01

    or the yeast E-screen, with methods that are based on mammalian cells or whole animals. An alternative is to assay gene expression directly by methods such as differential display, where the expression of both genes known to be regulated directly by the receptor and genes regulated by other pathways can...... pathways and its intrinsic transcriptional activity is highly influenced by phosphorylation and by its interaction with other proteins. This is clearly observed when the oestrogenicity of antioestrogens is tested since some compounds activate the receptor in yeast, but not in mammalian cells. However, when......, it is important to assay both their potency as activators of transcription as the effects caused by interactions with other signal transduction pathways. This may be possible by combining assay methods, such as direct in vitro measurement of interaction between a potential oestrogenic chemical and the receptor...

  13. Split Malcev algebras

    Indian Academy of Sciences (India)

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .

  14. Splitting of Comets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Splitting of Comets. Utpal Mukhopadhyay. General Article Volume 7 Issue 1 January 2002 pp 11-22. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0011-0022. Keywords. Cometary ...

  15. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    Science.gov (United States)

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  16. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry

    Science.gov (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1990-01-01

    Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.

  17. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  18. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges using Chemical:Gene Interactions in Caged Fish.

    Data.gov (United States)

    U.S. Environmental Protection Agency — We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene...

  19. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  20. On split Lie triple systems

    Indian Academy of Sciences (India)

    We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.

  1. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  3. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    Science.gov (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  4. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    International Nuclear Information System (INIS)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-01-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 α-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author)

  5. Accurate analytic solution of chemical master equations for gene regulation networks in a single cell

    Science.gov (United States)

    Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun

    2018-01-01

    Studying gene regulation networks in a single cell is an important, interesting, and hot research topic of molecular biology. Such process can be described by chemical master equations (CMEs). We propose a Hamilton-Jacobi equation method with finite-size corrections to solve such CMEs accurately at the intermediate region of switching, where switching rate is comparable to fast protein production rate. We applied this approach to a model of self-regulating proteins [H. Ge et al., Phys. Rev. Lett. 114, 078101 (2015), 10.1103/PhysRevLett.114.078101] and found that as a parameter related to inducer concentration increases the probability of protein production changes from unimodal to bimodal, then to unimodal, consistent with phenotype switching observed in a single cell.

  6. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems.

    Science.gov (United States)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-21

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  7. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems

    Science.gov (United States)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-01

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  8. Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Bellen, Hugo J

    2014-06-15

    The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei.

    Science.gov (United States)

    Park, Yun Ji; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Lim, Soon Sung; Kim, Yeon Bok; Lee, Sang Won; Park, Sang Un

    2016-05-27

    Valeriana fauriei (V. fauriei), which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR). The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA) and methylerythritol phosphate (MEP) production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS) analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  10. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  11. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  12. Split SUSY Radiates Flavor

    CERN Document Server

    Baumgart, Matthew; Zorawski, Thomas

    2014-01-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  13. How rivers split

    Science.gov (United States)

    Seybold, H. F.; Yi, R.; Devauchelle, O.; Petroff, A.; Rothman, D.

    2012-12-01

    River networks have fascinated mankind for centuries. They exhibit a striking geometry with similar shapes repeating on all scales. Yet, how these networks form and create these geometries remains elusive. Recently we have shown that channels fed by subsurface flow split at a characteristic angle of 2π/5 unambiguously consistent with our field measurements in a seepage network on the Florida Panhandle (Fig.1). Our theory is based only on the simple hypothesis that the channels grow in the direction at which the ground water enters the spring and classical solutions of subsurface hydrology. Here we apply our analysis to the ramification of large drainage basins and extend our theory to include slope effects. Using high resolution stream networks from the National Hydrography Dataset (NHD), we scrutinize our hypothesis in arbitrary channel networks and investigate the branching angle dependence on Horton-Strahler order and the maturity of the streams.; High-resolution topographic map of valley networks incised by groundwater flow, located on the Florida Panhandle near Bristol, FL.

  14. Split supersymmetry radiates flavor

    Science.gov (United States)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas

    2014-09-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  15. Prioritization of contaminants of emerging concern in wastewater treatment plant discharges using chemical: Gene interactions in caged fish

    Science.gov (United States)

    We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two ...

  16. Detection of Aryl Hydrocarbon Receptor Activation by Some Chemicals in Food Using a Reporter Gene Assay.

    Science.gov (United States)

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Yoshimura, Morio; Nakamura, Masafumi; Handa, Hiroshi; Matsuda, Rieko; Teshima, Reiko; Watanabe, Takahiro

    2016-02-25

    The purpose of this study was to examine whether a simple bioassay used for the detection of dioxins (DXNs) could be applied to detect trace amounts of harmful DXN-like substances in food products. To identify substances with possible DXN-like activity, we assessed the ability of various compounds in the environment to bind the aryl hydrocarbon receptor (AhR) that binds specifically to DXNs. The compounds tested included 19 polycyclic aromatic hydrocarbons (PAHs), 20 PAH derivatives (nitrated, halogenated, and aminated derivatives), 23 pesticides, six amino acids, and eight amino acid metabolites. The AhR binding activities (AhR activity) of these compounds were measured using the chemical activated luciferase gene expression (CALUX) reporter gene assay system. The majority of the PAHs exhibited marked AhR activity that increased in a concentration-dependent manner. Furthermore, there was a positive link between AhR activity and the number of aromatic rings in the PAH derivatives. Conversely, there appeared to be a negative correlation between AhR activity and the number of chlorine residues present on halogenated PAH derivatives. However, there was no correlation between AhR activity and the number and position of substituents among nitrated and aminated derivatives. Among the pesticides tested, the indole-type compounds carbendazim and thiabendazole showed high levels of activity. Similarly, the indole compound tryptamine was the only amino acid metabolite to induce AhR activity. The results are useful in understanding the identification and characterization of AhR ligands in the CALUX assay.

  17. Global Locator, Local Locator, and Identifier Split (GLI-Split

    Directory of Open Access Journals (Sweden)

    Michael Menth

    2013-03-01

    Full Text Available The locator/identifier split is an approach for a new addressing and routing architecture to make routing in the core of the Internet more scalable. Based on this principle, we developed the GLI-Split framework, which separates the functionality of current IP addresses into a stable identifier and two independent locators, one for routing in the Internet core and one for edge networks. This makes routing in the Internet more stable and provides more flexibility for edge networks. GLI-Split can be incrementally deployed and it is backward-compatible with the IPv6 Internet. We describe its architecture, compare it to other approaches, present its benefits, and finally present a proof-of-concept implementation of GLI-Split.

  18. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  19. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    International Nuclear Information System (INIS)

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-01-01

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H 2 O 2 -added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H 2 O 2 ) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H 2 O 2 . As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H 2 O 2 -medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H 2 O 2 -medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H 2 O 2 -medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in

  20. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  1. Text Mining Effectively Scores and Ranks the Literature for Improving Chemical-Gene-Disease Curation at the Comparative Toxicogenomics Database

    Science.gov (United States)

    Johnson, Robin J.; Lay, Jean M.; Lennon-Hopkins, Kelley; Saraceni-Richards, Cynthia; Sciaky, Daniela; Murphy, Cynthia Grondin; Mattingly, Carolyn J.

    2013-01-01

    The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency, productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score (DRS), wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese, mercury, and nickel). Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the 14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency. PMID:23613709

  2. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti–6Al–4V–ELI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.P., E-mail: dpedreira@ufscar.br [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil); Palmieri, A.; Carinci, F. [Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara (Italy); Bolfarini, C. [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil)

    2015-06-01

    Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti–6Al–4V–ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7 days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15 days. - Highlights: • Chemical treatments were effective for surface modification of Ti–6Al–4V. • Alkaline and phosphoric treatments induced osteopontin up-regulation. • Topographic formation on surface can induce RUNX2 up regulation. • Acid etch plus alkaline treatment accelerated the expression of some bone related genes.

  3. Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer

    Science.gov (United States)

    Trudeau, Vance L.; Turque, Nathalie; Le Mével, Sébastien; Alliot, Caroline; Gallant, Natacha; Coen, Laurent; Pakdel, Farzad; Demeneix, Barbara

    2005-01-01

    Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response element–thymidine kinase–luciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 μg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo. PMID:15743723

  4. Systems toxicology of chemically induced liver and kidney injuries: histopathology‐associated gene co‐expression modules

    Science.gov (United States)

    Te, Jerez A.; AbdulHameed, Mohamed Diwan M.

    2016-01-01

    Abstract Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non‐invasive diagnostic tests. Mapping chemical injuries to organ‐specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co‐expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project‐Genomics Assisted Toxicity Evaluation System (TG‐GATEs) – a toxicogenomics database containing organ‐specific gene expression data matched to dose‐ and time‐dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We proposed a protocol for selecting gene modules associated with chemical‐induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose‐dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical‐time‐dose combination, correlated with the severity of histopathological damage in a dose‐dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  5. Gene expression profiling in persons with multiple chemical sensitivity before and after a controlled n-butanol exposure session

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus

    2017-01-01

    in a windowed exposure chamber for 60 min. A total of 26 genes involved in biochemical pathways found in the literature have been proposed to play a role in the pathogenesis of MCS and other functional somatic syndromes were selected. Expression levels were compared between MCS and controls before, within 15...... min after being exposed to and 4 hours after the exposure. Participants suffering from MCS and healthy controls were recruited through advertisement at public places and in a local newspaper. 36 participants who considered themselves sensitive were prescreened for eligibility. 18 sensitive persons......To investigate the pathophysiological pathways leading to symptoms elicitation in multiple chemical sensitivity (MCS) by comparing gene expression in MCS participants and healthy controls before and after a chemical exposure optimised to cause symptoms among MCS participants.The first hypothesis...

  6. The evolution of gene collectives: How natural selection drives chemical innovation.

    Science.gov (United States)

    Fischbach, Michael A; Walsh, Christopher T; Clardy, Jon

    2008-03-25

    DNA sequencing has become central to the study of evolution. Comparing the sequences of individual genes from a variety of organisms has revolutionized our understanding of how single genes evolve, but the challenge of analyzing polygenic phenotypes has complicated efforts to study how genes evolve when they are part of a group that functions collectively. We suggest that biosynthetic gene clusters from microbes are ideal candidates for the evolutionary study of gene collectives; these selfish genetic elements evolve rapidly, they usually comprise a complete pathway, and they have a phenotype-a small molecule-that is easy to identify and assay. Because these elements are transferred horizontally as well as vertically, they also provide an opportunity to study the effects of horizontal transmission on gene evolution. We discuss known examples to begin addressing two fundamental questions about the evolution of biosynthetic gene clusters: How do they propagate by horizontal transfer? How do they change to create new molecules?

  7. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils.

    Science.gov (United States)

    Liu, Peng; Jia, Shuyu; He, Xiwei; Zhang, Xuxiang; Ye, Lin

    2017-12-01

    Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  9. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    Science.gov (United States)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  10. Splitting strings on integrable backgrounds

    International Nuclear Information System (INIS)

    Vicedo, Benoit

    2011-05-01

    We use integrability to construct the general classical splitting string solution on R x S 3 . Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2 (C). (orig.)

  11. Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor.

    Science.gov (United States)

    Chung, Hyeyoung A; Hyodo-Miura, Junko; Kitayama, Atsushi; Terasaka, Chie; Nagamune, Teruyuki; Ueno, Naoto

    2004-08-01

    Microarray is a powerful tool for analysing gene expression patterns in genome-wide view and has greatly contributed to our understanding of spatiotemporal embryonic development at the molecular level. Members of FGF (fibroblast growth factor) family play important roles in embryogenesis, e.g. in organogenesis, proliferation, differentiation, cell migration, angiogenesis, and wound healing. To dissect spatiotemporally the versatile roles of FGF during embryogenesis, we profiled gene expression in Xenopus embryo explants treated with SU5402, a chemical inhibitor specific to FGF receptor 1 (FGFR1), by microarray. We identified 38 genes that were down-regulated and 5 that were up-regulated in response to SU5402 treatment from stage 10.5-11.5 and confirmed their FGF-dependent transcription with RT-PCR analysis and whole-mount in situ hybridization (WISH). Among the 43 genes, we identified 26 as encoding novel proteins and investigated their spatial expression pattern by WISH. Genes whose expression patterns were similar to FGFR1 were further analysed to test whether any of them represented functional FGF target molecules. Here, we report two interesting genes: one is a component of the canonical Ras-MAPK pathway, similar to mammalian mig6 (mitogen-inducible gene 6) acting in muscle differentiation; the other, similar to GPCR4 (G-protein coupled receptor 4), is a promising candidate for a gastrulation movement regulator. These results demonstrate that our approach is a promising strategy for scanning the genes that are essential for the regulation of a diverse array of developmental processes.

  12. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment.

    Science.gov (United States)

    McCurley, Amy T; Callard, Gloria V

    2008-11-12

    Research using the zebrafish model has experienced a rapid growth in recent years. Although real-time reverse transcription PCR (QPCR), normalized to an internal reference ("housekeeping") gene, is a frequently used method for quantifying gene expression changes in zebrafish, many commonly used housekeeping genes are known to vary with experimental conditions. To identify housekeeping genes that are stably expressed under different experimental conditions, and thus suitable as normalizers for QPCR in zebrafish, the present study evaluated the expression of eight commonly used housekeeping genes as a function of stage and hormone/toxicant exposure during development, and by tissue type and sex in adult fish. QPCR analysis was used to quantify mRNA levels of bactin1, tubulin alpha 1(tuba1), glyceraldehyde-3-phosphate dehydrogenase (gapdh), glucose-6-phosphate dehydrogenase (g6pd), TATA-box binding protein (tbp), beta-2-microglobulin (b2m), elongation factor 1 alpha (elfa), and 18s ribosomal RNA (18s) during development (2 - 120 hr postfertilization, hpf); in different tissue types (brain, eye, liver, heart, muscle, gonads) of adult males and females; and after treatment of embryos/larvae (24 - 96 hpf) with commonly used vehicles for administration and agents that represent known environmental endocrine disruptors. All genes were found to have some degree of variability under the conditions tested here. Rank ordering of expression stability using geNorm analysis identified 18s, b2m, and elfa as most stable during development and across tissue types, while gapdh, tuba1, and tpb were the most variable. Following chemical treatment, tuba1, bactin1, and elfa were the most stably expressed whereas tbp, 18s, and b2m were the least stable. Data also revealed sex differences that are gene- and tissue-specific, and treatment effects that are gene-, vehicle- and ligand-specific. When the accuracy of QPCR analysis was tested using different reference genes to measure suppression

  13. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment

    Directory of Open Access Journals (Sweden)

    Callard Gloria V

    2008-11-01

    Full Text Available Abstract Background Research using the zebrafish model has experienced a rapid growth in recent years. Although real-time reverse transcription PCR (QPCR, normalized to an internal reference ("housekeeping" gene, is a frequently used method for quantifying gene expression changes in zebrafish, many commonly used housekeeping genes are known to vary with experimental conditions. To identify housekeeping genes that are stably expressed under different experimental conditions, and thus suitable as normalizers for QPCR in zebrafish, the present study evaluated the expression of eight commonly used housekeeping genes as a function of stage and hormone/toxicant exposure during development, and by tissue type and sex in adult fish. Results QPCR analysis was used to quantify mRNA levels of bactin1, tubulin alpha 1(tuba1, glyceraldehyde-3-phosphate dehydrogenase (gapdh, glucose-6-phosphate dehydrogenase (g6pd, TATA-box binding protein (tbp, beta-2-microglobulin (b2m, elongation factor 1 alpha (elfa, and 18s ribosomal RNA (18s during development (2 – 120 hr postfertilization, hpf; in different tissue types (brain, eye, liver, heart, muscle, gonads of adult males and females; and after treatment of embryos/larvae (24 – 96 hpf with commonly used vehicles for administration and agents that represent known environmental endocrine disruptors. All genes were found to have some degree of variability under the conditions tested here. Rank ordering of expression stability using geNorm analysis identified 18s, b2m, and elfa as most stable during development and across tissue types, while gapdh, tuba1, and tpb were the most variable. Following chemical treatment, tuba1, bactin1, and elfa were the most stably expressed whereas tbp, 18s, and b2m were the least stable. Data also revealed sex differences that are gene- and tissue-specific, and treatment effects that are gene-, vehicle- and ligand-specific. When the accuracy of QPCR analysis was tested using

  14. A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants

    OpenAIRE

    Kaya, Hidetaka; Ishibashi, Kazuhiro; Toki, Seiichi

    2017-01-01

    Split-protein methods?where a protein is split into two inactive fragments that must re-assemble to form an active protein?can be used to regulate the activity of a given protein and reduce the size of gene transcription units. Here, we show that a Staphylococcus aureus Cas9 (SaCas9) can be split, and that split-SaCas9 expressed from Agrobacterium can induce targeted mutagenesis in Nicotiana benthamiana. Since SaCas9 is smaller than the more commonly used Cas9 derived from Streptococcus pyoge...

  15. Chemical analysis of a genome wide polyketide synthase gene deletion library in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Klejnstrup, Marie Louise; Nielsen, Jakob Blæsbjerg

    to encode polyketide synthases have been individually been deleted. This presentation will highlight our recent linking of secondary metabolites in A. nidulans to genes, and in particular describe some recent work on characterization of ANID_6448 and associated genes responsible for biosynthesis of 3-methyl...

  16. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W ...

  17. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.

    2018-01-12

    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  18. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    journal of. November 2006 physics pp. 793–802. Split supersymmetry in brane models. IGNATIOS ANTONIADIS∗. Department of Physics, CERN-Theory Division, 1211 Geneva 23, Switzerland. E-mail: Ignatios. ... that LEP data favor the unification of the three SM gauge couplings are smoking guns for the presence of new ...

  19. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    Hetterscheid, D.G.H.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced

  20. On split Lie triple systems

    Indian Academy of Sciences (India)

    Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...

  1. On split Lie triple systems

    Indian Academy of Sciences (India)

    The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 25 January 2008. Proceedings – Mathematical Sciences.

  2. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  3. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  4. Optimization of cationic lipid mediated gene transfer: structure-function, physico-chemical, and cellular studies.

    Science.gov (United States)

    Carrière, Marie; Tranchant, Isabelle; Niore, Pierre-Antoine; Byk, Gerardo; Mignet, Nathalie; Escriou, Virginie; Scherman, Daniel; Herscovici, Jean

    2002-01-01

    The rationale design aimed at the enhancement of cationic lipid mediated gene transfer is discussed. These improvements are based on the straight evaluation of the structure-activity relationship and on the introduction of new structures. Much attention have been given to the supramolecular structures of the lipid/DNA complexes, to the effect of serum on gene transfer and to the intracellular trafficking of the lipoplexes. Finally new avenue using reducible cationic lipids has been discussed.

  5. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge.

    Science.gov (United States)

    Jang, Hyun Min; Shin, Jingyeong; Choi, Sangki; Shin, Seung Gu; Park, Ki Young; Cho, Jinwoo; Kim, Young Mo

    2017-11-01

    Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH 4 /g VS removed in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High-level expression of the chemically synthesized gene for microbial transglutaminase from Streptoverticillium in Escherichia coli.

    Science.gov (United States)

    Kawai, M; Takehana, S; Takagi, H

    1997-05-01

    We developed a novel approach for the high-level production of a microbial transglutaminase (TGase) from Streptoverticillium in E. coli. The direct expression of the TGase gene in E. coli cells did not cause overproduction, probably due to the harmful influence of TGase activity, which introduces covalent crosslinks between proteins. Therefore, we fused the chemically synthesized TGase gene coding for the entire 331 amino acid residues at the amino terminus to a bacteriophage T7 gene 10 leader peptide (260 amino acids) using an inducible expression vector. The TGase gene was expressed as inclusion bodies in the E. coli cytoplasm. Restoring 15 amino acid residues upstream of the amino terminus of the mature TGase by a two-step deletion of the fusion sequence facilitated solubilization and subsequent proteolytic cleavage, thus releasing mature TGase. Although the mature form had less TGase activity than native TGase, because of the poor refolding rate, these results suggest that this system is suitable for the efficient production of TGase.

  7. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Richard Freddie-Jeanne

    2012-10-01

    Full Text Available Abstract Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood and allo-grooming (where workers remove ectoparasites from nestmates. We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli. Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that

  8. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  9. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  10. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    fluocinolone acetonide, hydrocortisone 3. PDE4 inhibitors Piclamilast, roflumilast, rolipram 4. HMG-CoA reductase inhibitors Cerivastatin, fluvastatin 5. DNA ...metals, low dose Lead(IV) acetate, sodium arsenite 9. H+/K+- ATPase inhibitors Pentoprazole, rabeprazole doi:10.1371/journal.pone.0107230.t002 Gene Co... transformed the log ratios into Z-scores. The Z-score of gene i under condition j is given by Zi,j~ LRi,j{SLRT s , ð1Þ where the average ,…. runs over

  11. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  12. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  13. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  14. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes.

    Science.gov (United States)

    Kohno, Keigo; Sokabe, Takaaki; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2010-09-15

    Insects are relatively small heterothermic animals, thus they are highly susceptible to changes in ambient temperature. However, a group of honey bees is able to maintain the brood nest temperature between 32°C and 36°C by either cooling or heating the nest. Nevertheless, how honey bees sense the ambient temperature is not known. We identified a honey bee Hymenoptera-specific transient receptor potential A (HsTRPA) channel (AmHsTRPA), which is activated by heat with an apparent threshold temperature of 34°C and insect antifeedants such as camphor in vitro. AmHsTRPA is expressed in the antennal flagellum, and ablation of the antennal flagella and injection of AmHsTRPA inhibitors impair warmth avoidance of honey bees. Gustatory responses of honey bees to sucrose are suppressed by noxious heat and insect antifeedants, but are relieved in the presence of AmHsTRPA inhibitors. These results suggest that AmHsTRPA may function as a thermal/chemical sensor in vivo. As shown previously, Hymenoptera has lost the ancient chemical sensor TRPA1; however, AmHsTRPA is able to complement the function of Drosophila melanogaster TRPA1. These results demonstrate that HsTRPA, originally arisen by the duplication of Water witch, has acquired thermal- and chemical-responsive properties, which has resulted in the loss of ancient TRPA1. Thus, this is an example of neofunctionalization of the duplicated ion channel gene followed by the loss of the functionally equivalent ancient gene.

  15. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  16. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  17. A chemometric evaluation of the underlying physical and chemical patterns that support near infrared spectroscopy of barley seeds as a tool for explorative classification of endosperm genes and gene combinations

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Søndergaard, Ib; Møller, Birthe

    2005-01-01

    revealing pleiotropic gene effects in expression timing that supporting the gene classification. To verify that NIR spectroscopy data represents a physio-chemical fingerprint of the barley seed, physical and chemical spectral components were partially separated by Multiple Scatter Correction......, pleiotropic classification patterns from NIR and chemical data were demonstrated in PCAs and by visual inspection of NIR spectra. Thus PCA classification of NIR-data gives the classical genetic concept, 'pleiotropy', a new operational definition as a fingerprint from a spectroscopic representation...... of the phenome carrying genetic, physical and chemical information. It is concluded that barley seed phenotyping by NIR and chemometrics is a new, reliable tool for characterising the pleiotropic effects of mutant gene combinations and other genotypes in selecting barley for quality in plant breeding. (c) 2005...

  18. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  19. Electrocatalytic water splitting to produce fuel hydrogen

    Science.gov (United States)

    Yuan, Hao

    Solar energy is regarded as a promising source for clean and sustainable energy. However, it is not a continuous energy source, thus certain strategies have to be developed to effectively convert and store it. Solar-driven electrocatalytic water splitting, which converts solar energy into chemical energy for storage as fuel hydrogen, can effectively mitigate the intermittence of solar radiation. Water splitting consists of two half reactions: water oxidation and hydrogen evolution. Both reactions rely on highly effective electrocatalysts. This dissertation is an account of four detailed studies on developing highly effective low-cost electrocatalysts for both reactions, and includes a preliminary attempt at system integration to build a functional photoanode for solar-driven water oxidation. For the water oxidation reaction, we have developed an electrochemical method to immobilize a cobalt-based (Co-OXO) water oxidation catalyst on a conductive surface to promote recyclability and reusability without affecting functionality. We have also developed a method to synthesize a manganese-based (MnOx) catalytic film in situ, generating a nanoscale fibrous morphology that provides steady and excellent water oxidation performance. The new method involves two series of cyclic voltammetry (CV) over different potential ranges, followed by calcination to increase crystallinity. The research has the potential to open avenues for synthesizing and optimizing other manganese-based water oxidation catalysts. For the hydrogen evolution reaction, we have developed a new electrodeposition method to synthesize Ni/Ni(OH)2 catalysts in situ on conductive surfaces. The new method involves only two cycles of CV over a single potential range. The resulting catalytic film has a morphology of packed walnut-shaped particles. It has superior catalytic activity and good stability over long periods. We have investigated the feasibility of incorporating manganese-based water oxidation catalysts

  20. Parallel BLAST on split databases.

    Science.gov (United States)

    Mathog, David R

    2003-09-22

    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/

  1. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  2. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  3. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    Science.gov (United States)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  4. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens.

    Science.gov (United States)

    Keeling, Christopher I; Bohlmann, Jörg

    2006-01-01

    Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.

  5. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo

    2007-01-01

    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  6. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  7. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  8. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  10. Emittance compensation in split photoinjectors

    Directory of Open Access Journals (Sweden)

    Klaus Floettmann

    2017-01-01

    Full Text Available The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  11. Gauge mediated mini-split

    Science.gov (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-01

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  12. Minimal Doubling and Point Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  13. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  14. Photoelectrochemical devices for solar water splitting - materials and challenges.

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  15. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  16. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  17. Differential expression of bean chitinase genes by virus infection, chemical treatment and UV irradiation

    International Nuclear Information System (INIS)

    Margis-Pinheiro, M.; Martin, C.; Didierjean, L.; Burkard, G.

    1993-01-01

    single gene

  18. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.

    Directory of Open Access Journals (Sweden)

    Ying Lin

    Full Text Available Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa N-intein fragment and S11 split inteins having a very small (6 aa C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100% of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4 s(-1 to ~3.8 × 10(-4 s(-1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

  19. Split-specific bootstrap measures for quantifying phylogenetic stability and the influence of taxon selection.

    Science.gov (United States)

    Wang, Huai-Chun; Susko, Edward; Roger, Andrew J

    2016-12-01

    Assessing the robustness of an inferred phylogeny is an important element of phylogenetics. This is typically done with measures of stabilities at the internal branches and the variation of the positions of the leaf nodes. The bootstrap support for branches in maximum parsimony, distance and maximum likelihood estimation, or posterior probabilities in Bayesian inference, measure the uncertainty about a branch due to the sampling of the sites from genes or sampling genes from genomes. However, these measures do not reveal how taxon sampling affects branch support and the effects of taxon sampling on the estimated phylogeny. An internal branch in a phylogenetic tree can be viewed as a split that separates the taxa into two nonempty complementary subsets. We develop several split-specific measures of stability determined from bootstrap support for quartets. These include BPtaxon_split (average bootstrap percentage [BP] for all quartets involving a taxon within a split), BPsplit (BPtaxon_split averaged over taxa), BPtaxon (BPtaxon_split averaged over splits) and RBIC-taxon (average BP over all splits after removing a taxon). We also develop a pruned-tree distance metric. Application of our measures to empirical and simulated data illustrate that existing measures of overall stability can fail to detect taxa that are the primary source of a split-specific instability. Moreover, we show that the use of many reduced sets of quartets is important in being able to detect the influence of joint sets of taxa rather than individual taxa. These new measures are valuable diagnostic tools to guide taxon sampling in phylogenetic experimental design. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Split Questionnaire Design for Massive Surveys

    NARCIS (Netherlands)

    Adiguzel, F.; Wedel, M.

    2008-01-01

    Companies are conducting more and longer surveys than ever before. Massive questionnaires are pervasive in marketing practice. As an alternative to the heuristic methods that are currently used to split questionnaires, this study develops a methodology to design the split questionnaire in a way that

  1. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  2. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  3. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  4. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  5. On split Lie triple systems II

    Indian Academy of Sciences (India)

    Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of T is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Keywords.

  6. Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals

    Directory of Open Access Journals (Sweden)

    Andrea C. Romero

    2015-12-01

    Full Text Available There is a necessity to develop in vitro methods for testing embryotoxicity (Romero et al., 2015 [1]. We studied the progress of D3 mouse embryonic stem cells differentiation exposed to model embryotoxicants and non-embryotoxicants chemicals through the expression of biomarker genes. We studied a set of 16 different genes biomarkers of general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3, ectoderm formation (Nrcam, Nes, Shh and Pnpla6, mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7 and endoderm formation (Flk1 and Afp. We offer dose response in order to derive the concentration causing either 50% or 200% of expression of the biomarker gene. These records revealed to be a valuable end-point to predict in vitro the embryotoxicity of chemicals (Romero et al., 2015 [1].

  7. The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge.

    Science.gov (United States)

    Pérez-Pérez, Martin; Pérez-Rodríguez, Gael; Rabal, Obdulia; Vazquez, Miguel; Oyarzabal, Julen; Fdez-Riverola, Florentino; Valencia, Alfonso; Krallinger, Martin; Lourenço, Anália

    2016-01-01

    Biomedical text mining methods and technologies have improved significantly in the last decade. Considerable efforts have been invested in understanding the main challenges of biomedical literature retrieval and extraction and proposing solutions to problems of practical interest. Most notably, community-oriented initiatives such as the BioCreative challenge have enabled controlled environments for the comparison of automatic systems while pursuing practical biomedical tasks. Under this scenario, the present work describes the Markyt Web-based document curation platform, which has been implemented to support the visualisation, prediction and benchmark of chemical and gene mention annotations at BioCreative/CHEMDNER challenge. Creating this platform is an important step for the systematic and public evaluation of automatic prediction systems and the reusability of the knowledge compiled for the challenge. Markyt was not only critical to support the manual annotation and annotation revision process but also facilitated the comparative visualisation of automated results against the manually generated Gold Standard annotations and comparative assessment of generated results. We expect that future biomedical text mining challenges and the text mining community may benefit from the Markyt platform to better explore and interpret annotations and improve automatic system predictions.Database URL: http://www.markyt.org, https://github.com/sing-group/Markyt. © The Author(s) 2016. Published by Oxford University Press.

  8. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  9. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki

    1976-03-01

    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  10. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  11. Sonochemical water splitting in the presence of powdered metal oxides.

    Science.gov (United States)

    Morosini, Vincent; Chave, Tony; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I

    2016-03-01

    Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  13. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... absorption, this is the more difficult side to optimize. Nevertheless, by using TiO2 as a transparent cathode protection layer in conjunction with known H-2 evolution catalysts, protection is clearly feasible for a large bandgap photocathode. This suggests that there may be promising strategies...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  14. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  15. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  16. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of

  17. Identification of Gene Expression Changes in Whole Blood Indicative of Exposure to Chemicals with Different Target Organ Toxicity

    National Research Council Canada - National Science Library

    Chan, Victor; Stapleton, Andrea; Soto, Armando; Yu, Kyung; DelRaso, Nicholas

    2006-01-01

    .... Coupled with advanced bioinformatic techniques, it allows for the elucidation of the molecular mechanisms of chemical toxicity, as well as the identification of novel biomarkers predictive for chemical exposure...

  18. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  19. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  20. Mort Rainey's Split Personality in Secret Window

    OpenAIRE

    Sandjaya, Cynthya; Limanta, Liem Satya

    2013-01-01

    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  1. A split SUSY model from SUSY GUT

    OpenAIRE

    Wang, FeiDepartment of Physics and Engineering, Zhengzhou University, Zhengzhou, 450000, P.R. China; Wang, Wenyu(Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology, Beijing, 100124, P.R. China); Yang, Jin(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China)

    2015-01-01

    We propose to split the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale. A split supersymmetric model, which gives non-universal gaugino masses, is built with proper high dimensional operators in the framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge couplings (taking into account all weak scale threshold corrections), we check the gauge coupling unification and dark matter constraints (relic density and direct detections). We...

  2. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  3. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  4. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  5. Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting

    Science.gov (United States)

    Lee, Song Mi; Shin, Sung-Ho; Nah, Junghyo; Lee, Min Hyung

    2017-09-01

    Appropriate control of energy band bending at the interface between semiconductors and electrolytes are closely related to performance of photoelectrochemical (PEC) water splitting. Dipoles formed near the surface of semiconductors induces energy band bending at the interface. Energy band bending control has been demonstrated by employing charged molecules and piezoelectric materials. However, chemical and piezoelectric approaches have demerit of chemical instability and inducement of instantaneous dipole, respectively. To overcome these problems, we adopted the ferroelectric material for PEC water splitting, where spontaneous dipoles in the material can be oriented by applying external electric field. In this work, we hydrothermally synthesized vanadium (V)-doped ferroelectric ZnO nanosheets and employed to systematically investigate the dipole effect on performance of V-doped ZnO PEC for water oxidation. Consequently, positively polarized V-doped ZnO photoanode exhibits 125% enhanced water splitting efficiency compared to negatively polarized ones due to favorable band bending for carrier transport from semiconductor to water.

  6. Photocatalytic water splitting: Quantitative approaches toward photocatalysis by design

    KAUST Repository

    Takanabe, Kazuhiro

    2017-10-11

    A widely used term, “photocatalysis”, generally addresses photocatalytic (energetically down-hill) and photosynthetic (energetically up-hill) reactions and refers to the use of photonic energy as a driving force for chemical transformations, i.e., electron reorganization to form/break chemical bonds. Although there are many such important reactions, this contribution focuses on the fundamental aspects of photocatalytic water splitting into hydrogen and oxygen by using light from the solar spectrum, which is one of the most investigated photosynthetic reactions. Photocatalytic water splitting using solar energy is considered to be artificial photosynthesis that produces a solar fuel because the reaction mimics nature’s photosynthesis not only in its redox reaction type but also in its thermodynamics (water splitting: 1.23 eV vs. glucose formation: 1.24 eV). To achieve efficient photocatalytic water splitting, all of the parameters, though involved at different timescales and spatial resolutions, should be optimized because the overall efficiency is obtained as the multiplication of all these fundamental efficiencies. The purpose of this review article is to provide the guidelines of a concept, “photocatalysis by design”, which is the opposite of “black box screening”; this concept refers to making quantitative descriptions of the associated physical and chemical properties to determine which events/parameters have the most impact on improving the overall photocatalytic performance, in contrast to arbitrarily ranking different photocatalyst materials. First, the properties that can be quantitatively measured or calculated are identified. Second, the quantities of these identified properties are determined by performing adequate measurements and/or calculations. Third, the obtained values of these properties are integrated into equations so that the kinetic/energetic bottlenecks of specific properties/processes can be determined, and the properties can

  7. Horizontal transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process.

    Science.gov (United States)

    Shakibaie, M R; Jalilzadeh, K A; Yamakanamardi, S M

    2009-01-01

    Transfer of antibiotic resistance genes among gram negative bacteria in sewage and lake water and easy access of these bacteria to the community are major environmental and public health concern. The aim of this study was to determine transfer of the antimicrobial resistance genes from resistant to susceptible gram negative bacteria in the sewage and lake water by conjugation process and to determine the influence of some physico-chemical parameters of sewage and lake water on the transfer of these resistance genes. For this reason, we isolated 20 liter of each sewage and lake water from coconut area within university campus and Lingambudi lake respectively in Mysore city, India, during monsoon season and studied different physical parameters of the water samples like pH, temperature, conductivity turbidity and color as well as chemical parameters like BOD, COD, field DO and total chloride ion. The gram negative bacteria were isolated and identified from the above water samples using microbiological and biochemical methods and their sensitivity to different antibiotics was determined by disc diffusion break point assay. Conjugation between two multiple antibiotic resistant isolates Pseudomonas aeuginosa and E. coli as donor and E. coli Rif(r) (sensitive to antibiotics) as recipient were carried out in 5ml sterile sewage and lake water. All isolates were resistant to Am, moderately resistant to Te and E, while majority were sensitive to Cip, Gm and CAZ antibiotics. Horizontal transfer of antibiotic resistance genes by conjugation process revealed transfer of Gm, Te and E resistant genes from Ps. aeruginosa to E. coli Rif(r) recipient with mean frequency of +/- 2.3 x 10(-4) in sewage and +/- 2.6 x 10(-6) in lake water respectively Frequency of conjugation in sewage was two fold more as compared to lake water (pbacteria by conjugation. Physico-chemical parameters of water may play role in this process.

  8. What can density functional theory tell us about artificial catalytic water splitting?

    Science.gov (United States)

    Mavros, Michael G; Tsuchimochi, Takashi; Kowalczyk, Tim; McIsaac, Alexandra; Wang, Lee-Ping; Voorhis, Troy Van

    2014-07-07

    Water splitting by artificial catalysts is a critical process in the production of hydrogen gas as an alternative fuel. In this paper, we examine the essential role of theoretical calculations, with particular focus on density functional theory (DFT), in understanding the water-splitting reaction on these catalysts. First, we present an overview of DFT thermochemical calculations on water-splitting catalysts, addressing how these calculations are adapted to condensed phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be surprisingly good estimators for reactive trends in water-splitting catalysts. Using this concept, we recover trends for bulk catalysts using simple model complexes for at least the first-row transition-metal oxides. Then, using the CoPi cobalt oxide catalyst as a case study, we examine the usefulness of simulation for predicting the kinetics of water splitting. We demonstrate that the appropriate treatment of solvent effects is critical for computing accurate redox potentials with DFT, which, in turn, determine the rate-limiting steps and electrochemical overpotentials. Finally, we examine the ability of DFT to predict mechanism, using ruthenium complexes as a focal point for discussion. Our discussion is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT methodologies for condensed-phase molecular simulation involving transition metals and also to guide future experiments and computations toward the understanding and development of novel water-splitting catalysts.

  9. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting.

    Science.gov (United States)

    Takata, Tsuyoshi; Pan, Chengsi; Domen, Kazunari

    2015-06-01

    Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.

  10. Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene

    DEFF Research Database (Denmark)

    Tanwir, Fariha; Dionisio, Giuseppe; B. Adhikari, Khem

    2017-01-01

    forms of benzoxazinoids accumulated in roots rather than in shoots during seedling development, in particular reaching high levels of HMBOA-glc in roots. Chemical profiles of benzoxazinoid accumulation in the developing seedling reflected the combined effects of de novo biosynthesis of the compounds...... development in rye. Our results showed that ScBx genes had highest levels of expression at 24–30 h after germination, followed by a decrease at later stages. For ScBx1-ScBx5 genes expression was higher in shoots compared with root tissues and vice versa for ScBx6-like gene transcripts. Moreover, methylated...... as well as the turnover of compounds either pre-stored in the embryo or de novo biosynthesized. Bioinformatic analysis, together with the differential distribution of ScBx6-like transcripts in root and shoot tissues, suggested the presence of a ZmBx6 homolog encoding a 2-oxoglutarate dependent...

  11. Gene expression and chemical exposure data for larval Pimephales promelas exposed to one of four pyrethroid pesticides.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Uploaded datasets are detailed exposure information (chemical concentrations and water quality parameters) for exposures conducted in a flow through diluter system...

  12. 12 CFR 7.2023 - Reverse stock splits.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Reverse stock splits. 7.2023 Section 7.2023... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose...

  13. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  14. Photochemical Water-Splitting with Organomanganese Complexes.

    Science.gov (United States)

    Kadassery, Karthika J; Dey, Suman Kr; Cannella, Anthony F; Surendhran, Roshaan; Lacy, David C

    2017-08-21

    Certain organometallic chromophores with water-derived ligands, such as the known [Mn(CO) 3 (μ 3 -OH)] 4 (1) tetramer, drew our attention as possible platforms to study water-splitting reactions. Herein, we investigate the UV irradiation of various tricarbonyl organomanganese complexes, including 1, and demonstrate that dihydrogen, CO, and hydrogen peroxide form as products in a photochemical water-splitting decomposition reaction. The organic and manganese-containing side products are also characterized. Labeling studies with 18 O-1 suggest that the source of oxygen atoms in H 2 O 2 originates from free water that interacts with 1 after photochemical dissociation of CO (1-CO) constituting the oxidative half-reaction of water splitting mediated by 1. Hydrogen production from 1 is the result of several different processes, one of which involves the protons derived from the hydroxido ligands in 1 constituting the reductive half-reaction of water splitting mediated by 1. Other processes that generate H 2 are also operative and are described. Collectively the results from the photochemical decomposition of 1 provide an opportunity to propose a mechanism, and it is discussed within the context of developing new strategies for water-splitting reactions with organomanganese complexes.

  15. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  16. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  17. Multiple spectral splits of supernova neutrinos.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu

    2009-07-31

    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  18. Split Notochord Syndrome: A Rare Variant

    Science.gov (United States)

    Dhawan, Vidhu; Kapoor, Kanchan; Singh, Balbir; Kochhar, Suman; Sehgal, Alka; Dada, Rima

    2017-01-01

    Split notochord syndrome represents an extremely rare and pleomorphic form of spinal dysraphism characterized by a persistent communication between the endoderm and the ectoderm, resulting in splitting or deviation of the notochord. It manifests as a cleft in the dorsal midline of the body through which intestinal loops are exteriorized and even myelomeningoceles or teratomas may occur at the site. A rare variant was diagnosed on autopsy of a 23+4-week-old fetus showing a similar dorsal enteric fistula and midline protruding intestinal loops in thoracolumbar region. The anteroposterior radiograph showed a complete midline cleft in the vertebral bodies from T11 to L5 region, and a split in the spinal cord was further confirmed by ultrasonography. Myelomeningocele was erroneously reported on antenatal ultrasound. Thus, awareness of this rare anomaly is necessary to thoroughly evaluate the cases of such spinal defects or suspected myelomeningoceles. PMID:28904581

  19. Fuzzy split and merge for shadow detection

    Directory of Open Access Journals (Sweden)

    Remya K. Sasi

    2015-03-01

    Full Text Available Presence of shadow in an image often causes problems in computer vision applications such as object recognition and image segmentation. This paper proposes a method to detect the shadow from a single image using fuzzy split and merge approach. Split and merge is a classical algorithm used in image segmentation. Predicate function in the classical approach is replaced by a Fuzzy predicate in the proposed approach. The method follows a top down approach of recursively splitting an image into homogeneous quadtree blocks, followed by a bottom up approach by merging adjacent unique regions. The method has been compared with previous approaches and found to be better in performance in terms of accuracy.

  20. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes.

    Directory of Open Access Journals (Sweden)

    Hidenori Tani

    Full Text Available Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs. Although accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression, the detailed mechanisms of action of most lncRNAs remain unclear. We previously reported that a novel class of lncRNAs with a short half-life (t1/2 < 4 h in HeLa cells, termed short-lived non-coding transcripts (SLiTs, are closely associated with physiological and pathological functions. In this study, we focused on 26 SLiTs and nuclear-enriched abundant lncRNA, MALAT1(t1/2 of 7.6 h in HeLa cells in neural stem cells (NSCs derived from human induced pluripotent stem cells, and identified four SLiTs (TUG1, GAS5, FAM222-AS1, and SNHG15 that were affected by the following typical chemical stresses (oxidative stress, heavy metal stress and protein synthesis stress. We also found the expression levels of LINC00152 (t1/2 of 2.1 h in NSCs, MALAT1 (t1/2 of 1.8 h in NSCs, and their neighboring genes were elevated proportionally to the chemical doses. Moreover, we confirmed that the overexpression of LINC00152 or MALAT1 upregulated the expressions of their neighboring genes even in the absence of chemical stress. These results reveal that LINC00152 and MALAT1 modulate their neighboring genes, and thus provide a deeper understanding of the functions of lncRNAs.

  1. Faster multiple emulsification with drop splitting.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-06-07

    Microfluidic devices can form emulsions in which the drops have an intricate, controlled structure; however, a challenge is that the droplets are produced slowly, typically only a few millilitres per hour. Here, we present a simple technique to increase the production rate. Using a large drop maker, we produce large drops at a fast volumetric rate; by splitting these drops several times in a splitting array, we create drops of the desired small size. The advantage of this over forming the small drops directly using a small drop maker is that the drops can be formed at much faster rates. This can be applied to the production of single and multiple emulsions.

  2. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  3. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    Science.gov (United States)

    Dadwal, U.; Ranjan, Neha; Singh, R.

    2016-05-01

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO3. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  4. Silicon/Carbon Nanotube Photocathode for Splitting Water

    Science.gov (United States)

    Amashukeli, Xenia; Manohara, Harish; Greer, Harold F.; Hall, Lee J.; Gray, Harry B.; Subbert, Bryan

    2013-01-01

    A proof-of-concept device is being developed for hydrogen gas production based on water-splitting redox reactions facilitated by cobalt tetra-aryl porphyrins (Co[TArP]) catalysts stacked on carbon nanotubes (CNTs) that are grown on n-doped silicon substrates. The operational principle of the proposed device is based on conversion of photoelectron energy from sunlight into chemical energy, which at a later point, can be turned into electrical and mechanical power. The proposed device will consist of a degenerately n-doped silicon substrate with Si posts covering the surface of a 4-in. (approximately equal to 10cm) wafer. The substrate will absorb radiation, and electrons will move radially out of Si to CNT. Si posts are designed such that the diameters are small enough to allow considerable numbers of electrons to transport across to the CNT layer. CNTs will be grown on top of Si using conformal catalyst (Fe/Ni) deposition over a thin alumina barrier layer. Both metallic and semiconducting CNT will be used in this investigation, thus allowing for additional charge generation from CNT in the IR region. Si post top surfaces will be masked from catalyst deposition so as to prevent CNT growth on the top surface. A typical unit cell will then consist of a Si post covered with CNT, providing enhanced surface area for the catalyst. The device will then be dipped into a solution of Co[TArP] to enable coating of CNT with Co(P). The Si/CNT/Co [TArP] assembly then will provide electrons for water splitting and hydrogen gas production. A potential of 1.23 V is needed to split water, and near ideal band gap is approximately 1.4 eV. The combination of doped Si/CNT/Co [TArP] will enable this redox reaction to be more efficient.

  5. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products

    Directory of Open Access Journals (Sweden)

    Kurt Throckmorton

    2015-09-01

    Full Text Available Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs, with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans. This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi.

  6. Split-gene system for hybrid wheat seed production

    OpenAIRE

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-01-01

    Global food security demands the development of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. Although the use of heterosis through hybrid breeding has produced tremendous economic benefits in worldwide crop production, less than 1% of the global wheat area is planted with hybrids. One of the greatest bottlenecks in breeding hybrid wheat is the lack of an efficient sterility system to block self-pollination. This r...

  7. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  8. Discrete objects, splitting closure and connectedness | Castellini ...

    African Journals Online (AJOL)

    Notions of discrete and indiscrete classes with respect to a closure operator are introduced and studied. These notions are strongly related to splitting and cosplitting closure operators. By linking the above concepts, two Galois connections arise whose composition provides a third Galois connection that can be used as a ...

  9. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...

  10. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  11. Split Beta-Lactamase Complementation Assay

    Indian Academy of Sciences (India)

    IAS Admin

    Concept of split beta. -lactamase protein fragment complementation assay. (A) and (B) are vector systems involved in the assay. As an example, a vector system for bacterial host is described here. (C) Co-transformation of complementation vectors in appropriate bacterial host. (D) and (E) are types of inter- actions expected ...

  12. Molecular catalytic system for efficient water splitting

    NARCIS (Netherlands)

    Joya, Khurram Saleem

    2011-01-01

    The aim of this dissertation is to construct and explore artificial oxygen evolving complexes that are synthetically accessible, stable, functionally robust and efficient. To achieve this, a class of mono metal water splitting catalysts is introduced in this manuscript and exploitation of these

  13. Splitting up Beta’s change

    OpenAIRE

    Suarez, Ronny

    2014-01-01

    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  14. Shear-wave splitting and moonquakes

    Science.gov (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.

    2017-12-01

    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  15. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  17. Czech, Slovak science ten years after split

    CERN Multimedia

    2003-01-01

    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  18. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  19. Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea.

    Science.gov (United States)

    Fujishima, Kosuke; Sugahara, Junichi; Kikuta, Kaoru; Hirano, Reiko; Sato, Asako; Tomita, Masaru; Kanai, Akio

    2009-02-24

    Transfer RNA (tRNA) is essential for decoding the genome sequence into proteins. In Archaea, previous studies have revealed unique multiple intron-containing tRNAs and tRNAs that are encoded on 2 separate genes, so-called split tRNAs. Here, we discovered 10 fragmented tRNA genes in the complete genome of the hyperthermoacidophilic Archaeon Caldivirga maquilingensis that are individually transcribed and further trans-spliced to generate all of the missing tRNAs encoding glycine, alanine, and glutamate. Notably, the 3 mature tRNA(Gly)'s with synonymous codons are created from 1 constitutive 3' half transcript and 4 alternatively switching transcripts, representing tRNA made from a total of 3 transcripts named a "tri-split tRNA." Expression and nucleotide sequences of 10 split tRNA genes and their joined tRNA products were experimentally verified. The intervening sequences of split tRNA have high identity to tRNA intron sequences located at the same positions in intron-containing tRNAs in related Thermoproteales species. This suggests that an evolutionary relationship between intron-containing and split tRNAs exists. Our findings demonstrate the first example of split tRNA genes in a free-living organism and a unique tri-split tRNA gene that provides further insight into the evolution of fragmented tRNAs.

  20. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the avai......Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions......, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  1. Gas-Phase Photochemical Overall H2S Splitting by UV Light Irradiation.

    Science.gov (United States)

    Baldovi, Herme G; Albero, Josep; Ferrer, Belen; Mateo, Diego; Alvaro, Mercedes; García, Hermenegildo

    2017-05-09

    Splitting of hydrogen sulfide is achieved to produce value-added chemicals. Upon irradiation at 254 nm in the gas phase and in the absence of catalysts or photocatalysts at near room temperature, H 2 S splits into stoichiometric amounts of H 2 and S with a quantum efficiency close to 50 %. No influence of the presence of CH 4 and CO 2 (typical components in natural gas and biogas in which H 2 S is an unwanted component) on the efficiency of overall H 2 S splitting was observed. A mechanism for the H 2 and S formation is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification

  3. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting

    Science.gov (United States)

    Wang, Fengyun; Song, Longfei; Zhang, Hongchao; Luo, Linqu; Wang, Dong; Tang, Jie

    2017-08-01

    Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.

  4. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  5. COMPARISON OF DAILY MILK YIELD AND ITS CHEMICAL COMPOSITION BETWEEN COWS FROM SELECTED GENETIC GROUPS OF BETA-LACTOGLOBULIN AND KAPPACASEIN GENES

    Directory of Open Access Journals (Sweden)

    Beata SITKOWSKA

    2011-01-01

    Full Text Available The objective of the research was to analyse the influence of selected genetic groups on the daily milk yield and its chemical composition in black and white Holstein-Friesian cows. The genotyping of beta-lactoglobulin and kappa-casein genes was conducted by means of the PCR-RFLP technique. The collected numeric data were analysed statistically with the covariance analysis. The joint effects of beta-lactoglobulin and kappa-casein genotypes were estimated. The greatest amount of milk was obtained from the genotype combination AAAB, whereas the milk of the genotype combination AABB was characterized with the greatest fat content. The smallest number of samples was collected from cows with genes that are preferred in terms of technological processing, combination BBBB. During test milking, the BBBB genotype combination was characterised by high milk yield and protein content, but also the highest content of somatic cells in milk samples under analysis.

  6. Structural Dynamics of the Oxygen-Evolving Complex of Photosystem II in Water-Splitting Action.

    Science.gov (United States)

    Wilson, Andrew J; Jain, Prashant K

    2018-04-17

    Oxygenic photosynthesis in nature occurs via water splitting catalyzed by the oxygen-evolving complex (OEC) of photosystem II. To split water, the OEC cycles through a sequence of oxidation states (S i , i = 0-4), the structural mechanism of which is not fully understood under physiological conditions. We monitored the OEC in visible-light-driven water-splitting action by using in situ, aqueous-environment surface-enhanced Raman scattering (SERS). In the unexplored low-frequency region of SERS, we found dynamic vibrational signatures of water binding and splitting. Specific snapshots in the dynamic SERS correspond to intermediate states in the catalytic cycle, as determined by density functional theory and isotopologue comparisons. We assign the previously ambiguous protonation configuration of the S 0 -S 3 states and propose a structural mechanism of the OEC's catalytic cycle. The findings address unresolved questions about photosynthetic water splitting and introduce spatially resolved, low-frequency SERS as a chemically sensitive tool for interrogating homogeneous catalysis in operando.

  7. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  8. Non-Mendelian transmission in a human developmental disorder: split hand/split foot.

    OpenAIRE

    Jarvik, G. P.; Patton, M. A.; Homfray, T.; Evans, J. P.

    1994-01-01

    The study of Mendelian disorders that do not meet some Mendelian expectations has led to an increased understanding of such previously obscure genetic phenomena as anticipation. Split hand/split foot (SHSF), a human developmental malformation, demonstrates such distinctive genetic features as reduced penetrance and variable expressivity. In this study, new pedigrees with defined ascertainment confirm the existence of non-Mendelian transmission characterized by the overtransmission of SHSF fro...

  9. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth

    2011-04-01

    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  10. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    Science.gov (United States)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-01-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  11. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation

    Science.gov (United States)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak

    2018-02-01

    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  12. Likely near-term solar-thermal water splitting technologies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.; Weimer, A.W. [University of Colorado, Boulder, CO (United States). Engineering Center

    2004-12-01

    Thermodynamic and materials considerations were made for some two- and three-step thermochemical cycles to split water using solar-thermal processing. The direct thermolysis of water to produce H{sub 2} using solar-thermal processing is unlikely in the near term due to ultra-high-temperature requirements exceeding 3000 K and the need to separate H{sub 2} from O{sub 2} at these temperatures. However, several lower temperature (<2500 K) thermochemical cycles including ZnO/Zn, Mn{sub 2}O{sub 3}/MnO, substituted iron oxide, and the sulfur-iodine route (S-I) provide an opportunity for high-temperature solar-thermal development. Although zirconia-based materials are well suited for metal oxide routes in terms of chemical compatibility at these temperatures, thermal shock issues are a major concern for solar-thermal applications. Hence, efforts need to be directed towards methods for designing reactors to eliminate thermal shock (ZrO{sub 2} based) or that use graphite (very compatible in terms of temperature and thermal shock) with designs that prevent contact of chemical species with graphite materials at high temperatures. Fluid-wall reactor configurations where inert gases provide a blanket to protect the graphite wall appear promising in this regard, but their use will impact process efficiency. For the case of S-I up to 1800 K, silicon carbide appears to be a suitable material for the high-temperature H{sub 2}SO{sub 4} dissociation. There is a need for a significant amount of work to be done in the area of high-temperature solar-thermal reactor engineering to develop thermochemical water splitting processes. (author)

  13. Effects of the EVCAM chemical validation library on differentiation using marker gene expression in lmouse embryonic stem cells

    Science.gov (United States)

    The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...

  14. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  15. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  16. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    International Nuclear Information System (INIS)

    Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.; Morgan, Kevin; Devereux, Theodora R.; Anna, Colleen; Collins, Jennifer B.; Paules, Richard S.; Crosby, Lynn M.; Sills, Robert C.

    2006-01-01

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCR on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/β-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level

  17. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    Science.gov (United States)

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  18. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  19. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  20. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  1. Timelike single-logarithm-resummed splitting functions

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.V.; Joint Inst. of Nuclear Research, Moscow

    2011-08-01

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e + e - annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  2. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  3. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  4. On split Lie triple systems II

    Indian Academy of Sciences (India)

    In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces. Author Affiliations. Antonio J Calderón Martín1 M Forero Piulestán1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 June 2009 ...

  5. A new location to split Cre recombinase for protein fragment complementation.

    Science.gov (United States)

    Rajaee, Maryam; Ow, David W

    2017-11-01

    We have previously described a recombinase-mediated gene stacking system in which the Cre recombinase is used to remove lox-site flanked DNA no longer needed after each round of Bxb1 integrase-mediated site-specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre-expressing plant. However, maintaining an efficient cre-expressing line over many generations can be a problem, as high production of this DNA-binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split-cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase-mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild-type Cre. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović

    2017-07-01

    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  7. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...) INCOME TAXES General Actuarial Valuations § 1.7872-15 Split-dollar loans. (a) General rules—(1... split-dollar loan depend upon the relationship between the parties and upon whether the loan is a demand...-dollar demand loan is any split-dollar loan that is payable in full at any time on the demand of the...

  8. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  9. Insights Into Electrochemical and Photoelectrochemical Water-Splitting

    Science.gov (United States)

    Vargas-Barbosa, Nella M.

    The water-splitting reaction has been known for over a century, yet its efficient execution remains to be one of the "holy grails" for current researchers. Here, molecular water is converted to oxygen and hydrogen gas via multiple proton- and electron-transfer steps. Although the product of interest is high-purity hydrogen gas fuel, the thermodynamic and kinetic requirements of the oxygen evolution reaction (OER) are the main limiting factor. The goal of this dissertation was to develop and understand model electro- and photoelectro-catalytic systems that can address the kinetic limitations of the OER, as well as guidelines for the future development of water-splitting devices. Chapter 1 introduces the kinetic theory of heterogeneous electron-transfer reactions and how it is applied to the understanding of the watersplitting reaction. The chemical properties that make iridium oxide an ideal model electrocatalyst for the OER are discussed, as well as an overview of previous work on this material. Furthermore, the fundamentals of photo-electrochemical water-splitting are presented. Here, sunlight is used as the main driving force for producing oxygen and hydrogen. It has been previously demonstrated that the synthesis of IrOx˙nH 2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through iridium hydroxide intermediates. Chapter 2 is a detailed spectro-electrochemical and DFT study of such intermediates and their effect in photoelectrochemical water-splitting cells. Primarily, we have identified the monomeric nature of this hydroxide intermediates as well as their most likely chemical composition and their relative ratio between Ir(III) and Ir(IV). The results from this study address a very important, current dilemma in IrOx˙nH2O-based photoelectrochemical water-splitting cells: how does the chemistry of the catalyst and its interface with the semiconductor influence the photoresponse of the cell? The careful preparation and characterization of

  10. Systems Toxicology of Chemically Induced Liver and Kidney Injuries: Histopathology-Associated Gene Co-Expression Modules

    Science.gov (United States)

    2016-01-04

    are made. 11Introduction The release of toxic industrial chemicals in the environment, indus- trial accidents in manufacturing and transport , over-use...modules to different types of cellular and tissue damage caused by different classes of toxicants. In our previous work, wewere able to conceptually...nuclear) LM2 131 0.42 Anisonucleosis LM3 82 0.47 Cellular infiltration LM4 31 0.44 Foci ( cellular ) LM5 41 0.43 Granular degeneration (eosinophilic) LM6 20

  11. Splitting methods for split feasibility problems with application to Dantzig selectors

    Science.gov (United States)

    He, Hongjin; Xu, Hong-Kun

    2017-05-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets.

  12. Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, Nicolas; Kinani, Said; Maillot-Marechal, Emmanuelle; Porcher, Jean-Marc; Ait-Aissa, Selim [Unite Ecotoxicologie, INERIS, Verneuil-en-Halatte (France); Balaguer, Patrick [IRCM-UM1-CRLC Val d' Aurelle, INSERM U896, Montpellier (France); Tapie, Nathalie; LeMenach, Karyn; Budzinski, Helene [ISM/LPTC-UMR 5255 CNRS Universite Bordeaux 1, Talence (France)

    2010-01-15

    Many environmental endocrine-disrupting compounds act as ligands for nuclear receptors. Among these receptors, the human pregnane X receptor (hPXR) is well described as a xenobiotic sensor to various classes of chemicals, including pharmaceuticals, pesticides, and steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of environmental chemicals and to assess PXR-active chemicals in (waste) water samples. Of the 57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar polychlorobiphenyls (PCBs; PCB101, 138, 180). Furthermore, we detected potent PXR activity in two types of water samples: passive polar organic compounds integrative sampler (POCIS) extracts from a river moderately impacted by agricultural and urban inputs and three effluents from sewage treatment works (STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar fraction, while in the effluents, PXR activity was mainly associated with the dissolved water phase. Chemical analyses quantified several PXR-active substances (i.e., alkylphenols, hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent extracts. However, mass-balance calculations showed that the analyzed compounds explained only 0.03% and 1.4% of biological activity measured in POCIS and STW samples, respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main contributors of instrumentally derived PXR activities. Finally, the PXR bioassay provided complementary information as compared to estrogenic, androgenic, and dioxin-like activity measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect PXR-active compounds in water samples

  13. Temporal order of replication of genes responsible for hypoxanthine phosphoribosyl transferase and Na+/K+ ATPase in chemically transformed human fibroblasts

    International Nuclear Information System (INIS)

    Tsutsui, T.; Suzuki, N.; Elmore, E.; Maizumi, H.

    1986-01-01

    The cytotoxic and mutagenic effects of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of a chemically induced, transformed line (Hut-11A cells) derived from diploid human skin fibroblasts were examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-h periods during the S phase with 5-bromodeoxyuridine (BrdU) followed by irradiation with near-ultraviolet (UV). The BrdU-plus-irradiation treatment was cytotoxic and mutagenic, while treatment with BrdU alone or irradiation alone was neither cytotoxic nor mutagenic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 h of S phase, whereas scare lethality was observed in late S phase. The BrdU-plus-irradiation treatment induced ouabain- and 6-thioguanine-resistant mutants, while BrdU alone or irradiation alone was not mutagenic. Ouabain-resistant mutants were induced during early S phase by the BrdU-plus-irradiation treatment. 6-Thioguanine-resistant mutants, however, were induced during middle to late S phase. These results suggest that a certain region or regions in the DNA of Hut-11A cells, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by BrdU treatment plus near-UV irradiation for cell survival and that gene(s) responsible for Na + /K + ATPase is replicated during early S phase and gene(s) for hypoxanthine phosphoribosyl transferase is replicated during middle to late S phase

  14. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer.

    Science.gov (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua

    2018-01-24

    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  15. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab

    Science.gov (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu

    2016-02-01

    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  16. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  17. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  18. Injuries caused by firewood splitting machines.

    Science.gov (United States)

    Hellstrand, P H

    1989-01-01

    The aim of this paper is to present the types of injury caused by firewood splitting machines and also to elucidate the accident mechanism. The study is based on 15 cases. The machine has a rotating spiral cone, and usually the victims' gloved fingertips were caught by the point of the cone. This led to either amputations, usually of radial fingers and/or penetrating wounds through the middle of the hand. In most cases the accidents could not be blamed on bad working techniques. The study of the mechanisms of injury points to insufficient protective devices in a machine construction which has a potentially dangerous working principle.

  19. Randomized clinical trial comparing fixed-time split dosing and split dosing of oral Picosulfate regimen for bowel preparation.

    Science.gov (United States)

    Jun, Jae Hyuck; Han, Koon Hee; Park, Jong Kyu; Seo, Hyun Il; Kim, Young Don; Lee, Sang Jin; Jun, Baek Gyu; Hwang, Min Sik; Park, Yoon Kyoo; Kim, Myeong Jong; Cheon, Gab Jin

    2017-08-28

    To compare the efficacy of fixed-time split dose and split dose of an oral sodium picosulfate for bowel preparation. This is study was prospective, randomized controlled study performed at a single Institution (2013-058). A total of 204 subjects were assigned to receive one of two sodium picosulfate regimens ( i.e ., fixed-time split or split) prior to colonoscopy. Main outcome measurements were bowel preparation quality and subject tolerability. There was no statistical difference between the fixed-time split dose regimen group and the split dose regimen group (Ottawa score mean 2.57 ± 1.91 vs 2.80 ± 2.51, P = 0.457). Cecal intubation time and physician's satisfaction of inspection were not significantly different between the two groups ( P = 0.428, P = 0.489). On subgroup analysis, for afternoon procedures, the fixed-time split dose regimen was equally effective as compared with the split dose regimen (Ottawa score mean 2.56 ± 1.78 vs 2.59 ± 2.27, P = 0.932). There was no difference in tolerability or compliance between the two groups. Nausea was 21.2% in the fixed-time split dose group and 14.3% in the split dose group ( P = 0.136). Vomiting was 7.1% and 2.9% ( P = 0.164), abdominal discomfort 7.1% and 4.8% ( P = 0.484), dizziness 1% and 4.8% ( P = 0.113), cold sweating 1% and 0% ( P = 0.302) and palpitation 0% and 1% ( P = 0.330), respectively. Sleep disturbance was two (2%) patients in the fixed-time split dose group and zero (0%) patient in the split dose preparation ( P = 0.143) group. A fixed-time split dose regimen with sodium picosulfate is not inferior to a split dose regimen for bowel preparation and equally effective for afternoon colonoscopy.

  20. The Regularity of Functions on Dual Split Quaternions in Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2014-01-01

    Full Text Available This paper shows some properties of dual split quaternion numbers and expressions of power series in dual split quaternions and provides differential operators in dual split quaternions and a dual split regular function on Ω⊂ℂ2×ℂ2 that has a dual split Cauchy-Riemann system in dual split quaternions.

  1. Highly-efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO 2 photoanodes

    Science.gov (United States)

    Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang

    2014-01-01

    Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1–4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5–10 ] Therefore,...

  2. Splitting of the weak hypercharge quantum

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1990-12-01

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semisimple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggest that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such selection mechanism might be what we have called confusion which removes groups with many (so called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms. (orig.)

  3. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  4. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  5. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  6. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    Science.gov (United States)

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  7. Correlation of Endocrine Disrupting Chemicals Serum Levels and White Blood Cells Gene Expression of Nuclear Receptors in a Population of Infertile Women

    Directory of Open Access Journals (Sweden)

    Donatella Caserta

    2013-01-01

    Full Text Available Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA, perfluorooctane sulphonate (PFOS, perfluorooctanoic acid (PFOA, monoethylhexyl phthalate (MEHP, and di(2-ethylhexyl phthalate (DEHP in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ERα, ERβ, AR, AhR, PXR, and PPARγ were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ERα, ERβ, AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ERα, ERβ, AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.

  8. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi

    2014-01-01

    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  9. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  10. Charge Transfer Mechanism in Titanium-Doped Microporous Silica for Photocatalytic Water-Splitting Applications

    Directory of Open Access Journals (Sweden)

    Wendi Sapp

    2016-02-01

    Full Text Available Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. This provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support of heterogeneous catalytic systems are important in optimization of catalytic efficiency.

  11. The impact of payment splitting on liquidity requirements in RTGS

    OpenAIRE

    Denbee, Edward; Norman, Ben

    2010-01-01

    This paper examines the impact that payment splitting could have upon the liquidity requirements and efficiency of a large-value payment system, such as the United Kingdom’s CHAPS. Using the Bank of Finland Payment and Settlement Simulator and real UK payments data we find that payment splitting could reduce the liquidity required to settle payments. The reduction in required liquidity would increase as the payment splitting threshold decreased but the relationship is non-linear. Liquidity sa...

  12. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  13. A Power System Network Splitting Strategy Based on Contingency Analysis

    Directory of Open Access Journals (Sweden)

    Nur Zawani Saharuddin

    2018-02-01

    Full Text Available This paper proposes a network splitting strategy following critical line outages based on N-1 contingency analysis. Network splitting is the best option for certain critical outages when the tendency of severe cascading failures is very high. Network splitting is executed by splitting the power system network into feasible set of islands. Thus, it is essential to identify the optimal splitting solution (in terms of minimal power flow disruption that satisfies certain constraints. This paper determines the optimal splitting solution for each of the critical line outage using discrete evolutionary programming (DEP optimization technique assisted by heuristic initialization approach. Heuristic initialization provides the best initial cutsets which will guide the optimization technique to find the optimal splitting solution. Generation–load balance and transmission line overloading analysis are carried out in each island to ensure the steady state stability is achieved. Load shedding scheme is initiated if the power balance criterion is violated in any island to sustain the generation–load balance. The proposed technique is validated on the IEEE 118 bus system. Results show that the proposed approach produces an optimal splitting solution with lower power flow disruption during network splitting execution.

  14. Cloning of circadian rhythmic pathway genes and perturbation of oscillation patterns in endocrine disrupting chemicals (EDCs)-exposed mangrove killifish Kryptolebias marmoratus.

    Science.gov (United States)

    Rhee, Jae-Sung; Kim, Bo-Mi; Lee, Bo-Young; Hwang, Un-Ki; Lee, Yong Sung; Lee, Jae-Seong

    2014-08-01

    To investigate the effect of endocrine disrupting chemicals (EDCs) on the circadian rhythm pathway, we cloned clock and circadian rhythmic pathway-associated genes (e.g. Per2, Cry1, Cry2, and BMAL1) in the self-fertilizing mangrove killifish Kryptolebias marmoratus. The promoter region of Km-clock had 1 aryl hydrocarbon receptor element (AhRE, GTGCGTGACA) and 8 estrogen receptor (ER) half-sites, indicating that the AhRE and ER half sites would likely be associated with regulation of clock protein activity during EDCs-induced cellular stress. The Km-clock protein domains (bHLH, PAS1, PAS2) were highly conserved in five additional fish species (zebrafish, Japanese medaka, Southern platyfish, Nile tilapia, and spotted green pufferfish), suggesting that the fish clock protein may play an important role in controlling endogenous circadian rhythms. The promoter regions of Km-BMAL1, -Cry1, -Cry2, and -Per2 were found to contain several xenobiotic response elements (XREs), indicating that EDCs may be able to alter the expression of these genes. To analyze the endogenous circadian rhythm in K. marmoratus, we measured expression of Km-clock and other circadian rhythmic genes (e.g. Per2, Cry1, Cry2, and BMAL1) in different tissues, and found ubiquitous expression, although there were different patterns of transcript amplification during different developmental stages. In an estrogen (E2)-exposed group, Km-clock expression was down-regulated, however, a hydroxytamoxifen (TMX, nonsteroid estrogen antagonist)-exposed group showed an upregulated pattern of Km-clock expression, suggesting that the expression of Km-clock is closely associated with exposure to EDCs. In response to the exposure of bisphenol A (BPA) and 4-tert-octyphenol (OP), Km-clock expression was down-regulated in the pituitary/brain, muscle, and skin in both gender types (hermaphrodite and secondary male). In juvenile K. marmoratus liver tissue, expression of Km-clock and other circadian rhythmic pathway

  15. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    Most of today’s complex systems and processes involve several stages through which input or the raw material has to go before the final product is obtained. Also in many cases factors at different stages interact. Therefore, a holistic approach for experimentation that considers all stages...... on the Kronecker product representation of orthogonal designs and can be used for any number of stages, for various numbers of subplots and for different number of subplots for each stage. The procedure is demonstrated on both regular and nonregular designs and provides the maximum number of factors that can...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  16. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator....... Finally the velocity estimates from each frequency band are averaged to obtain an improved velocity estimate. The FS method has been evaluated in simulations using the Field II program and in flow phantom experiments using the experimental ultrasound scanner RASMUS. In both simulations and experiments...

  17. Flux-split algorithms for flows with non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Cinnella, Pasquale

    New flux-split algorithms are developed for high velocity, high temperature flow situations, when finite-rate chemistry and non-equilibrium thermodynamics greatly affect the physics of the problem. Two-vector-split algorithms, of the Steger-Warming and of the Van Leer type, and one flux-difference-split algorithm of the Roe type are established and utilized for the accurate numerical simulation of flows with dissociation, ionization, and combustion phenomena. Several thermodynamic models are used, including a simplified vibrational non-eqilibrium model and an equilibrium model based upon refined statistical mechanical properties. The framework provided is flexible enough to accommodate virtually any chemical model and a wide range of non-equilibrium, multi-temperature thermodynamic models. A theoretical study of the main features of flows with free electrons, for conditions that require the use of two translational temperatures in the thermal model, is developed. A simple but powerful asymptotic analysis is developed which allows the establishment of the fundamental gas dynamic properties of flows with multiple translational temperatures. The new algorithms developed demonstrate their accuracy and robustness for challenging flow problems. The influence of several assumptions on the chemical and thermal behavior of the flows is investigated, and a comparison with results obtained using different numerical approaches, in particular spectral methods, is provided, and proves to be favorable to the present techniques.

  18. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  19. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  20. Improvement of efficiency in graphene/gallium nitride nanowire on Silicon photoelectrode for overall water splitting

    Science.gov (United States)

    Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok

    2017-11-01

    Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.

  1. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  2. RNA sequencing indicates that atrazine induces multiple detoxification genes in Daphnia magna and this is a potential source of its mixture interactions with other chemicals.

    Science.gov (United States)

    Schmidt, Allison M; Sengupta, Namrata; Saski, Christopher A; Noorai, Rooksana E; Baldwin, William S

    2017-12-01

    Atrazine is an herbicide with several known toxicologically relevant effects, including interactions with other chemicals. Atrazine increases the toxicity of several organophosphates and has been shown to reduce the toxicity of triclosan to D. magna in a concentration dependent manner. Atrazine is a potent activator in vitro of the xenobiotic-sensing nuclear receptor, HR96, related to vertebrate constitutive androstane receptor (CAR) and pregnane X-receptor (PXR). RNA sequencing (RNAseq) was performed to determine if atrazine is inducing phase I-III detoxification enzymes in vivo, and estimate its potential for mixture interactions. RNAseq analysis demonstrates induction of glutathione S-transferases (GSTs), cytochrome P450s (CYPs), glucosyltransferases (UDPGTs), and xenobiotic transporters, of which several are verified by qPCR. Pathway analysis demonstrates changes in drug, glutathione, and sphingolipid metabolism, indicative of HR96 activation. Based on our RNAseq data, we hypothesized as to which environmentally relevant chemicals may show altered toxicity with co-exposure to atrazine. Acute toxicity tests were performed to determine individual LC 50 and Hillslope values as were toxicity tests with binary mixtures containing atrazine. The observed mixture toxicity was compared with modeled mixture toxicity using the Computational Approach to the Toxicity Assessment of Mixtures (CATAM) to assess whether atrazine is exerting antagonism, additivity, or synergistic toxicity in accordance with our hypothesis. Atrazine-triclosan mixtures showed decreased toxicity as expected; atrazine-parathion, atrazine-endosulfan, and to a lesser extent atrazine-p-nonylphenol mixtures showed increased toxicity. In summary, exposure to atrazine activates HR96, and induces phase I-III detoxification genes that are likely responsible for mixture interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  4. 77 FR 8127 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... affect taxpayers claiming foreign tax credits. The text of the temporary regulations also serves as the... that if there is a foreign tax credit splitting event with respect to a foreign income tax paid or...

  5. 77 FR 8184 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  6. Clonal differences in log end splitting in Eucalyptus grandis in ...

    African Journals Online (AJOL)

    This paper discusses the juvenile–mature correlation of log end splitting among Eucalyptus grandis clones from two trials and how differences in splitting relate to differences in wood density, pith-to-bark gradient and growth rate. Two approximately 20-year-old Eucalyptus grandis clonal trials at Bergvliet plantation were ...

  7. April / May 2006. 108 Harvesting split thickness skin in

    African Journals Online (AJOL)

    user

    Background: In the third world countries like Ethiopia the majority of Hospitals have difficulties in harvesting split thickness skin ... The grafts were well taken by the recipient areas and technically there was no danger of deep bite. Conclusion: Split ... to meet the hospital needs. Thus we need to improvise and use appropriate.

  8. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  9. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert

    2008-01-01

    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility.

  10. Enhanced residual mean circulation during the evolution of split type ...

    Indian Academy of Sciences (India)

    8

    keywords: split events, stratospheric sudden warming, residual mean circulation. 1 Introduction ... sudden warming. It is characterized by a rapid cooling of the polar cap tempera- ture (Kuroda, 2008). The competition between planetary waves and gravity waves to the residual .... any automated scheme. The split events ...

  11. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency ...

  12. 7 CFR 51.2753 - U.S. Virginia Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Virginia Splits. 51.2753 Section 51.2753... STANDARDS) United States Standards for Shelled Virginia Type Peanuts Grades § 51.2753 U.S. Virginia Splits. “U.S. Virginia Splits” consists of shelled Virginia type peanut kernels of similar varietal...

  13. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  14. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  15. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  16. Physical mapping of the split hand/split foot (SHSF) locus on chromosome 7 reveals a relationship between SHSF and the syndromic ectrodactylies

    Energy Technology Data Exchange (ETDEWEB)

    Poorkaj, P.; Nunes, M.E.; Geshuri, D. [Univ. of Washington, Seattle, WA (United States)] [and others

    1994-09-01

    Split hand/split foot (also knows as ectrodactyly) is a human developmental malformation characterized by missing digits and claw-like extremities. An autosomal dominant form of this disorder has been mapped to 7q21.3-q22.1 on the basis of SHSF-associated chromosomal rearrangements: this locus has been designated SHFD1. We have constructed a physical map of the SHFD1 region that consists of contiguous yeast artificial chromosome clones and spans approximately 8 Mb. Somatic cell hybrid and fluorescent in situ hybridization analyses were used to define SHSF-associated chromosomal breakpoints in fourteen patients. A critical interval of about 1 Mb was established for SHFD1 by analysis of six patients with deletions. Translocation and inversion breakpoints in seven other patients were found to localize within a 500-700 kb interval within the critical region. Several candidate genes including DLX5 and DLX6 (members of the Drosophilia Distal-less homeobox-containing gene family) localize to this region. At least four of these genes are expressed in the developing mouse limb bud. Of particular interest is the observation that 8 of the 14 patients studied have syndromic ectrodactyly, which is characterized by the association of SHSF with a variety of other anomalies including cleft lip/palate, ectodermal dysplasia, and renal anomalies. Thus, these data implicate a single gene or cluster of genes at the SHFD1 locus in a wide range of developmental processes and serve to establish a molecular genetic relationship between simple SHSF and a broad group of human birth defects.

  17. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...... properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...

  18. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    . To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...... be pipelined and thus operating at higher speeds. Simulation results show, the split TCP proxy can significantly improve the TCP performance in terms of RLC throughput under high bit rate DCH channel scenario (e.g.256 kbps). On the other hand, it only brings small performance improvement under low bit rate DCH...... scenario (e.g.64 kbps). Besides, the split TCP proxy brings more performance gain for downloading large files than downloading small ones. To the end, for the configuration of the split proxy, an aggressive initial TCP congestion window size (e.g. 10 MSS) at proxy is particularly useful for radio links...

  19. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi

    2018-02-01

    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  20. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  1. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  2. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Wei, Xiaoling; Peng, Xiaolei; Xie, Chong; Zheng, Yuebing

    2016-12-14

    Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

  3. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  4. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces

    KAUST Repository

    Shinagawa, Tatsuya

    2016-08-04

    Direct photon to chemical energy conversion using semiconductor-electrocatalyst-electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties (1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces (3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface (5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing "photocatalysis by design" concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory. Photocatalytic water splitting (especially hydrogen evolution on metal surfaces) was selected as a topic, and the photophysical and electrochemical processes that occur at semiconductor-metal, semiconductor-electrolyte and metal-electrolyte interfaces are discussed.

  5. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.

    Science.gov (United States)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2017-04-10

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Wideband metasurface filter based on complementary split-ring resonators

    Science.gov (United States)

    Zhang, Tong; Zhang, Jiameng; Xu, Jianchun; Wang, Qingmin; Zhao, Ruochen; Liu, Hao; Dong, Guoyan; Hao, Yanan; Bi, Ke

    2017-08-01

    A wideband metasurface filter based on complementary split-ring resonators (CSRR) has been prepared. The frequency and transmission bandwidth of the metasurface filters with different split widths are discussed. After analyzing the mechanism of the metasurface, the proposed metasurface filters are fabricated. The electromagnetic properties of the metasurface are measured by a designed test system. The measured results are in good agreement with the simulated ones, which shows that the metasurface filter has a wideband property. As the split width of the CSRR increases, the frequency of the passband shifts to higher frequency regions and the transmission bandwidth decreases.

  7. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads

    2012-01-01

    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  8. Ridge Splitting Technique for Horizontal Augmentation and Immediate Implant Placement

    Directory of Open Access Journals (Sweden)

    Papathanasiou Ioannis

    2014-03-01

    Full Text Available Insufficient width of the alveolar ridge often prevents ideal implant placement. Guided bone regeneration, bone grafting, alveolar ridge splitting and combinations of these techniques are used for the lateral augmentation of the alveolar ridge. Ridge splitting is a minimally invasive technique indicated for alveolar ridges with adequate height, which enables immediate implant placement and eliminates morbidity and overall treatment time. The classical approach of the technique involves splitting the alveolar ridge into 2 parts with use of ostetomes and chisels. Modifications of this technique include the use of rotating instrument, screw spreaders, horizontal spreaders and ultrasonic device.

  9. Market Split based Congestion Management for Networks with Loops

    Science.gov (United States)

    Marmiroli, Marta; Tanimoto, Masahiko; Tsukamoto, Yukitoki; Yokoyama, Ryuichi

    Market splitting is one of the methods to solve the transmission congestion problem associated with the introduction of competitive electricity market and transmission access. Based on the concept of price difference among congested areas, the market splitting approach produces a solution that strongly informs market participants of congestion path. In this paper, an algorithm to solve the market splitting problem for complex networks including loop structures is proposed. The method, based on an algebraic approach, ensures a feasible optimal solution verifiable and easily understandable by the market participants. Complex networks are transformed into simple radial ones using the delta-star approach. The method was tested on large problems to evaluate the performances.

  10. Search for inversion splitting in the 3ν2 band of phosphine

    Science.gov (United States)

    Okuda, Shoko; Sasada, Hiroyuki

    2018-04-01

    Sub-Doppler resolution spectroscopy of the 3ν2 band of phosphine has been carried out using a difference-frequency-generation source referenced to an optical frequency comb and a cavity-enhanced absorption cell. Three Q-branch transitions are recorded with a linewidth of 150 kHz, but no inversion splitting is observed even though it was predicted 300 kHz in Journal of Chemical Physics, vol. 145, art. No. 091102 (2016). Transition frequencies of six Q-branch transitions have been determined with an uncertainty of 6-16 kHz.

  11. Inference of chemicals that cause biological effects in treated pulp and paper mill effluent using gene expression in caged fathead minnows

    Science.gov (United States)

    Analytical chemistry techniques can identify chemicals present in the waters of the Great Lakes areas of concern, however it remains a challenge to identify those chemicals or classes of chemicals that actually cause adverse effects. Use of caged fathead minnows (Pimephales prome...

  12. Chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula A. Oliveira

    2007-12-01

    Full Text Available The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.A sociedade obtém numerosos benefícios da utilização de compostos químicos. A aplicação dos pesticidas, por exemplo, permitiu obter alimento em quantidade suficiente para satisfazer as necessidades alimentares de milhões de pessoas, condição relacionada com o aumento da esperança de vida. Os benefícios estão, por

  13. Development of methodical approach to the identification of the features of the genetic polymorphisms and gene expression in children under influence of chemical environmental factors on the example of strontium

    Directory of Open Access Journals (Sweden)

    O.V. Dolgikh

    2016-03-01

    Full Text Available Methodological approaches evaluating the features of genetic polymorphism associated with exposure to chemical etiology factors for the identification of genetic susceptibility markers were developed. The technologies, methodological aspects of the use of polymerase chain reaction, DNA sequencing fragments, studies of spontaneous and induced strontium expression of candidate genes that help identify changes in the genome and transcriptome in order to identify early disorders of adaptation processes in chronic environmental burden to prove the injury and assessment of individual exposure risk chemical factors were suggested.

  14. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  15. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  16. Controlling feeding behavior by chemical or gene-directed targeting in the brain: What’s so spatial about our methods?

    Directory of Open Access Journals (Sweden)

    Arshad M Khan

    2013-12-01

    Full Text Available Intracranial chemical injection (ICI methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. However, comparing injection sites with other types of location data requires careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial gene-directed injection (IGI methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics and pharmacosynthetics that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and

  17. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  18. WEATHERING PROCESS IN EOCENE FLYSCH IN REGION OF SPLIT (CROATIA

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2001-12-01

    Full Text Available The Eocene flysh in the region of Split (Dalmatia, Croatia is char¬acterized by the presence of layers with different characteristics. It mainly includes thin-layered marls, clayey marls, calcareous marls, clastic lay¬ered limestones, calcarenites and breccias. Those parts that can be de¬scribed as the soft rocks or hard clays by the mechanical means, exposed to weathering reduce the durability within "an engineering time scale". The paper deals with the factors that influence the weathering process. The analyzed weathering is a combination of processes acting simulta¬neously. Most of these processes depend on the change of the water con¬tent, thus the weathering process mainly develops when a material is subjected to the wetting-drying process, On the base of these results form of degradation process is modeled. The weathering process can be main¬ly described as physical weathering combined with chemical weathering on the free surfaces and on the cracks walls. Erosion as a result of weath¬ering, is the dominant geomorphic process on analyzed flysch terrain. According to the analysis, as the most appropriate due to the characteris¬tics the tests are chosen as index properties. Some of these tests are modified in order to adapt them to the determined characteristics of ma¬terials from flysch layers. The correlations between the measured values are used as the basis for the classification proposal of the analyzed mate¬rial, according to its resistance to weathering processes. Roughly, three main groups of samples are recognizable: the first one with carbonate content more then 90% is not weathered at the engineers time scale; the second group with carbonate content from 75% to 90% include samples susceptible to weathering in engineers time scale; the third group with carbonate content less then 75% include samples in which the weather¬ing occurs immediately after the exposition to the weathering factors.

  19. Shear wave splitting in the Isparta Angle, southwestern Turkey ...

    Indian Academy of Sciences (India)

    broadband station in the Isparta Angle,southwestern Turkey.We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, and delay time between fast and ...

  20. Field Monitoring Protocol. Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  1. Electrochemical Water-Splitting Based on Hypochlorite Oxidation

    Czech Academy of Sciences Publication Activity Database

    Minhová Macounová, Kateřina; Simic, N.; Ahlberg, E.; Krtil, Petr

    2015-01-01

    Roč. 137, č. 23 (2015), s. 7262-7265 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : electrochemistry * hypochlorite oxidation * water-splitting Subject RIV: CG - Electrochemistry Impact factor: 13.038, year: 2015

  2. Possibilities of Intermodal Passenger Transport between Split Airport and Islands

    Directory of Open Access Journals (Sweden)

    Slavko Roguljić

    2008-07-01

    Full Text Available A substantial number of passengers landing at Split Airportduring the tourist season continue their journey to the destinationson the central Dalmatian islands. Today the transfer isdone mainly through the ferry port in Split. The insufficient capacitiesof roads from the airport to the city centre which accommodatesthe ferry port and waiting for the embarkation onthe ferries and the transport itself to the islands and the finaldestinations take much longer than the air transport itself toSplit. The paper studies the possible improvements of the existingcondition as well as the construction completion and openingto traffic of the passenger sea port next to Split Airport whichwould provide a much better solution of passenger transfer tothe islands.

  3. Effect of Repeated Food Morsel Splitting on Jaw Muscle Control

    DEFF Research Database (Denmark)

    A, Kumar; Svensson, Krister G; Baad-Hansen, Lene

    2014-01-01

    Mastication is a complex motor task often initiated by splitting of the food morsel between the anterior teeth. Training of complex motor tasks has consistently been shown to trigger neuroplastic changes in corticomotor control and optimization of muscle function. It is not known if training...... and repeated food morsel splitting lead to changes in jaw muscle function. Objective: To investigate if repeated splitting of food morsels in participants with natural dentition changes the force and jaw muscle electromyographic (EMG) activity. Methods: Twenty healthy volunteers (mean age = 26.2 ± 3.9 years......) participated in a single one-hour session divided into six series. Each series consisted of ten trials of a standardized behavioral task (total of 60 trials). The behavioral task was to hold and split a food morsel (8 mm, 180 mg placebo tablet) placed on a bite force transducer with the anterior teeth...

  4. Acoustic Split-Beam Echosounder Data (EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fisheries Science Center Mississippi Laboratories collects data using Simrad EK60 scientific split-beam acoustic echosounders during resource...

  5. The homogeneous property and flux splitting in gas dynamics

    Science.gov (United States)

    Lerat, A.

    The homogeneous property of fluxes in gas dynamics is investigated, and its consequences concerning the flux splitting introduced by Steger and Warming (1981) are examined. It is shown that, for any hyperbolic system w sub t + f(w) sub x = 0 which satisfies the homogeneous property, the flux f(w) can be expressed in terms of the eigenvalues and eigenvectors of the matrix A(w) = df(w)/dw. This same result is also found to hold for the split fluxes f(+)(w) and f(-)(w). The problem of the validity of flux splitting is studied using these results. Three applications of flux splitting are then considered. The first application concerns uncentered schemes and particularly a precise analysis of their stability, the second is connected with a method for correcting the dispersive error of second-order accurate schemes, and the third deals with a nonreflective boundary condition.

  6. Recent Progress in Energy-Driven Water Splitting.

    Science.gov (United States)

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  7. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  8. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan

    2012-06-01

    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  9. Identification of early response genes to roughness and fluoride modification of titanium implants in human osteoblasts.

    Science.gov (United States)

    Ramis, Joana Maria; Taxt-Lamolle, Sébastien Francis; Lyngstadaas, Staale Petter; Reseland, Janne Elin; Ellingsen, Jan Eirik; Monjo, Marta

    2012-04-01

    Tissue response after implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. Here, we have used a two-step procedure to identify novel genes related to the early response of primary human osteoblasts to roughness and fluoride-modified titanium implants. Two hundred seventeen genes responding to roughness were identified by microarray analysis and 198 genes responding to fluoride, 33 genes were common. Those identified genes related to bone and mineralization were further investigated by real-time reverse-transcriptase polymerase chain reaction. After 1 day of culture, toll-like receptor 3, ankylosis-progressive homolog, decorin, osteocalcin, and runt-related transcription factor-2 were classified as responsive genes to roughness; Distal-less homeobox-2 and Tuftelin-1 as responsive genes to fluoride treatment. Responsive genes to both treatments were collagen type I, parathyroid hormone-like hormone, hairy and enhancer of split-1, follistatin, ectonucleotide pyrophosphatase/phosphodiesterase-1, and thyroid hormone receptor-alpha. Our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to rough and fluoride-modified titanium implants.

  10. Endoscopic classification of representations of quasi-split unitary groups

    CERN Document Server

    Mok, Chung Pang

    2015-01-01

    In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.

  11. Spectral splitting for thermal management in photovoltaic cells

    Science.gov (United States)

    Apostoleris, Harry; Chiou, Yu-Cheng; Chiesa, Matteo; Almansouri, Ibraheem

    2017-09-01

    Spectral splitting is widely employed as a way to divide light between different solar cells or processes to optimize energy conversion. Well-understood but less explored is the use of spectrum splitting or filtering to combat solar cell heating. This has impacts both on cell performance and on the surrounding environment. In this manuscript we explore the design of spectral filtering systems that can improve the thermal and power-conversion performance of commercial PV modules.

  12. Split Octonion electrodynamics and unified fields of dyons

    International Nuclear Information System (INIS)

    Bisht, P.S.

    2004-01-01

    Split octonion electrodynamics has been developed in terms of Zorn's vector matrix realization by reformulating electromagnetic potential, current, field tensor and other dynamical quantities. Corresponding field equation (Unified Maxwell's equations) and equation of motion have been reformulated by means of split octonion and its Zorn vector realization in unique, simpler and consistent manner. It has been shown that this theory reproduces the dyon field equations in the absence of gravito-dyons and vice versa

  13. Visualization of the sequence of a couple splitting outside shop

    DEFF Research Database (Denmark)

    2015-01-01

    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  14. A Modified Halpern's Iterative Scheme for Solving Split Feasibility Problems

    Directory of Open Access Journals (Sweden)

    Jitsupa Deepho

    2012-01-01

    Full Text Available The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for solving the split feasibility problem (SFP in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions a strong convergence theorem is established. The main result presented in this paper improves and extends some recent results done by Xu (Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010 105018 and some others.

  15. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  16. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  17. Similarities of artificial photosystems by ruthenium oxo complexes and native water splitting systems

    Science.gov (United States)

    Tanaka, Koji; Isobe, Hiroshi; Yamanaka, Shusuke; Yamaguchi, Kizashi

    2012-01-01

    The nature of chemical bonds of ruthenium(Ru)–quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu2Q)(OH2)](ClO4)2 (trpy = 2,2′:6′,2′′-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru2(btpyan)(3,6-di-Bu2Q)2(OH2)]2+ (btpyan = 1,8-bis(2,2′:6′,2′′-terpyrid-4′-yl)anthracene, 3,6-t-Bu2Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)–Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems. PMID:22761310

  18. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  19. Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane

    International Nuclear Information System (INIS)

    He Xiaoming; Boehm, Robert F.

    2009-01-01

    A solar water splitting cell composed of WO 3 , Polymer Electrolyte Membrane (PEM) and Pt was constructed for producing hydrogen from deionized water in sunlight. Spectral responsivity measurements under various temperatures and bias voltages were conducted for the cell using the Incident Photon to Current Efficiency (IPCE) method. For comparison, a known WO 3 Photo Electro Chemical (PEC) cell containing H 3 PO 4 electrolyte, WO 3 /H 3 PO 4 /Pt, was tested using the same test method. The WO 3 /PEM-H 2 O/Pt cell showed better Quantum Efficiency (QE) performance compared to that obtained from the cell with the chemical electrolyte. For the first time, spectral responsivity of photo water splitting process without bias power was unveiled in the new WO 3 cell, demonstrating the self-sustained photo electrolysis capability. Bias voltage effect on Solar to Hydrogen (STH) conversion efficiency was dramatic in the range from 0.2 V to 1.2 V and suppressions of STH were observed when high bias voltages were applied. In addition, a strong temperature effect on the energy conversion efficiency at high bias voltage was observed in the cell containing PEM-H 2 O, revealing that the STH at 54 °C is nearly five times that at 14 °C.

  20. Studies on cycle characteristics and application of split heat pipe adsorption ice maker

    International Nuclear Information System (INIS)

    Chen, C.J.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.

    2007-01-01

    A split heat pipe adsorption ice maker, which uses a solidified compound adsorbent (calcium chloride and activated carbon)-ammonia as working pair, is studied. The application of split heat pipe technology in this system (ice maker for fishing boat powered by waste heat of exhaust gases from diesel engine) solves the corrosion problem caused by using seawater to cool the adsorber directly. Therefore, the adsorbers can be cooled or heated by the working substance of the heat pipe in the adsorption or desorption state, respectively. There are two adsorbers in the adsorption ice maker, and each adsorber contains 2.35 kg compound adsorbent in which the mass of calcium chloride is 1.88 kg. The mass transfer performance and volume cooling density of the chemical adsorbent are greatly improved by the use of the compound adsorbent. Water is chosen as the working substance of the heat pipe due to its high cooling power in comparison with the experiments performed using acetone as working substance. When the cycle time is 70 min, the average SCP of ice making is about 329.8-712.8 W/kg calcium chloride with heat and mass recovery, which is approximately 1.6-3.5 times that of the best results of a conventional chemical adsorption ice maker

  1. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.

    Science.gov (United States)

    Sivula, Kevin; Le Formal, Florian; Grätzel, Michael

    2011-04-18

    Photoelectrochemical (PEC) cells offer the ability to convert electromagnetic energy from our largest renewable source, the Sun, to stored chemical energy through the splitting of water into molecular oxygen and hydrogen. Hematite (α-Fe(2)O(3)) has emerged as a promising photo-electrode material due to its significant light absorption, chemical stability in aqueous environments, and ample abundance. However, its performance as a water-oxidizing photoanode has been crucially limited by poor optoelectronic properties that lead to both low light harvesting efficiencies and a large requisite overpotential for photoassisted water oxidation. Recently, the application of nanostructuring techniques and advanced interfacial engineering has afforded landmark improvements in the performance of hematite photoanodes. In this review, new insights into the basic material properties, the attractive aspects, and the challenges in using hematite for photoelectrochemical (PEC) water splitting are first examined. Next, recent progress enhancing the photocurrent by precise morphology control and reducing the overpotential with surface treatments are critically detailed and compared. The latest efforts using advanced characterization techniques, particularly electrochemical impedance spectroscopy, are finally presented. These methods help to define the obstacles that remain to be surmounted in order to fully exploit the potential of this promising material for solar energy conversion. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Promiscuous ligand-dependent activation of the Ah receptor: chemicals in crude extracts from commercial and consumer products bind to and activate the Ah receptor and Ah receptor-dependent gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Denison, M.; Rogers, W.; Bohonowych, J.; Zhao, B. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States)

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related halogenated and polycyclic aromatic hydrocarbons (HAHs and PAHs) produce a variety of toxic and biological effects, the majority of which are mediated by their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. While previous studies suggested that the physiochemical characteristics of AhR ligands (i.e. HAH and PAH agonists) must meet a defined set of criteria, it has recently become abundantly clear that the AhR can be bound and activated by structurally diverse range of synthetic and naturally occurring chemicals. Based on the spectrum of AhR ligands identified to date, the structural promiscuity of AhR ligands is significantly more diverse than that observed for other liganddependent nuclear receptors. However, a detailed understanding of the structural diversity of AhR ligands and their respective biological and toxicological activities remains to be established and could provide insights into the identity of endogenous ligands. Over the past several years we have developed and utilized several AhR-based in vitro and cell-based bioassay systems to screen pure chemicals and chemical libraries as well as mixtures of chemicals with the goal of defining the spectrum of chemicals that can bind to and activate/inhibit the AhR and AhR-dependent gene expression. In addition, demonstration of the presence of AhR agonists/antagonists in extracts containing complex mixtures of chemicals from a variety of biological and environmental samples, coupled with AhR bioassay-based fractionation procedures, provides an avenue in which to identify novel AhR ligands. In previous preliminary screening studies we demonstrated the presence of AhR agonists in extracts of commercial and consumer products using an in vitro guinea pig hepatic AhR DNA binding and mouse gene induction assays. Here we have extended these studies and have examined the ability of crude DMSO and ethanol extracts

  3. NANOSTRUCTURED TiO2 SENSITIZED WITH PORPHYRINS FOR SOLAR WATER-SPLITTING

    Directory of Open Access Journals (Sweden)

    MARCELA-CORINA ROŞU

    2011-03-01

    Full Text Available Nanostructured TiO2 sensitized with porphyrins for Solar water-splitting.The production of hydrogen from water using solar light is very promising for generations of an ecologically pure carrier contributing to a clean, sustainable and renewable energy system. The selection of specific photocatalyst material for hydrogen production in photoelectrochemical cells (PECs is based on some important characteristics of semiconductor, such as photo-corrosion and chemical corrosion stability, photocatalytic potential, high sensitivity for UV-visible light. In the present paper, different nanocrystalline TiO2 photoanodes have been prepared via wet-chemical techniques followed by annealing treatment and sensitized with porphyrins and supramolecular complexes of porphyrins. The so obtained photocatalysts were characterized with UV-VIS absorption spectroscopy and spectrofluorimetry. The purpose of these experiments is to show if the prepared materials possess the necessary photocatalytic characteristics and if they can be used with success in H2 production from water decomposition in PECs.

  4. Splitting Water by Electrochemistry and Artificial Photosynthesis: Excellent Science but a Nightmare of Translation?

    Science.gov (United States)

    Antonietti, Markus; Savateev, Alexandr

    2018-01-10

    Water splitting to its elements, either by electrochemistry or by solar light, is among the most covered areas in nanostructured functional materials. This personal account article analyzes potential downstream translation problems and reviews alternative chemistries with a potential higher return. Liberation of oxygen for accepting the holes is a kinetically demanding half reaction afflicted with kinetic hindrances and high overpotentials, while at the same time no marketable value is created (atmospheric oxygen is free to use). In spite of exciting science created, application in real industrial set-ups is currently impossible, and possible funding promises to contribute to a sustainable society become a debt difficult to return. We discuss possible alternative targets of (photo)electrochemistry as entry points where chemical value products and technical oxidants are created, with partially greater ease, lower losses, and higher benefits. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen production by water-splitting using heat supplied by a high-temperature reactor

    International Nuclear Information System (INIS)

    Courvoisier, P.; Rastoin, J.; Titiliette, Z.

    1976-01-01

    Some aspects of the use of heat of nuclear origin for the production of hydrogen by water-splitting are considered. General notions pertaining to the yield of chemical cycles are discussed and the heat balance corresponding to two specific processes is evaluated. The possibilities of high temperature reactors, with respect to the coolant temperature levels, are examined from the standpoint of core design and technology of some components. Furthermore, subject to a judicious selection of their characteristics, these reactors can lead to excellent use of nuclear fuel. The coupling of the nuclear reactor with the chemical plant by means of a secondary helium circuit gives rise to the design of an intermediate heat exchanger, which is an important component of the overall installation. (orig.) [de

  6. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance (poster)

    Science.gov (United States)

    Product Description:Evaluation of the potential effects of complex mixtures of chemicals in the environment is challenged by the lack of extensive toxicity data for many chemicals. However, there are growing sources of online information that curate and compile literature reports...

  7. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  8. Enhanced Intermediate-Temperature CO2 Splitting Using Nonstoichiometric Ceria and Ceria-Zirconia

    KAUST Repository

    Zhao, Zhenlong

    2017-08-24

    CO2 splitting via thermo-chemical or reactive redox has emerged as a novel and promising carbon-neutral energy solution. Its performance depends critically on the properties of the oxygen carriers (OC). Ceria is recognized as one of the most promising OC candidates, because of its fast chemistry, high ionic diffusivity, and large oxygen storage capacity. The fundamental surface ion-incorporation pathways, along with the role of surface defects and the adsorbates remains largely unknown. This study presents a detailed kinetics study of CO2 splitting using CeO2 and Ce0.5Zr0.5O2 (CZO) in the temperature range 600-900℃. Given our interest in fuel-assisted reduction, we limit our study to relatively lower temperatures to avoid excessive sintering and the need for high temperature heat. Compared to what has been reported previously, we observe higher splitting kinetics, resulting from the utilization of fine particles and well-controlled experiments which ensure a surface-limited-process. The peak rates with CZO are 85.9 μmole g–1s–1 at 900℃ and 61.2 μmole g–1s–1 at 700℃, and those of CeO2 are 70.6 μmole g–1s–1 and 28.9 μmole g–1s–1. Kinetics models are developed to describe the ion incorporation dynamics, with consideration of CO2 activation and the charge transfer reactions. CO2 activation energy is found to be – 120 kJ mole-1 for CZO, half of that for CeO2, while CO desorption energetics is analogous among the two samples with the value of ~160 kJ mole-1. The charge-transfer process is found to be the rate-limiting step for CO2 splitting. The evolution of CO32- with surface Ce3+ is examined based on the modeled kinetics. We show that the concentration of CO32- varies with Ce3+ in a linear-flattened-decay pattern, resulting from a mismatch between the kinetics of the two reactions. Our study provides new insights into the significant role of the surface defects and adsorbates in determining the splitting kinetics.

  9. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.

    Science.gov (United States)

    Zhao, Yixin; Swierk, John R; Megiatto, Jackson D; Sherman, Benjamin; Youngblood, W Justin; Qin, Dongdong; Lentz, Deanna M; Moore, Ana L; Moore, Thomas A; Gust, Devens; Mallouk, Thomas E

    2012-09-25

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light.

  10. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  11. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  12. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  13. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    Science.gov (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek

    2017-05-10

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type-$I$ splitting criteria guarantee, with high probability, the highest expected value of split measure. Type-$II$ criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  14. Experimental study on dynamic splitting of recycled concrete using SHPB

    Science.gov (United States)

    Lu, Yubin; Yu, Shuisheng; Cai, Yong

    2015-09-01

    To study the recycled concrete splitting tensile properties and fracture state with various recycled coarse aggregate replacement percentage (i.e. 0%, 25%, 50%, 75% and 100%), the dynamic splitting test of recycled concrete was carried out using large diameter (75 mm) split Hopkinson pressure bar (SHPB). The results show that the recycled concrete splitting tensile strength increases with the increase of loading rate, and the loading rate also affects the recycled concrete fracture state, which indicates that the recycled concrete has obvious rate sensitivity. The damage state of the recycled concrete is not only the destruction of the interface between coarse aggregate and cement mortar, but also associates with the fracture damage of aggregates. Under the same water cement ratio, when the replacement percentage of coarse aggregates is around 50%-75%, the gradation of natural and recycled coarse aggregate is optimal, and thus the splitting tensile strength is the largest. This study offers theoretical basis for the engineering applications of recycled concrete.

  15. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro

    2017-01-01

    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  16. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting

    Science.gov (United States)

    Reiss, Miriam Christina; Rümpker, Georg

    2017-04-01

    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  17. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.

    2010-04-01

    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Chinnakonda S Gopinath. Articles written in Journal of Chemical Sciences. Volume 127 Issue 1 January 2015 pp 33-47 Review Articles. Recent developments in solar H2 generation from water splitting · Sivaraman Rajaambal Kumarsrinivasan Sivaranjani Chinnakonda S ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Kumarsrinivasan Sivaranjani. Articles written in Journal of Chemical Sciences. Volume 127 Issue 1 January 2015 pp 33-47 Review Articles. Recent developments in solar H2 generation from water splitting · Sivaraman Rajaambal Kumarsrinivasan Sivaranjani Chinnakonda S ...

  20. The Differences Between Stock Splits and Stock Dividends

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Raaballe, Johannes

    It is often asserted that stock splits and stock dividends are purely cosmetic events. However, many studies have documented several stock market effects associated with stock splits and stock dividends. This paper examines the effects of these two types of events for the Danish stock market...... different. Second, the positive stock market reaction is closely related to associated changes in a firm's payout policy, but the relationship varies for the two types of events. Finally, there is only very weak evidence for a change in the liquidity of the stock. On the whole, after controlling...... for the firm's payout policy, the results suggest that a stock split is a cosmetic event and that a stock dividend on its own is considered negative news....

  1. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  2. Giant Rashba spin splitting in Bi2Se3: Tl

    KAUST Repository

    Singh, Nirpendra

    2014-07-25

    First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stride length asymmetry in split-belt locomotion.

    Science.gov (United States)

    Hoogkamer, Wouter; Bruijn, Sjoerd M; Duysens, Jacques

    2014-01-01

    The number of studies utilizing a split-belt treadmill is rapidly increasing in recent years. This has led to some confusion regarding the definitions of reported gait parameters. The purpose of this paper is to clearly present the definitions of the gait parameters that are commonly used in split-belt treadmill studies. We argue that the modified version of stride length for split-belt gait, which is different from the standard definition of stride length and actually is a measure of limb excursion, should be referred to as 'limb excursion' in future studies. Furthermore, the symmetry of stride length and stride time is specifically addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Geometric inductance effects in the spectrum of split transmon qubits

    Science.gov (United States)

    Brierley, R. T.; Blumoff, J.; Chou, K.; Schoelkopf, R. J.; Girvin, S. M.

    2014-03-01

    The low-energy spectra of transmon superconducting qubits in a cavity can be accurately calculated using the black-box quantization approach. This method involves finding the normal modes of the circuit with a linearized Josephson junction and using these as the basis in which to express the non-linear terms. A split transmon qubit consists of two Josephson junctions in a SQUID loop. This configuration allows the Josephson energy to be tuned by applying external flux. Ideally, the system otherwise behaves as a conventional transmon with a single effective Josephson junction. However, the finite geometric inductance of the SQUID loop causes deviations from the simplest ideal description of a split transmon. This alters both the linearized and non-linear behaviour of the Josephson junctions in the superconducting circuit. We study how these changes can be incorporated into the black-box quantization approach and their effects on the low-energy spectrum of the split transmon.

  5. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1979-01-01

    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  6. Splitting rules for spectra of two-dimensional Fibonacci quasilattices

    Science.gov (United States)

    Yang, Xiangbo; Liu, Youyan

    1997-10-01

    In the framework of the single-electron tight-binding on-site model, after establishing the method of constructing a class of two-dimensional Fibonacci quasilattices, we have studied the rules of energy spectra splitting for these quasilattices by means of a decomposition-decimation method based on the renormalization-group technique. Under the first approximation, the analytic results show that there exist only six kinds of clusters and the electronic energy bands split as type Y and consist of nine subbands. Instead of the on-site model, the transfer model should be used for the higher hierarchy of the spectra, the electronic energy spectra split as type F. The analytic results are confirmed by numerical simulations.

  7. Tantalum nitride for photocatalytic water splitting: concept and applications

    Directory of Open Access Journals (Sweden)

    Ela Nurlaela

    2016-10-01

    Full Text Available Abstract Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  8. Split and delay photon correlation spectroscopy with a visible light

    International Nuclear Information System (INIS)

    Rasch, Marten

    2016-04-01

    The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R h =(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.

  9. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-04-03

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor photocatalysts can be independently studied, developed and optimized. The assumption of perfect catalysts leads to the realization that semiconductors are the limiting factor in photocatalysis. This dissertation presents a guideline for efficient photocatalysis using semiconductor particles developed from idealized theoretical simulations. No perfect catalysts exist; then the discussion focus on the development of efficient non-noble metal electrocatalysts for hydrogen evolution from water reduction. Tungsten carbide (WC) is selective for the catalysis of hydrogen without the introduction of the reverse reaction of water formation, which is critical to achieving photocatalytic overall water splitting as demonstrated in this work. Finally, photoelectrochemistry is used to characterize thoroughly Cu-based p-type semiconductors with potential for large-scale manufacture. Artificial photosynthesis may be achieved by following the recommendations herein presented.

  10. Rabi splitting in an acoustic cavity embedded plate

    International Nuclear Information System (INIS)

    Ni, Xu; Liu, Xiao-Ping; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We design a structure to realize Rabi splitting and Rabi oscillation in acoustics. We develop rigorous analytical models to analyze the splitting effect from the aspect of phase matching, and from the aspect of mode coupling using a coupled mode model. In this model, we discover that the splitting effect is caused by the coupling of the Fabry–Perot fundamental mode with the resonant mode of an artificial acoustic ‘atom’. We then extract the coupling strength and analyze the impact of structural parameters on it. In addition, we demonstrate Rabi oscillation in the time domain. Such quantum phenomena in the classical regime may have potential applications in the design of novel ultrasonic devices.

  11. Immediate Loaded Implants in Split-Crest Procedure.

    Science.gov (United States)

    Crespi, Roberto; Bruschi, Giovanni B; Gastaldi, Giorgio; Capparé, Paolo; Gherlone, Enrico F

    2015-10-01

    The aim of this study was to assess survival rate of immediate loading implants placed after split-crest technique. Thirty-six patients were enrolled in the study. They underwent placement of 93 dental implants in edentulous region after split-crest ridge expansion procedure. Implants followed an immediate loading procedure. Crestal bone levels were measured at baseline, at temporary prosthesis placement, at 1 year, and at 2 years from implant placement. For dental implants, a survival rate of 98.92% was reported at 2-year follow-up, with a mean value bone loss of -1.02 ± 0.48. This study assessed immediate loading implant placement after split-crest procedure at 2-year follow-up. © 2015 Wiley Periodicals, Inc.

  12. A Matrix Splitting Method for Composite Function Minimization

    KAUST Repository

    Yuan, Ganzhao

    2016-12-07

    Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cases. This paper proposes and analyzes a new Matrix Splitting Method (MSM) for minimizing composite functions. It can be viewed as a generalization of the classical Gauss-Seidel method and the Successive Over-Relaxation method for solving linear systems in the literature. Incorporating a new Gaussian elimination procedure, the matrix splitting method achieves state-of-the-art performance. For convex problems, we establish the global convergence, convergence rate, and iteration complexity of MSM, while for non-convex problems, we prove its global convergence. Finally, we validate the performance of our matrix splitting method on two particular applications: nonnegative matrix factorization and cardinality regularized sparse coding. Extensive experiments show that our method outperforms existing composite function minimization techniques in term of both efficiency and efficacy.

  13. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  14. Tantalum nitride for photocatalytic water splitting: concept and applications

    KAUST Repository

    Nurlaela, Ela

    2016-10-12

    Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  15. A comparison between kinetic flux vector splitting and flux difference splitting methods in solution of Euler equations

    International Nuclear Information System (INIS)

    Mirzaei, M.; Shahverdi, M.

    2004-01-01

    This paper is proposed to compare the performances of deferent inviscid flux approximation methods in solution of two-dimensional Euler equations. The methods belong to two different group of flux splitting methods: flux difference splitting (FDS) methods and kinetic flux vector splitting (KFVS) method. Here Roe method and Osher method belonging to flux difference splitting (FDS) group have been employed and their performances are compared with that of kinetic flux vector splitting method (KFVS). Roe and Osher methods are based on approximate solution of Riemann problem over computational cell surfaces while the KFVS has a quit different base. In KFVS inviscid fluxes are approximated based on the kinetic theory and correlation between Boltzmann equation and Euler equations. For comparison the performances of the above mentioned methods three different problems have been solved. The first problem is flow over a 10 degree compression-expansion ramp with Mach number of 2.0, the second one is a transonic flow with Mach number of 0.85 over a 4.2% circular bump in a duct and the third is supersonic flow with Mach number of 3.0 over a circular blunt slab. (author)

  16. Screening current induced magnetic field in REBCO superconducting coil wound by using split wire having intermittent inner split

    Science.gov (United States)

    Matsuda, Tetsuro; Jin, Xinzhe; Okamura, Tetsuji

    2017-09-01

    REBCO-coated conductor having a high critical current is promising for applications in next generation apparatuses such as ultra-high field NMR, high-resolution MRI, and high-precision accelerator. However, it has an important challenge for application in NMR and MRI, due to the single core in REBCO superconducting layer. The single core induces a large screening current-induced magnetic field (screening current field), and it influences the controlling of center field in NMR/MRI magnet. To reduce the screening current field, we have recently developed a split wire having multi-core structure by inner split method (electrical separation by bending stress, ESBS). In experiment, short samples with linear inner split by a large bending stress of 80 N were prepared and tested. However, to fabricate a long length wire with good quality, it is better to use a smaller bending stress. In this study, a low-bending-stress inner split method is used to fabricate superconducting tapes with longitudinal split in their superconducting layer. The fabrication and experimental assessments for the wire and coil are carried out.

  17. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  18. Optimal Cross-Validation Split Ratio: Experimental Investigation

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Cross-validation is a common method for assessing the generalisation ability of a model in order to tune a regularisation parameter or otherhyper-parameters of a learning process. The use of cross-validation requires to set yet an additional parameter, the split rati. While a few texts haveinvest......Cross-validation is a common method for assessing the generalisation ability of a model in order to tune a regularisation parameter or otherhyper-parameters of a learning process. The use of cross-validation requires to set yet an additional parameter, the split rati. While a few texts...

  19. Crystal Splitting in the Growth of Bi2S3

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Alivisatos, A. Paul

    2006-06-15

    Novel Bi{sub 2}S{sub 3} nanostructures with a sheaf-like morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. We propose these structures form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By controlling the synthetic parameters, different forms of splitting, analogous to observed in minerals, are obtained in our case of Bi{sub 2}S{sub 3}. These new and complex Bi{sub 2}S{sub 3} nanostructures are characterized by TEM, SEM, XRD and ED.

  20. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    output. The double pulse test shows the devices' current during commutation process and the reduced switching losses of SiC MOSFETs compared to that of the traditional half bridge. The efficiency comparison is presented with experimental results of half bridge power inverter with split output...... and traditional half bridge inverter, from switching frequency 10 kHz to 100 kHz. The experimental results comparison shows that the half bridge with split output has an efficiency improvement of more than 0.5% at 100 kHz switching frequency....

  1. Cooper Pair Splitting by Means of Graphene Quantum Dots

    Science.gov (United States)

    Tan, Z. B.; Cox, D.; Nieminen, T.; Lähteenmäki, P.; Golubev, D.; Lesovik, G. B.; Hakonen, P. J.

    2015-03-01

    A split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in the solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair splitting (CPS) up to a CPS efficiency of ˜10 % . With bias on both QDs, we are able to detect a positive conductance correlation across the two distinctly decoupled QDs. Furthermore, with bias only on one QD, CPS and elastic cotunneling can be distinguished by tuning the energy levels of the QDs to be asymmetric or symmetric with respect to the Fermi level in the superconductor.

  2. Frobenius splitting and geometry of $G$-Schubert varieties

    DEFF Research Database (Denmark)

    He, Xuhua; Thomsen, Jesper Funch

    2008-01-01

    Let X be an equivariant embedding of a connected reductive group G over an algebraically closed field k of positive characteristic. Let B denote a Borel subgroup of G. A G-Schubert variety in X is a subvariety of the form diag(G) V , where V is a B×B -orbit closure in X. In the case where X...... admits a stable Frobenius splitting along an ample divisors. Although this indicates that G-Schubert varieties have nice singularities we present an example of a nonnormal G-Schubert variety in the wonderful compactification of a group of type G2 . Finally we also extend the Frobenius splitting results...

  3. Modulated-splitting-ratio fiber-optic temperature sensor

    Science.gov (United States)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter R.

    1989-06-01

    A fiber-optic temperature sensor is described that uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  4. Split-plot Experiments with Unusual Numbers of Subplot Runs

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2007-01-01

    In many experimental situations, it may not be feasible or even possible to run experiments in a completely randomized fashion as usually recommended. Under these circumstances, split-plot experiments in which certain factors are changed less frequently than the others are often used. Most...... of the literature on split-plot designs is based on 2-level factorials. For those designs, the number of subplots is a power of 2. There may however be some situations where for cost purposes or physical constraints, we may need to have unusual number of subplots such as 3, 5, 6, etc. In this article, we explore...

  5. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  6. Interaction of Na, O2, CO2 and water on MnO(100): Modeling a complex mixed oxide system for thermochemical water splitting

    OpenAIRE

    Feng, Xu

    2015-01-01

    A catalytic route to hydrogen production via thermochemical water splitting is highly desirable because it directly converts thermal energy into stored chemical energy in the form of hydrogen and oxygen. Recently, the Davis group at Caltech reported an innovative low-temperature (max 850C) catalytic cycle for thermochemical water splitting based on sodium and manganese oxides (Xu, Bhawe and Davis, PNAS, 2012). The key steps are thought to be hydrogen evolution from a Na2CO3/MnO mixture, and o...

  7. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.

    Science.gov (United States)

    Garbe, Daniel; Thiel, Ilka V; Mootz, Henning D

    2010-10-01

    Split inteins link their fused peptide or protein sequences with a peptide bond in an autocatalytic reaction called protein trans-splicing. This reaction is becoming increasingly important for a variety of applications in protein semisynthesis, polypeptide circularisation, construction of biosensors, or segmental isotopic labelling of proteins. However, split inteins exhibit greatly varying solubility, efficiency and tolerance towards the nature of the fused sequences as well as reaction conditions. We envisioned that phage display as an in vitro selection technique would provide a powerful tool for the directed evolution of split inteins with improved properties. As a first step towards this goal, we show that presentation of active split inteins on an M13 bacteriophage is feasible. Two different C-terminal intein fragments of the Ssp DnaB intein, artificially split at amino acid positions 104 and 11, were encoded in a phagemid vector in fusion to a truncated gpIII protein. For efficient production of hybrid phages, the presence of a soluble domain tag at their N-termini was necessary. Immunoblot analysis revealed that the hybrid phages supported protein trans-splicing with a protein or a synthetic peptide, respectively, containing the complementary intein fragment. Incorporation of biotin or desthiobiotin by this reaction provides a straightforward strategy for future enrichment of desired mutants from randomised libraries of the C-terminal intein fragments on streptavidin beads. Protein semisynthesis on a phage could also be exploited for the selection of chemically modified proteins with unique properties. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  8. High-Efficiency Photochemical Water Splitting of CdZnS/CdZnSe Nanostructures

    Directory of Open Access Journals (Sweden)

    Chen-I Wang

    2013-01-01

    Full Text Available We have prepared and employed TiO2/CdZnS/CdZnSe electrodes for photochemical water splitting. The TiO2/CdZnS/CdZnSe electrodes consisting of sheet-like CdZnS/CdZnSe nanostructures (8–10 μm in length and 5–8 nm in width were prepared through chemical bath deposition on TiO2 substrates. The TiO2/CdZnS/CdZnSe electrodes have light absorption over the wavelength 400–700 nm and a band gap of 1.87 eV. Upon one sun illumination of 100 mW cm−2, the TiO2/CdZnS/CdZnSe electrodes provide a significant photocurrent density of 9.7 mA cm−2 at −0.9 V versus a saturated calomel electrode (SCE. Incident photon-to-current conversion efficiency (IPCE spectrum of the electrodes displays a maximum IPCE value of 80% at 500 nm. Moreover, the TiO2/CdZnS/CdZnSe electrodes prepared from three different batches provide a remarkable photon-to-hydrogen efficiency of 7.3 ± 0.1% (the rate of the photocatalytically produced H2 by water splitting is about 172.8 mmol·h−1·g−1, which is the most efficient quantum-dots-based photocatalysts used in solar water splitting.

  9. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  10. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    Science.gov (United States)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  11. Tangled up in mood : Exploring Panará split ergativity

    NARCIS (Netherlands)

    Bardagil-Mas, Bernat

    2015-01-01

    The two primary goals of this article are to present data concerning the mood-based alignment split that can be observed in Panará pronominal clitics and to put forward a tentative formal analysis that can capture the motivations of such phenomena in the grammar. This paper aims to explore an

  12. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  13. Deconstruction, G_2 Holonomy, and Doublet-Triplet Splitting

    OpenAIRE

    Witten, Edward

    2002-01-01

    We describe a mechanism for using discrete symmetries to solve the doublet-triplet splitting problem of four-dimensional supersymmetric GUT's. We present two versions of the mechanism, one via ``deconstruction,'' and one in terms of M-theory compactification to four dimensions on a manifold of G_2 holonomy.

  14. Split shielding plates in electrostatic sector analyzers and Wien filters

    Science.gov (United States)

    Yavor, Mikhail I.

    1995-09-01

    An analytical method is developed for calculation of the influence of the splitted shielding plates in inhomogeneous electrostatic sector analyzers and Wien filters on their electron optical properties. The method allows one to simplify considerably the choice of the mode of operation of the shielding plates needed to achieve a required electrostatic field distribution inside the analyzer.

  15. Split tensile strength of soilcrete blocks | Okere | Nigerian Journal of ...

    African Journals Online (AJOL)

    With the ever increasing problems associated with dredging of rivers to obtain river sand, reduced dependence on river sand should be encouraged by using alternative materials in block production. This work deals with the production of soilcrete blocks using readily available and affordable laterite. Split tensile strength of ...

  16. Signature splitting in two quasiparticle rotational bands of Ta

    Indian Academy of Sciences (India)

    2016-06-20

    Jun 20, 2016 ... ... of 182Ta are analysed within the framework of two-quasiparticle rotor model. The phase as well as magni- tude of the experimentally observed signature splitting in Kπ = 1+ band of 180Ta, which could not be explained in earlier calculations, is successfully reproduced. The conflict regarding placement of ...

  17. Split Hand and Foot Malformation | Salati | East and Central African ...

    African Journals Online (AJOL)

    East and Central African Journal of Surgery. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Split Hand and Foot Malformation. SA Salati ...

  18. Reconstruction of bilateral tibial aplasia and split hand-foot ...

    African Journals Online (AJOL)

    Background: Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Materials and Methods: ...

  19. Split calvarial graft and titanium mesh for reconstruction of post ...

    African Journals Online (AJOL)

    Background: The goal of cranioplasty is to achieve a lifelong, stable and structural reconstruction of the cranium covered by a healthy skin and scalp flap. We present two cases of large frontal bone defect following a accident.. Cases: We describe the utilization of autogenous local split calvarial graft and titanium mesh for ...

  20. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  1. Stride length asymmetry in split-belt locomotion

    NARCIS (Netherlands)

    Hoogkamer, W.; Bruijn, S.M.; Duysens, J.

    2013-01-01

    The number of studies utilizing a split-belt treadmill is rapidly increasing in recent years. This has led to some confusion regarding the definitions of reported gait parameters. The purpose of this paper is to clearly present the definitions of the gait parameters that are commonly used in

  2. Relations among the crack growth modes resulting from tensor splitting

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav

    2015-01-01

    Roč. 60, č. 4 (2015), s. 319-335 ISSN 0001-7043 Institutional support: RVO:68378297 Keywords : fracture mechanics * combination of crack-growth modes * non-local effect * tensor splitting Subject RIV: JL - Materials Fatigue, Friction Mechanics http://journal.it.cas.cz/60(15)4-Contents/60(15)4a.pdf

  3. The Case of Missing Solar Neutrinos with their Split Personalities

    Indian Academy of Sciences (India)

    The Case of Missing Solar Neutrinos with their Split Personalities. ~~~'<,. ~. The Case of Missing Solar Neutrinos ... general theory of relativity and the observed precession of the perihelion of Mercury was a great triumph ..... neutrino counting rate, by nearly a factor of 3 over the. SSM prediction, constitutes the solar neutrino ...

  4. Splitting and Projection: Drawing on Psychodynamics in Educational Psychology Practice

    Science.gov (United States)

    Pellegrini, Dario W.

    2010-01-01

    This paper reflects the author's journey into an area of psychology which is not dominant in Educational Psychology discourse, namely psychodynamic psychology. Two psychodynamic mechanisms, namely splitting and projection are explained, and then the author describes and critiques how these mechanisms have proved useful in his practice. Two case…

  5. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  6. Transient Splitting of Conoscopic Isogyres of a Uniaxial Nematic

    Science.gov (United States)

    Kim, Young-Ki; Senuk, Bohdan; Tortora, Luana; Sprunt, Samuel; Lehmann, Matthias; Lavrentovich, Oleg D.

    2012-02-01

    The phase identification is often based on conoscopic observations of homeotropic cells: A uniaxial nematic produces a pattern with crossed isogyres, while the biaxial nematic shows a split of isogyres. We demonstrate that the splitting of isogyres occurs even when the material remains in the uniaxial nematic phase. In particular, in the bent core material J35, splitting of isogyres is caused by change of the temperature. The effect is transient and the isogyres return to a uniaxial (crossed) configuration after a certain time that depends on sample thickness, temperature, and rate of temperature change; the time varies from a few seconds to tens of hours. The transient splitting is caused by the temperature-induced material flow that triggers a (uniaxial) director tilt in the cell. The flows and the director tilt are demonstrated by the CARS microscopy and fluorescent confocal polarizing microscopy (FCPM). This transient effect is general and can be observed even in E7 and 5CB. The effect should be considered in textural identifications of potential biaxial nematic materials.

  7. Mass Communication and Ticket Splitting in the 1972 General Election.

    Science.gov (United States)

    Atwood, L. Erwin; Sanders, Keith R.

    There is evidence of a growing trend toward ticket splitting, or independent voting patterns in all U.S. elections, especially in recent years. Independence of the electorate in 1972 was visible in the large Republican vote for President, during substantial voting for Democrats in Congress, and in gubernatorial elections. Analysis of mass media…

  8. Trellis plots as visual aids for analyzing split plot experiments

    DEFF Research Database (Denmark)

    Kulahci, Murat; Menon, Anil

    2017-01-01

    The analysis of split plot experiments can be challenging due to a complicated error structure resulting from restrictions on complete randomization. Similarly, standard visualization methods do not provide the insight practitioners desire to understand the data, think of explanations, generate h...

  9. A cyclic iterative method for solving multiple sets split feasibility ...

    African Journals Online (AJOL)

    (An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems 24 (2008), 055008) and many important recent results in this direction. Mathematics Subject Classification (2010): 49J53, 65K10, 49M37, 90C25. Keywords: Bregman projection, strong convergence, metric ...

  10. Degloved foot sole successfully reconstructed with split thickness skin grafts

    NARCIS (Netherlands)

    Janssens, Loes; Holtslag, Herman R.; Schellekens, Pascal P A; Leenen, Luke P H

    2015-01-01

    Introduction The current opinion is that split thickness skin grafts are not suitable to reconstruct a degloved foot sole. The tissue is too fragile to carry full bodyweight; and therefore, stress lesions frequently occur. The treatment of choice is the reuse of the avulsed skin whenever possible,

  11. The split notochord syndrome with dorsal enteric fistula.

    Science.gov (United States)

    Hoffman, C H; Dietrich, R B; Pais, M J; Demos, D S; Pribram, H F

    1993-01-01

    Split notochord syndrome with dorsal enteric fistula is an extremely rare congenital anomaly that may be associated with meningomyelocele or meningocele, and genitourinary anomalies. This case presented with an additional finding of bladder exstrophy, raising the possibility of a relationship between this syndrome and the OEIS complex.

  12. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' problem of science.

  13. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  14. Fundaments of transport equation splitting and the eigenvalue problem

    International Nuclear Information System (INIS)

    Stancic, V.

    2000-01-01

    In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)

  15. Split-mouth design in Paediatric Dentistry clinical trials.

    Science.gov (United States)

    Pozos-Guillén, A; Chavarría-Bolaños, D; Garrocho-Rangel, A

    2017-03-01

    The aim of this article was to describe the essential concepts of the split-mouth design, its underlying assumptions, advantages, limitations, statistical considerations, and possible applications in Paediatric Dentistry clinical investigation. In Paediatric Dentistry clinical investigation, and as part of randomised controlled trials, the split-mouth design is commonly used. The design is characterised by subdividing the child's dentition into halves (right and left), where two different treatment modalities are assigned to one side randomly, in order to allow further outcome evaluation. Each participant acts as their own control by making within- patient rather than between-patient comparisons, thus diminishing inter-subject variability and increasing study accuracy and power. However, the main problem with this design comprises the potential contamination of the treatment effect from one side to the other, or the "carry-across effect"; likewise, this design is not indicated when the oral disease to be treated is not symmetrically distributed (e.g. severity) in the mouth of children. Thus, in spite of its advantages, the split-mouth design can only be applied in a limited number of strictly selected cases. In order to obtain valid and reliable data from split mouth design studies, it is necessary to evaluate the risk of carry-across effect as well as to carefully analise and select adequate inclusion criteria, sample-size calculation and method of statistical analysis.

  16. Visible-light-induced water splitting on a chip

    NARCIS (Netherlands)

    Zoontjes, M.G.C.

    2015-01-01

    In this thesis, a photoelectrochemical water splitting cell concept is discussed, based on a combination of semiconductors comprising a Z-scheme. The motivation for the development of the cell is that in the future a transition will take place from a fossil fuel-based economy, to an economy based on

  17. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  18. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    , Spain. E-mail: ajesus.calderon@uca.es. MS received 24 May 2007. Abstract. We develop techniques of connections of roots for split Lie algebras with symmetric root systems. We show that any of such algebras L is of the form L = U +. ∑.

  19. Reduction of Biomass Moisture by Crushing/Splitting - A Concept

    Science.gov (United States)

    Paul E. Barnett; Donald L. Sirois; Colin Ashmore

    1986-01-01

    A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...

  20. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger

    2018-01-01

    , the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behavior can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide...

  1. Ductless Mini-Split Heat Pump Comfort Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  2. Roadmap on solar water splitting: current status and future prospects

    Science.gov (United States)

    Chu, Sheng; Li, Wei; Yan, Yanfa; Hamann, Thomas; Shih, Ishiang; Wang, Dunwei; Mi, Zetian

    2017-09-01

    Artificial photosynthesis via solar water splitting provides a promising approach to storing solar energy in the form of hydrogen on a global scale. However, an efficient and cost-effective solar hydrogen production system that can compete with traditional methods using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell consisting of a p-type photocathode and an n-type photoanode, with the photovoltage provided by the two photoelectrodes, is an attractive route to achieve highly efficient unassisted water splitting at a low cost. In this article, we provide an overview of recent developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III-V compounds and organics, either as photocathodes or photoanodes for water reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC tandem system for unassisted water splitting are outlined. The importance of developing a single-photon photocathode and photoanode that can deliver high photocurrent in the low bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future development of photoelectrode materials, and viable solutions to realize highly efficient PEC water splitting device for practical applications.

  3. Recent developments in solar H2 generation from water splitting

    Indian Academy of Sciences (India)

    Abstract. Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplish- ing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' prob-.

  4. The Case of Missing Solar Neutrinos with their Split Personalities

    Indian Academy of Sciences (India)

    The Case of Missing Solar Neutrinos with their Split Personalities. S M Chitre is a Senior. Professor at Tata Institute of Fundamental Research,. Mumbai. His research interests are in the areas of solar physics, physics and astrophysics of condensed objects and gravitational lenses. Keywords. Neutrino. Sun, solar structure.

  5. Modelling of Split Condenser Heat Pump: Optimization and Exergy Analysis

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a numerical study of a split condenser heat pump (SCHP). The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated in parallel to different temperature levels, whereas only one s...

  6. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    ... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  7. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  8. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ... family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 May 2007 ...

  9. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

    International Nuclear Information System (INIS)

    Gaillard, Francois; Fournier, Catherine; Leon, Carine; Legendre, Christophe; Pavlov, Patrik; Tissier, Anne-Marie; Correas, Jean-Michel; Harache, Benoit; Hignette, Chantal; Weinmann, Pierre; Eladari, Dominique; Timsit, Marc-Olivier; Mejean, Arnaud; Friedlander, Gerard; Courbebaisse, Marie; Houillier, Pascal

    2017-01-01

    Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m 2 /kidney. This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m 2 /kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m 2 /kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. Length-split GFR can be used to detect patients requiring scintigraphy. (orig.)

  10. Use of computed tomography assessed kidney length to predict split renal GFR in living kidney donors

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Francois; Fournier, Catherine; Leon, Carine; Legendre, Christophe [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Renal Transplantation Department, Paris (France); Pavlov, Patrik [Linkoeping University, Linkoeping (Sweden); Tissier, Anne-Marie; Correas, Jean-Michel [Paris Descartes University, AP-HP, Hopital Necker-Enfants Malades, Radiology Department, Paris (France); Harache, Benoit; Hignette, Chantal; Weinmann, Pierre [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Nuclear Medicine Department, Paris (France); Eladari, Dominique [Paris Descartes University, and INSERM, Unit 970, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Timsit, Marc-Olivier; Mejean, Arnaud [Paris Descartes University, AP-HP, Hopital Europeen Georges Pompidou, Urology Department, Paris (France); Friedlander, Gerard; Courbebaisse, Marie [Paris Descartes University, and INSERM, Unit 1151, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France); Houillier, Pascal [Paris Descartes University, INSERM, Unit umrs1138, and CNRS Unit erl8228, AP-HP, Hopital Europeen Georges Pompidou, Physiology Department, Paris (France)

    2017-02-15

    Screening of living kidney donors may require scintigraphy to split glomerular filtration rate (GFR). To determine the usefulness of computed tomography (CT) to split GFR, we compared scintigraphy-split GFR to CT-split GFR. We evaluated CT-split GFR as a screening test to detect scintigraphy-split GFR lower than 40 mL/min/1.73 m{sup 2}/kidney. This was a monocentric retrospective study on 346 potential living donors who had GFR measurement, renal scintigraphy, and CT. We predicted GFR for each kidney by splitting GFR using the following formula: Volume-split GFR for a given kidney = measured GFR*[volume of this kidney/(volume of this kidney + volume of the opposite kidney)]. The same formula was used for length-split GFR. We compared length- and volume-split GFR to scintigraphy-split GFR at donation and with a 4-year follow-up. A better correlation was observed between length-split GFR and scintigraphy-split GFR (r = 0.92) than between volume-split GFR and scintigraphy-split GFR (r = 0.89). A length-split GFR threshold of 45 mL/min/1.73 m{sup 2}/kidney had a sensitivity of 100 % and a specificity of 75 % to detect scintigraphy-split GFR less than 40 mL/min/1.73 m{sup 2}/kidney. Both techniques with their respective thresholds detected living donors with similar eGFR evolution during follow-up. Length-split GFR can be used to detect patients requiring scintigraphy. (orig.)

  11. Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

    International Nuclear Information System (INIS)

    Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F.; Bedi, Jasbir S.; Perry, Christopher C.; Chen, Qiao

    2015-01-01

    Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO 3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO 3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.

  12. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    Energy Technology Data Exchange (ETDEWEB)

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  13. Methane splitting in the K plant at Heydebreck

    Energy Technology Data Exchange (ETDEWEB)

    1942-03-09

    This report consisted of two major topics. The first was methane splitting in equipment for gas for distant transmission. The amount to be split was 3500 m/sup 3//hr methane per system. The temperature in the converter outlet was 850/sup 0/C and the methane was preheated to 650/sup 0/C. The results of this showed oxygen requirements to be 0.487 m/sup 3//m/sup 3/ of methane, steam requirements to be 0.529 kg/m/sup 3/ of methane, condensate requirements to be 0.518 kg/m/sup 3/ of methane, and cooling-water requirements to be 16 kg/m/sup 3/ of methane. The second topic was methane splitting in equipment for long-distance gas with additional indirect cooling. A summary showed the oxygen requirements to be 0.487 m/sup 3//m/sup 3/ of methane, steam requirements to be 0.107 kg/m/sup 3/ of methane, condensate requirements to be 0.526 kg/m/sup 3/ of methane, and cooling-water requirements to be 9.6 kg/m/sup 3/ of methane. The items discussed for each topic included calculations of methane converters, which included oxygen requirements and a heat balance of the converter; cooling of the split gas, which included heat content of the split gas at the catalyst converter outlet and heat exchangers; and the cooler-vaporizer system, which included a heat balance of the water circuit, determination of the amount of water in the cooler-vaporizer, and final cooling. 3 figures.

  14. Split quaternions and semi-Euclidean projective spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ata, Erhan [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)], E-mail: eata@dumlupinar.edu.tr; Yayli, Yusuf [Department of Mathematics, Dumlupinar University, 43100 Kutahya (Turkey); Department of Mathematics, Ankara University, 06100 Ankara (Turkey)

    2009-08-30

    In this study, we give one-to-one correspondence between the elements of the unit split three-sphere S(3,2) with the complex hyperbolic special unitary matrices SU(2,1). Thus, we express spherical concepts such as meridians of longitude and parallels of latitude on SU(2,1) by using the method given in Toth [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998] for S{sup 3}. The relation among the special orthogonal group SO(R{sup 3}), the quotient group of unit quaternions S{sup 3}/{l_brace}{+-}1{r_brace} and the projective space RP{sup 3} given as SO(R{sup 3}){approx_equal}S{sup 3}/{l_brace}{+-}1{r_brace}=RP{sup 3} is known as the Euclidean projective spaces [Toth G. Glimpses of algebra and geometry. Springer-Verlag; 1998]. This relation was generalized to the semi-Euclidean projective space and then, the expression SO(3,1){approx_equal}S(3,2)/{l_brace}{+-}1{r_brace}=RP{sub 2}{sup 3} was acquired. Thus, it was found that Hopf fibriation map of S(2,1) can be used for Twistors (in not-null state) in quantum mechanics applications. In addition, the octonions and the split-octonions can be obtained from the Cayley-Dickson construction by defining a multiplication on pairs of quaternions or split quaternions. The automorphism group of the octonions is an exceptional Lie group. The split-octonions are used in the description of physical law. For example, the Dirac equation in physics (the equation of motion of a free spin 1/2 particle, like e.g. an electron or a proton) can be represented by a native split-octonion arithmetic.

  15. A parallel imaging technique using mutual calibration for split-blade diffusion-weighted PROPELLER.

    Science.gov (United States)

    Li, Zhiqiang; Pipe, James G; Aboussouan, Eric; Karis, John P; Huo, Donglai

    2011-03-01

    Split-blade diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (DW-PROPELLER) was proposed to address the issues associated with diffusion-weighted echo planar imaging such as geometric distortion and difficulty in high-resolution imaging. The major drawbacks with DW-PROPELLER are its high SAR (especially at 3T) and violation of the Carr-Purcell-Meiboom-Gill condition, which leads to a long scan time and narrow blade. Parallel imaging can reduce scan time and increase blade width; however, it is very challenging to apply standard k-space-based techniques such as GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) to split-blade DW-PROPELLER due to its narrow blade. In this work, a new calibration scheme is proposed for k-space-based parallel imaging method without the need of additional calibration data, which results in a wider, more stable blade. The in vivo results show that this technique is very promising. Copyright © 2010 Wiley-Liss, Inc.

  16. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  17. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vivek eHalder

    2015-01-01

    Full Text Available The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as ‘chemical genetics’, has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical’s bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.

  18. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.

    Science.gov (United States)

    Hecker, James G

    2016-01-01

    Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and

  19. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    Science.gov (United States)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  20. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    Science.gov (United States)

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  1. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  2. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong

    2017-01-04

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  3. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.

    Science.gov (United States)

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-02-05

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  4. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes

    Directory of Open Access Journals (Sweden)

    Seungho Cho

    2014-01-01

    Full Text Available Photoelectrochemical (PEC water splitting to hydrogen is an attractive method for capturing and storing the solar energy in the form of chemical energy. Metal oxides are promising photoanode materials due to their low-cost synthetic routes and higher stability than other semiconductors. In this paper, we provide an overview of recent efforts to improve PEC efficiencies via applying a variety of fabrication strategies to metal oxide photoanodes including (i size and morphology-control, (ii metal oxide heterostructuring, (iii dopant incorporation, (iv attachments of quantum dots as sensitizer, (v attachments of plasmonic metal nanoparticles, and (vi co-catalyst coupling. Each strategy highlights the underlying principles and mechanisms for the performance enhancements.

  5. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chong; Tang, Jinyao; Chen, Hao Ming; Liu, Bin; Yang, Peidong

    2013-06-12

    Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  6. Interedge backscattering in buried split-gate-defined graphene quantum point contacts

    Science.gov (United States)

    Xiang, Shaohua; Mreńca-Kolasińska, Alina; Miseikis, Vaidotas; Guiducci, Stefano; Kolasiński, Krzysztof; Coletti, Camilla; Szafran, Bartłomiej; Beltram, Fabio; Roddaro, Stefano; Heun, Stefan

    2016-10-01

    Quantum Hall effects offer a formidable playground for the investigation of quantum transport phenomena. Edge modes can be deflected, branched, and mixed by designing a suitable potential landscape in a two-dimensional conducting system subject to a strong magnetic field. In the present work, we demonstrate a buried split-gate architecture and use it to control electron conduction in large-scale single-crystal monolayer graphene grown by chemical vapor deposition. The control of the edge trajectories is demonstrated by the observation of various fractional quantum resistances, as a result of a controllable interedge scattering. Experimental data are successfully modeled both numerically and analytically within the Landauer-Büttiker formalism. Our architecture is particularly promising and unique in view of the investigation of quantum transport via scanning probe microscopy, since graphene constitutes the topmost layer of the device. For this reason, it can be approached and perturbed by a scanning probe down to the limit of mechanical contact.

  7. Exploration of conductance peak splitting in carbon nanotube field effect transistors at critical field strengths

    Science.gov (United States)

    Stephens, Jeffrey D.; Licini, Jerome C.; Johnson, A. T. Charlie; Strachan, Doug R.; Johnston, Danvers E.; Khamis, Sam

    2009-03-01

    Carbon nanotube field effect transistors were produced by chemical vapor deposition growth of nanotubes on oxidized silicon substrate. Samples were back gated on doped silicon and contacted with gold/chrome contacts. Conductance measurements were performed at low temperature and high magnetic field using a dilution refrigerator and a superconducting magnet. Data was taken at 0.5 Tesla increments from 0-11Tesla. The differential conductance (dI/dV) shows an interesting asymmetry with bias voltage as well as a near zero bias conductance peak. The near zero bias conductance peak demonstrates splitting at two critical magnetic field strengths on the 0.5T scale. These two critical regimes are further explored on a finer magnetic field scale.

  8. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.

    Science.gov (United States)

    Li, Xiaojuan; Lu, Wenhui; Dong, Weiling; Chen, Qi; Wu, Dan; Zhou, Wenzheng; Chen, Liwei

    2013-06-21

    Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode.

  9. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication

    Science.gov (United States)

    Joshi, Neetu; Pathak, Nagendra P.

    2018-02-01

    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  10. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

    Science.gov (United States)

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-06-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range.

  11. Role of Hund's splitting in electronic phase competition in Pb1 -xSnxTe

    Science.gov (United States)

    Kundu, S.; Tripathi, V.

    2017-11-01

    We study the effect of Hund's splitting of repulsive interactions on electronic phase transitions in the multiorbital topological crystalline insulator Pb1 -xSnxTe when the chemical potential is tuned to the vicinity of low-lying type-II Van Hove singularities. Nontrivial Berry phases associated with the Bloch states impart momentum dependence to electron interactions in the relevant band. We use a multipatch parquet renormalization-group (RG) analysis to study the competition of different electronic phases, and we find that if the dominant fixed-point interactions correspond to antiparallel spin configurations, then a chiral p -wave Fulde-Ferrell-Larkin-Ovchinnikov state is favored, otherwise none of the commonly encountered electronic instabilities occurs within the one-loop parquet RG approach.

  12. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng

    2016-01-11

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  13. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    Science.gov (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of chemicals in the presence of cellophane on X-ray-induced point mutation and gene conversion in Aspergillus midulans

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, C.N.; Cohn, P. (Polytechnic of Central London (UK))

    1984-08-01

    The presence of washed or unwashed cellophane alone or together with a bleomycin, mitomycin C or hydrochlorothiazide, ('Esidrex') showed no appreciable effect on survival of either unirradiated or irradiated conidia. Irradiation for a period of 20min reduced the survival of conidia to 20%. The growth of irradiated conidia in the presence of bleomycin, mitomycin C or Esidrex is associated with a 2- to 3-fold increase in the frequency of gene convertants, but was not accompanied by an increase in point mutants. When conidia were grown on cellophane but otherwise treated as before the frequency of gene convertants was increased 8-fold, but induction of point mutants was negligible. This effect was the same for irradiated and unirradiated conidia. The environment created by the cellophane in contract with the medium appears to affect the action of each of the three compounds synergistically.

  15. Water Splitting by Thin Film Metal-Oxo Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel [Harvard Univ., Cambridge, MA (United States)

    2013-03-15

    The dropping price of silicon photovoltaics in the United States is causing load defection to solar supply at an accelerated pace. This conversion to solar and, more generally, other renewable energy sources has accordingly turned the energy research focus from generation to one of storage. Truly disruptive improvements in energy storage technologies are limited by energy density. This limitation, however, does not apply to fuels, which possess the energy density needed for large-scale energy storage. The first step of the basic science needed to drive such historic restructuring of the U.S. energy infrastructure begins with the solar-driven generation of hydrogen and oxygen from water. The solar-produced hydrogen may then be combined with carbon dioxide to deliver any number of fuels. Obviously, light does not directly act on water to engender its splitting into its elemental components. Hence, catalysts are needed to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Of these two reactions, the four-electron, four-proton oxidation of OER is the more kinetically challenging reaction, and therefore the development of energy efficient solar fuels processes demands that OER be accomplished at a minimal overpotential. The research completed in this program developed catalysts that drive OER and at the same time meet the important criteria of (1) using non-critical materials that (2) are easy to assemble and (3) accomplish OER under simple conditions. Research was designed to uncover the chemical principles that underlie the self-assembly of metal oxide oxygen evolving catalysts (M-OEC) from the metals of M = Mn, Co, and Ni. For example, a dogma of heterogeneous catalysis of any sort is that “edges” matter in promoting catalytic transformations. We provided a rationale for such dogma by showing that the OER in Co-OEC occurred at a dimensionally reduced dicobalt edge site. Edge site reactivity was clearly revealed analyzing 18O labeled

  16. The association between null mutations in the filaggrin gene and contact sensitization to nickel and other chemicals in the general population

    DEFF Research Database (Denmark)

    Thyssen, J P; Johansen, J D; Linneberg, A

    2010-01-01

    It was recently shown that filaggrin gene (FLG) null mutations are positively associated with nickel sensitization. We have hypothesized that histidine-rich filaggrin proteins in the epidermis chelate nickel ions and prevent their skin penetration and exposure to Langerhans cells. Furthermore, we...... have proposed that the low degree of genetic predisposition to nickel sensitization found by a Danish twin study was explained by a high prevalence of ear piercing among participants resulting in 'bypassing' of the filaggrin proteins....

  17. Investigation of the Effects of Split Sleep Schedules on Commercial Vehicle Driver Safety and Health

    Science.gov (United States)

    2012-12-01

    The objective of this study was to evaluate the consequences for safety and health of split sleep versus consolidated sleep by comparing the effects of consolidated nighttime sleep, split sleep, and consolidated daytime sleep on total sleep time, per...

  18. 'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'.

    Science.gov (United States)

    Barber, James

    2016-01-01

    About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally

  19. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes

    Science.gov (United States)

    Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; Walczak, Karl A.; Favaro, Marco; Beeman, Jeffrey W.; Hess, Lucas H.; Wang, Cheng; Zhu, Chenhui; Gul, Sheraz; Yano, Junko; Kisielowski, Christian; Schwartzberg, Adam; Sharp, Ian D.

    2017-03-01

    Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. Here, we demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co3O4/Co(OH)2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. These films comprise compact and continuous nanocrystalline Co3O4 spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH)2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p+n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.

  20. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  1. Chargino pair production at linear collider and split supersymmetry

    International Nuclear Information System (INIS)

    Zhu Shouhua

    2004-01-01

    Recently Arkani-Hamed and Dimopoulos proposed a supersymmetric model [hep-th/0405159], dubbed 'Split supersymmetry' in [hep-ph/0406088], which can remove most of the unpleasant shortcomings of TeV Supersymmetry. In this model all scalars except one finely tuned Higgs boson are ultra heavy while the neutralino and chargino might remain light in order to achieve gauge coupling unification and accord with the dark matter density. In this Letter, we investigated the impact of this new model on chargino pair production at next generation linear colliders. Our numerical results show that this process can be used to probe sneutrino mass up to 10 TeV. Therefore, precise measurements of chargino pair production at the linear colliders could distinguish split supersymmetry from TeV supersymmetry

  2. Using Protection Layers for a 2-Photon Water Splitting Device

    DEFF Research Database (Denmark)

    Seger, Brian; Mei, Bastian Timo; Frydendal, Rasmus

    2015-01-01

    The 2-photon tandem device for photocatalytic water splitting has been theoretically shown to provide a higher efficiency than a single photon device(1). This increased efficiency can be achieved by having one material optimized to absorb high energy photons (large bandgap) and another material...... optimized to absorb low energy photons (small bandgap). To a large degree this approach has been hindered by corrosion issues. In this talk I will first discuss how our computational screening of 2,400 materials showed that very few materials can efficiently absorb light without corroding in water splitting...... conditions.(2) I will follow this up by discussing how protection layers bypass the corrosion issue by creating a buffer layer.(3) Finally I will show how we integrated a photocatalyst/protection layer/(co-catalyst) scheme to produce highly efficient H2 evolution photocathodes and O2 evolution photoanodes.(3...

  3. Photoelectrochemical water splitting standards, experimental methods, and protocols

    CERN Document Server

    Chen, Zhebo; Miller, Eric

    2014-01-01

    This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to deve...

  4. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  5. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  6. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  7. Image segmentation by iterative parallel region growing and splitting

    Science.gov (United States)

    Tilton, James C.

    1989-01-01

    The spatially constrained clustering (SCC) iterative parallel region-growing technique is applied to image analysis. The SCC algorithm is implemented on the massively parallel processor at NASA Goddard. Most previous region-growing approaches have the drawback that the segmentation produced depends on the order in which portions of the image are processed. The ideal solution to this problem (merging only the single most similar pair of spatially adjacent regions in the image in each iteration) becomes impractical except for very small images, even on a massively parallel computer. The SCC algorithm overcomes these problems by performing, in parallel, the best merge within each of a set of local, possibly overlapping, subimages. A region-splitting stage is also incorporated into the algorithm, but experiments show that region splitting generally does not improve segmentation results. The SCC algorithm has been tested on various imagery data, and test results for a Landsat TM image are summarized.

  8. Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model

    OpenAIRE

    Blotz, Andree; Goeke, K.; Praszalowicz, M.

    1994-01-01

    The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.

  9. Transfer Pricing Profit Split Methods : A Practical Solution?

    OpenAIRE

    Quttineh, Yousef

    2009-01-01

    The purpose of this master’s thesis is to explain and analyze whether today’s existing regulations provide sufficient guidance on how to apply the Profit Split Method (PSM) in practice. Since the enterprises’ profits arising from intra-group transactions increases, the tax base for any government also becomes larger and more important. This issue will likely become even more problematic as the globalization branches out and the majority of the global trade is undertaken between associated ent...

  10. Left-right splitting for electromagnetic scattering in 3D

    CERN Document Server

    Spivack, M; Sillence, C; 10.1049/ip-smt:20040945

    2004-01-01

    The left-right splitting method and its application to electromagnetic scattering by large 3D scatterers are described. Exact numerical solutions to the governing integral equations can be prohibitively expensive for large scatterers. Under the assumption that energy is predominantly forward-scattered, the solution is expressed as a series of terms, each of which is rapidly and efficiently evaluated. In many cases only one or two terms are needed, and the formulation provides additional physical insight.

  11. Chitosan Nanoparticle Encapsulated Hemagglutinin-Split Influenza Virus Mucosal Vaccine

    OpenAIRE

    Sawaengsak, Chompoonuch; Mori, Yasuko; Yamanishi, Koichi; Mitrevej, Ampol; Sinchaipanid, Nuttanan

    2013-01-01

    Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripol...

  12. Point splitting regularization of classical string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    We regulate Witten's star algebra using point splitting and conformal field theory techniques. Certain products of nonassociative operators and states are defined. This involves a refinement of star that exists in cases where Witten's star is ill-defined. A simple derivation of a recently discovered associativity anomaly is given. It is shown that there is no anomaly obstructing the equivalence of Witten's string theory action and the cubic action for string fields in the open string Fock space. (orig.)

  13. Shear-wave splitting measurements – Problems and solutions

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Babuška, Vladislav

    2008-01-01

    Roč. 462, č. 1-4 (2008), s. 178-196 ISSN 0040-1951 R&D Projects: GA AV ČR(CZ) KJB300120605; GA AV ČR IAA3012405; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic anisotropy * shear-wave splitting * comparison of cross- correlation * eigenvalue * transverse minimization methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008

  14. Hanford tank wastes; salt splitting: FY92 activities

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1992-09-01

    For the first time, sodium nitrate was split into the nitric acid and sodium hydroxide from which it originated. Current-voltage characteristics were determined and found to be in the range normally judged to be economically feasible. Six different membranes were exposed to 1M NaOH or 1M HN0 3 for 100 days without apparent deterioration. It is concluded that this technology holds significant promise for the processing of Hanford Tank Wastes

  15. Split-based computation of majority-rule supertrees.

    Science.gov (United States)

    Kupczok, Anne

    2011-07-13

    Supertree methods combine overlapping input trees into a larger supertree. Here, I consider split-based supertree methods that first extract the split information of the input trees and subsequently combine this split information into a phylogeny. Well known split-based supertree methods are matrix representation with parsimony and matrix representation with compatibility. Combining input trees on the same taxon set, as in the consensus setting, is a well-studied task and it is thus desirable to generalize consensus methods to supertree methods. Here, three variants of majority-rule (MR) supertrees that generalize majority-rule consensus trees are investigated. I provide simple formulas for computing the respective score for bifurcating input- and supertrees. These score computations, together with a heuristic tree search minmizing the scores, were implemented in the python program PluMiST (Plus- and Minus SuperTrees) available from http://www.cibiv.at/software/plumist. The different MR methods were tested by simulation and on real data sets. The search heuristic was successful in combining compatible input trees. When combining incompatible input trees, especially one variant, MR(-) supertrees, performed well. The presented framework allows for an efficient score computation of three majority-rule supertree variants and input trees. I combined the score computation with a heuristic search over the supertree space. The implementation was tested by simulation and on real data sets and showed promising results. Especially the MR(-) variant seems to be a reasonable score for supertree reconstruction. Generalizing these computations to multifurcating trees is an open problem, which may be tackled using this framework.

  16. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... appealing with effects of major interest free from full aliasing assuming that 3rd and higher order interactions are negligible....

  17. Some Fixed Points Results of Quadratic Functions in Split Quaternions

    Directory of Open Access Journals (Sweden)

    Young Chel Kwun

    2016-01-01

    Full Text Available We attempt to find fixed points of a general quadratic polynomial in the algebra of split quaternion. In some cases, we characterize fixed points in terms of the coefficients of these polynomials and also give the cardinality of these points. As a consequence, we give some simple examples to strengthen the infinitude of these points in these cases. We also find the roots of quadratic polynomials as simple consequences.

  18. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko

    2017-12-01

    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  19. Ultrafast reduction of exchange splitting in ferromagnetic nickel

    International Nuclear Information System (INIS)

    Zhang, G P; Bai, Y H; George, Thomas F

    2016-01-01

    A decade ago Rhie et al (2003 Phys. Rev. Lett . 90 247201) reported that when ferromagnetic nickel is subject to an intense ultrashort laser pulse, its exchange splitting is reduced quickly. But to simulate such reduction remains a big challenge. The popular rigid band approximation (RBA), where both the band structure and the exchange splitting are held fixed before and after laser excitation, is unsuitable for this purpose, while the time-dependent density functional theory could be time-consuming. To overcome these difficulties, we propose a time-dependent Liouville and density functional theory (TDLDFT) that integrates the time-dependent Liouville equation into the density functional theory. As a result, the excited charge density is reiterated back into the Kohn–Sham equation, and the band structure is allowed to change dynamically. Even with the ground-state density functional, a larger demagnetization than RBA is found; after we expand Ortenzi’s spin scaling method into an excited-state (laser) density functional, we find that the exchange splitting is indeed strongly reduced, as seen in the experiment. Both the majority and minority bands are shifted toward the Fermi level, but the majority shifts a lot more. The ultrafast reduction in exchange splitting occurs concomitantly with demagnetization. While our current theory is still unable to yield the same percentage loss in the spin moment as observed in the experiment, it predicts a correct trend that agrees with the experiments. With a better functional, we believe that our results can be further improved. (paper)

  20. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    to the wedge splitting test and that it is well suited for the interpretation of test results in terms of s(w). A fine agreement between the hinge and FEM-models has been found. It has also been found that the test and the hinge model form a solid basis for inverse analysis. The paper also discusses possible...... three dimensional problems in the experiment as well as the influence of specimen size....

  1. Split-Stirling-cycle displacer linear-electric drive

    Science.gov (United States)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.

    1983-01-01

    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  2. Light Illuminated α−Fe2O3/Pt Nanoparticles as Water Activation Agent for Photoelectrochemical Water Splitting

    Science.gov (United States)

    Li, Xiaodong; Wang, Zhi; Zhang, Zemin; Chen, Lulu; Cheng, Jianli; Ni, Wei; Wang, Bin; Xie, Erqing

    2015-01-01

    The photoelectrochemical (PEC) water splitting is hampered by strong bonds of H2O molecules and low ionic conductivity of pure water. The photocatalysts dispersed in pure water can serve as a water activation agent, which provides an alternative pathway to overcome such limitations. Here we report that the light illuminated α−Fe2O3/Pt nanoparticles may produce a reservoir of reactive intermediates including H2O2, ·OH, OH− and H+ capable of promoting the pure water reduction/oxidation half−reactions at cathode and highly photocatalytic−active TiO2/In2S3/AgInS2 photoanode, respectively. Remarkable photocurrent enhancement has been obtained with α−Fe2O3/Pt as water activation agent. The use of α−Fe2O3/Pt to promote the reactivity of pure water represents a new paradigm for reproducible hydrogen fuel provision by PEC water splitting, allowing efficient splitting of pure water without adding of corrosive chemicals or sacrificial agent. PMID:25773684

  3. Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting.

    Science.gov (United States)

    Li, Xiaodong; Wang, Zhi; Zhang, Zemin; Chen, Lulu; Cheng, Jianli; Ni, Wei; Wang, Bin; Xie, Erqing

    2015-03-16

    The photoelectrochemical (PEC) water splitting is hampered by strong bonds of H2O molecules and low ionic conductivity of pure water. The photocatalysts dispersed in pure water can serve as a water activation agent, which provides an alternative pathway to overcome such limitations. Here we report that the light illuminated α-Fe2O3/Pt nanoparticles may produce a reservoir of reactive intermediates including H2O2, ·OH, OH(-) and H(+) capable of promoting the pure water reduction/oxidation half-reactions at cathode and highly photocatalytic-active TiO2/In2S3/AgInS2 photoanode, respectively. Remarkable photocurrent enhancement has been obtained with α-Fe2O3/Pt as water activation agent. The use of α-Fe2O3/Pt to promote the reactivity of pure water represents a new paradigm for reproducible hydrogen fuel provision by PEC water splitting, allowing efficient splitting of pure water without adding of corrosive chemicals or sacrificial agent.

  4. Surface modifications of chalcopyrite CuInS2 thin films for photochatodes in photoelectrochemical water splitting under sunlight irradiation

    Science.gov (United States)

    Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.

    2017-02-01

    Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.

  5. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

    Science.gov (United States)

    Wang, Haotian; Lee, Hyun-Wook; Deng, Yong; Lu, Zhiyi; Hsu, Po-Chun; Liu, Yayuan; Lin, Dingchang; Cui, Yi

    2015-01-01

    Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (∼20 nm) are electrochemically transformed into ultra-small diameter (2–5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm−2 water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts. PMID:26099250

  6. Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage.

    Directory of Open Access Journals (Sweden)

    Jie Song

    2005-12-01

    Full Text Available The Amoebozoa are a sister clade to the fungi and the animals, but are poorly sampled for completely sequenced genomes. The social amoeba Dictyostelium discoideum and amitochondriate pathogen Entamoeba histolytica are the first Amoebozoa with genomes completely sequenced. Both organisms are classified under the Conosa subphylum. To identify Amoebozoa-specific genomic elements, we compared these two genomes to each other and to other eukaryotic genomes. An expanded phylogenetic tree built from the complete predicted proteomes of 23 eukaryotes places the two amoebae in the same lineage, although the divergence is estimated to be greater than that between animals and fungi, and probably happened shortly after the Amoebozoa split from the opisthokont lineage. Most of the 1,500 orthologous gene families shared between the two amoebae are also shared with plant, animal, and fungal genomes. We found that only 42 gene families are distinct to the amoeba lineage; among these are a large number of proteins that contain repeats of the FNIP domain, and a putative transcription factor essential for proper cell type differentiation in D. discoideum. These Amoebozoa-specific genes may be useful in the design of novel diagnostics and therapies for amoebal pathologies.

  7. A split accumulation gate architecture for silicon MOS quantum dots

    Science.gov (United States)

    Rochette, Sophie; Rudolph, Martin; Roy, Anne-Marie; Curry, Matthew; Ten Eyck, Gregory; Dominguez, Jason; Manginell, Ronald; Pluym, Tammy; King Gamble, John; Lilly, Michael; Bureau-Oxton, Chloé; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    We investigate tunnel barrier modulation without barrier electrodes in a split accumulation gate architecture for silicon metal-oxide-semiconductor quantum dots (QD). The layout consists of two independent accumulation gates, one gate forming a reservoir and the other the QD. The devices are fabricated with a foundry-compatible, etched, poly-silicon gate stack. We demonstrate 4 orders of magnitude of tunnel-rate control between the QD and the reservoir by modulating the reservoir gate voltage. Last electron charging energies of app. 10 meV and tuning of the ST splitting in the range 100-200 ueV are observed in two different split gate layouts and labs. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  8. SKS splitting observed at Romanian broad-band seismic network

    Science.gov (United States)

    Ivan, Marian; Popa, Mihaela; Ghica, Daniela

    2008-12-01

    Shear-wave splitting results are presented for the broad-band stations of the Romanian seismic network. For stations BUC1 and CRAR (located in Moesian Platform), IAS (in East-European Platform), TIRR and CVD (in Central Dobrudja-Black Sea microplate), TIM and DRGR (in Dacia-Tisza plate, including Apuseni Mts.), BURAR, BZS and GZR (in, or very close to the Carpathian Arc), the fast directions ( φ) are around 135°. The mean delay values ( δt) of the slow wave are slightly greater for the stations placed in platform areas ( δt ~ 1.5 s) than for the stations situated in the (proximity) of Carpathians ( δt ~ 1.2 s). For the MLR station located in the South-Western part of Vrancea area, at the Carpathian Bend, the fast direction is 48°, similar to VOIR station (located in Southern Carpathians, 70 km West of MLR). At VRI and PLOR, located in the North-Eastern part of Vrancea, the fast axis is oriented approximately on North-South direction, with a possible dependence of the splitting parameters with back azimuth. At least for some stations, the splitting results are not consistent with vertical coherent lithospheric anisotropy.

  9. Photocatalytic and Photoelectrochemical Water Splitting by Inorganic Materials

    KAUST Repository

    Deng, Xiaohui

    2012-12-01

    Hydrogen has been identified as a potential energy carrier due to its high energy capacity and environmental harmlessness. Compared with hydrogen production from hydrocarbons such as methane and naphtha in a conventional hydrogen energy system, photocatalytic hydrogen evolution from water splitting offers a more economic approach since it utilizes the abundant solar irradiation as energy source and water as initial reactant. Powder photocatalyst, which generates electrons and holes under illumination, is the origin where the overall reaction happens. High solar energy conversion efficiency especially from visible range is commonly the target. Besides, cocatalyst for hydrogen and oxygen evolution is also playing an essential role in facilitating the charge separation and enhancing the kinetics. In this thesis, the objective is to achieve high energy conversion efficiency towards water splitting from diverse aspects. The third chapter focuses on a controllable method to fabricate metal pattern, which is candidate for hydrogen evolution cocatalyst while chapter 4 is on the combination of strontium titanium oxide (SrTiO3) with graphene oxide (GO) for a better photocatalytic performance. In the last chapter, photoelectrochemical water splitting by Ta3N5 photoanode and FeOOH as a novel oxygen evolution cocatalyst has been investigated.

  10. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  11. A Beta-splitting model for evolutionary trees.

    Science.gov (United States)

    Sainudiin, Raazesh; Véber, Amandine

    2016-05-01

    In this article, we construct a generalization of the Blum-François Beta-splitting model for evolutionary trees, which was itself inspired by Aldous' Beta-splitting model on cladograms. The novelty of our approach allows for asymmetric shares of diversification rates (or diversification 'potential') between two sister species in an evolutionarily interpretable manner, as well as the addition of extinction to the model in a natural way. We describe the incremental evolutionary construction of a tree with n leaves by splitting or freezing extant lineages through the generating, organizing and deleting processes. We then give the probability of any (binary rooted) tree under this model with no extinction, at several resolutions: ranked planar trees giving asymmetric roles to the first and second offspring species of a given species and keeping track of the order of the speciation events occurring during the creation of the tree, unranked planar trees, ranked non-planar trees and finally (unranked non-planar) trees. We also describe a continuous-time equivalent of the generating, organizing and deleting processes where tree topology and branch lengths are jointly modelled and provide code in SageMath/Python for these algorithms.

  12. Nanoscale strontium titanate photocatalysts for overall water splitting.

    Science.gov (United States)

    Townsend, Troy K; Browning, Nigel D; Osterloh, Frank E

    2012-08-28

    SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H(2) and O(2), but the activity is decreasing from 28 μmol H(2) g(-1) h(-1) (bulk STO), to 19.4 μmol H(2) g(-1) h(-1) (30 nm STO), and 3.0 μmol H(2) g(-1) h(-1) (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  13. Investigation of the splitting of quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F

    1998-01-01

    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution $y$, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is $2.77\\pm0.11\\pm0.10$. Due to non-perturbative effects, the data are below the expectation at small $y$. The transition from the perturbative to the non-perturbative domain appears at smaller $y$ for quark ...

  14. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-07

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  15. The nature of photocatalytic "water splitting" on silicon nanowires.

    Science.gov (United States)

    Liu, Dong; Li, Leilei; Gao, Yang; Wang, Chengming; Jiang, Jun; Xiong, Yujie

    2015-03-02

    Silicon should be an ideal semiconductor material if it can be proven usable for photocatalytic water splitting, given its high natural abundance. Thus it is imperative to explore the possibility of water splitting by running photocatalysis on a silicon surface and to decode the mechanism behind it. It is reported that hydrogen gas can indeed be produced from Si nanowires when illuminated in water, but the reactions are not a real water-splitting process. Instead, the production of hydrogen gas on the Si nanowires occurs through the cleavage of Si-H bonds and the formation of Si-OH bonds, resulting in the low probability of generating oxygen. On the other hand, these two types of surface dangling bonds both extract photoexcited electrons, whose competition greatly impacts on carrier lifetime and reaction efficiency. Thus surface chemistry holds the key to achieving high efficiency in such a photocatalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Beyond the Interconnections: Split Manufacturing in RF Designs

    Directory of Open Access Journals (Sweden)

    Yu Bi

    2015-08-01

    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  17. 26 CFR 1.61-22 - Taxation of split-dollar life insurance arrangements.

    Science.gov (United States)

    2010-04-01

    ... a split-dollar life insurance arrangement (or the estate or beneficiary of that party) that are not... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Taxation of split-dollar life insurance..., and Taxable Income § 1.61-22 Taxation of split-dollar life insurance arrangements. (a) Scope—(1) In...

  18. Influence of the large-small split effect on strategy choice in complex subtraction.

    Science.gov (United States)

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei

    2018-04-01

    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  19. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Science.gov (United States)

    2010-07-01

    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart are...

  20. 17 CFR 240.16a-9 - Stock splits, stock dividends, and pro rata rights.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Stock splits, stock dividends... Government Securities Dealers § 240.16a-9 Stock splits, stock dividends, and pro rata rights. The following... held as a result of a stock split or stock dividend applying equally to all securities of a class...