WorldWideScience

Sample records for split features polarization

  1. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  2. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  3. Some polarization features of solar microwave bursts

    Energy Technology Data Exchange (ETDEWEB)

    Uralov, A M; Nefed' ev, V P [AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln

    1977-01-01

    Consequences of the thermal microwave burst model proposed earlier have been considered. According to the model the centimeter burst is generated at the heat propagation to the upper atmosphere. The polarization features of the burst are explained: a change of the polarization sign in a frequency range, a rapid change of the polarization sign in the development of a burst at a fixed frequency, a lack of time coincidence of the moments of the burst maximum of the polarization and of the total flux. From the model the consequences are obtained, which are still not confirmed by experiment. An ordinary-type wave prevails in the burst radiation, in the course of which the polarization degree falls on the ascending branch of bursts development. At the change of the polarization sign at the fixed frequency prior to the sign change an ordinary-type wave should be present in excess and later an extreordinary type wave.

  4. Polarized triple-collinear splitting functions at NLO for processes with photons

    International Nuclear Information System (INIS)

    Sborlini, Germán F.R.; Florian, Daniel de; Rodrigo, Germán

    2015-01-01

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α_S, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  5. Polarized triple-collinear splitting functions at NLO for processes with photons

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2015-03-04

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α{sub S}, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  6. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan

    2014-01-01

    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  8. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  9. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  10. Broadband non-polarizing terahertz beam splitters with variable split ratio

    Science.gov (United States)

    Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-08-01

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  11. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  12. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  13. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  14. Using Polarization features of visible light for automatic landmine detection

    NARCIS (Netherlands)

    Jong, W. de; Schavemaker, J.G.M.

    2007-01-01

    This chapter describes the usage of polarization features of visible light for automatic landmine detection. The first section gives an introduction to land-mine detection and the usage of camera systems. In section 2 detection concepts and methods that use polarization features are described.

  15. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    Science.gov (United States)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  16. Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities

    International Nuclear Information System (INIS)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2015-01-01

    We study the frequency splitting of the polarization eigenmodes of the fundamental transverse mode in CO 2 laser-machined, high-finesse optical Fabry–Perot cavities and investigate the influence of the geometry of the cavity mirrors. Their highly reflective surfaces are typically not rotationally symmetric but have slightly different radii of curvature along two principal axes. We observe that the eccentricity of such elliptical mirrors lifts the degeneracy of the polarization eigenmodes. The impact of the eccentricity increases for smaller radii of curvature. A model derived from corrections to the paraxial resonator theory is in excellent agreement with the measurements, showing that geometric effects are the main source of the frequency splitting of polarization modes for the type of microscopic cavity studied here. By rotating one of the mirrors around the cavity axis, the splitting can be tuned. In the case of an identical differential phase shift per mirror, it can even be eliminated, despite a nonvanishing eccentricity of each mirror. We expect our results to have important implications for many experiments in cavity quantum electrodynamics, where Fabry–Perot cavities with small mode volumes are required. (paper)

  17. Theoretical study of AlH+: spin splitting, core polarization, and interstellar chemistry

    International Nuclear Information System (INIS)

    Cooper, D.L.; Black, J.H.; Everard, M.A.L.; Richards, W.G.

    1983-01-01

    The spin splitting constant for the X 2 μ + state of AlH + is calculated to be ν 0 = 0.058 cm - 1 . The favorable comparison of this result with experiment indicates that the uncertainty in the previously calculated spin splitting in MgH is likely to be of the order of a few percent. Calculations are presented of the so-called core polarization contribution to the spin-orbit coupling constant in the A 2 Pi/sub r/ state of AlH + . Results are also given for MgH and SiH. Astronomical applications of such calculations are discussed and the abundances of aluminum-bearing molecules in interstellar clouds are estimated

  18. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  19. Quantum-well exciton dipolar interaction: Polarization-dependence and Z-LT splitting

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    We calculate the exciton dipolar interaction in a semiconductor quantum well. The explicit polarization-dependence, i.e, the dependence on both the exciton dipole moment μ-vector and its inplane wavevector k-vector is derived. The obtained results for the three modes (L, T and Z modes) of the long-range part of the dipolar interaction satisfy the polarization sum rule for any parameters. In the long wavelength limit there is a Z-LT splitting which decreases as the well width increases reflecting a crossover from strict 2D to quasi-2D. A rough crossover from quasi-2D to 3D is also described. (author). 18 refs, 4 figs

  20. Camouflaged target detection based on polarized spectral features

    Science.gov (United States)

    Tan, Jian; Zhang, Junping; Zou, Bin

    2016-05-01

    The polarized hyperspectral images (PHSI) include polarization, spectral, spatial and radiant features, which provide more information about objects and scenes than traditional intensity or spectrum ones. And polarization can suppress the background and highlight the object, leading to the high potential to improve camouflaged target detection. So polarized hyperspectral imaging technique has aroused extensive concern in the last few years. Nowadays, the detection methods are still not very mature, most of which are rooted in the detection of hyperspectral image. And before using these algorithms, Stokes vector is used to process the original four-dimensional polarized hyperspectral data firstly. However, when the data is large and complex, the amount of calculation and error will increase. In this paper, tensor is applied to reconstruct the original four-dimensional data into new three-dimensional data, then, the constraint energy minimization (CEM) is used to process the new data, which adds the polarization information to construct the polarized spectral filter operator and takes full advantages of spectral and polarized information. This way deals with the original data without extracting the Stokes vector, so as to reduce the computation and error greatly. The experimental results also show that the proposed method in this paper is more suitable for the target detection of the PHSI.

  1. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry.

    Science.gov (United States)

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W

    2018-06-01

    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Polarized spectral features of human breast tissues through wavelet ...

    Indian Academy of Sciences (India)

    Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.

  3. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    Science.gov (United States)

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  4. A Low-Profile and Compact Split-Ring Antenna with Horizontally Polarized Omnidirectional Radiation

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2015-01-01

    Full Text Available This paper presents a low-profile and compact printed antenna having an omnidirectional radiation pattern with horizontal polarization to the ground. The proposed antenna consists of an inner small fed ring, an outer coupled split ring, and a ground plane. The overall dimension of the proposed antenna is 45 mm × 50.5 mm × 11.6 mm (0.138λ0 × 0.155λ0 × 0.036λ0. The −10-dB S11 of the antenna covers the 920-MHz RFID band, and the gain is about 1.45 dBi in the parallel direction to the ground plane. The measured results show good agreements with the simulated results. Furthermore, the reasons for the low-profile structure and the omnidirectional radiation pattern are also discussed.

  5. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    Science.gov (United States)

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  6. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  7. Pressure variation of Rashba spin splitting toward topological transition in the polar semiconductor BiTeI

    Science.gov (United States)

    Ideue, T.; Checkelsky, J. G.; Bahramy, M. S.; Murakawa, H.; Kaneko, Y.; Nagaosa, N.; Tokura, Y.

    2014-10-01

    BiTeI is a polar semiconductor with gigantic Rashba spin-split bands in bulk. We have investigated the effect of pressure on the electronic structure of this material via magnetotransport. Periods of Shubunikov-de Haas (SdH) oscillations originating from the spin-split outer Fermi surface and inner Fermi surface show disparate responses to pressure, while the carrier number derived from the Hall effect is unchanged with pressure. The associated parameters which characterize the spin-split band structure are strongly dependent on pressure, reflecting the pressure-induced band deformation. We find the SdH oscillations and transport response are consistent with the theoretically proposed pressure-induced band deformation leading to a topological phase transition. Our analysis suggests the critical pressure for the quantum phase transition near Pc=3.5 GPa.

  8. Observation of spatial splitting of a polarized neutron beam as it is refracted on the interface of two magnetically non-collinear media

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Fredrikze, H.; Rekveldt, M.Th.; Schreiber, J.

    1998-01-01

    In the conducted experimental investigation of neutron refraction on the interface of two magnetically non-collinear media spatial splitting of a polarized neutron beam was observed. The beam of neutrons initially in the spin state '+' or '-' splits into two beams of neutrons in the states '+' and '-'. All four split beams have different spatial positions. The reported phenomenon has been observed for the first time

  9. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  10. Electron spin polarization induced by spin Hall effect in semiconductors with a linear in the momentum spin-orbit splitting of conduction band

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.

  11. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  12. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  13. Quarkonium fine-hyperfine splittings and the Lorentz structure of the confining potential with vacuum-polarization corrections

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    Within the framework of the Poggio-Schnitzer flavor-independent static-potential model with long-distance vacuum-polarization correction, we analyze the Lorentz-Dirac structure of the confinement potential with reference to the charmonium hyperfine splittings. In view of the questionable existence and/or doubtful identity of the X(2830) and chi(3455) states, we give preference to the Lorentz-Dirac character of the confinement potential in the form of an approximately equal admixture of scalar and vector components with no anomalous moment. This in turn predicts the 1 S 0 partners of psi and psi' to be near the 3.0- and 3.6-GeV mass regions, respectively. This also suggests the 1 P 1 state of charmonium is to be found above the 3 P 0 state near the mass region of 3.48 GeV

  14. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  15. Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts

    Directory of Open Access Journals (Sweden)

    Adelinet M.

    2016-05-01

    Full Text Available The recent tomography results obtained within the scope of the Enhanced Geothermal System (EGS European Soultz project led us to revisit the meso-fracturing properties of Soultz test site. In this paper, we develop a novel approach coupling effective medium modeling and shear-wave splitting to characterize the evolution of crack properties throughout the hydraulic stimulation process. The stimulation experiment performed in 2000 consisted of 3 successive injection steps spanning over 6 days. An accurate 4-D tomographic image was first carried out based upon the travel-times measured for the induced seismicity [Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011 Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295-1314]. The current study shows how to take advantage of the resulting compressional wave (Calò et al., 2011 and shear-wave velocity models. These are given as input data to an anisotropic effective medium model and converted into crack properties. In short, the effective medium model aims to estimate the impact of cracks on velocities. It refers to a crack-free matrix and 2 families of penny-shaped cracks with orientations in agreement with the main observed geological features: North-South strike and dip of 65°East and 65°West [Genter A., Traineau H. (1996 Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121-141], respectively. The resulting output data are the spatial distributions of crack features (lengths and apertures within the 3-D geological formation. We point out that a flow rate increase results in a crack shortening in the area imaged by both compressional and shear waves, especially in the upper part of the reservoir. Conversely, the crack length, estimated during continuous injection rate phases, is higher than during the increasing injection rate phases. A possible explanation for this is that

  16. Design of a 50/50 splitting ratio non-polarizing beam splitter based on the modal method with fused-silica transmission gratings

    Science.gov (United States)

    Zhao, Huajun; Yuan, Dairong; Ming, Hai

    2011-04-01

    The optical design of a beam splitter that has a 50/50 splitting ratio regardless of the polarization is presented. The non-polarizing beam splitter (NPBS) is based on the fused-silica rectangular transmission gratings with high intensity tolerance. The modal method has been used to estimate the effective index of the modes excited in the grating region for TE and TM polarizations. If a phase difference equals an odd multiples of π/2 for the first two modes (i.e. modes 0 and 1), the incident light will be diffracted into the 0 and -1 orders with about 50% and 50% diffraction efficiency for TM and TE polarizations, respectively.

  17. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    Science.gov (United States)

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel

  18. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  19. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence

    Science.gov (United States)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel

    2018-02-01

    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  20. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  1. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  2. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  3. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  4. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    Science.gov (United States)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  5. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  6. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  7. Intrinsic polarization changes and the H-alpha and CA II emission features in T-Tauri stars

    Science.gov (United States)

    Svatos, J.; Solc, M.

    1981-12-01

    On the basis of the correlation between polarization and emission features observed in certain T-Tauri stars, it is concluded that flaring effects associated with UV and/or X-ray irradiation and with increased magnetic field are responsible for the intrinsic polarization changes in T-Tauri stars. The correlation between emission Ca II lines and polarization degree both in Miras and T-Tau stars is thought to support the contention that the intrinsic polarization changes are due to the irradiation of silicate-like grains. In some T-Tau stars the increase in the magnetic field can be the principal agent causing the polarization increase due to the enhanced orientation of elongated grains.

  8. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  9. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  10. Characteristic Lifetime Of A Polarized Feature In The V=0, J=1-0 Sio Maser VY Canis Majoris

    Science.gov (United States)

    Rislow, Benjamin; McIntosh, G. C.

    2008-05-01

    A time series cross correlation analysis has been developed for calculating the characteristic lifetime of linearly polarized features in the spectrum of silicon monoxide masers. Our observations of VY CMa in the v=0, J=1→0; transition from June 2003 to March 2006 revealed a highly linearly polarized feature at Vlsr=18.5 km s-1. Applying the cross correlation to this feature gave a characteristic lifetime of 2800 days. This time is much longer than the v=1, J=2→1; transition's lifetime of 645 days and indicates that the two transitions occur under different physical conditions. This research was supported by the University of Minnesota and the University of Minnesota, Morris.

  11. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography

    NARCIS (Netherlands)

    Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.

    2012-01-01

    We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,

  12. Design of a Binary Grating with Subwavelength Features that Acts as a Polarizing Beam Splitter.

    Science.gov (United States)

    Pajewski, L; Borghi, R; Schettini, G; Frezza, F; Santarsiero, M

    2001-11-10

    A binary diffractive optical element, acting as a polarizing beam splitter, is proposed and analyzed. It behaves like a transmissive blazed grating, working on the first or the second diffraction order, depending on the polarization state of the incident radiation. The grating-phase profile required for both polarization states is obtained by means of suitably sized subwavelength groups etched in an isotropic dielectric medium. A rigorous electromagnetic analysis of the grating is presented, and numerical results concerning its performances in terms of diffraction efficiency as well as frequency and angular bandwidths are provided.

  13. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  14. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    Science.gov (United States)

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  15. Polarization and spectral features of the hard x-ray continuum from non-thermal plasmas

    International Nuclear Information System (INIS)

    Hesse, M.; Platz, P.

    1989-12-01

    Starting from the cross-sections for the free-free radiation obtained within the relativistic Born-Elwert theory, we calculate the spectral and polarization properties of the hard X-ray continuum (hν > 50 KeV) for plasmas containing fast electrons with an anisotropic velocity distribution. The physical and geometrical quantities of our model are oriented towards the future lower-hybrid current drive (LHCD) experiments on Tore-Supra. Our parameter space covers parallel and perpendicular temperatures, the nuclear charge of the ions (mainly Z = 14 and 28), the cut-off energy of the electrons, the radial current profile and the viewing angle. Extensive calculations open on the optimum conditions for polarization measurements and also give guide-lines for the quantitative interpretation of data under real plasma conditions. A second part of this report will treat with the operational principles and expected performances of hard X-ray polarimeters

  16. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    Science.gov (United States)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  17. Ice Velocity Variations of the Polar Record Glacier (East Antarctica Using a Rotation-Invariant Feature-Tracking Approach

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-12-01

    Full Text Available In this study, the ice velocity changes from 2004 to 2015 of the Polar Record Glacier (PRG in East Antarctica were investigated based on a feature-tracking method using Landsat-7 enhanced thematic mapper plus (ETM+ and Landsat-8 operational land imager (OLI images. The flow field of the PRG curves make it difficult to generate ice velocities in some areas using the traditional normalized cross-correlation (NCC-based feature-tracking method. Therefore, a rotation-invariant parameter from scale-invariant feature transform (SIFT is introduced to build a novel rotation-invariant feature-tracking approach. The validation was performed based on multi-source images and the making earth system data records for use in research environments (MEaSUREs interferometric synthetic aperture radar (InSAR-based Antarctica ice velocity map data set. The results indicate that the proposed method is able to measure the ice velocity in more areas and performs as well as the traditional NCC-based feature-tracking method. The sequential ice velocities obtained present the variations in the PRG during this period. Although the maximum ice velocity of the frontal margin of the PRG and the frontal iceberg reached about 900 m/a and 1000 m/a, respectively, the trend from 2004 to 2015 showed no significant change. Under the interaction of the Polar Times Glacier and the Polarforschung Glacier, both the direction and the displacement of the PRG were influenced. This impact also led to higher velocities in the western areas of the PRG than in the eastern areas. In addition, elevation changes and frontal iceberg calving also impacted the ice velocity of the PRG.

  18. Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features

    Science.gov (United States)

    Dixit, Rahul; Naskar, Ruchira

    2018-03-01

    In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.

  19. A comparison of geochemical features of extracts from coal-seams source rocks with different polarity solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianping; Deng, Chunping; Wang, Huitong

    2009-02-15

    There exists a great difference in group-type fractions and biomarker distributions of chloroform extracts from coals and coal-seams oils, which makes the source identification of coal-seams oils in sedimentary basins rather difficult. The experiment, in which four different polarity solvents, n-hexane, benzene, dichloromethane and chloroform, were used to extract 9 coal-seams source rocks and 3 typical lacustrine source rocks, showed that the yield of extracts increased gradually with increasing solvent polarity. The distribution features of their n-alkanes, isoprenoids and sterane and terpane biomarkers remained, in general, similar, showing no distinct enrichment or depletion for a certain fraction by any solvent. The compositional analysis on n-hexane and chloroform extracts showed that the absolute amount (concentration) of biomarkers was relatively low for the n-hexane extract but comparatively high for the chloroform extract, this difference became great among coal-seams source rocks but small among lacustrine mudstones. The statistical analysis on the relative amount of the 18 major biomarkers in n-hexane and chloroform extracts from 10 source rock samples showed that extracts with a proportional error for the same biomarker of less than 5% (including the analytical error) accounted for 84% while those with a proportional error over 10% amounted to below 5%. This suggested that the outcome of oil-source correlation made by these biomarkers will be independent of variations in amounts of saturates and biomarkers arising from solvent polarity. Therefore, biomarkers obtained from organic-rich source rocks including coals by the extraction with the commonly used chloroform solvent can be applied for the oilsource correlation of coal-seams petroliferous basins.

  20. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  1. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery

    Directory of Open Access Journals (Sweden)

    Hao Shi

    2018-02-01

    Full Text Available With the rapid development of remote sensing technologies, SAR satellites like China’s Gaofen-3 satellite have more imaging modes and higher resolution. With the availability of high-resolution SAR images, automatic ship target detection has become an important topic in maritime research. In this paper, a novel ship detection method based on gradient and integral features is proposed. This method is mainly composed of three steps. First, in the preprocessing step, a filter is employed to smooth the clutters and the smoothing effect can be adaptive adjusted according to the statistics information of the sub-window. Thus, it can retain details while achieving noise suppression. Second, in the candidate area extraction, a sea-land segmentation method based on gradient enhancement is presented. The integral image method is employed to accelerate computation. Finally, in the ship target identification step, a feature extraction strategy based on Haar-like gradient information and a Radon transform is proposed. This strategy decreases the number of templates found in traditional Haar-like methods. Experiments were performed using Gaofen-3 single-polarization SAR images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency. In addition, this method has the potential for on-board processing.

  2. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    International Nuclear Information System (INIS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-01-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics

  3. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    Science.gov (United States)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-07-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  4. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  5. Split Field magnet at the I4 ISR intersection

    CERN Multimedia

    1974-01-01

    The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.

  6. Cathodoluminescence studies of chevron features in semi-polar (11 2 ¯ 2 ) InGaN/GaN multiple quantum well structures

    Science.gov (United States)

    Brasser, C.; Bruckbauer, J.; Gong, Y.; Jiu, L.; Bai, J.; Warzecha, M.; Edwards, P. R.; Wang, T.; Martin, R. W.

    2018-05-01

    Epitaxial overgrowth of semi-polar III-nitride layers and devices often leads to arrowhead-shaped surface features, referred to as chevrons. We report on a study into the optical, structural, and electrical properties of these features occurring in two very different semi-polar structures, a blue-emitting multiple quantum well structure, and an amber-emitting light-emitting diode. Cathodoluminescence (CL) hyperspectral imaging has highlighted shifts in their emission energy, occurring in the region of the chevron. These variations are due to different semi-polar planes introduced in the chevron arms resulting in a lack of uniformity in the InN incorporation across samples, and the disruption of the structure which could cause a narrowing of the quantum wells (QWs) in this region. Atomic force microscopy has revealed that chevrons can penetrate over 150 nm into the sample and quench light emission from the active layers. The dominance of non-radiative recombination in the chevron region was exposed by simultaneous measurement of CL and the electron beam-induced current. Overall, these results provide an overview of the nature and impact of chevrons on the luminescence of semi-polar devices.

  7. Features of ozone intraannual variability in polar regions based on ozone sounding data obtained at the Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (AN SSSR, Institut Fiziki Atmosfery, Moscow (USSR))

    1991-04-01

    Ozone sounding data obtained at the Resolute and Amundsen-Scott stations are used to analyze ozone intraannual variability in Southern and Northern polar regions. For the Arctic, in particular, features associated with winter stratospheric warmings, stratospheric-tropospheric exchange, and the isolated evolution of surface ozone are noted. Correlative connections between ozone and temperature making it possible to concretize ozone variability mechanisms are analyzed. 31 refs.

  8. Polarization-independent transparency window induced by complementary graphene metasurfaces

    International Nuclear Information System (INIS)

    Lu, Wei Bing; Liu, Ji Long; Zhang, Jin; Wang, Jian; Liu, Zhen Guo

    2017-01-01

    A fourfold symmetric graphene-based complementary metasurface featuring a polarization-independent transparency window is proposed and numerically analysed in this paper. The unit cell of the metamaterial consists of a monolayer graphene perforated with a cross and four identical split-ring resonators deposited on a substrate. Our analysis shows that the transparency window can be interpreted as a plasmonic analogy of Autler–Townes splitting. The polarization independence is achieved due to the fourfold symmetry of graphene’s complementary structure. In addition, the frequency range of the transparency window can be dynamically tuned over a broad band by changing the chemical potential of graphene, and the width of the transparency window can also be controlled by changing the split-gap orientation. This work may lead to potential applications in many area, such as slow-light devices and optical sensing. (paper)

  9. Modelling shear wave splitting observations from Wellington, New Zealand

    Science.gov (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  10. Data Reduction of Laser Ablation Split-Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu-Hf + U-Pb in Detrital Zircon and Sm-Nd +U-Pb in Igneous Monazite

    Science.gov (United States)

    Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas

    2017-12-01

    A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.

  11. SKS Splitting and the Scale of Vertical Coherence of the Taiwan Mountain Belt

    Science.gov (United States)

    Kuo, Ban-Yuan; Lin, Shu-Chuan; Lin, Yi-Wei

    2018-02-01

    Many continental orogens feature a pattern of SKS shear wave splitting with fast polarization directions parallel to the mountain fabrics and delay times of 1-2 s, implying that the crust and lithosphere deform consistently. In the Taiwan arc-continent collision zone, similar pattern of SKS splitting exists, and thereby lithospheric scale deformation due to collision has been assumed. However, recent dynamic modeling demonstrated that the SKS splitting in Taiwan can be generated by the toroidal flow in the asthenosphere induced by the subduction of the Philippine Sea plate and the Eurasian plate. To further evaluate this hypothesis, we analyzed a new data set using a quantitative approach. The results show that models with slab geometries constrained by seismicity explain the observed fast splitting direction to within 25°, whereas the misfit grows to 50-60° if the toroidal flow is disrupted by the presence of a sizable aseismic slab beneath central Taiwan as often suggested by tomographic imaging. However, small sized aseismic slab or detached slab fragment can potentially reconcile the splitting observations. We estimated the scale of vertical coherence to be 10-40 km in the lithosphere and 100-150 km in the asthenosphere, making the former unfavorable for accumulating large delay times. The low coherence is caused by the subduction of the Eurasian plate that creates complex deformation different from what characterizes the compressional tectonics above the plate. This suggests that the mountain building in Taiwan is a shallow process, rather than lithospheric in scale.

  12. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  13. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  14. Analysis of a Permo-Triassic polarity transition in different absolute reconstructions of Pangaea, considering a model with features of the present Earth magnetic field

    Directory of Open Access Journals (Sweden)

    M. A. Van Zele

    2007-06-01

    Full Text Available The main objective of this paper is to show that the distribution of transitional palaeomagnetic data recorded at 250 Ma are in agreement with simulated data that depend on the sampling site, using a model that considers features of the Present Earth magnetic field. The analysis was performed comparing simulated reversals with the Permo-Triassic polarity transition recorded in the Siberian Trap Basalts. The palaeomagnetic data were corrected according to the Palaeo-latitude and Palaeo-longitude of Siberia (absolute reconstruction at 250 Ma using hotspot tracks. To obtain the motion of Siberia relative to hotspots from the Present time back to 250 Ma, three different Pangaea models were considered (Pangaea A, Pangaea A2, Pangaea B. In spite of the uncertainties associated with the use of hotspot frameworks and Pangaea configurations, both the modelled and recorded data show a remarkable fit when absolute reconstructions of Pangaea A and A2 configurations are performed. The agreement between both simulated and recorded data suggests that similar features to that of the Present Earth magnetic field could have been involved in reversals since the Permo-Triassic.

  15. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

    International Nuclear Information System (INIS)

    Ahmadivand, Arash; Sinha, Raju; Karabiyik, Mustafa; Vabbina, Phani Kiran; Gerislioglu, Burak; Kaya, Serkan; Pala, Nezih

    2017-01-01

    Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

  16. Market Structure and Stock Splits

    OpenAIRE

    David Michayluk; Paul Kofman

    2001-01-01

    Enhanced liquidity is one possible motivation for stock splits but empirical research frequently documents declines in liquidity following stock splits. Despite almost thirty years of inquiry, little is known about all the changes in a stock's trading activity following a stock split. We examine how liquidity measures change around more than 2,500 stock splits and find a pervasive decline in most measures. Large stock splits exhibit a more severe liquidity decline than small stock splits, esp...

  17. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  18. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  19. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  20. Basic dynamics of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2008-01-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temp. at the cold end is an input

  1. Czech, Slovak science ten years after split

    CERN Multimedia

    2003-01-01

    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  2. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  3. Splitting Ward identity

    International Nuclear Information System (INIS)

    Safari, Mahmoud

    2016-01-01

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  4. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  5. The Split sudâmja

    Directory of Open Access Journals (Sweden)

    Petar Šimunović

    1991-12-01

    Full Text Available The name of the Split feast Sudamja!Sudajma ("festa sancti Domnii" has not yet been adequately explained. The author believes that the name originated from the Old Dalmatian adjective san(ctu + Domnĭu. In the adjective santu the cluster /an/ in front of·a consonant gave in Croatian the back nasal /q/ pronounced until the end of the 10th century and giving /u/ after that. In this way the forms *Sudumja and similar originated. The short stressed /u/ in the closed syllable was percieved by the Croatian folk as their semivowel which later gave /a/ = Sudamja. The author connects this feature with that in the toponimes Makar ( /jm/ is well known in Croatian dialectology (sumja > sujma, and it resembles the metatheses which occurs in the Split toponimes: Sukošjân > Sukojšãn ( < *santu Cassianu, Pojišân/Pojšiin (< *pasianu < Pansianu. The author finds the same feature in the toponime Dumjača (: *Dumi- + -ača. He considers these features as Croatian popular adaptations which have not occured in the personal name Dujam, the toponime Dujmovača "terrae s. Domnii" and in the adjective sandujamski, because of the link with the saint's name Domnio!Duymo etc., which has been well liked and is frequent as name of Split Romas as well as Croats from the foundation of Split, has never been broken.

  6. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  7. The Splitting Group

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  8. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  9. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  10. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  11. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  12. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  13. Split warhead simultaneous impact

    Directory of Open Access Journals (Sweden)

    Rahul Singh Dhari

    2017-12-01

    Full Text Available A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system, impact points are increased and hence it has a better probability of hitting a target.

  14. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya

    Science.gov (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika

    2017-06-01

    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  15. Isospin splittings of baryons

    International Nuclear Information System (INIS)

    Varga, Kalman; Genovese, Marco; Richard, Jean-Marc; Silvestre-Brac, Bernard

    1998-01-01

    We discuss the isospin-breaking mass differences among baryons, with particular attention in the charm sector to the Σ c + -Σ c 0 , Σ c ++ -Σ c 0 , and Ξ c + -Ξ c 0 splittings. Simple potential models cannot accommodate the trend of the available data on charm baryons. More precise measurements would offer the possibility of testing how well potential models describe the non-perturbative limit of QCD

  16. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  17. (O)Mega split

    Energy Technology Data Exchange (ETDEWEB)

    Benakli, Karim; Darmé, Luc; Goodsell, Mark D. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589,LPTHE, F-75005, Paris (France); CNRS, UMR 7589,LPTHE, F-75005, Paris (France)

    2015-11-16

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale M{sub S}, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on M{sub S}, which we derive. On the other hand, we show that renormalisation group running of soft masses aboveM{sub S} barely constrains the model — in stark contrast to Split Supersymmetry — and hence we can have a “Mega Split” spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, Fake Split Extended Supersymmetry, which enjoys similar properties.

  18. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    International Nuclear Information System (INIS)

    Chun-Ying, Guan; Jin-Hui, Shi; Li-Boo, Yuan

    2008-01-01

    A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method

  19. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Benjamin P. L., E-mail: benjamin.reid@physics.ox.ac.uk; Chan, Christopher C. S.; Taylor, Robert A. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Kocher, Claudius [Department of Physics, University of Konstanz, Konstanz 78457 (Germany); Zhu, Tongtong; Oehler, Fabrice; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-04-27

    Polarization sensitive photoluminescence is performed on single non-polar InGaN quantum dots. The studied InGaN quantum dots are found to have linearly polarized emission with a common polarization direction defined by the [0001] crystal axis. Around half of ∼40 studied dots have a polarization degree of 1. For those lines with a polarization degree less than 1, we can resolve fine structure splittings between −800 μeV and +800 μeV, with no clear correlation between fine structure splitting and emission energy.

  20. Splitting efficiency and interference effects in a Cooper pair splitter based on a triple quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz

    2018-05-01

    We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.

  1. Features of possible polarized photon beams at high energy and corresponding physics programme or the proton structure function using real photons

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1980-01-01

    In the range of electron energies available at Fermilab, 100 GeV less than or equal to E less than or equal to 500 GeV, coherent Bremsstrahlung in crystals, particularly diamond, gives a huge enhancement to the equivalent photon spectrum at large values of x where x = k/E. The photons in this enhancement are polarized. Requirements on electron beam energy spread, angular divergence and spot size imposed by the use of a diamond as a radiator are discussed. The physics program emphasizes hard processes and tests of QCD using polarization

  2. Features of the low-frequency polarization response in the region of the ferroelectric phase transition in multiferroic TbMnO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Kvyatkovskii, O.E.; Savinov, Maxim; Dejneka, Alexandr; Wang, X.; Cheong, S.W.

    2016-01-01

    Roč. 58, č. 10 (2016), s. 2021-2026 ISSN 1063-7834 Institutional support: RVO:68378271 Keywords : low-frequency * polarization response * ferroelectric, phase * transition * multiferroic * TbMnO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.860, year: 2016

  3. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  4. Dual polarized, heat spreading rectenna

    Science.gov (United States)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)

    1999-01-01

    An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.

  5. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  6. Polarization of sky light from a canopy atmosphere

    International Nuclear Information System (INIS)

    Hannay, J H

    2004-01-01

    Light from the clear sky is produced by the scattering of unpolarized sunlight by molecules of the atmosphere and is partially linearly polarized in the process. Singly scattered light, for instance, is fully polarized in viewing directions perpendicular to the sun direction and less and less so towards the parallel and antiparallel directions, where it is unpolarized. The true, multiple, scattering is much less tractable, but importantly different, changing the polarization pattern's topology by splitting the unpolarized directions into pairs. The underlying cause of this 'symmetry breaking' is that the atmosphere is 'wider' than it is deep. Simplifying as much as possible while retaining this feature leads to the caricature atmosphere analysed here: a flattened sheet atmosphere in the sky, a canopy. The multiple scattering is fully tractable and leads to a simple polarization pattern in the sky: the ellipses and hyperbolas of standard confocal ellipsoidal coordinates. The model realizes physically a mathematical pattern of polarization in terms of a complex function proposed by Berry, Dennis and Lee (2004 New J. Phys.6 162) as the simplest one which captures the topology

  7. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    Science.gov (United States)

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Peculiarities of annihilation of polarized positronium in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2005-01-01

    Features of positronium annihilation (PA) in polarized media are investigated. Strong exchange interaction with nonpaired electrons of paramagnetic atoms essentially accelerates the PA in comparison with annihilation of free positrons. The value of the spin projection on the direction of polarized nonpaired electrons has essential effect on the orthopositronium lifetime and on the width of the gamma spectrum annihilation line. It is shown that these features of PA permit to use it for studying the paramagnetic polarization [ru

  9. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  10. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system and on the......On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...... and on the inorganic catalyst surface of an acidic electrolysis cell, the thermochemical features of the catalysts can be directly compared. We suggest a simple test for a thermochemically optimal catalyst. We show that, although both the RuO2 surface and the Mn cluster in photo system II are quite close to optimal...

  11. Polarization-dependent optics using gauge-field metamaterials

    International Nuclear Information System (INIS)

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-01-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework

  12. A calculation of the three-loop helicity-dependent splitting functions in QCD

    International Nuclear Information System (INIS)

    Vogt, A.

    2014-05-01

    We have calculated the complete matrix of three-loop helicity-difference ('polarized') splitting functions ΔP ik (2) (x), i,k=q,g, in massless perturbative QCD. In this note we briefly discuss some properties of the polarized splitting functions and our non-standard determination of the hitherto missing lower-row quantities ΔP gq (2) and ΔP gg (2) . The resulting next-to-next-to-leading order (NNLO) corrections to the evolution of polarized parton distributions are illustrated and found to be small even at rather large values of the strong coupling constant α s .

  13. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    Energy Technology Data Exchange (ETDEWEB)

    Žitnik, M., E-mail: matjaz.zitnik@ijs.si [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana (Slovenia); Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A. [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); Cao, W. [Research Centre for Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Piancastelli, M.N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden); Simon, M. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-10-15

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  14. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    International Nuclear Information System (INIS)

    Žitnik, M.; Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A.; Cao, W.; Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E.; Piancastelli, M.N.; Simon, M.

    2015-01-01

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  15. Splitting of turbulent spot in transitional pipe flow

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  16. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  17. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  18. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  19. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  20. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  1. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    Science.gov (United States)

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2

  2. Proton polarimetry using an Enge split-pole spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Moss, J M; Brown, D R; Cornelius, W D [Texas Agricultural and Mechanical Univ., College Station (USA). Cyclotron Inst.

    1976-05-15

    A high-efficiency (4 x 10/sup -5/ at A=0.4) high resolution (150 keV) polarimeter used in conjunction with an Enge split-pole spectrograph is described. This device permits for the first time polarization transfer studies in elastic scattering. Spectra are shown for /sup 11/B(p(pol),p(pol)')/sup 11/B (2.14 MeV)at Esub(p)=31 MeV.

  3. Isospin dependence of the spin-orbit splitting in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.

    2007-01-01

    The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru

  4. Nuclear polarization in muonic 208Pb

    International Nuclear Information System (INIS)

    Haga, Akihiro; Tanaka, Yasutoshi; Horikawa, Yataro

    2002-01-01

    We calculate nuclear-polarization energy shifts in muonic 208 Pb. We employ a relativistic field-theoretical calculation and evaluate the ladder, cross, and seagull terms of the two-photon exchange diagrams in both the Feynman and Coulomb gauges. Gauge independence is very well satisfied with the calculated nuclear-polarization energies. Using these results, we analyze fine-structure splitting energies of muonic 208 Pb because of the presence of the persisting discrepancies between experiment and calculation. The present nuclear-polarization energies explain about half of the anomaly in the Δ2p fine-structure splitting energy, and only one-fourth of the anomaly in the Δ3p fine-structure splitting energy

  5. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  6. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  7. Triadic split-merge sampler

    Science.gov (United States)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  8. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  9. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  10. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    Ozarski, R.G.; Prior, J.

    1980-01-01

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  11. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  12. Loss-free neutron polarization

    International Nuclear Information System (INIS)

    Mueller, S.; Badurek, G.

    2001-01-01

    Full text: The so-called concept of 'dynamical' neutron polarization should allow to polarize a beam of thermal or cold neutrons without loosing even one particle. It is based upon the spin-dependent energy splitting of monochromatic neutrons in a NMR-like arrangement of crossed static and oscillating magnetic fields, which causes different interaction times of the two opposite spin states with a subsequent static precession field. If this Larmor rotation is stopped at the moment when the two states are oriented parallel to a given direction, the beam will be fully polarized, on the cost of a tiny energy difference between the two states, however. At pulsed neutron sources this method should even allow loss-free polarization of polychromatic neutrons, if by a suitably chosen time dependence of either the precession or the splitting field the flight-time dispersion of the particles is adequately taken into account. However, until now this quite sophisticated method has not been realized experimentally. We have performed detailed analytical and numerical simulations of such a dynamical polarization facility for pulsed neutron beams in order to proof its feasibility. It turns out that the required space and time dependence of the magnetic fields involved are well within the scope of existing magnet technology. Ref. 1 (author)

  13. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  14. SplitRacer - a semi-automatic tool for the analysis and interpretation of teleseismic shear-wave splitting

    Science.gov (United States)

    Reiss, Miriam Christina; Rümpker, Georg

    2017-04-01

    We present a semi-automatic, graphical user interface tool for the analysis and interpretation of teleseismic shear-wave splitting in MATLAB. Shear wave splitting analysis is a standard tool to infer seismic anisotropy, which is often interpreted as due to lattice-preferred orientation of e.g. mantle minerals or shape-preferred orientation caused by cracks or alternating layers in the lithosphere and hence provides a direct link to the earth's kinematic processes. The increasing number of permanent stations and temporary experiments result in comprehensive studies of seismic anisotropy world-wide. Their successive comparison with a growing number of global models of mantle flow further advances our understanding the earth's interior. However, increasingly large data sets pose the inevitable question as to how to process them. Well-established routines and programs are accurate but often slow and impractical for analyzing a large amount of data. Additionally, shear wave splitting results are seldom evaluated using the same quality criteria which complicates a straight-forward comparison. SplitRacer consists of several processing steps: i) download of data per FDSNWS, ii) direct reading of miniSEED-files and an initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold. iii) an analysis of the particle motion of selected phases and successive correction of the sensor miss-alignment based on the long-axis of the particle motion. iv) splitting analysis of selected events: seismograms are first rotated into radial and transverse components, then the energy-minimization method is applied, which provides the polarization and delay time of the phase. To estimate errors, the analysis is done for different randomly-chosen time windows. v) joint-splitting analysis for all events for one station, where the energy content of all phases is inverted simultaneously. This allows to decrease the influence of noise and to increase robustness of the measurement

  15. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  16. Splitting: The Development of a Measure.

    Science.gov (United States)

    Gerson, Mary-Joan

    1984-01-01

    Described the development of a scale that measures splitting as a psychological structure. The construct validity of the splitting scale is suggested by the positive relationship between splitting scores and a diagnostic measure of the narcissistic personality disorder, as well as a negative relationship between splitting scores and levels of…

  17. Elite Polarization and Public Opinion

    DEFF Research Database (Denmark)

    Robison, Joshua; Mullinix, Kevin

    2016-01-01

    Elite polarization has reshaped American politics and is an increasingly salient aspect of news coverage within the United States. As a consequence, a burgeoning body of research attempts to unravel the effects of elite polarization on the mass public. However, we know very little about how...... polarization is communicated to the public by news media. We report the results of one of the first content analyses to delve into the nature of news coverage of elite polarization. We show that such coverage is predominantly critical of polarization. Moreover, we show that unlike coverage of politics focused...... on individual politicians, coverage of elite polarization principally frames partisan divisions as rooted in the values of the parties rather than strategic concerns. We build on these novel findings with two survey experiments exploring the influence of these features of polarization news coverage on public...

  18. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  19. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  20. Experimental determination of the relativistic fine-structure splitting in pionic Ti and Fe atoms

    International Nuclear Information System (INIS)

    Wang, K.; Boehm, F.; Bovet, E.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.; Kunselman, A.R.

    1980-01-01

    Using a high-resolution crystal spectrometer we have measured the relativistic angular-momentum splittings of the 5g-4f and 5f-4d transitions in pionic Ti and Fe atoms. The observed fine-structure splittings of 85.3 +- 3.0 eV in π - Ti and 158.5 +- 7.8 eV in π - Fe agree with the calculated splittings of 88.5 and 167.6 eV, respectively, arising from the Klein-Gordon equation and from small corrections due to vacuum polarization, strong interaction, and electron screening

  1. Split NMSSM with electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Gorbunov, D.S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutsky per. 9, Dolgoprudny 141700 (Russian Federation); Kirpichnikov, D.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2016-11-24

    In light of the Higgs boson discovery and other results of the LHC we reconsider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  2. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  3. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  4. Mass splitting induced by gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.

    1982-08-01

    The exact combination of internal and geometrical symmetries and the associated mass splitting problem is discussed. A 10-parameter geometrical symmetry is defined in a curved space-time in such a way that it is a combination of de Sitter groups. In the flat limit it reproduces the Poincare-group and its Lie algebra has a nilpotent action on the combined symmetry only in that limit. An explicit mass splitting expression is derived and an estimation of the order of magnitude for spin-zero mesons is made. (author)

  5. Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization

    International Nuclear Information System (INIS)

    Park, Jungsoo; Song, Soonho; Lee, Kyo Seung

    2015-01-01

    Highlights: • Model-based control of dual-loop EGR system is performed. • EGR split index is developed to provide non-dimensional index for optimization. • EGR rates are calibrated using EGR split index at specific operating conditions. • Multi-objective Pareto optimization is performed to minimize NO X and BSFC. • Optimum split strategies are suggested with LP-rich dual-loop EGR at high load. - Abstract: A proposed dual-loop exhaust-gas recirculation (EGR) system that combines the features of high-pressure (HP) and low-pressure (LP) systems is considered a key technology for improving the combustion behavior of diesel engines. The fraction of HP and LP flows, known as the EGR split, for a given dual-loop EGR rate play an important role in determining the engine performance and emission characteristics. Therefore, identifying the proper EGR split is important for the engine optimization and calibration processes, which affect the EGR response and deNO X efficiencies. The objective of this research was to develop a dual-loop EGR split strategy using numerical analysis and one-dimensional (1D) cycle simulation. A control system was modeled by coupling the 1D cycle simulation and the control logic. An EGR split index was developed to investigate the HP/LP split effects on the engine performance and emissions. Using the model-based control system, a multi-objective Pareto (MOP) analysis was used to minimize the NO X formation and fuel consumption through optimized engine operating parameters. The MOP analysis was performed using a response surface model extracted from Latin hypercube sampling as a fractional factorial design of experiment. By using an LP rich dual-loop EGR, a high EGR rate was attained at low, medium, and high engine speeds, increasing the applicable load ranges compared to base conditions

  6. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  7. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split ... quantum picture of the Universe. It was then ... where the integers m, n correspond to the respective magnetic and electric charges; m is the ...

  8. VBSCan Split 2017 Workshop Summary

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Christoph Falk; et al.

    2018-01-12

    This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

  9. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  10. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  11. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  12. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  13. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1979-01-01

    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  14. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  15. Partial Polarization in Interfered Plasmon Fields

    Directory of Open Access Journals (Sweden)

    P. Martínez Vara

    2014-01-01

    Full Text Available We describe the polarization features for plasmon fields generated by the interference between two elemental surface plasmon modes, obtaining a set of Stokes parameters which allows establishing a parallelism with the traditional polarization model. With the analysis presented, we find the corresponding coherence matrix for plasmon fields incorporating to the plasmon optics the study of partial polarization effects.

  16. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  17. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  18. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  19. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  20. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  1. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  2. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim...... for photocatalytic water splitting by using a large bandgap photocathode and a low bandgap photoanode with attached protection layers....

  3. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  4. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  5. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    Science.gov (United States)

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  6. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Galynsky, Vladimir M.; Zhukovsky, Sergei

    2012-01-01

    The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor...... of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its...... transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring...

  7. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  8. A typology of split conjunction

    OpenAIRE

    Palancar , Enrique L.

    2012-01-01

    International audience; In this paper, I study instances of noun phrase conjunction where the conjoined noun phrase is subject and the referents of the conjuncts are human, of the type ‘John and Mary are having lunch’. More specifically, I study different, possible splits that occur in such structures, which involve the disruption of the phrasal continuity of the conjuncts, resulting in structures roughly equivalent to ‘they are having lunch with Mary’ and ‘John are having lunch with Mary’. I...

  9. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  10. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  11. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  12. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  13. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  14. Universal features underlying the magnetism in diluted magnetic semiconductors

    Science.gov (United States)

    Andriotis, Antonis N.; Menon, Madhu

    2018-04-01

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO2, SnO2, Sn3N4, MoS2, ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  15. Universal features underlying the magnetism in diluted magnetic semiconductors.

    Science.gov (United States)

    Andriotis, Antonis N; Menon, Madhu

    2018-04-04

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO 2 , SnO 2 , Sn 3 N 4 , MoS 2 , ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  16. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  17. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  18. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  19. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  20. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  1. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  2. Splitting tests on rock specimens

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J D; Stagg, K G

    1970-01-01

    Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.

  3. Split supersymmetry in unified models

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Mimura, Yukihiro

    2005-01-01

    In the context of split supersymmetry, the gaugino mass spectrum seems to be very important to satisfy the dark matter content of the universe and the gauge coupling unification. In this Letter, we have considered various sources of gaugino masses in the context of unified models. We show that the gaugino mass spectrum varies in different unification pictures. In the context of SU(5), we have found that the bino/wino mass ratio can be close to one at the weak scale which is helpful to satisfy the WMAP data. The gluino/wino mass ratio is also different from the usual scenario of unified gaugino masses. The gaugino masses can be around one TeV and m SUSY is chosen so that the gluino mass does not create any cosmological problem. In the context of the Pati-Salam model, we show that the gluino mass can be made very heavy even after maintaining the unification of the gauge couplings

  4. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Determining Polarities Of Distant Lightning Strokes

    Science.gov (United States)

    Blakeslee, Richard J.; Brook, Marx

    1990-01-01

    Method for determining polarities of lightning strokes more than 400 km away. Two features of signal from each stroke correlated. New method based on fact each stroke observed thus far for which polarity determined unambiguously, initial polarity of tail same as polarity of initial deflection before initial-deflection signal altered by propagation effects. Receiving station equipped with electric-field-change antenna coupled to charge amplifier having time constant of order of 1 to 10 seconds. Output of amplifier fed to signal-processing circuitry, which determines initial polarity of tail.

  6. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  7. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    Science.gov (United States)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of

  8. SplitDist—Calculating Split-Distances for Sets of Trees

    DEFF Research Database (Denmark)

    Mailund, T

    2004-01-01

    We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other.......We present a tool for comparing a set of input trees, calculating for each pair of trees the split-distances, i.e., the number of splits in one tree not present in the other....

  9. A variable partially polarizing beam splitter

    Science.gov (United States)

    Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  10. Markov branching in the vertex splitting model

    International Nuclear Information System (INIS)

    Stefánsson, Sigurdur Örn

    2012-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree D, we find a one parameter model, with parameter α element of [0,1] which has a so-called Markov branching property. When D=∞ we find a two parameter model with an additional parameter γ element of [0,1] which also has this feature. In the case D = 3, the model bears resemblance to Ford's α-model of phylogenetic trees and when D=∞ it is similar to its generalization, the αγ-model. For α = 0, the model reduces to the well known model of preferential attachment. In the case α > 0, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is 1/α. When γ = 0 the model reduces to a model of growing caterpillar graphs in which case we prove that the Hausdorff dimension is almost surely 1/α and that the spectral dimension is almost surely 2/(1 + α). We comment briefly on the distribution of vertex degrees and correlations between degrees of neighbouring vertices

  11. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  12. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  13. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  14. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  15. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  16. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  18. Do embryonic polar bodies commit suicide?

    Science.gov (United States)

    Fabian, Dušan; Čikoš, Štefan; Rehák, Pavol; Koppel, Juraj

    2014-02-01

    The extrusion and elimination of unnecessary gametic/embryonic material is one of the key events that determines the success of further development in all living organisms. Oocytes produce the first polar body to fulfill the maturation process just before ovulation, and release the second polar body immediately after fertilization. The aim of this study was to compile a physiological overview of elimination of polar bodies during early preimplantation development in mice. Our results show that three-quarters of the first polar bodies were lost even at the zygotic stage; the 4-cell stage embryos contained only one (second) polar body, and the elimination of second polar bodies proceeded continuously during later development. Both first and second polar bodies showed several typical features of apoptosis: phosphatidylserine redistribution (observed for the first time in the first polar body), specific DNA degradation, condensed nuclear morphology, and inability to exclude cationic dye from the nucleus during the terminal stage of the apoptotic process. Caspase-3 activity was recorded only in the second polar body. From the morphological point of view, mouse polar bodies acted very similarly to damaged embryonic cells which have lost contact with their neighboring blastomeres. In conclusion, polar bodies possess all the molecular equipment necessary for triggering and executing an active suicide process. Furthermore, similarly as in dying embryonic cells, stressing external conditions (culture in vitro) might accelerate and increase the incidence of apoptotic elimination of the polar bodies in embryos.

  19. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-01-01

    The prompt ν e burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a ''split'' occurs in the emerging spectrum, i.e., the ν e flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations

  20. Preliminary Magnetostratigraphic Study of the Split Mountain and Lower Imperial Groups, Split Mountain Gorge, Western Salton Trough, CA

    Science.gov (United States)

    Fluette, A. L.; Housen, B. A.; Dorsey, R. J.

    2004-12-01

    We present preliminary results of a magnetostratigraphic study of Miocene-Pliocene sedimentary rocks of the Split Mt. and lower Imperial Groups exposed in Split Mt. Gorge and eastern Fish Creek-Vallecito basin, western Salton Trough. Precise age control for the base of this thick section is needed to improve our understanding of the early history of extension-related subsidence in this region. The geologic setting and stratigraphic framework are known from previous work by Dibblee (1954, 1996), Woodard (1963), Kerr (1982), Winker (1987), Kerr and Kidwell (1991), Winker and Kidwell (1986; 1996), and others. We have analyzed Upper Miocene to lower Pliocene strata exposed in a conformable section in Split Mt. Gorge, including (in order from the base; nomenclature of Winker and Kidwell, 1996): (1) Split Mt. Group: Red Rock Fm alluvial sandstone; Elephant Trees alluvial conglomerate; and lower megabreccia unit; and (2) lower part of Imperial Group, including: Fish Creek Gypsum; proximal to distal turbidites of the Latrania Fm and Wind Caves Mbr of Deguynos Fm; upper megabreccia unit; marine mudstone and rhythmites of the Mud Hills Mbr (Deguynos Fm); and the basal part of the Yuha Mbr (Deguynos Fm). Measured thickness from the base of the Elephant Trees Cgl to the base of the Yuha Mbr is about 1050 m, consistent with previous measurements of Winker (1987). Paleomagnetic samples were collected at approximately 10 m intervals throughout this section. The upper portion of our sampled section overlaps with the lower part of the section sampled for magnetostratigraphic study by Opdyke et al. (1977) and Johnson et al. (1983). They interpreted the base of their section to be about 4.3 Ma, and calculated an average sedimentation rate of approximately 5.5 mm/yr for the lower part of their section. Good-quality preliminary results from 15 paleomagnetic sites distributed throughout our sampled section permit preliminary identification of 6 polarity zones. Based on regional mapping

  1. Features of the structural and magnetic properties of Pb(TixZr1–xO3-NiFe1.98Co0.02O4 in the polarized state

    Directory of Open Access Journals (Sweden)

    Baev Vadim

    2017-06-01

    Full Text Available Composites with a 90%Pb(TixZr1-xO3-10%NiFe1.98Co0.02O4 composition have been synthesized. It has been established that the polarization of samples resulting from exposure to an electric field for 1 hour of 4 kV/mm in strength at a temperature of 400 K leads to crystal structure deformation. The compression of elementary crystal cells in some areas during polarization of the sample creates conditions suitable for the enhancement of magnetic exchange interactions. It has been found that the polarization process of such compositions leads to increases in specific magnetization and magnetic susceptibility. The analysis of Mössbauer spectra has shown that the polarization of the 90%Pb(TixZr1-xO3-10%NiFe1.98Co0.02O4 composite leads to significant changes in the effective magnetic fields of iron subspectra in various positions.

  2. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  3. The three-loop splitting functions in QCD: The helicity-dependent case

    Directory of Open Access Journals (Sweden)

    S. Moch

    2014-12-01

    Full Text Available We present the next-to-next-to-leading order (NNLO contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark–quark and gluon–quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g1 in electromagnetic deep-inelastic scattering (DIS. Their quark–gluon and gluon–gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x≈10−4.

  4. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  5. The three-loop splitting functions in QCD. The helicity-dependent case

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2014-09-01

    We present the next-to-next-to-leading order (NNLO) contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark-quark and gluon-quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g 1 in electromagnetic deep-inelastic scattering (DIS). Their quark-gluon and gluon-gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x∼10 -4 .

  6. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  7. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  8. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  9. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  10. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  11. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  12. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  13. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  14. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  15. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  16. NNLO splitting and coefficient functions with time-like kinematics

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.; Liverpool Univ.

    2006-09-01

    We discuss recent results on the three-loop (next-to-next-to-leading order, NNLO) time-like splitting functions of QCD and the two-loop (NNLO) coefficient functions in one-particle inclusive e + e - -annihilation. These results form the basis for extracting fragmentation functions for light and heavy flavors with NNLO accuracy that will be needed at the LHC and ILC. The two-loop calculations have been performed in Mellin space bases on a new method, the main features of which we also describe briefly. (orig.)

  17. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  18. Baryon mass splittings in chiral perturbation theory

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Milana, J.

    1995-01-01

    Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation

  19. Splitting Strip Detector Clusters in Dense Environments

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2018-01-01

    Tracking in high density environments, particularly in high energy jets, plays an important role in many physics analyses at the LHC. In such environments, there is significant degradation of track reconstruction performance. Between runs 1 and 2, ATLAS implemented an algorithm that splits pixel clusters originating from multiple charged particles, using charge information, resulting in the recovery of much of the lost efficiency. However, no attempt was made in prior work to split merged clusters in the Semi Conductor Tracker (SCT), which does not measure charge information. In spite of the lack of charge information in SCT, a cluster-splitting algorithm has been developed in this work. It is based primarily on the difference between the observed cluster width and the expected cluster width, which is derived from track incidence angle. The performance of this algorithm is found to be competitive with the existing pixel cluster splitting based on track information.

  20. Baryons electromagnetic mass splittings in potential models

    International Nuclear Information System (INIS)

    Genovese, M.; Richard, J.-M.; Silvestre-Brac, B.; Varga, K.

    1998-01-01

    We study electromagnetic mass splittings of charmed baryons. We point out discrepancies among theoretical predictions in non-relativistic potential models; none of these predictions seems supported by experimental data. A new calculation is presented

  1. Polarized light in optics and spectroscopy

    CERN Document Server

    Kliger, David S

    1990-01-01

    This comprehensive introduction to polarized light provides students and researchers with the background and the specialized knowledge needed to fully utilize polarized light. It provides a basic introduction to the interaction of light with matter for those unfamiliar with photochemistry and photophysics. An in-depth discussion of polarizing optics is also given. Different analytical techniques are introduced and compared and introductions to the use of polarized light in various forms of spectroscopy are provided.Key Features* Starts at a basic level and develops tools for resear

  2. PolarHub: A Global Hub for Polar Data Discovery

    Science.gov (United States)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  3. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  4. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  5. Splitting automorphisms of free Burnside groups

    International Nuclear Information System (INIS)

    Atabekyan, Varuzhan S

    2013-01-01

    It is proved that, if the order of a splitting automorphism of odd period n≥1003 of a free Burnside group B(m,n) is a prime, then the automorphism is inner. This implies, for every prime n≥1009, an affirmative answer to the question on the coincidence of the splitting automorphisms of period n of the group B(m,n) with the inner automorphisms (this question was posed in the 'Kourovka Notebook' in 1990). Bibliography: 17 titles.

  6. Are Ducted Mini-Splits Worth It?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jonathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maguire, Jeffrey B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Metzger, Cheryn E. [Pacific Northwest National Laboratory; Zhang, Jason [Pacific Northwest National Laboratory

    2018-02-01

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within the Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).

  7. Mort Rainey's Split Personality in Secret Window

    OpenAIRE

    Sandjaya, Cynthya; Limanta, Liem Satya

    2013-01-01

    Psychological issue is the main issue discussed in David Koepp's Secret Window through its main character, Mort Rainey. Rainey's psychological struggle will be the main theme in this research. This thesis examines Rainey's split personality. Furthermore, in this study, we want to analyze the process of how Mort Rainey's personality splits into two different personalities. To meet the answer of this study, we will use the theory of Dissociative Identity Disorder with a support from Sigmund Fre...

  8. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  9. The polarization of NGC 1068

    International Nuclear Information System (INIS)

    Bailey, Jeremy; Axon, D.J.; Hough, J.H.; Heathcote, S.R.

    1988-01-01

    Broad-band polarimetry of NGC 1068 over the wavelength range 0.36-4.8μm is presented, together with high-resolution spectropolarimetry of the Hβ, [O III] and Hα, [N II] regions of the spectrum. We recognize several different polarization components and conclude that they can all be accounted for by processes involving dust. Optical continuum polarization and broad features associated with the Balmer emission lines are due to scattering into the line of sight, of radiation from an obscured Seyfert I nucleus. We argue that the scattering is probably by dust in the narrow line region, but cannot exclude the possibility of electron scattering. (author)

  10. Polarized photomodulated reflectivity and photoluminescence studies of ordered InGaP2 under pressure

    International Nuclear Information System (INIS)

    Thomas, R.J.; Chandrasekhar, H.R.; Chandrasekhar, M.; Jones, E.D.; Schneider, R.P. Jr.

    1994-01-01

    Spontaneous ordering of ternary alloys grown on misoriented substrates has been of recent interest. Ordering induced band gap reduction, and valence band splittings exhibiting novel polarization properties have been investigated by theory and experiment. This paper discusses polarized photomodulated reflectivity (PR) and photoluminescence (PL) studies of MOCVD grown InGaP 2 epilayers lattice-matched to a GaAs substrate. These structures were grown on a (001) face with a niisorientation of two degrees along . The high degree of ordering has enabled us to accurately measure the crystal field splitting and additional structure not reported in the PR spectra. For the electric field E parallel to [110] two features in the PR spectra are seen; for E parallel[110], however, additional features are observed. Comparison with spectra of disordered samples of the same alloy composition has enabled a determination of the band gap reduction due to ordering. Linewidths of the PR peaks are approximately 5--10 meV which has enabled us to study them in detail as a function of hydrostatic pressure at cryogenic temperatures. The pressure dependence is slightly sublinear with the first order term of 8--9 meV/kbar for pressures well below the l-X crossover. Also observed is the indirect level crossing which occurs under pressure at about 40-kbar. A comparison of PR lineshapes at 1-bar is also presented at several commonly used experimental temperatures. Data indicate a substantial change in PR lineshapes, showing that interpretation of reflectivity data for these samples must be handled carefully

  11. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Java programs called Featureous that addresses this issue. Featureous allows a programmer to easily establish feature-code traceability links and to analyze their characteristics using a number of visualizations. Featureous is an extension to the NetBeans IDE, and can itself be extended by third...

  12. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  13. Oocytes Polar Body Detection for Automatic Enucleation

    Directory of Open Access Journals (Sweden)

    Di Chen

    2016-02-01

    Full Text Available Enucleation is a crucial step in cloning. In order to achieve automatic blind enucleation, we should detect the polar body of the oocyte automatically. The conventional polar body detection approaches have low success rate or low efficiency. We propose a polar body detection method based on machine learning in this paper. On one hand, the improved Histogram of Oriented Gradient (HOG algorithm is employed to extract features of polar body images, which will increase success rate. On the other hand, a position prediction method is put forward to narrow the search range of polar body, which will improve efficiency. Experiment results show that the success rate is 96% for various types of polar bodies. Furthermore, the method is applied to an enucleation experiment and improves the degree of automatic enucleation.

  14. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. G. [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China); College of Science, National University of Defense Technology, Changsha, 410073 (China); Jiang, Q. Y.; Zhan, X.; Chen, Y. D.; Luo, H., E-mail: luohui.luo@163.com [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China)

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At low pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.

  15. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    Science.gov (United States)

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  16. Building the Platform of Digital Earth with Sphere Split Bricks

    Directory of Open Access Journals (Sweden)

    WANG Jinxin

    2015-06-01

    Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.

  17. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  18. Polarized fine structure in the excitation spectrum of a negatively charged quantum dot

    OpenAIRE

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Badescu, S. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-01-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of qua...

  19. Design technique for all-dielectric non-polarizing beam splitter plate

    Science.gov (United States)

    Rizea, A.

    2012-03-01

    There are many situations when, for the proper working, an opto-electronic device requiring optical components does not change the polarization state of light after a reflection, splitting or filtering. In this paper, a design for a non-polarizing beam splitter plate is proposed. Based on certain optical properties of homogeneous dielectric materials we will establish a reliable thin film package formula, excellent for the start of optimization to obtain a 20-nm bandwidth non-polarizing beam splitter.

  20. Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2012-12-01

    We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting

  1. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  2. Feature Article

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Feature Article. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 80-85 Feature Article. What's New in Computers Windows 95 · Vijnan Shastri · More Details Fulltext PDF. Volume 1 Issue 1 January 1996 pp 86-89 Feature ...

  3. A novel hypothesis splitting method implementation for multi-hypothesis filters

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Andersen, Nils Axel

    2013-01-01

    The paper presents a multi-hypothesis filter library featuring a novel method for splitting Gaussians into ones with smaller variances. The library is written in C++ for high performance and the source code is open and free1. The multi-hypothesis filters commonly approximate the distribution tran...

  4. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.; California Univ., Berkeley

    1988-01-01

    One of the unique features of the SLC is its capability to accelerate longitudinally polarized electrons. The SLC polarization group has been performed to implement the polarization program at the SLC. Technically the polarization project consists of three main parts: (1) a polarized source, (2) spin-rotating superconducting solenoid magnets to be used to manipulate the direction of the electron spin, and (3) the polarimeters needed to monitor and measure the electron beam polarization. It is this last topic that will concern us here. Two types of polarimeters will be used - Compton and Moeller. (orig./HSI)

  5. Evaluation of Mandibular Anatomy Associated With Bad Splits in Sagittal Split Ramus Osteotomy of Mandible.

    Science.gov (United States)

    Wang, Tongyue; Han, Jeong Joon; Oh, Hee-Kyun; Park, Hong-Ju; Jung, Seunggon; Park, Yeong-Joon; Kook, Min-Suk

    2016-07-01

    This study aimed to identify risk factors associated with bad splits during sagittal split ramus osteotomy by using three-dimensional computed tomography. This study included 8 bad splits and 47 normal patients without bad splits. Mandibular anatomic parameters related to osteotomy line were measured. These included anteroposterior width of the ramus at level of lingula, distance between external oblique ridge and lingula, distance between sigmoid notch and inferior border of mandible, mandibular angle, distance between inferior outer surface of mandibular canal and inferior border of mandible under distal root of second molar (MCEM), buccolingual thickness of the ramus at level of lingula, and buccolingual thickness of the area just distal to first molar (BTM1) and second molar (BTM2). The incidence of bad splits in 625 sagittal split osteotomies was 1.28%. Compared with normal group, bad split group exhibited significantly thinner BTM2 and shorter sigmoid notch and inferior border of mandible (P bad splits. These anatomic data may help surgeons to choose the safest surgical techniques and best osteotomy sites.

  6. An algorithm for the split-feasibility problems with application to the split-equality problem.

    Science.gov (United States)

    Chuang, Chih-Sheng; Chen, Chi-Ming

    2017-01-01

    In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

  7. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang; Wang, Jun; Vouga, Etienne; Wonka, Peter

    2013-01-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  8. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-06

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  9. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  10. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  11. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  12. Hadronic vacuum polarization in true muonium

    Science.gov (United States)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  13. An efficient source of continuous variable polarization entanglement

    DEFF Research Database (Denmark)

    Dong, R.; Heersink, J.; Yoshikawa, J.-I.

    2007-01-01

    classical excitation in Ŝ3. Polarization entanglement was generated by interfering two independent polarization squeezed fields on a symmetric beam splitter. The resultant beams exhibit strong quantum noise correlations in the dark Ŝ1-Ŝ2 polarization plane. To verify entanglement generation, we......We have experimentally demonstrated the efficient creation of highly entangled bipartite continuous variable polarization states. Exploiting an optimized scheme for the production of squeezing using the Kerr non-linearity of a glass fibre we generated polarization squeezed pulses with a mean...... was found to depend critically on the beam-splitting ratio of the entangling beam splitter. Carrying out measurements on a different set of conjugate Stokes parameters, correlations of -3.6 ±0.3 and -3.4 ±0.3 dB have been observed. This result is more robust against asymmetries in the entangling beam...

  14. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  15. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  16. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  17. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  18. On geometrical splitting in nonanalog Monte Carlo

    International Nuclear Information System (INIS)

    Lux, I.

    1985-01-01

    A very general geometrical procedure is considered, and it is shown how the free flights, the statistical weights and the contribution of particles participating in splitting are to be chosen in order to reach unbiased estimates in games where the transition kernels are nonanalog. Equations governing the second moment of the score and the number of flights to be stimulated are derived. It is shown that the post-splitting weights of the fragments are to be chosen equal to reach maximum gain in variance. Conditions are derived under which the expected number of flights remains finite. Simplified example illustrate the optimization of the procedure (author)

  19. Reversible perspective and splitting in time.

    Science.gov (United States)

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  20. Electron interactions with polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1981-01-01

    A description is given of a number of the features of discrete and continuous spectra of electrons interacting with polar molecules. Attention is focused on the extent to which theoretical predictions concerning cross sections, resonances, and bound states are strongly influenced by the various approximations that are so ubiquitous in the treatment of such problems. Similarly, threshold scattering and photodetachment processes are examined for the case of weakly bound dipole states whose higher members overlap the continuum

  1. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  2. Induced Rashba splitting of electronic states in monolayers of Au, Cu on a W(110) substrate

    International Nuclear Information System (INIS)

    Shikin, A M; Rybkina, A A; Rybkin, A G; Marchenko, D; Korshunov, A S; Kudasov, Yu B; Frolova, N V; Sánchez-Barriga, J; Varykhalov, A; Rader, O

    2013-01-01

    The paper sums up a theoretical and experimental investigation of the influence of the spin–orbit coupling in W(110) on the spin structure of electronic states in deposited Au and Cu monolayers. Angle-resolved photoemission spectroscopy reveals that in the case of monolayers of Au and Cu spin–orbit split bands are formed in a surface-projected gap of W(110). Spin resolution shows that these states are spin polarized and that, therefore, the spin–orbit splitting is of Rashba type. The states evolve from hybridization of W 5d, 6p-derived states with the s, p states of the deposited metal. Interaction with Au and Cu shifts the original W 5d-derived states from the edges toward the center of the surface-projected gap. The size of the spin–orbit splitting of the formed states does not correlate with the atomic number of the deposited metal and is even higher for Cu than for Au. These states can be described as W-derived surface resonances modified by hybridization with the p, d states of the adsorbed metal. Our electronic structure calculations performed in the framework of the density functional theory correlate well with the experiment and demonstrate the crucial role of the W top layer for the spin–orbit splitting. It is shown that the contributions of the spin–orbit interaction from W and Au act in opposite directions which leads to a decrease of the resulting spin–orbit splitting in the Au monolayer on W(110). For the Cu monolayer with lower spin–orbit interaction the resulting spin splitting is higher and mainly determined by the W. (paper)

  3. High Q-factor metasurfaces based on miniaturized asymmetric single split resonators

    Science.gov (United States)

    Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin

    2009-04-01

    We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.

  4. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Relationship between electromagnetically-induced transparency and Autler–Townes splitting in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Zuo Zhan-Chun; Wu Ling-An; Fu Pan-Ming

    2015-01-01

    We study the relationship between electromagnetically-induced transparency (EIT) and Autler–Townes (AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra. (paper)

  6. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Y.; Yokoyama, T. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hagenaar, H. J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.

  7. Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves

    Science.gov (United States)

    Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.

    2017-12-01

    New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.

  8. Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate

    Science.gov (United States)

    Xu, Lei; Yang, Ming; Shen, Lei; Zhou, Jun; Zhu, Tao; Feng, Yuan Ping

    2018-01-01

    Lifting the valley degeneracy is an efficient way to achieve valley polarization for further valleytronics operations. In this Rapid Communication, we demonstrate that a large valley splitting can be obtained in monolayer transition metal dichalcogenides by magnetic proximity coupling to an insulating antiferromagnetic substrate. As an example, we perform first-principles calculations to investigate the electronic structures of monolayer WS2 on the MnO(111) surface. Our calculation results suggest that a large valley splitting of 214 meV, which corresponds to a Zeeman magnetic field of 1516 T, is induced in the valence band of monolayer WS2. The magnitude of valley splitting relies on the strength of interfacial orbital hybridization and can be tuned continually by applying an external out-of-plane pressure and in-plane strain. More interestingly, we find that both spin and valley index will flip when the magnetic ordering of MnO is reversed. Besides, owing to the sizable Berry curvature and time-reversal symmetry breaking in the WS2/MnO heterostructure, a spin- and valley-polarized anomalous Hall current can be generated in the presence of an in-plane electric field, which allows one to detect valleys by the electrical approach. Our results shed light on the realization of valleytronic devices using the antiferromagnetic insulator as the substrate.

  9. The split delivery capacitated team orienteering problem

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.; Hertz, A.

    2014-01-01

    In this article, we study the capacitated team orienteering problem where split deliveries are allowed. A set of potential customers is given, each associated with a demand and a profit. The set of customers to be served by a fleet of capacitated vehicles has to be identified in such a way that the

  10. "Split Cast Mounting: Review and New Technique".

    Science.gov (United States)

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  11. Splitting up Beta’s change

    OpenAIRE

    Suarez, Ronny

    2014-01-01

    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  12. Forced splitting of fractions in CE

    NARCIS (Netherlands)

    Zalewski, D.R.; Schlautmann, Stefan; Gardeniers, Johannes G.E.

    2008-01-01

    In order to increase the electrophoretic separation between fractions of analytes on a microfluidic chip, without the need for a longer separation channel, we propose and demonstrate a preparative electrokinetic procedure by which overlapping or closely spaced fractions are automatically split. The

  13. Hyperfine splitting in ordinary and muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2018-01-15

    We provide an accurate evaluation of the two-photon exchange correction to the hyperfine splitting of S energy levels in muonic hydrogen exploiting the corresponding measurements in electronic hydrogen. The proton structure uncertainty in the calculation of α{sup 5} contribution is sizably reduced. (orig.)

  14. Source splitting via the point source method

    International Nuclear Information System (INIS)

    Potthast, Roland; Fazi, Filippo M; Nelson, Philip A

    2010-01-01

    We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields u j , j = 1, ..., n of n element of N sound sources supported in different bounded domains G 1 , ..., G n in R 3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u 1 + ... + u n on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g 1 ,…, g n , n element of N, to construct u l for l = 1, ..., n from u| Λ in the form u l (x) = ∫ Λ g l,x (y)u(y)ds(y), l=1,... n. (1) We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online

  15. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  16. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  17. Split brain : Divided perception but undivided consciousness

    NARCIS (Netherlands)

    Pinto, Y.; Neville, D.A.; Otten, M.; Corballis, P.M.; Lamme, V.A.F.; de Haan, E.H.F.; Foschi, N.; Fabri, M.

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a

  18. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  20. Splitting of the Ti-3d bands of TiSe{sub 2} in the charge-density wave phase

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A., E-mail: aa.ghafari@gmail.com [Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149, Trieste (Italy); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Petaccia, L. [Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149, Trieste (Italy); Janowitz, C. [Institute of Physics, Humboldt-University of Berlin, Newtonst. 15, D-12489, Berlin (Germany)

    2017-02-28

    Highlights: • Angle resolved photoemission spectroscopy (ARPES). • Charge density wave (CDW). • TiSe{sub 2}- Splitting of the conduction bands. Horizontal and vertical polarizations. Temperature dependence. - Abstract: Very high resolution angular resolved photoemission (ARPES) spectra on TiSe{sub 2} in two distinct polarization geometries (vertical and horizontal) at temperatures between 300 K and 22 K enabled the observation of details of bands near the Fermi level not reported so far. Calculations of the electronic band structure based on density functional theory (DFT) using B3LYP hybrid functional and MBJ potential (with and without spin-orbit coupling) were performed to obtain the orbital symmetry and dispersion. Two degenerate conduction bands (CB’s) were observed at the Γ-point, a weak CB- emission at the A-point, and two non degenerate CB’s (i.e. splitting of CB) at the M/L-point of the Brillouin Zone (BZ). The splitting was detected at L for both polarizations, while at M remarkably only for horizontal polarization. These results cannot be fully accounted for by current theories for the charge density wave (CDW) and point to a reduced symmetry of the electronic states, possibly due to the chiral CDW.

  1. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  2. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  3. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    Science.gov (United States)

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  4. AN ARECIBO SURVEY FOR ZEEMAN SPLITTING IN OH MEGAMASER GALAXIES

    International Nuclear Information System (INIS)

    McBride, James; Heiles, Carl

    2013-01-01

    We present the results of a comprehensive survey using the Arecibo Observatory for Zeeman splitting of OH lines in OH megamasers (OHMs). A total of 77 sources were observed with the Arecibo telescope. Of these, maser emission could not be detected for eight sources, and two sources were only ambiguously detected. Another 27 sources were detected at low signal-to-noise ratios or with interference that prevented placing any useful limits on the presence of magnetic fields. In 26 sources, it was possible to place upper limits on the magnitude of magnetic fields, typically between 10 and 30 mG. For 14 sources, the Stokes V spectra exhibit features consistent with Zeeman splitting. Eleven of these 14 are new detections, and the remaining three are re-detections of Stokes V detections in Robishaw et al. Among confident new detections, we derive magnetic fields associated with maser regions with magnitudes ranging from 6.1 to 27.6 mG. The distribution of magnetic field strengths suggests the magnetic fields in OH masing clouds in OHMs are larger than those in Galactic OH masers. The results are consistent with magnetic fields playing a dynamically important role in OH masing clouds in OHMs.

  5. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt νe burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a “split” occurs in the emerging spectrum, i.e., the νe flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  6. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification

  7. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    Science.gov (United States)

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of Partially Polarized Light Fields

    CERN Document Server

    Martínez-Herrero, Rosario; Piquero, Gemma

    2009-01-01

    Polarization involves the vectorial nature of light fields. In current applications of optical science, the electromagnetic description of light with its vector features has been shown to be essential: In practice, optical radiation also exhibits randomness and spatial non-uniformity of the polarization state. Moreover, propagation through photonic devices can alter the correlation properties of the light field, resulting in changes in polarization. All these vectorial properties have been gaining importance in recent years, and they are attracting increasing attention in the literature. This is the framework and the scope of the present book, which includes the authors’ own contributions to these issues.

  9. Sample preparation and electrochemical data of Co3O4 working electrode for seawater splitting

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, we presented the electrochemical data of the working electrode made of Co3O4 semi-transparent film. Electrochemically stable, porous nature of Kirkendall-diffusion grown Co3O4 films were applied to generate hydrogen from the seawater splitting (Patel et al., 2017 [1]. The data presented in this article includes the photograph of prepared samples, polarization curves for water oxidation and Tafel plot, linear sweep voltammetry measurements under the pulsed light condition in 0.1 M Na2S2O3 electrolyte, and transient photoresponses with natural sea water. Moreover, seawater splitting using the Co3O4 working electrode is demonstrated.

  10. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  11. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  12. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  13. Split2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors.

    Science.gov (United States)

    Moll, Jens M; Wehmöller, Melanie; Frank, Nils C; Homey, Lisa; Baran, Paul; Garbers, Christoph; Lamertz, Larissa; Axelrod, Jonathan H; Galun, Eithan; Mootz, Henning D; Scheller, Jürgen

    2017-12-15

    Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E 134 /S 135 ) and IL-11 (G 116 /S 117 ) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.

  14. Checking the Adequacy of Fit of Models from Split-Plot Designs

    DEFF Research Database (Denmark)

    Almini, A. A.; Kulahci, Murat; Montgomery, D. C.

    2009-01-01

    models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types......One of the main features that distinguish split-plot experiments from other experiments is that they involve two types of experimental errors: the whole-plot (WP) error and the subplot (SP) error. Taking this into consideration is very important when computing measures of adequacy of fit for split-plot...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...

  15. Policy options for the split incentive: Increasing energy efficiency for low-income renters

    International Nuclear Information System (INIS)

    Bird, Stephen; Hernández, Diana

    2012-01-01

    The split incentive problem concerns the lack of appropriate incentives to implement energy efficiency measures. In particular, low income tenants face a phenomenon of energy poverty in which they allocate significantly more of their household income to energy expenditures than other renters. This problem is substantial, affecting 1.89% of all United States' energy use. If effectively addressed, it would create a range of savings between 4 and 11 billion dollars per year for many of the nation's poorest residents. We argue that a carefully designed program of incentives for participants (including landlords) in conjunction with a unique type of utility-managed on-bill financing mechanism has significant potential to solve many of the complications. We focus on three kinds of split incentives, five concerns inherent to addressing split incentive problems (scale, endurance, incentives, savings, political disfavor), and provide a detailed policy proposal designed to surpass those problems, with a particular focus on low-income tenants in a U.S. context. - Highlights: ► We demonstrate the significant impact of the split incentive on low-income tenants. ► We discuss split incentive characteristics, and policy failures. ► We described an on-bill financing model with unique features. ► This policy has protections and incentives for tenants and landlords.

  16. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-24

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  17. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-01-01

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  18. Feature Extraction

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  19. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  20. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  1. Arabic Feature-Based Level Sentiment Analysis Using Lexicon ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... structured reviews being prior knowledge for mining unstructured reviews. ... FDSO has been introduced, which defines a space of product features ... polarity of a review using feature ontology and sentiment lexicons.

  2. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  3. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  4. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  5. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  6. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  7. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2014-01-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold

  8. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-01-01

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor

  9. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  10. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  11. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  12. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  13. Temporal self-splitting of optical pulses

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  14. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  15. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  16. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  17. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... on fossil fuels as primary feedstock for hydrogen production and diminish the emission of greenhouse gases in the atmosphere, weakening the global warming phenomenon.The dissertation reports the development of GaP (gallium phosphide) photocathodes as a large bandgap semiconductor for photoelectrochemical...... water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...

  18. Isospin breaking in octet baryon mass splittings

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics

    2012-06-15

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Both the linear and quadratic terms in the SU(3) flavour symmetry breaking expansion are considered; it is found that the quadratic terms only change the result by a few percent, indicating that the expansion is highly convergent.

  19. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  20. Splitting of inviscid fluxes for real gases

    Science.gov (United States)

    Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun

    1990-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  1. BILATERAL SAGITAL SPLIT OSTEOTOMY PADA MANDIBULA PROGNATI

    Directory of Open Access Journals (Sweden)

    Pradono Pradono

    2015-07-01

    Full Text Available A young girl 20 years old with mandibular prognathism, has been treated with orthodontics and surgical treatment in between. Mandibular set back was done intra orally 5 mm length and bilateral sagital split ramus osteotomy method. And rigid fixation was done by inserting three 2 mm bicortical screws for stabilizing the fragment. This method allowed the bony segments to heal properly and allowed the patients to function sooner.

  2. GD 358 - the demise of rotational splitting?

    International Nuclear Information System (INIS)

    Hill, J.A.

    1987-01-01

    Observations of GD 358 were obtained at the McDonald Observatory in 1982 and 1985 in order to determine its periods, stability, and rates of period change. The period structure could not be resolved, and the results indicate that GD 358 does not fit the rotational splitting model. It is suggested that if the changes in the amplitude spectra of GD 358 are due to beating of stable modes, then the number of modes must be large. 7 references

  3. Multiplet mass splitting in a gravitational field

    International Nuclear Information System (INIS)

    Maia, M.D.

    An expression for the mass splitting of particles belonging to the same spin multiplet defined in a space-time of general relativity is derived. The geometrical symmetry is a subgroup of SO(r,s), 9 >=r > 3, 5 >=s >=1, the mass operator being proportional to the second order Casimir operator of that subgroup. A brief analysis of the calculated values as compared to the experimental data is included. (Author) [pt

  4. Cost of splitting in Monte Carlo transport

    International Nuclear Information System (INIS)

    Everett, C.J.; Cashwell, E.D.

    1978-03-01

    In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined

  5. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović

    2017-07-01

    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  6. Analysis of the polarization characteristic of a satellite-to-ground laser communication optical system

    Science.gov (United States)

    Wang, Chao; Jiang, Lun; An, Yan; Doug, Ke-yan; Zhang, Ya-lin

    2015-10-01

    We present three rotation symmetric planar metamaterials and consist of 3, 4 and 6 split resonant rings (SRRs) respectively, proved that they are polarization-insensitive. The modulation characters constructed by the three planar metamaterials are also studied and compared to demonstrate that the structure with more even rotation symmetry is much more beneficial to be polarization-independence. Furthermore, the influencing rules of the electrodes on the polarization character of metamaterials are obtained. The polarization character can be converted by tailoring the electrodes which provides a guide to construct and design novel terahertz polarimetirc devices for potential applications.

  7. Effect of nonaxial and hexadecapole deformation on the hyperfine splitting of energy levels in 238U muonic atoms

    International Nuclear Information System (INIS)

    Bagaev, V.I.; Mikhajlov, I.N.; Ortlepp, Kh.G.; Fromm, V.D.

    1979-01-01

    The effect of nonaxial and hexadecapole deformation on spectra of moun atoms is considered, the model of rigid nonaxial rotator being used. Experimental data on μ -238 U obtained on the JINR synchrocyclotron are presented. The effect of monopolar, quadrupolar and hexadecapolar parts of potential on muon spectrum is studied using a separated beam of negative 105 MeV/c muons, as the contribution of other harmonics is negligible. Wave functions of 238 U nucleus are determined in the framework of the Davydov-Filipov model. The values of charge distribution parameters obtained for 238 U are compared with available ones. The comparison shows that the effect of nuclear polarization on quadrupolar splitting of n→n-1 transitions decreases with the growth of n. Quadrupolar splitting of 4F→3D transitions is sufficiently large for experimental studies. Besides, vacuum polarization, radial charge distribution etc. produce an insignificant effect on the above transitions

  8. Influences of optical elements on the polarization measurement

    International Nuclear Information System (INIS)

    Goto, M.; Hayakawa, M.; Atake, M.; Iwamae, A.

    2004-01-01

    An emission line of He I λ 667.8 nm is observed and the Large Helical Device (LHD) with a polarimeter, with which two linearly polarized components if the light from the same line of sight is simultaneously measured. The emission line exhibits splitting due to the normal Zeeman effect and the π and σ lights are respectively observed. The results indicate the polarization state of emission lines is different from our expectation. From two measurements, for the second of which the polarimeter is rotated 45 degrees form the first, the polarization ellipses of all the three polarized lights are determined. Some observations for a reversed magnetic field plasma operation, for different emission lines of different ions, and also for operation with some different magnetic field strengths suggest that the distortion state originates not in the atomic radiation itself or the plasma condition, but in the optical window at the observation port of the vacuum chamber. (author)

  9. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  10. On the additive splitting procedures and their computer realization

    DEFF Research Database (Denmark)

    Farago, I.; Thomsen, Per Grove; Zlatev, Z.

    2008-01-01

    Two additive splitting procedures are defined and studied in this paper. It is shown that these splitting procedures have good stability properties. Some other splitting procedures, which are traditionally used in mathematical models used in many scientific and engineering fields, are sketched. All...

  11. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  12. 26 CFR 1.7872-15 - Split-dollar loans.

    Science.gov (United States)

    2010-04-01

    ...'s death benefit proceeds, the policy's cash surrender value, or both. (ii) Payments that are only... regarding certain split-dollar term loans payable on the death of an individual, certain split-dollar term... insurance arrangement make a representation—(i) Requirement. An otherwise noncontingent payment on a split...

  13. Ab initio calculation of hyperfine splitting constants of molecules

    Science.gov (United States)

    Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.

    1980-08-01

    Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.

  14. Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting

    Science.gov (United States)

    Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao

    2017-10-01

    Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.

  15. The Rashba-split surface state of Sb{sub 2}Te{sub 3}(0 0 0 1) and its interaction with bulk states

    Energy Technology Data Exchange (ETDEWEB)

    Seibel, Christoph; Maaß, Henriette [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Bentmann, Hendrik, E-mail: Hendrik.Bentmann@physik.uni-wuerzburg.de [Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Braun, Jürgen [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); Sakamoto, Kazuyuki [Department of Nanomaterials Science, Chiba University, Chiba 263-8522 (Japan); Arita, Masashi; Shimada, Kenya [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Minár, Jan [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Ebert, Hubert [Department Chemie, Physikalische Chemie, Universität München, Butenandtstrasse 5-13, D-81377 München (Germany); and others

    2015-05-15

    Highlights: • We investigate a spin–orbit split surface state on the Sb{sub 2}Te{sub 3}(0 0 0 1) surface. • The spin-splitting and dispersion follow the Rashba model at small wave vectors. • At higher wave vectors the spin-splitting shows an unsual non-monotonic evolution. • The spin-polarized surface bands connect with different bulk bands at the gap edge. - Abstract: The electronic structure of the Sb{sub 2}Te{sub 3}(0 0 0 1) surface exhibits a spin–orbit split surface state in a local energy gap of the projected bulk valence band continuum. We investigate this surface state by high-resolution angle-resolved photoemission spectroscopy (ARPES), spin-resolved ARPES and relativistic one-step photoemission calculations. At low wave vectors the dispersion and spin splitting are well-captured by the predictions of the Rashba model for a two-dimensional electron system. With increasing wave vectors, however, the surface state dispersion becomes more complex and the spin splitting size exhibits an unusual non-monotonic evolution. These deviations from the Rashba model arise from the influence of bulk continuum states near the edge of the projected gap. The spin polarization of the surface state remains intact despite the coupling to bulk states.

  16. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  17. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  18. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  19. One-loop calculations of photon splitting in relativistic quantum plasma by Green's function technique

    International Nuclear Information System (INIS)

    De la Incera, V.; Ferrer, E.; Shalad, A.Y.

    1987-01-01

    A homogeneous and isotropic plasma made up of electrons and positrons is examined. The coefficients of the covariant expansion of the three-photon vertex are calculated in the one-loop approximation of the Green's function technique, together with the probability amplitudes of various processes involving three photons that produce information on the probability of the polarization states of the incoming and outgoing photons in the splitting process. The calculation results are used to verify the consequences of all exact symmetries which must be done for the vertex tensor. The case of a charge-symmetric plasma is considered together with the special case of photon collinearity

  20. Photo- and radiation-chemical stability of molecules. Reactions of monomolecular hydrogen atom splitting off

    International Nuclear Information System (INIS)

    Plotnikov, V.G.; Ovchinnikov, A.A.

    1978-01-01

    In the review of works published up to 1978 one of the main problems of radiation chemistry is discussed, namely the relationship between the structure of organic molecules and their resistance to the effect of ionizing radiation. Theoretical aspects of this problem are considered for reactions of monomolecular hydrogen atom splitting off. It is shown that the radical yield in low-temperature radiation-chemical experiments is connected with the position of lower triplet states of molecules, ionization potentials, polarity of medium and the energy of C-H bonds in cation radicals

  1. Experimental study of broadband unidirectional splitting in photonic crystal gratings with broken structural symmetry

    Science.gov (United States)

    Colak, Evrim; Serebryannikov, Andriy E.; Ozgur Cakmak, A.; Ozbay, Ekmel

    2013-04-01

    It is experimentally demonstrated that the combination of diode and splitter functions can be realized in one broadband reciprocal device. The suggested performance is based on the dielectric photonic crystal grating whose structural symmetry is broken owing to non-deep corrugations placed at one of the two interfaces. The study has been performed at a normally incident beam-type illumination obtained from a microwave horn antenna. The two unidirectionally transmitted, deflected beams can show large magnitude and high contrast, while the angular distance between their maxima is 90° and larger. The dual-band unidirectional splitting is possible when using TM and TE polarizations.

  2. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  3. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  4. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  5. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  6. Splitting methods for split feasibility problems with application to Dantzig selectors

    International Nuclear Information System (INIS)

    He, Hongjin; Xu, Hong-Kun

    2017-01-01

    The split feasibility problem (SFP), which refers to the task of finding a point that belongs to a given nonempty, closed and convex set, and whose image under a bounded linear operator belongs to another given nonempty, closed and convex set, has promising applicability in modeling a wide range of inverse problems. Motivated by the increasingly data-driven regularization in the areas of signal/image processing and statistical learning, in this paper, we study the regularized split feasibility problem (RSFP), which provides a unified model for treating many real-world problems. By exploiting the split nature of the RSFP, we shall gainfully employ several efficient splitting methods to solve the model under consideration. A remarkable advantage of our methods lies in their easier subproblems in the sense that the resulting subproblems have closed-form representations or can be efficiently solved up to a high precision. As an interesting application, we apply the proposed algorithms for finding Dantzig selectors, in addition to demonstrating the effectiveness of the splitting methods through some computational results on synthetic and real medical data sets. (paper)

  7. Polarization of positronium in amorphous polar polymers: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Consolati, G., E-mail: giovanni.consolati@polimi.it; Quasso, F. [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, Milano 20156 (Italy)

    2013-11-28

    The features of positronium in an amorphous copolymer (polyvinyl acetate-crotonic acid) in a range of temperatures including the glass transition were investigated by means of positron annihilation lifetime spectroscopy. In particular, para-positronium lifetime was found to be longer than in a vacuum and to decrease with the temperature. This was attributed to the electron density at the positron (contact density), which is lower than in vacuo due to the presence of polar groups in the copolymer. A three quantum yield experiment confirmed the lifetime results.

  8. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics-ITB, Jl. Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia); Hananto, Nugroho D. [Research Centre for Geotechnology -LIPI, Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T.; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Puspiptek Serpong 15314,Indonesia (Indonesia)

    2016-03-11

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with the earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.

  9. Polarization preservation and control in a figure-8 ring

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058; Filatov, Yuri [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  10. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  11. Mantle Flow Implications across Easter and Southern Africa from Shear Wave Splitting Measurements

    Science.gov (United States)

    Ramirez, C.; Nyblade, A.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D.; van der Meijde, M.

    2015-12-01

    In this study, we present new shear wave splitting results from broadband seismic stations in Botswana and Namibia, and combine them with previous results from stations in Kenya, Uganda, Tanzania, Malawi, Zambia, South Africa, Mozambique, Zimbabwe, and Angola to further examine the pattern of seismic anisotropy across southern Africa. The new results come from stations in northern Namibia and Botswana, which help to fill in large gaps in data coverage. Our preliminary results show that fast polarization directions overall trend in a NE orientation. The most noticeable measurements that deviate from this pattern are located around the Archean Tanzania Craton in eastern Africa. The general NE pattern of fast polarization directions is attributed to mantle flow linked to the African superplume. Smaller scale variations from this general direction can be explained by shape anisotropy in the lithosphere in magmatic regions in the East African rift system and to fossil anisotropy in the Precambrian lithosphere.

  12. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  13. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  14. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  15. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  16. Relationship between mandibular anatomy and the occurrence of a bad split upon sagittal split osteotomy.

    Science.gov (United States)

    Aarabi, Mohammadali; Tabrizi, Reza; Hekmat, Mina; Shahidi, Shoaleh; Puzesh, Ayatollah

    2014-12-01

    A bad split is a troublesome complication of the sagittal split osteotomy (SSO). The aim of this study was to evaluate the relation between the occurrence of a bad split and mandibular anatomy in SSO using cone-beam computed tomography. The authors designed a cohort retrospective study. Forty-eight patients (96 SSO sites) were studied. The buccolingual thickness of the retromandibular area (BLR), the buccolingual thickness of the ramus at the level of the lingula (BLTR), the height of the mandible from the alveolar crest to the inferior border of the mandible, (ACIB), the distance between the sigmoid notch and the inferior border of the mandible (SIBM), and the anteroposterior width of the ramus (APWR) were measured. The independent t test was applied to compare anatomic measurements between the group with and the group without bad splits. The receiver operating characteristic (ROC) test was used to find a cutoff point in anatomic size for various parts of the mandible related to the occurrence of bad splits. The mean SIBM was 47.05±6.33 mm in group 1 (with bad splits) versus 40.66±2.44 mm in group 2 (without bad splits; P=.01). The mean BLTR was 5.74±1.11 mm in group 1 versus 3.19±0.55 mm in group 2 (P=.04). The mean BLR was 14.98±2.78 mm in group 1 versus 11.21±1.29 mm in group 2 (P=.001). No statistically significant difference was found for APWR and ACIB between the 2 groups. The ROC test showed cutoff points of 10.17 mm for BLR, 36.69 mm for SIBM, and 4.06 mm for BLTR. This study showed that certain mandibular anatomic differences can increase the risk of a bad split during SSO surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  18. Joining-Splitting Interaction of Noncritical String

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The joining-splitting interaction of noncritical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. The general properties of the Liouville longitudinal excitations which are necessary and sufficient for the Lorentz covariance of the light-cone amplitudes are derived. The results suggest that the covariant and the light-cone approach are equivalent also in the noncritical dimensions. Some aspects of unitarity of interacting noncritical massive string theory are discussed.

  19. Permutation 2-groups I: structure and splitness

    OpenAIRE

    Elgueta, Josep

    2013-01-01

    By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a one-object 2-group. By a permutation 2-group we mean the 2-group $\\mathbb{S}ym(\\mathcal{G})$ of self-equivalences of a groupoid $\\mathcal{G}$ and natural isomorphisms between them, with the product given by composition of self-equivalences. These generalize the symmetric groups $\\mathsf{S}_n$, $n\\geq 1$, obtained when $\\mathca...

  20. Random tree growth by vertex splitting

    International Nuclear Information System (INIS)

    David, F; Dukes, W M B; Jonsson, T; Stefánsson, S Ö

    2009-01-01

    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalizes the preferential attachment model and Ford's α-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from 1 to ∞, depending on the parameters of the model

  1. Split coaxial RFQ structure with modulated vanes

    International Nuclear Information System (INIS)

    Arai, S.

    1983-10-01

    A new split coaxial RFO structure with modulated vanes is proposed. The structure is designed to accelerate 238 U 4+ from 1.68 keV/u to 45.1 keV/u at frequency of 12.5 MHz. The cavity is 1.6 m in diameter and 8 m in length. The cavity consists of four cavity modules divided by three stems which support horizontal and vertical vanes periodically and alternatively. At the same time, problems on the beam dynamics and design procedures are described and discussed. (orig.)

  2. Injuries caused by firewood splitting machines.

    Science.gov (United States)

    Hellstrand, P H

    1989-01-01

    The aim of this paper is to present the types of injury caused by firewood splitting machines and also to elucidate the accident mechanism. The study is based on 15 cases. The machine has a rotating spiral cone, and usually the victims' gloved fingertips were caught by the point of the cone. This led to either amputations, usually of radial fingers and/or penetrating wounds through the middle of the hand. In most cases the accidents could not be blamed on bad working techniques. The study of the mechanisms of injury points to insufficient protective devices in a machine construction which has a potentially dangerous working principle.

  3. Electric Dipole Moments in Split Supersymmetry

    CERN Document Server

    Giudice, Gian Francesco

    2006-01-01

    We perform a quantitative study of the neutron and electron electric dipole moments (EDM) in Supersymmetry, in the limit of heavy scalars. The leading contributions arise at two loops. We give the complete analytic result, including a new contribution associated with Z-Higgs exchange, which plays an important and often leading role in the neutron EDM. The predictions for the EDM are typically within the sensitivities of the next generation experiments. We also analyse the correlation between the electron and neutron EDM, which provides a robust test of Split Supersymmetry.

  4. Multiparty hierarchical quantum-information splitting

    International Nuclear Information System (INIS)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun

    2011-01-01

    We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.

  5. Molecular concepts of water splitting. Nature's approach

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Nicholas; Lubitz, Wolfgang [Max-Planck-Institut fuer Chemische Energiekonversion, Muelheim an der Ruhr (Germany)

    2013-07-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  6. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  7. Clientalism and polarized voting: empirical evidence

    NARCIS (Netherlands)

    Gërxhani, K.; Schram, A.

    2009-01-01

    One must take country-specific institutional features into account when analyzing former communist countries’ transformation process to new political institutions. We do so for post-communist Albania, where the regional and cultural polarization that has existed for centuries has evolved to

  8. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  9. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  10. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  11. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  12. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  13. Anomalous signature splitting of the πh11/2direct x νi13/2 band in A-160 odd-odd nuclei

    International Nuclear Information System (INIS)

    Yang Chunxiang; Zhou Hongyu

    2003-01-01

    Systematic features of anomalous signature splitting of the πh 11/2 direct x νi 13/2 band in A-160 odd-odd nuclei have been investigated. It is shown that the mechanism of anomalous signature splitting is similar to that of the normal signature splitting which is essentially caused by the Coriolis mixing of Ω=1/2 components into the nuclear wavefunction and the anomalous splitting in signature is mainly caused by the definition. The extensively observed anomalous signature splitting in this band might be an indication that the interaction between the h 11/2 proton and the i 13/2 neutron cannot be neglected. The new observation of high- and low-K bands based on the same πh 11/2 direct x νi 13/2 configuration in 164 Tm is also discussed

  14. Apparent splitting of S waves propagating through an isotropic lowermost mantle

    KAUST Repository

    Parisi, Laura

    2018-03-24

    Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.

  15. Apparent splitting of S waves propagating through an isotropic lowermost mantle

    KAUST Repository

    Parisi, Laura; Ferreira, Ana M. G.; Ritsema, Jeroen

    2018-01-01

    Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.

  16. Splitting of the Pygmy Dipole Resonance

    International Nuclear Information System (INIS)

    Endres, J.; Zilges, A.; Butler, P.; Herzberg, R.-D.; Scheck, M.; Harakeh, M. N.; Harissopulos, S.; Lagoyannis, A.; Kruecken, R.; Ring, P.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Sonnabend, K.; Popescu, L.; Savran, D.; Stoica, V. I.; Woertche, H. J.

    2011-01-01

    In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ,γ') photon scattering method is used. In complementary (α,α'γ) coincidence experiments at E α = 136 MeV a similar γ-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ,γ') method a structural splitting of the PDR is observed in the N = 82 nuclei 138 Ba and 140 Ce and in the Z = 50 nucleus 124 Sn. The low energy part is excited in (γ,γ') as well as in (α,α'γ) while the high energy part is observed in (γ,γ') only. The experimental results together with theoretical QPM and RQTBA calculations on 124 Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of J π = 1 - states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).

  17. Splitting of the weak hypercharge quantum

    Science.gov (United States)

    Nielsen, H. B.; Brene, N.

    1991-08-01

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important rôle either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms.

  18. Splitting of the weak hypercharge quantum

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B.; Brene, N. (Niels Bohr Inst., Copenhagen (Denmark))

    1991-08-05

    The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity {chi} which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity {chi} has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important role either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity {chi} tends to be large for groups with few generalized automorphisms. (orig.).

  19. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  20. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  1. Zeeman splitting of surface-scattered neutrons

    International Nuclear Information System (INIS)

    Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.

    1995-01-01

    If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)

  2. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  3. The subapical compartment : a traffic center in membrane polarity development

    NARCIS (Netherlands)

    Hoekstra, D; Tyteca, D; van IJzendoorn, SCD

    2004-01-01

    Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces

  4. Moving Magnetic Features Around a Pore

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; VanNoort, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen D-37077 (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: anjali@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.

  5. Teleseismic SKS splitting beneath East Antarctica using broad-band stations around Soya Coast

    Science.gov (United States)

    Usui, Y.; Kanao, M.

    2006-12-01

    We observed shear wave splitting of SKS waves from digital seismographs that are recorded at 5 stations around Soya Coast in the Lutzow-Holm Bay, East Antarctica. Their recording systems are composed of a three-component broadband seismometer (CMG-40T), a digital recording unit and a solar power battery supply. The events used were selected from 1999 to 2004 and phase arrival times were calculated using the IASPEI91 earth model (Kennet, 1995). In general, we chose the data from earthquakes with m>6.0 and a distance range 85° < Δ < 130° for the most prominent SKS waves We used the methods of Silver and Chan (1991) for the inversion of anisotropy parameters and estimated the splitting parameters φ (fast polarization direction) and δt (delay time between split waves) assuming a single layer of hexagonal symmetry with a horizontal symmetry axis. The weighted averages of all splitting parameters (φ, δt) for each station are AKR (30±4, 1.30±0.2), LNG (58±6, 1.27±0.2), SKL (67±10, 0.94±0.2), SKV (40±6, 1.28±0.3) and TOT (52±8, 1.26±0.3), where the weights are inversely proportional to the standard deviations for each solution. As compared to typical delay times of SKS waves which show 1.2s (Silver and Chan 1991; Vinnik et al., 1992), the result shows generally the same value. In previous study, Kubo and Hiramatsu (1998) estimate the splitting parameter for Syowa station (SYO), where is located near our using stations in East Antarctica, and the results are (49±3, 0.70±0.1). Although it is consistent with our results for fast polarization direction, δt for our results are large relatively to those of SYO. The difference may be due to either different incident angle or more complex anisotropic structure. We found that fast polarization direction is systematically parallel to coast line in the Lutzow-Holm Bay, East Antarctica, which is consistent with NE-SW paleo compressional stress. The absolute plate motion based on the HS2-NUVEL1 (Gripp and Gordon

  6. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  7. Polarization phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1994-03-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g A on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x bj ; (b) consequences of the principle of hadron helicity retention in high x F inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F . The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron

  8. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  9. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  10. Quantitative analysis on electric dipole energy in Rashba band splitting.

    Science.gov (United States)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  11. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  12. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  13. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  14. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  15. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Molly McQuilken

    2017-05-01

    Full Text Available Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis.

  16. Featuring animacy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ritter

    2015-01-01

    Full Text Available Algonquian languages are famous for their animacy-based grammatical properties—an animacy based noun classification system and direct/inverse system which gives rise to animacy hierarchy effects in the determination of verb agreement. In this paper I provide new evidence for the proposal that the distinctive properties of these languages is due to the use of participant-based features, rather than spatio-temporal ones, for both nominal and verbal functional categories (Ritter & Wiltschko 2009, 2014. Building on Wiltschko (2012, I develop a formal treatment of the Blackfoot aspectual system that assumes a category Inner Aspect (cf. MacDonald 2008, Travis 1991, 2010. Focusing on lexical aspect in Blackfoot, I demonstrate that the classification of both nouns (Seinsarten and verbs (Aktionsarten is based on animacy, rather than boundedness, resulting in a strikingly different aspectual system for both categories. 

  17. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  18. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  19. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  20. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  1. One-loop triple collinear splitting amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-09-28

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  2. Analysis of preplate splitting and early cortical development illuminates the biology of neurological disease.

    Directory of Open Access Journals (Sweden)

    Eric C Olson

    2014-11-01

    Full Text Available The development of the layered cerebral cortex starts with a process called preplate splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6 neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper layer of pioneer neurons called the subplate. Disruptions of this early developmental event by toxin exposure or mutation are associated with neurological disease including severe intellectual disability. This review explores recent findings that reveal the dynamism of gene expression and morphological differentiation during this early developmental period. Over 1000 genes show expression increases of ≥ 2 fold during this period in differentiating mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual disability (NS-ID genes are expressed at this time and show an average expression increase of 1.6 fold in these differentiating L6 neurons. This changing genetic program must, in part, support the dramatic cellular reorganizations that occur during preplate splitting. While different models have been proposed for the formation of a layer of L6 cortical neurons within the preplate, original histological studies and more recent work exploiting transgenic mice suggest that the process is largely driven by the coordinated polarization and coalescence of L6 neurons rather than by cellular translocation or migration. The observation that genes associated with forms of NS-ID are expressed during very early cortical development raises the possibility of studying the relevant biological events at a time point when the cortex is small, contains relatively few cell types, and few functional circuits. This review then outlines how explant models may prove particularly useful in studying the consequence of toxin and mutation on the etiology of some forms of NS-ID.

  3. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......, a 5 MHz linear array transducer was used to scan a vessel situated at 30 mm depth with a maximum flow velocity of 0.1 m/s. The pulse repetition frequency was 1.8 kHz and the angle between the flow and the beam was 60 deg. A 15 mus chirp was used as excitation pulse and 40 independent velocity...

  4. Gray divorce: Explaining midlife marital splits.

    Science.gov (United States)

    Crowley, Jocelyn Elise

    2017-12-06

    Recent research suggests that one out of every four divorces in the United States is now "gray," meaning that at least one half of the couple has reached the age of 50 when the marriage breaks down. To understand why this age group-the Baby Boomer generation-is splitting up, this study conducted 40 in-depth, semistructured interviews with men and 40 with women who have experienced a gray divorce in their lifetimes. Respondents' beliefs in an expressive individualistic model of marriage, where partnerships are only valuable if they help individuals achieve personal growth, were compared against their potential adherence to what I call a commitment-based model of marriage, where binding, romantic love holds couples together unless there is severe relationship strain. The results demonstrated that the commitment-based model most strongly governs marriage and the decision to divorce among Baby Boomers for both sexes, although some specific reasons for divorce differ for men and women.

  5. Noncommutative instantons via dressing and splitting approaches

    International Nuclear Information System (INIS)

    Horvath, Zalan; Lechtenfeld, Olaf; Wolf, Martin

    2002-01-01

    Almost all known instanton solutions in noncommutative Yang-Mills theory have been obtained in the modified ADHM scheme. In this paper we employ two alternative methods for the construction of the self-dual U(2) BPST instanton on a noncommutative euclidean four-dimensional space with self-dual noncommutativity tensor. Firstly, we use the method of dressing transformations, an iterative procedure for generating solutions from a given seed solution, and thereby generalize Belavin's and Zakharov's work to the noncommutative setup. Secondly, we relate the dressing approach with Ward's splitting method based on the twistor construction and rederive the solution in this context. It seems feasible to produce nonsingular noncommutative multi-instantons with these techniques. (author)

  6. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  7. Polarized neutrons for Australian scientific research

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2005-01-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006

  8. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    Science.gov (United States)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)

  9. Root, Successive-Cyclic and Feature-Splitting Internal Merge: Implications for Feature-Inheritance and Transfer

    Science.gov (United States)

    Obata, Miki

    2010-01-01

    The goal of the dissertation is to determine aspects of the structure of the human language faculty, a cognitive system, specifically focusing on human syntactic systems, (unique in the animal kingdom) which enable us to creatively produce an unlimited number of grammatical sentences (like the one you just read, probably never before written or…

  10. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  11. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  12. Bringing Society to a Changing Polar Ocean: Polar Interdisciplinary Coordinated Education (ICE)

    Science.gov (United States)

    Schofield, O.

    2015-12-01

    Environmental changes in the Arctic and Antarctic appear to be accelerating and scientists are trying to understand both the patterns and the impacts of change. These changes will have profound impact on humanity and create a need for public education about these critical habitats. We have focused on a two-pronged strategy to increase public awareness as well as enable educators to discuss comfortably the implications of climate change. Our first focus is on entraining public support through the development of science documentaries about the science and people who conduct it. Antarctic Edge is a feature length award-winning documentary about climate change that has been released in May 2015 and has garnered interest in movie theatres and on social media stores (NetFlix, ITunes). This broad outreach is coupled with our group's interest assisting educators formally. The majority of current polar education is focused on direct educator engagement through personal research experiences that have impact on the participating educators' classrooms. Polar Interdisciplinary Coordinated Education (ICE) proposes to improve educator and student engagement in polar sciences through exposure to scientists and polar data. Through professional development and the creation of data tools, Polar ICE will reduce the logistical costs of bringing polar science to students in grades 6-16. We will provide opportunities to: 1) build capacity of polar scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with polar scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia; and 3) evaluate the outcomes of Polar ICE and contribute to our understanding of science education practices. We will use a blended learning approach to promote partnerships and cross-disciplinary sharing. This combined multi-pronged approach

  13. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  14. Can the ''doublet-triplet splitting'' problem be solved without doublet-triplet splitting?

    International Nuclear Information System (INIS)

    Dvali, G.R.

    1992-03-01

    We consider a new possible mechanism for the natural solution of the doublet-triplet splitting problem in SUSY GUTs. In contrast to the usually discussed scenarios, in our case the GUT symmetry breaking does not provide any splitting between the Higgs doublet and the triplet masses. The weak doublet and its colour triplet partner both remain light, but the triplet automatically occurs decoupled from the quark and lepton superfields and cannot induce proton decay. The advantage of the above scenarios is the absence at the GUT scale of the baryon number violating the tree level d = 5 and d = 6 operators via the colour-triple exchange. It is shown that in flipped SU(5) GUT they do not appear at any scale. In the SO(10) model, such operators can be induced after SUSY breaking but are strongly suppressed. (author). 22 refs, 2 figs

  15. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Construction and test of a polarized proton target

    International Nuclear Information System (INIS)

    Aures, R.

    1983-12-01

    This work describes experiments in which for the first time a proton target has been constructed which is polarized by the ''brute-force'' method. This method requires very low temperatures and high magnetic fields. The low temperatures (down to 10 mK) are obtained by a 3 He/ 4 He dilution refrigerator, the magnetic field (up to 9 T) is produced by a superconducting split pair magnet. The proton target has a volume of about 18 cm 3 and consists of pressed titaniumhydride powder, which has a titanium/-hydrogen ratio of 1:1,96. The hydrogen content is 1,3 mol. Titaniumhydride has the advantage of sufficient heat conductivity at low temperatures and a very high proton density. The heat conductivity of the sample is measured, with and without the presence of a magnetic field. Thermodynamical measurements and adiabatic demagnetisation experiments proved quantitatively the polarization of the protons. The polarization of the proton has been measured in a transmission experiment using polarized neutrons of 1.2 MeV. The result shows a good agreement of theoretical and actual polarization. From the results it can be concluded, that this sample can be used successfully as a polarized proton target for neutron scattering experiments to measure spin-correlations. (orig.) [de

  18. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  19. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  20. Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot

    Science.gov (United States)

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-10-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  1. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  2. Upper mantle dynamics of Bangladesh by splitting analysis of core-mantle refracted SKS, PKS, and SKKS phases

    Science.gov (United States)

    Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun

    2018-06-01

    New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.

  3. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  4. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  5. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  6. About one counterexample of applying method of splitting in modeling of plating processes

    Science.gov (United States)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Korobova, I. L.

    2018-05-01

    The paper presents the main factors that affect the uniformity of the thickness distribution of plating on the surface of the product. The experimental search for the optimal values of these factors is expensive and time-consuming. The problem of adequate simulation of coating processes is very relevant. The finite-difference approximation using seven-point and five-point templates in combination with the splitting method is considered as solution methods for the equations of the model. To study the correctness of the solution of equations of the mathematical model by these methods, the experiments were conducted on plating with a flat anode and cathode, which relative position was not changed in the bath. The studies have shown that the solution using the splitting method was up to 1.5 times faster, but it did not give adequate results due to the geometric features of the task under the given boundary conditions.

  7. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  8. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  9. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    Science.gov (United States)

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  10. Structure in the interstellar polarization curve and the nature of the polarizing grains

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Smith, R.J.

    1984-01-01

    At this workshop the emphasis is on divining the nature of the interstellar grains by using infrared spectral features as the principal diagnostic. Nevertheless other approaches are also contributing to an understanding of the grains and deserve some attention. This paper describes the structure recently found in the interstellar polarization curve, and discusses its relation to the structure seen in the extinction curve and the nature of the grains producing the spectral features. (author)

  11. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  12. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  13. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  14. Dye-sensitized photocatalyst for effective water splitting catalyst

    Science.gov (United States)

    Watanabe, Motonori

    2017-12-01

    Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic-inorganic composite-based photocatalysts.

  15. Giant Rashba spin splitting in Bi2Se3: Tl

    KAUST Repository

    Singh, Nirpendra; Saeed, Yasir; Schwingenschlö gl, Udo

    2014-01-01

    First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under

  16. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  17. The Effectiveness of Managing Split Attention among Autistic Children

    Science.gov (United States)

    Aliee, Zeinab Shams; Jomhari, Nazean; Rezaei, Reza; Alias, Norlidah

    2013-01-01

    One of the most common problems in autistic children is split attention. Split attention prevents autism children from being able to focus attention on their learning, and tasks. As a result, it is important to identify how to make autistic individuals focus attention on learning. Considering autistic individuals have higher visual abilities in…

  18. Irradiation-induced amorphization in split-dislocation cores

    International Nuclear Information System (INIS)

    Ovid'ko, I.A.; Rejzis, A.B.

    1999-01-01

    The model describing special splitting of lattice and grain-boundary dislocations as one of the micromechanisms of solid-phase amorphization in irradiated crystals is proposed. Calculation of energy characteristics of the process of dislocations special splitting is carried out [ru

  19. April / May 2006. 108 Harvesting split thickness skin in

    African Journals Online (AJOL)

    user

    Background: In the third world countries like Ethiopia the majority of Hospitals have difficulties in harvesting split thickness skin ... The grafts were well taken by the recipient areas and technically there was no danger of deep bite. Conclusion: Split ... to meet the hospital needs. Thus we need to improvise and use appropriate.

  20. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  1. Clonal differences in log end splitting in Eucalyptus grandis in ...

    African Journals Online (AJOL)

    This paper discusses the juvenile–mature correlation of log end splitting among Eucalyptus grandis clones from two trials and how differences in splitting relate to differences in wood density, pith-to-bark gradient and growth rate. Two approximately 20-year-old Eucalyptus grandis clonal trials at Bergvliet plantation were ...

  2. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  3. 77 FR 8127 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... affect taxpayers claiming foreign tax credits. The text of the temporary regulations also serves as the... that if there is a foreign tax credit splitting event with respect to a foreign income tax paid or...

  4. 77 FR 8184 - Foreign Tax Credit Splitting Events

    Science.gov (United States)

    2012-02-14

    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  5. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  6. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert

    2008-01-01

    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility.

  7. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  8. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  9. CuGeO3 and CuO by respectively elastic and inelastic polarized neutrons

    International Nuclear Information System (INIS)

    Ain, M.; Regnault, L.P.; Lorenzo, J.; Dhalenne, G.; Revcolevschi, A.

    2005-01-01

    Polarization analysis permitted to verify very promptly that the plane of the helix in the incommensurate phase of CuO was not (a*,c*) as first proposed but another one containing without equivoque the b*-axis.Inelastic polarization analysis under applied magnetic field permitted to study the triplet magnon-like mode of spin-Peierls CuGeO 3 . This mode splits in three, as expected. Intensities of inelastic neutron scattering measurements with polarization analysis have been collected in both spin-flip and nonspin-flip channels. This Zeeman splitting revealed that two out of the three processes are purely spin-flip excitations, while the third undisplaced one is a nonspin-flip process in which the neutron conserves its spin orientation

  10. Shear-wave polarization analysis of the seismic swarm following the July 9th 1998 Faial (Azores) earthquake

    Science.gov (United States)

    Dias, N. A.; Matias, L.; Tellez, J.; Senos, L.; Gaspar, J. L.

    2003-04-01

    The Azores Islands, located at a tectonic triple Junction, geodynamically are a highly active place. The seismicity in this region occurs mainly in the form of two types of seismic swarms with tectonic and/or volcanic origins, lasting from hours to years. In some cases the swarm follows a main stronger shock, while in others the more energetic event occurs sometime after the beginning of the swarm. In order to understand the complex phenomena of this region, a multidisciplinary approach is needed, involving geophysical, geological and geochemical studies such as the one being carried under the MASHA project (POCTI/CTA/39158/2001), On July 9th 1998 an Mw=6.2 earthquake stroked the island of Faial, in the central group of the Azores archipelago, followed by a seismic swarm still active today. We will present some preliminary results of the shear-wave polarization analysis of a selected dataset of events of this swarm. These correspond to the 112 best- constrained events, record during the first 2 weeks by the seismic network deployed on the 3 islands surrounding the area of the main shock. The objective was to analyse the behaviour of the S wave polarization and the eventual relationship with the presence of seismic anisotropy under the seismic stations, and to correlate this with the regional structure and origin of the Azores plateau. Two main tectonic features are observable on the islands, one primarily orientated SE-NW and the other crossing it roughly with the WNW-ESE direction. The polarization direction observed in the majority of the seismic stations is not stable, varying from SE-NW to WSW-ENE, and showing also the presence in same cases of shear-wave splitting, indicating the presence of anisotropy. Part of the polarization seems to be coherent with the direction of the local tectonic features, but its instability suggest a more complex seismic anisotropy than that proposed by the model EDA of Crampin. Furthermore, the dataset revealed some limitations to

  11. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  12. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  13. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  14. Polarized proton and deuteron solid HD targets

    International Nuclear Information System (INIS)

    Honig, A.

    1977-01-01

    A decade has now elapsed since HD was proposed as a polarized proton and deuteron target with exceptionally desirable properties. These include a very high free proton proportion, independently polarizable proton and deuteron systems, and a ''frozen-spin'' mode of operation which allows separation of the functions of production and utilization of the highly polarized target. A discussion is given of what can be expected of the polarized HD system right now, without further research. The basic features of solid HD pertinent to its use as a ''frozen-spin'' target are outlined, then a summary is given of the particular experimental results which support the contention that the target will perform successfully, and finally, some feasible operating modes and the expected performances from them are presented

  15. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)

    2015-02-15

    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.

  16. Optimal space-energy splitting in MCNP with the DSA

    International Nuclear Information System (INIS)

    Dubi, A.; Gurvitz, N.

    1990-01-01

    The Direct Statistical Approach (DSA) particle transport theory is based on the possibility of obtaining exact explicit expressions for the dependence of the second moment and calculation time on the splitting parameters. This allows the automatic optimization of the splitting parameters by ''learning'' the bulk parameters from which the problem dependent coefficients of the quality function (second moment time) are constructed. The above procedure was exploited to implement an automatic optimization of the splitting parameters in the Monte Carlo Neutron Photon (MCNP) code. This was done in a number of steps. In the first instance, only spatial surface splitting was considered. In this step, the major obstacle has been the truncation of an infinite series of ''products'' of ''surface path's'' leading from the source to the detector. Encouraging results from the first phase led to the inclusion of full space/energy phase space splitting. (author)

  17. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  18. Exposing the QCD Splitting Function with CMS Open Data.

    Science.gov (United States)

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  19. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    . To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...... be pipelined and thus operating at higher speeds. Simulation results show, the split TCP proxy can significantly improve the TCP performance in terms of RLC throughput under high bit rate DCH channel scenario (e.g.256 kbps). On the other hand, it only brings small performance improvement under low bit rate DCH...... scenario (e.g.64 kbps). Besides, the split TCP proxy brings more performance gain for downloading large files than downloading small ones. To the end, for the configuration of the split proxy, an aggressive initial TCP congestion window size (e.g. 10 MSS) at proxy is particularly useful for radio links...

  20. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  1. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.

  2. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi

    2018-02-01

    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  3. Point-splitting in a curved space-time background. 1 -gravitational contribution to the axial anomaly

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1978-01-01

    A prescription is given for point-splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current which can be differentiated straightforwardly, and that it involves a natural way of averaging (four dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g. to spin -3/2 Rarita-Schwinger fermions. (author)

  4. The Polarization of Achernar

    Science.gov (United States)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  5. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  6. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  7. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  8. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu; Keyes, David E.

    2015-01-01

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  9. A split operator method for transient problems

    International Nuclear Information System (INIS)

    Belytschko, T.B.

    1983-01-01

    Numerous techniques have been developed for improving the computational efficiency of transient analysis: mesh partitioning, subcycling procedures and operator splitting methods. In mesh partitioning methods, the model is divided into subdomains which are integrated by different time integrators, typically implicit and explicit. Any stiff portions of the model are integrated by the implicit operator so that the size of the time step can be increased. In subcycling procedures, the stiff portions are integrated by smaller time steps, yielding similar benefits. However, in models for which the governing partial differential equations are basically of a parabolic character, explicit methods can become quite expensive for refined models because the size of the stable time step decreases with the square of the minimum element dimension. Thus explicit methods, whether employed alone or with partitioning or subcycling, have inherent limitations in these problems. A new procedure is here described for the element-by-element semi-implicit method of Hughes and coworkers which requires the solution of only small systems of equations. This procedure is described for a family of uniform gradient or strain elements which are widely used in nonlinear transient analysis. The diffusion equation and the equations of motion for both shells and continua have been treated, but only the former is considered herein. Results are presented for several examples which show the potential of this method for improving the efficiency of a large-scale linear and nonlinear computations. (orig./RW)

  10. Polarized radio outbursts in BL Lacertae. I. Polarized emission from a compact jet. II. The flux and polarization of a piston-driven shock

    International Nuclear Information System (INIS)

    Aller, H.D.; Aller, M.F.; Hughes, P.A.

    1985-01-01

    A second highly polarized burst in BL Lacertae observed in 1983 which has very similar properties to the earlier burst in 1981-82 is described, and it is shown that in both bursts the electric vector of the polarized emission is nearly parallel to the observed extended structure. A weak shock, moving relativistically close to the line of sight, appears to be a very effective means of producing the observed behavior. A simple model is developed to represent the outbursts as due to a piston-driven shock which exhibits polarized emission due to compression of the otherwise random magnetic field of a collimated flow. It is shown that the general features of total flux, polarized flux, and polarization position angle as a function of frequency and time can be understood in terms of such a model. 34 references

  11. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  12. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  13. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  14. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  15. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  16. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  17. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  18. Plasmon-induced carrier polarization in semiconductor nanocrystals

    Science.gov (United States)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  19. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  20. Polarization splitter based on interference effects in all-solid photonic crystal fibers.

    Science.gov (United States)

    Mao, Dong; Guan, Chunying; Yuan, Libo

    2010-07-01

    We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.

  1. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  2. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  3. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  4. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  5. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  6. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  7. Tune splitting in the presence of linear coupling

    International Nuclear Information System (INIS)

    Parzen, G.

    1991-01-01

    The presence of random skew quadrupole field errors will couple the x and y motions. The x and y motions are then each given by the sum of 2 normal modes with the tunes v 1 and v 2 , which may differ appreciably from v x and v y , the unperturbed tunes. This is often called tune splitting since |v 1 - v 2 | is usually larger than |v x - v y |. This tune splitting may be large in proton accelerators using superconducting magnets, because of the relatively large random skew quadrupole field errors that are expected in these magnets. This effect is also increased by the required insertions in proton colliders which generate large β-functions in the insertion region. This tune splitting has been studied in the RHIC accelerator. For RHIC, a tune splitting as large as 0.2 was found in one worse case. A correction system has been developed for correcting this large tune splitting which uses two families of skew quadrupole correctors. It has been found that this correction system corrects most of the large tune splitting, but a residual tune splitting remains that is still appreciable. This paper discusses the corrections to this residual time

  8. Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field

    International Nuclear Information System (INIS)

    Bao Shanxia; Yang Wenguang; Zhang Hao; Zhang Linjie; Zhao Jianming; Jia Suotang

    2015-01-01

    We investigate the electromagnetically induced transparency (EIT) of 133 Cs vapor at the room temperature in a magnetic field. In a cascade three-level system involved Rydberg state, two collinearly counter-propagating and orthogonally linear-polarized laser fields act on cascaded two transitions, 6S 1/2 → 6P 3/2 and 6P 3/2 ↔ 47D 5/2 , respectively. The EIT window become broadening and split into several sub-EIT windows when the magnetic field is applied. The dependences of splitting shape and intervals of sub-EIT windows on magnetic field are measured experimentally and compared with the theoretical calculation considering the different magnetic effects on ground state, low excited state and Rydberg state. The splitting intervals of sub-EIT windows are well consistent with theoretical calculation. (author)

  9. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.

    Science.gov (United States)

    Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon

    2004-05-15

    An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.

  10. The polarized electron gun for the SLC

    International Nuclear Information System (INIS)

    Schultz, D.C.; Clendenin, J.; Frisch, J.; Hoyt, E.; Klaisner, L.; Woods, M.; Wright, D.; Zolotorev, M.

    1992-03-01

    A new polarized electron gun for use on the SLC at SLAC has been built and tested. It is a diode gun with a laser driven GaAs photocathode. It is designed to provide short (2ns) pulses of 10 A at 160 kV at 120 Hz. The design features of the gun and results from a testing program on a new and dedicated beam line are presented. Early results from operation on the SLC will also be shown

  11. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  12. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  13. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  14. Prospects for polarization at RHIC and SSC

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. We analyze the effects of snake resonances, snake imperfections overlapping resonances on the spin depolarization. We discuss also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators. We also examine various snake designs. A new generalized snake concept allows for two possible configurations. The compact configuration offers the advantages of shorter total snake length and smaller horizontal orbit displacement. The split snake configuration allows for dual functions of a snake and a 90 degree spin rotator at the mid-section of the snake, which provides helicity state collisions. The requirements for obtaining high luminosity polarized protons at high energy colliders, such as RHIC and SSC, are reviewed

  15. The 2-group of symmetries of a split chain complex

    OpenAIRE

    Elgueta, Josep

    2010-01-01

    We explicitly compute the 2-group of self-equivalences and (homotopy classes of) chain homotopies between them for any {\\it split} chain complex $A_{\\bullet}$ in an arbitrary $\\kb$-linear abelian category ($\\kb$ any commutative ring with unit). In particular, it is shown that it is a {\\it split} 2-group whose equivalence class depends only on the homology of $A_{\\bullet}$, and that it is equivalent to the trivial 2-group when $A_\\bullet$ is a split exact sequence. This provides a description ...

  16. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  17. A splitting algorithm for directional regularization and sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads

    2012-01-01

    We present a new split-type algorithm for the minimization of a p-harmonic energy with added data fidelity term. The half-quadratic splitting reduces the original problem to two straightforward problems, that can be minimized efficiently. The minimizers to the two sub-problems can typically...... be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...

  18. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  19. An efficient source of continuous variable polarization entanglement

    International Nuclear Information System (INIS)

    Dong Ruifang; Heersink, Joel; Yoshikawa, Jun-Ichi; Gloeckl, Oliver; Andersen, Ulrik L; Leuchs, Gerd

    2007-01-01

    We have experimentally demonstrated the efficient creation of highly entangled bipartite continuous variable polarization states. Exploiting an optimized scheme for the production of squeezing using the Kerr non-linearity of a glass fibre we generated polarization squeezed pulses with a mean classical excitation in S-hat 3 . Polarization entanglement was generated by interfering two independent polarization squeezed fields on a symmetric beam splitter. The resultant beams exhibit strong quantum noise correlations in the dark S-hat 1 - S-hat 2 polarization plane. To verify entanglement generation, we characterized the quantum correlations of the system for two different sets of conjugate Stokes parameters. The quantum correlations along the squeezed and the anti-squeezed Stokes parameters were observed to be -4.1±0.3 and -2.6±0.3 dB below the shot noise level, respectively. The degree of correlations was found to depend critically on the beam-splitting ratio of the entangling beam splitter. Carrying out measurements on a different set of conjugate Stokes parameters, correlations of -3.6±0.3 and -3.4±0.3 dB have been observed. This result is more robust against asymmetries in the entangling beam splitter, even in the presence of excess noise

  20. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.