Sample records for spintronic michelson interferometry

  1. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.


    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  2. Special topics in infrared interferometry. [Michelson interferometer development (United States)

    Hanel, R. A.


    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  3. Michelson wide-field stellar interferometry

    NARCIS (Netherlands)

    Montilla, I.


    The main goal of this thesis is to develop a system to permit wide field operation of Michelson Interferometers. A wide field of view is very important in applications such as the observation of extended or multiple objects, the fringe acquisition and/ or tracking on a nearby unresolved object, and

  4. SAMSI: An orbiting spatial interferometer for micro-arc second astronomical observations. [Spacecraft Array for Michelson Spatial Interferometry (SAMSI) (United States)

    Stachnik, R. V.; Gezari, D. Y.


    The concept and performance of (SAMSI) Spacecraft Array for Michelson Spatial Interferometry, an orbiting spatial interferometer comprised of three free-flying spacecraft, two collector telescopes and a central mixing station are described. In the one-dimensional interferometry mode orbits exist which provide natural scanning of the baseline. These orbits place extremely small demands on thrusters and fuel consumption. Resolution of 0.00001 arcsecond and magnitude limits of mv = 15 to 20 are achievable in a single orbit. In the imaging mode, SAMSI could synthesize images equivalent to those produced by equal diameter filled apertures in space, making use of the fuel resupply capability of a space station. Simulations indicate that image reconstruction can be performed with milliarcsecond resolution to a visual magnitude 12 in 12 hr of spiral scanning integration time.

  5. A study of far-infrared Michelson interferometry based on fast plasma scanning

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Hewitt, G.L.; Robinson, L.C.; Tait, G.D.


    Fast far-infrared multiplex spectroscopy based on a plasma-scanned Michelson interferometer is studied. Our experiments show that the interferometer has sub-millisecond time response and high spectral resolving power. In addition to a description of the experimental performance of the interferometer, we develop and discuss two different methods of interferogram inversion. (author)


    Directory of Open Access Journals (Sweden)



    Full Text Available En el presente trabajo se describen el diseño y la caracterización de membranas bimetálicas de Al-Si, con actuación térmica. El diseño se realizó empleando el método de los Elementos Finitos y se concentró en optimizar la relación de los espesores de las capas de aluminio y silicio. La defl exión de las membranas se determinó aplicando la técnica del Interferómetro de Michelson. En la etapa experimental se utilizaron membranas cuadradas de 5 mm de lado, con un espesor de 10 mm para el silicio y espesores de 4 y 1 mm para el aluminio. La caracterización entregó un desplazamiento máximo de 14 mm para la membrana con 4 mm de Al, lo cual es consistente con los resultados obtenidos numéricamente.

  7. Dense plasmas interferometry using an X-UV laser. Development of an X-UV Michelson interferometer at 13.9 nm

    International Nuclear Information System (INIS)

    Hubert, S.


    After having recalled some aspects related to the physics of plasmas produced by interaction between laser and matter, and related to inertial confinement fusion or ICF (discussion of laser energy absorption, X conversion, parametric and hydrodynamic instabilities, and so on), this research thesis presents various techniques used for plasma diagnosis in order to justify the use of interferometry for the investigation of the electronic density distribution of these plasmas. The physical principle of this diagnosis technique is described and two types of X-UV interferometer are presented, one of them being chosen as more suitable for the study of ICF-type plasmas. The author then describes and reports the experimental investigation performed with a two-mirror Fresnel interferometer and a 21.2 nm zinc X-UV laser: description of the interferometer operation and characteristics, of the specifically designed image system, discussion of plasma interferogram simulations. Then, he reports the development of a Michelson-type X-UV interferometer at 13.9 nm. The operation principle is recalled, and the preliminary modelling phase is reported. The imaging system is presented and results of the interferogram modelling phase are presented [fr

  8. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai


    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  9. Molecular spintronics. (United States)

    Sanvito, Stefano


    The electron spin made its debut in the device world only two decades ago but today our ability of detecting the spin state of a moving electron underpins the entire magnetic data storage industry. This technological revolution has been driven by a constant improvement in our understanding on how spins can be injected, manipulated and detected in the solid state, a field which is collectively named Spintronics. Recently a number of pioneering experiments and theoretical works suggest that organic materials can offer similar and perhaps superior performances in making spin-devices than the more conventional inorganic metals and semiconductors. Furthermore they can pave the way for radically new device concepts. This is Molecular Spintronics, a blossoming research area aimed at exploring how the unique properties of the organic world can marry the requirements of spin-devices. Importantly, after a first phase, where most of the research was focussed on exporting the concepts of inorganic spintronics to organic materials, the field has moved to a more mature age, where the exploitation of the unique properties of molecules has begun to emerge. Molecular spintronics now collects a diverse and interdisciplinary community ranging from device physicists to synthetic chemists to surface scientists. In this critical review, I will survey this fascinating, rapidly evolving, field with a particular eye on new directions and opportunities. The main differences and challenges with respect to standard spintronics will be discussed and so will be the potential cross-fertilization with other fields (177 references).

  10. Organic spintronics

    International Nuclear Information System (INIS)

    Naber, W J M; Faez, S; Wiel, W G van der


    We review the emerging field of organic spintronics, where organic materials are applied as a medium to transport and control spin-polarized signals. The contacts for injecting and detecting spins are formed by ferromagnetic metals, oxides, or inorganic semiconductors. First, the basic concepts of spintronics and organic electronics are addressed, and phenomena which are in particular relevant for organic spintronics are highlighted. Experiments using different organic materials, including carbon nanotubes, organic thin films, self-assembled monolayers and single molecules are then reviewed. Observed magnetoresistance points toward successful spin injection and detection, but spurious magnetoresistance effects can easily be confused with spin accumulation. A few studies report long spin relaxation times and lengths, which forms a promising basis for further research. We conclude with discussing outstanding questions and problems. (topical review)

  11. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg


    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  12. Nuclear spintronics


    Vagner, Israel D.


    The electron spin transport in condensed matter, Spintronics, is a subject of rapidly growing interest both scientifically and from the point of view of applications to modern and future electronics. In many cases the electron spin transport cannot be described adequately without accounting for the hyperfine interaction between electron and nuclear spins. Here, the progress in physics and applications of these phenomena will be reviewed.

  13. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.


    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  14. Antiferromagnetic spintronics (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.


    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  15. Michelson Interferometer (United States)

    Rogers, Ryan


    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  16. "Magnon Spintronics" (United States)

    Yu, Haiming; Xiao, Jiang; Pirro, Philipp


    We are proud to present a collection of 12 cutting-edge research articles on the emerging field "magnon spintronics" investigating the properties of spin waves or magnons towards their potential applications in low-power-consumption information technologies. Magnons (quasiparticles of spin waves) are collective excitations of magnetizations in a magnetic system. The concept for such excitations was first introduced 1930 by Felix Bloch [1] who described ferromagnetism in a lattice. The field of magnon spintronics [2] or magnonics [3] aims at utilizing magnons to realize information processing and storage. The propagation of spin waves is free of charge transport, hence a successful realization of magnonic devices can innately avoid Joule heating induced energy loss in nowadays micro- or nano-electronic devices. Magnonics has made many progresses in recent years, including the demonstration of magnonic logic devices [4]. Towards the aim to generate magnonic devices, it is an essential step to find materials suitable for conveying spin waves. One outstanding candidate is a ferromagnetic insulator yttrium iron garnet (YIG). It offers an out standing low damping which allows the propagation of spin waves over relatively long distances. Experiments on such a thin YIG film with an out-of-plane magnetization have been performed by Chen et al. [5]. They excited so called forward volume mode spin waves and determined the propagating spin wave properties, such as the group velocities. Lohman et al. [6] has successfully imaged the propagating spin waves using time-resolved MOKE microscopy and show agreement with micromagnetic modellings. For very long time, YIG is the most ideal material for spin waves thanks to its ultra-low damping. However, it remains a major challenge integrate YIG on to Silicon substrate. Magnetic Heusler alloys on the other hand, can be easily grown on Si substrate and also shows reasonably good damping properties, which allow spin waves to propagate

  17. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin


    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  18. Multiple spacecraft Michelson stellar interferometer (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.


    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  19. Nanostructured graphene for spintronics

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka


    Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization, making them attractive as building blocks for spintronic devices. Here, we show that devices with zigzag-edged triangular antidots perform essential spintronic functionalities, such as spatial spin splitting or spin...

  20. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H


    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  1. Topological antiferromagnetic spintronics (United States)

    Šmejkal, Libor; Mokrousov, Yuriy; Yan, Binghai; MacDonald, Allan H.


    The recent demonstrations of electrical manipulation and detection of antiferromagnetic spins have opened up a new chapter in the story of spintronics. Here, we review the emerging research field that is exploring the links between antiferromagnetic spintronics and topological structures in real and momentum space. Active topics include proposals to realize Majorana fermions in antiferromagnetic topological superconductors, to control topological protection and Dirac points by manipulating antiferromagnetic order parameters, and to exploit the anomalous and topological Hall effects of zero-net-moment antiferromagnets. We explain the basic concepts behind these proposals, and discuss potential applications of topological antiferromagnetic spintronics.

  2. Digital holographic Michelson interferometer for nanometrology (United States)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.


    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  3. Michelson and His Interferometer (United States)

    Shankland, Robert S.


    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  4. Perspectives of Antiferromagnetic Spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel


    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  5. Perspectives of antiferromagnetic spintronics (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel


    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  6. Handbook of spintronics

    CERN Document Server

    Awschalom, David; Nitta, Junsaku


    This large reference work addresses a broad range of topics covering various aspects of spintronics science and technology, ranging from fundamental physics through materials properties and processing to established and emerging device technology and applications.  It comprises a collection of chapters from a large international team of leading researchers across academia and industry, providing readers with an up-to-date and comprehensive review of this dynamic field of research.   The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including the theory of giant magnetoresistance and an introduction to spin quantum computing.  Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrid materials including Heusler compounds, magnetic semiconductors, molecular spintronic materials, carbon nanotubes and graphene.  A separate section describes the various methods used in the char...

  7. Nanomagnetism and spintronics

    CERN Document Server

    Shinjo, Teruya


    The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomeno

  8. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš


    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  9. Synthetic antiferromagnetic spintronics (United States)

    Duine, R. A.; Lee, Kyung-Jin; Parkin, Stuart S. P.; Stiles, M. D.


    Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

  10. Albert Abraham Michelson

    Indian Academy of Sciences (India)

    Albert Michelson built his interferometer in order to determine the effect of Earth's rotation on the speed of light. The null result supported the crucial assumption in Einstein's special theory of relativity and was the final nail in the coffin of classical mechanics. The interferometer is also being currently used in the detection of ...

  11. Albert Abraham Michelson

    Indian Academy of Sciences (India)

    Some experiments change the face of a subject, and some experiments do that many times over. Albert Michelson built his interferometer in order to determine the effect of Earth's rotation on the speed of light. The null result supported the crucial assumption in Einstein's special theory of relativity and was the final nail in the ...

  12. Spintronics-based computing

    CERN Document Server

    Prenat, Guillaume


    This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic, which is widely considered a promising candidate to replace conventional, pure CMOS-based logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content.  The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.  .

  13. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo


    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  14. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R


    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry : Returning to Flight (United States)

    National Aeronautics and Space Administration — The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter far-infrared (30-90 micron) Michelson interferometer, designed to fly on a...

  16. Quantum computing and spintronics

    International Nuclear Information System (INIS)

    Kantser, V.


    Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)

  17. Spintronic device modeling and evaluation using modular approach to spintronics (United States)

    Ganguly, Samiran

    Spintronics technology finds itself in an exciting stage today. Riding on the backs of rapid growth and impressive advances in materials and phenomena, it has started to make headway in the memory industry as solid state magnetic memories (STT-MRAM) and is considered a possible candidate to replace the CMOS when its scaling reaches physical limits. It is necessary to bring all these advances together in a coherent fashion to explore and evaluate the potential of spintronic devices. This work creates a framework for this exploration and evaluation based on Modular Approach to Spintronics, which encapsulate the physics of transport of charge and spin through materials and the phenomenology of magnetic dynamics and interaction in benchmarked elemental modules. These modules can then be combined together to form spin-circuit models of complex spintronic devices and structures which can be simulated using SPICE like circuit simulators. In this work we demonstrate how Modular Approach to Spintronics can be used to build spin-circuit models of functional spintronic devices of all types: memory, logic, and oscillators. We then show how Modular Approach to Spintronics can help identify critical factors behind static and dynamic dissipation in spintronic devices and provide remedies by exploring the use of various alternative materials and phenomena. Lastly, we show the use of Modular Approach to Spintronics in exploring new paradigms of computing enabled by the inherent physics of spintronic devices. We hope that this work will encourage more research and experiments that will establish spintronics as a viable technology for continued advancement of electronics.

  18. Using a Michelson Interferometer to Measure Coefficient of Thermal Expansion of Copper (United States)

    Scholl, Ryan; Liby, Bruce W.


    When most materials are heated they expand. This concept is usually demonstrated using some type of mechanical measurement of the linear expansion of a metal rod. We have developed an alternative laboratory method for measuring thermal expansion by using a Michelson interferometer. Using the method presented, interference, interferometry, and the…

  19. A method for the coherence measurement of the supercontinuum source using Michelson interferometer

    International Nuclear Information System (INIS)

    Semenova, V A; Tsypkin, A V; Putilin, S E; Bespalov, V G


    Coherent properties of supercontinuum sources are highly significant for various applications, including low-coherence interferometry and optical frequency metrology. We propose a fast method for the spatial and temporal self-coherence of the SC measurement using Michelson interferometer without a mirror movement. Furthermore, we present self-coherence measurements of the supercontinuum, generated in microstructured fiber at 780 nm.

  20. Advances in graphene spintronics (United States)

    van Wees, Bart

    I will give an overview of the status of graphene spintronics, from both scientific as technological perspectives. In the introduction I will show that (single) layer graphene is the ideal host for electronic spins, allowing spin transport by diffusion over distances exceeding 20 micrometers at room temperature. I will show how by the use of carrier drift, induced by charge currents, effective spin relaxation lengths of 90 micrometer can be obtained in graphene encapsulated between boron-nitride layers. This also allows the controlled flow and guiding of spin currents, opening new avenues for spin logic devices based on lateral architectures. By preparing graphene on top of a ferromagnetic insulator (yttrium iron garnet (YIG)) we have shown that we can induce an exchange interaction in the graphene, thus effectively making the graphene magnetic. This allows for new ways to induce and control spin precession for new applications. Finally I will show how, by using two-layer BN tunnel barriers, spins can be injected from a ferromagnet into graphene with a spin polarization which can be tuned continuously from -80% to 40%, using a bias range from -0.3V to 0.3V across the barrier. These unique record values of the spin polarization are not yet understood, but they highlight the potential of Van der Waals stacking of graphene and related 2D materials for spintronics.

  1. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart


    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed

  2. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers. (United States)

    Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Paulus, Gerhard G; Förster, Eckhart; Zastrau, Ulf


    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  3. AMI: Augmented Michelson Interferometer (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel


    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  4. Performance evaluation of a thermal Doppler Michelson interferometer system. (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen


    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  5. Mariner 9 Michelson interferometer. (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.


    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  6. Guided magnonic Michelson interferometer. (United States)

    Ahmed, Muhammad H; Jeske, Jan; Greentree, Andrew D


    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  7. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Directory of Open Access Journals (Sweden)

    Percival Almoro


    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  8. Introduction to spintronics

    CERN Document Server

    Bandyopadhyay, Supriyo


    The Early History of Spin Spin The Bohr Planetary Model and Space Quantization The Birth of "Spin" The Stern-Gerlach Experiment The Advent of Spintronics The Quantum Mechanics of Spin Pauli Spin Matrices The Pauli Equation and Spinors More on the Pauli Equation Extending the Pauli Equation - the Dirac Equation The Time Independent Dirac Equation Appendix The Bloch Sphere The Spinor and the "Qubit" The Bloch Sphere Concept Evolution of a Spinor Spin-1/2 Particle in a Constant Magnetic Field: Larmor Precession Preparing to Derive the Rabi Formula The Rabi Formula The Density Matrix The Density Matrix Concept: Case of a Pure State Properties of the Density Matrix Pure Versus Mixed State Concept of the Bloch Ball Time Evolution of the Density Matrix: Case of Mixed State The Relaxation Times T1 and T2 and the Bloch Equations Spin Orbit Interaction Spin Orbit Interaction in a Solid Magneto-Electric Sub-Bands in Quantum Confined Structures in the Presence of Spin-Orbit Interaction Dispersion Relations of Spin Resolv...

  9. Summer School on Spintronics

    CERN Document Server

    Wolf, Stuart; Idzerda, Yves


    Stuart Wolf This book originated as a series of lectures that were given as part of a Summer School on Spintronics in the end of August, 1998 at Lake Tahoe, Nevada. It has taken some time to get these lectures in a form suitable for this book and so the process has been an iterative one to provide current information on the topics that are covered. There are some topics that have developed in the intervening years and we have tried to at least alert the readers to them in the Introduction where a rather complete set of references is provided to the current state of the art. The field of magnetism, once thought to be dead or dying, has seen a remarkable rebirth in the last decade and promises to get even more important as we enter the new millennium. This rebirth is due to some very new insight into how the spin degree of freedom of both electrons and nucleons can play a role in a new type of electronics that utilizes the spin in addition to or in place of the charge. For this new field to mature and prosper, ...

  10. Michelson interferometer for measuring temperature


    Xie, Dong; Xu, Chunling; wang, Anmin


    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  11. Single atom spintronics

    International Nuclear Information System (INIS)

    Sullivan, M. R.; Armstrong, J. N.; Hua, S. Z.; Chopra, H. D.


    Full text: Single atom spintronics (SASS) represents the ultimate physical limit in device miniaturization. SASS is characterized by ballistic electron transport, and is a fertile ground for exploring new phenomena. In addition to the 'stationary' (field independent) scattering centers that have a small and fixed contribution to total transmission probability of electron waves, domain walls constitute an additional and enhanced source of scattering in these magnetic quantum point contacts (QPCs), the latter being both field and spin-dependent. Through the measurement of complete hysteresis loops as a function of quantized conductance, we present definitive evidence of enhanced backscattering of electron waves by atomically sharp domain walls in QPCs formed between microfabricated thin films [1]. Since domain walls move in a magnetic field, the magnitude of spin-dependent scattering changes as the QPC is cycled along its hysteresis loop. For example, as shown in the inset in Fig. 1, from zero towards saturation in a given field direction, the resistance varies as the wall is being swept away, whereas the resistance is constant upon returning from saturation towards zero, since in this segment of the hysteresis loop no domain wall is present across the contact. The observed spin-valve like behavior is realized by control over wall width and shape anisotropy. This behavior also unmistakably sets itself apart from any mechanical artifacts; additionally, measurements made on single atom contacts provide an artifact-free environment [2]. Intuitively, it is simpler to organize the observed BMR data according to all possible transitions between different conductance plateaus, as shown by the dotted line in Fig. 1; the solid circles show experimental data for Co, which follows the predicted scheme. Requisite elements for the observation of the effect will be discussed in detail along with a review of state of research in this field. Practically, the challenge lies in making

  12. Michelson Interferometer (MINT) (United States)

    Lacis, Andrew; Carlson, Barbara


    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  13. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana


    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  14. Spintronics from materials to devices

    CERN Document Server

    Felser, Claudia


    Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made

  15. Michelson interferometer for measuring temperature (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min


    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  16. The Explanation of Michelson's Experiment

    International Nuclear Information System (INIS)

    Klinaku, Shukri


    In this paper we will prove that the Lorentz factor doesn't exist on the relative motion. In fact this factor is the result of a wrong calculation of Michelson. His mistake was approved by Lorentz and other physicists, including Einstein. Michelson in order to implement his idea with his interferometer in 1881, made the following mistake: he made the calculation according to the only principle of relativity which was known by physics--the Galileo principle, but he didn't faithfully apply this principle. In this paper, the principle of Galileo will be implemented exactly to Michelson's experiment and the result will show us that physics doesn't need the postulates of the year 1905.

  17. Recent progress in organic spintronics

    NARCIS (Netherlands)

    de Jong, Machiel Pieter


    The field of organic spintronics deals with spin dependent phenomena occurring in organic semiconductors or hybrid inorganic/organic systems that may be exploited for future electronic applications. This includes magnetic field effects on charge transport and luminescence in organic semiconductors,

  18. Graphene and Graphene Nanomesh Spintronics

    Directory of Open Access Journals (Sweden)

    Junji Haruyama


    Full Text Available Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present article, the recent advancements in graphene spintronics are reviewed, introducing the observation of spin coherence and the spin Hall effect. Some research has reported the strong spin coherence of graphene. Avoiding undesirable influences from the substrate are crucial. Magnetism and spintronics arising from graphene edges are reviewed based on my previous results. In spite of carbon-based material with only sp2 bonds, the zigzag-type atomic structure of graphene edges theoretically produces spontaneous spin polarization of electrons due to mutual Coulomb interaction of extremely high electron density of states (edge states localizing at the flat energy band. We fabricate honeycomb-like arrays of low-defect hexagonal nanopores (graphene nanomeshes; GNMs on graphenes, which produce a large amount of zigzag pore edges, by using a nonlithographic method (nanoporous alumina templates and critical temperature annealing under high vacuum and hydrogen atmosphere. We observe large-magnitude ferromagnetism, which arises from polarized spins localizing at the hydrogen-terminated zigzag-nanopore edges of the GNMs, even at room temperature. Moreover, spin pumping effects are found for magnetic fields applied in parallel with the few-layer GNM planes. Strong spin coherence and spontaneously polarized edge spins of graphene can be expected to lead to novel spintronics with invisible, flexible, and ultra-light (wearable features.

  19. Lembit Michelsoni CV / Lembit Michelson

    Index Scriptorium Estoniae

    Michelson, Lembit, 1960-


    Fotograaf Lembit Michelson meenutab lapsepõlve- ja kooliaastaid, sõjaväeteenistust, tööd fotograafina nõukogude ajal. Viimased 15 aastat töötab oma foto- ja disainistuudios Akriibia. Erinevatest fotoseeriatest. Artiklile lisatud 7 Lembit Michelsoni kirjutatud luuletust

  20. Graphene-based spintronic components


    Zeng, Minggang; Shen, Lei; Su, Haibin; Zhou, Miao; Zhang, Chun; Feng, Yuanping


    A major challenge of spintronics is in generating, controlling and detecting spin-polarized current. Manipulation of spin-polarized current, in particular, is difficult. We demonstrate here, based on calculated transport properties of graphene nanoribbons, that nearly +-100% spin-polarized current can be generated in zigzag graphene nanoribbons (ZGNRs) and tuned by a source-drain voltage in the bipolar spin diode, in addition to magnetic configurations of the electrodes. This unusual transpor...

  1. Spintronics

    Indian Academy of Sciences (India)

    for Advanced Technology,. Indore and at present a. Visiting Professor with the. Laser-Cooling Group, ... by dashed lines up to e,. represent filled states. Figure 2 (right). Variation of number density of ..... films were different. On these permalloy pads a copper cross was deposited bye-gun evaporation at 10-8 mbar pressure.

  2. Spintronics

    Indian Academy of Sciences (India)

    tive manipulation of spin degrees of freedom in solid state materials. The science has a long tradition starting with Mott's theoretical work in 1936 on spin-polarised .... (3) where no is the majority carrier concentration in the n- type semiconductor and rG is the rate of generation of spin polarization by photo-excitation.

  3. New advances in organic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Prigodin, V N; Yoo, J W; Epstein, A J [Department of Physics, Ohio State University, Columbus, Ohio 43210-1117 (United States); Jang, H W; Eom, C B [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Kao, C, E-mail: [Department of Chemistry, Ohio State University, Columbus, Ohio 43210-1137 (United States)


    The basic components of spintronic devices are spin polarized ferromagnets and spin transporting non-magnetic spacers. Exploiting carbon-based materials for these components promises to extend functionality of information storage and processing as well as to improve device integration and fabrication. Here we present the magnetoresistance of organic semiconductor rubrene (C{sub 42}H{sub 28}) used as a spacer in La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (LSMO)/organic semiconductor (OSC)/Fe heterojunctions. Efficient spin polarized tunneling through the thin layer of rubrene spacer (5 nm) was observed. As the thickness of rubrene layers is increased, device current is strongly limited by carrier injection resulting in strong temperature dependent device resistance. The carrier injection is described with thermionic field emission at the metal/OSC interface. As a next step toward organic spintronics we used an organic based magnet vanadium-tetracyanoethylene (V(TCNE){sub x}, x{approx}2) in tandem with LSMO in a spin- valve with 5 nm rubrene spacer. V(TCNE){sub x} is the earliest developed room temperature molecule-based magnet (T{sub c} {approx} 400 K). Due to strong on-site Coulomb interaction and weak intermolecule overlapping their magnetic state can be described with a model of half-semiconductor in which valence and conduction bands are spin polarized. The magnetoresistance data for bulk V(TCNE){sub x} is in agreement with the model of spin polarized valence and conduction bands. We demonstrated that an organic-based magnetic semiconductor V(TCNE){sub x} functions very well as an electron spin polarizer in the standard spintronic device geometry.

  4. X-ray-ultraviolet beam splitters for the Michelson interferometer

    International Nuclear Information System (INIS)

    Delmotte, Franck; Ravet, Marie-Francoise; Bridou, Francoise; Varniere, Francoise; Zeitoun, Philippe; Hubert, Sebastien; Vanbostal, Laurent; Soullie, Gerard


    With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of the membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 deg. provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed

  5. X-ray-ultraviolet beam splitters for the Michelson interferometer. (United States)

    Delmotte, Franck; Ravet, Marie-Françoise; Bridou, Françoise; Varnière, Françoise; Zeitoun, Philippe; Hubert, Sébastien; Vanbostal, Laurent; Soullie, Gérard


    With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of t he membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 degrees provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed.

  6. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han


    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  7. In-fiber integrated Michelson interferometer. (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing


    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  8. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  9. Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing. (United States)

    Hua, Liwei; Song, Yang; Huang, Jie; Lan, Xinwei; Li, Yanjun; Xiao, Hai


    A Michelson-type large core optical fiber sensor has been developed, which is designed based on the optical carrier-based microwave interferometry technique, and fabricated by using two pieces of 200-μm diameter fused silica core fiber as two arms of the Michelson interferometer. The interference fringe pattern caused by the optical path difference of the two arms is interrogated in the microwave domain, where the fringe visibility of 40 dB has easily been obtained. The strain sensing at both room temperature and high temperatures has been demonstrated by using such a sensor. Experimental results show that this sensor has a linear response to the applied strain, and also has relatively low temperature-strain cross talk. The dopant-free quality of the fused silica fiber provides high possibility for the sensor to have promising strain sensing performance in a high temperature environment.

  10. Michelson-type Radio Interferometer for University Education (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.


    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  11. Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution. (United States)

    Grassani, Davide; Galli, Matteo; Bajoni, Daniele


    We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than 1° at λ=632.8  nm, which corresponds to a precision in the optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless, and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry, and quantum optical experiments.

  12. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams. (United States)

    Emile, Olivier; Emile, Janine


    Michelson interferometry is one of the most widely used techniques for accuracy measurements. Its main characteristic feature is to infer a displacement in one of the arms of the interferometer from a phase measurement. Two different twisted beams, also called vortex beams, with opposite twisted rotations in each arm of the interferometer interfere in a daisy flower-like pattern. The number of petals is twice the topological charge. Their position depends on the relative phase of the beams. Naked eye detection of 44 pm displacements is achieved. The sensitivity of such an interferometer together with possible further improvements, and applications are then discussed.

  13. The Experiment of Michelson and Morley

    Indian Academy of Sciences (India)

    interferential refractor', later known as the. 'Michelson interferometer'. This time difference would give rise to a phase differ- ence between the two rays of light, and their interference pattern. (alternate dark and bright bands called fringes) would ...

  14. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov, S.


    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  15. Disorder-based graphene spintronics

    International Nuclear Information System (INIS)

    Rocha, A R; Fazzio, A; Martins, Thiago B; Da Silva, Antonio J R


    The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green's functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.

  16. Polymers for electronics and spintronics. (United States)

    Bujak, Piotr; Kulszewicz-Bajer, Irena; Zagorska, Malgorzata; Maurel, Vincent; Wielgus, Ireneusz; Pron, Adam


    This critical review is devoted to semiconducting and high spin polymers which are of great scientific interest in view of further development of the organic electronics and the emerging organic spintronic fields. Diversified synthetic strategies are discussed in detail leading to high molecular mass compounds showing appropriate redox (ionization potential (IP), electron affinity (EA)), electronic (charge carrier mobility, conductivity), optoelectronic (electroluminescence, photoconductivity) and magnetic (magnetization, ferromagnetic spin interactions) properties and used as active components of devices such as n- and p-channel field effect transistors, ambipolar light emitting transistors, light emitting diodes, photovoltaic cells, photodiodes, magnetic photoswitches, etc. Solution processing procedures developed with the goal of depositing highly ordered and oriented films of these polymers are also described. This is completed by the description of principal methods that are used for characterizing these macromolecular compounds both in solution and in the solid state. These involve various spectroscopic methods (UV-vis-NIR, UPS, pulse EPR), electrochemistry and spectroelectrochemistry, magnetic measurements (SQUID), and structural and morphological investigations (X-ray diffraction, STM, AFM). Finally, four classes of polymers are discussed in detail with special emphasis on the results obtained in the past three years: (i) high IP, (ii) high |EA|, (iii) low band gap and (iv) high spin ones.

  17. Spintronics: A new twist in electronics

    Indian Academy of Sciences (India)


    Semiconductor Nanostructures. Ultrafast Laser Spectroscopy. Spintronics: A new twist in electronics. Bipul Pal. Indian Institute of Science Education & Research – Kolkata. 02/07/09. 1st Platinum Jubilee Meeting of the Indian Academy of Sciences ...

  18. Speckle interferometry (United States)

    Sirohi, Rajpal S.


    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  19. Unequal-Arms Michelson Interferometers (United States)

    Tinto, Massimo; Armstrong, J. W.


    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  20. Michelson interferometer based spatial phase shift shearography. (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu


    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  1. A study of a space-station-associated multiple spacecraft Michelson spatial interferometer (United States)

    Stachnik, R. V.


    One approach to Michelson spatial interferometry at optical wavelengths involves use of an array of spacecraft in which two widely-separated telescopes collect light from a star and direct it to a third, centrally-located, device which combines the beams in order to detect and measure interference fringes. The original version of a spacecraft array for Michelson spatial interferometry (SAMSI) was modified so that the system uses the fuel resupply capability of a space station. The combination of this fuel resupply capability with a method of obtaining image Fourier transform phase information, necessary for full image reconstruction, permits SAMSI to be used to synthesize images equivalent to those produced by huge apertures in space. Synthesis of apertures in the 100 to 500 meter range is discussed. Reconstruction can be performed to a visual magnitude of at least 8 for a 100 A passband in 9 hours. Data are simultaneously collected for image generation from 0.1 micron to 18 microns. In the one-dimensional mode, measurements can be made every 90 minutes (including acquisition and repointing time) for objects as faint as 19th magnitude in the visible.

  2. Speckle Interferometry (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  3. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal


    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  4. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) (United States)

    Roberts, B.


    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  5. A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers

    Directory of Open Access Journals (Sweden)

    Simon Fleming


    Full Text Available Linewidth measurements of a distributed feedback (DFB fibre laser are made using delayed self heterodyne interferometry (DHSI with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI = (1.6 ± 0.2 kHz and wL (MI = (1.4 ± 0.1 kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  6. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers. (United States)

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L


    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  7. New moves of the spintronics tango

    Czech Academy of Sciences Publication Activity Database

    Sinova, Jairo; Zutic, I.


    Roč. 11, č. 5 (2012), 368-371 ISSN 1476-1122 Institutional research plan: CEZ:AV0Z10100521 Keywords : spintronics * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  8. Spintronics current-switched magnetic insulator

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg


    Roč. 16, č. 3 (2017), s. 284-285 ISSN 1476-1122 Institutional support: RVO:68378271 Keywords : spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 39.737, year: 2016

  9. Quantum Interferometry (United States)

    Dowling, Jonathan P.


    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  10. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.


    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  11. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.


    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  12. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail:


    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  13. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo


    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  14. A Michelson interferometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.; Steinhauser, K.A.; Berger, L.


    We propose a neutron Michelson Interferometer installed within a focussing 'gravity diffractometer' for ultracold neutrons. In this arrangement the expected interference pattern depends only on the well-defined vertical component of neutron wavevector. Possible applications of such an interferometer are discussed. (orig.)

  15. Algorithms for Unequal-Arm Michelson Interferometers (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.


    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  16. Recent developments and perspective in spintronics (United States)

    Fert, A.


    Recent developments and perspective in spintronics: A. Fert, UMR CNRS/Thales, 91767 Palaiseau and Université Paris-Sud, 91405 Orsay, France After an introduction on the fundamentals of spin transport and the discovery of GMR, I will focus on the most recent developments in spintronics. I will first describe the field of the spin transfer phenomena by reviewing experimental results on magnetic switching and generation of microwave oscillations by spin transfer. The synchronization and phase locking of a collection of STO’s (Spin Transfer Oscillators) is an example of new important problem raised by the experiments of spin transfer. I will present data on the synchronization of electrically connected STO. I will then continue the review with results on spintronics with semiconductors, molecular spintronics and spin Hall effect.Acknowledgements: I thanks all the coworkers of my recent works on spintronics, A. Anane[1], J. Barnas [2], A. Barthélémy [1], A. Bernand-Mantel [1], M. Bibes [1], O. Boulle [1], V.Cros [1], C.Deranlot [1], M.Elsen [1], G. Faini [3], B. Georges [1], JM.George [1], R. Giraud [3], M. Gmitra [2], J.Grollier [1], A.Hamzic [5], L. Hueso [6], H.Jaffrès [1], S. Laribi [1], A. Lemaitre [3], P. M. Levy [7], N. Mathur [6], R. Mattana [1],, F. Petroff [1], P. Seneor [1], F.Van Dau [1], A. Vaurès [1]. [1] Unité Mixte de Physique CNRS/Thales, Palaiseau and Université Paris Sud,Orsay, France[2] Department of Physics, Adam Mickiewicz University, Poznan, Poland[3] CNRS- LPN, Marcoussis, France[4] IEF, Université Paris-Sud, Orsay, France[5] University of Zagreb, Croatia[6] Cambridge University, UK [7] New York University

  17. The Newcomb & Michelson Velocity of Light Experiments (United States)

    Carter, W. E.


    Simon Newcomb (1835-1909) is remembered as the leading American mathematical astronomer of the 19th century; Albert Michelson (1852-1931) as the leading optical experimentalist of his era, and the first American to win the Nobel Prize in physics (1907). Newcomb first became interested in measuring the velocity of light to better determine the scale of the solar system. Ensign Michelson began his velocity of light experiments while preparing to teach physics at the U.S. Naval Academy, in Annapolis, Maryland. Using private funding and Naval Academy facilities, in January 1879, Michelson obtained a value of 299,910 km/sec. In March of that same year Newcomb received an appropriation of five thousand dollars and Michelson was detailed to the U.S. Naval Observatory (USNO) to assist with experiments in Washington D. C. The instrument designed by Newcomb used a four-sided solid steel rotating mirror to avoid a failure of the type Michelson had experienced when a thin glass mirror failed from centrifugal force. The mirror was driven by compressed air operating on fan wheels at each end of the assembly. Rotation rates of 250 rev/sec were possible, in both directions, and the rate could be varied minutely by adjusting conflicting air jets. Ft. Meyers was selected for the primary station, and fixed mirror stations were placed at USNO (Foggy Bottom) and the Washington Monument. The U.S. Coast and Geodetic Survey (USC&GS) determined the distances from the rotating mirror to the fixed mirrors. They first established a few hundred meter long baseline on Analostan Island, in the Potomac River, using 4 meter long agate capped steel slide-rods. Triangulation was then used to extend the network to each of the reflector stations. Michelson participated in the Washington D.C. observations until September 1880, when he was granted a leave of absence by the Navy to study in Europe. Newcomb continued the experiments for two more years. In his final report, Newcomb gave two values for the

  18. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  19. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C


    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  20. Tunable Magnetic Resonance in Microwave Spintronics Devices (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.


    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  1. CMOS-compatible spintronic devices: a review (United States)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried


    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  2. Oxide-Graphene Interfaces for Graphene Spintronics (United States)

    Stuart, Sean Clayton

    Graphene's high carrier mobility and low spin-orbit scattering allow for efficient spin transport, which has been demonstrated by several publications over useful length scales. Spintronic devices require an oxide tunneling barrier to allow for efficient spin injection from a magnetic contact and can employ magnetic oxide gates for spin manipulation. This thesis concerns the production and characterization of oxide films for graphene based spintronics. Pulsed laser deposition (PLD) was used to grow thin, uniform MgO films on graphene of suitable quality for tunneling barriers. This was an important result, improving on previous deposition techniques significantly. Progress toward more sophisticated spintronic devices requires controllable manipulation of spin polarized charge carriers. We have identified Cr 2O3 as a material whose magnetoelectric properties would enable voltage controlled switching of the exchange interaction. Magnetoelectric Cr2O3 filmswere produced by PLD. These films were characterized by x-ray diffraction, photoelectron spectroscopy and atomic force microscopy (AFM). The magnetoelectric properties of Cr2O 3 were characterized by a novel combination of electrostatic (EFM) and magnetic force microscopy (MFM). Magnetoelectric annealing was used to produce varying sized magnetoelectric domains imaged by MFM. A local electric field was applied with a conducting AFM tip, and the local switching of the polarization and magnetization produced by the applied field was measured.

  3. A novel plasmonic interferometry and the potential applications (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.


    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  4. Nonlinear Michelson interferometer for improved quantum metrology


    Luis, Alfredo; Rivas, Ángel


    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  5. First mesospheric wind images using the Michelson interferometer for airglow dynamics imaging. (United States)

    Langille, J A; Ward, W E; Nakamura, T


    The Michelson interferometer for airglow dynamics imaging (MIADI) is a ground-based instrument that combines an imaging capability with the Doppler Michelson interferometry in order to remotely detect motions in the mesopause region using spectrally isolated airglow emissions: the O(S1) emission at 557.73 nm and the OH (6, 2) P1 (2) at 839.918 nm. A measurement and analysis approach has been developed that allows simultaneous images of the line-of-sight Doppler wind field and irradiance field to be obtained. A working field instrument was installed and tested at a field site outside Fredericton, NB (45.96 N, 66.65 W) during the summer of 2014. Successful measurements over a 6 h period were obtained on 31 July 2014. This paper describes the MIADI measurement and analysis approach and presents the work that has been done to extract images of the line-of-sight Doppler wind field and irradiances from these observations. The imaging capability is validated by identifying the presence of large-scale and small-scale geophysical perturbations in the images.

  6. Special Heusler compounds for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balke, B.


    This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si with the Fe concentration ranging from x=0 to 1 are reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co{sub 2}Mn{sub 1-x}Fe{sub x}Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co{sub 2}FeAl{sub 1-x}Si{sub x} with varying Si concentration are reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x=0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors is reported. It is shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers

  7. Voltage controlled spintronics device for logic applications.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S. D.; You, C.-Y.


    We consider logic device concepts based on our previously proposed spintronics device element whose magnetization orientation is controlled by application of a bias voltage instead of a magnetic field. The basic building block is the voltage-controlled rotation (VCR) element that consists of a four-layer structure--two ferromagnetic layers separated by both nanometer-thick insulator and metallic spacer layers. The interlayer exchange coupling between the two ferromagnetic layers oscillates as a function of applied voltage. We illustrate transistor-like concepts and re-programmable logic gates based on VCR elements.

  8. Computerized evaluation optical measuring thin films by the help of Michelson`s interferometer

    Czech Academy of Sciences Publication Activity Database

    Bartoněk, L.; Keprt, Jiří


    Roč. 9, č. 2 (2002), s. 27-34 ISSN 1335-0803 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : Michelson `s interferometer * computerized evaluation Subject RIV: BH - Optics, Masers, Lasers

  9. On the importance of the Michelson-Morley experiment

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.


    The opinion of an important role of the Michelson-Morley experiment in the establishment of the pronciple oof the light velocity constancy is expressed. It is stressed that the used of radar length for the treatment of the Michelson-Morley experiment leads to the elongation formulas for the longitudinal arm of an interferometer. 24 refs

  10. Michelson interferometer based interleaver design using classic IIR filter decomposition. (United States)

    Cheng, Chi-Hao; Tang, Shasha


    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  11. Bidimensional perovskite systems for spintronic applications. (United States)

    Pilo, Jorge; Miranda, Álvaro; Trejo, Alejandro; Carvajal, Eliel; Cruz-Irisson, Miguel


    The half-metallic behavior of the perovskite Sr 2 FeMoO 6 (SFMO) suggests that this material could be used in spintronic applications. Indeed, SFMO could be an attractive material for multiple applications due to the possibility that its electronic properties could be changed by modifying its spatial confinement or the relative contents of its constituent transition metals. However, there are no reports of theoretical studies on the properties of confined SFMOs with different transition metal contents. In this work, we studied the electronic properties of SFMO slabs using spin-polarized first-principles density functional theory along with the Hubbard-corrected local density approximation and a supercell scheme. We modeled three insulated SFMO slabs with Fe:Mo atomic ratios of 1:1, 1:0, and 0:1; all with free surfaces parallel to the (001) crystal plane. The results show that the half-metallicity of the SFMO is lost upon confinement and the material becomes a conductor, regardless of the ratio of Fe to Mo. It was also observed that the magnetic moment of the slab is strongly influenced by the oxygen atoms. These results could prove useful in attempts to apply SFMOs in fields other than spintronics. Graphical abstract Losing the metallic behaviour: density of states changes, around the Fermi level, due to the Fe/Mo ratio for bidimensional perovskite systems.

  12. Integration of spintronic interface for nanomagnetic arrays

    Directory of Open Access Journals (Sweden)

    Andrew Lyle


    Full Text Available An experimental demonstration utilizing a spintronic input/output (I/O interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.

  13. Multiple reflection Michelson interferometer with picometer resolution. (United States)

    Pisani, Marco


    A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.

  14. Fringe Benefits of Interferometry

    Indian Academy of Sciences (India)

    It was Michelson whocarried out this programme and made the first direct measurementof the giant star Betelguse in the constellation ofOrion. His value for the angular diameter, 47 milliarcsecondsor 2.6×10−7 radians, was completely confirmed by laterwork following his methods. The key concept introduced was.

  15. An X-ray BBB Michelson interferometer. (United States)

    Sutter, John P; Ishikawa, Tetsuya; Kuetgens, Ulrich; Materlik, Gerhard; Nishino, Yoshinori; Rostomyan, Armen; Tamasaku, Kenji; Yabashi, Makina


    A new X-ray Michelson interferometer based on the BBB interferometer of Bonse and Hart and designed for X-rays of wavelength approximately 1 A was described in a previous paper. Here, a further test carried out at the SPring-8 1 km beamline BL29XUL is reported. One of the BBB's mirrors was displaced by a piezo to introduce the required path-length difference. The resulting variation of intensity with piezo voltage as measured by an avalanche photodiode could be ascribed to the phase variation resulting from the path-length change, with a small additional contribution from the change of the position of the lattice planes of the front mirror relative to the rest of the crystal. This 'Michelson fringe' interpretation is supported by the observed steady movement across the output beam of the interference fringes produced by a refractive wedge when the piezo voltage was ramped. The front-mirror displacement required for one complete fringe at the given wavelength is only 0.675 A; therefore, a quiet environment is vital for operating this device, as previous experiments have shown.

  16. Spintronics and thermoelectrics in exfoliated and epitaxial graphene

    NARCIS (Netherlands)

    van den Berg, Jan Jasper


    This thesis is about two subjects: graphene spintronics and graphene thermoelectrics. Spintronics is about the creation and manipulation of spin currents. These are electrical currents in which we can control the spin orientation (up or down) of the conduction electrons. The second subject,

  17. Compton effect in terms of spintronic

    Directory of Open Access Journals (Sweden)

    Ziya Saglam

    Full Text Available Compton effect with spin effect is studied. Although the incoming wave has been taken into account in the current loop model the final result is the same as before. Namely, the total angular momentum in z-direction before the collision will be equal to the total angular momentum after the collision. Let us take the z-component of the spin of the incident light as, (1, 0, −1 and the spin of the electron as, (½, −½. Applying the conservation of the z-component of the total angular momentum gives access to spin-flips. We find that the probability of spin-flip is 40%. We believe that this analysis will be helpful for deepening in the spintronic event better. Keywords: Compton effect, Spin-flip, Total angular momentum

  18. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)


    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  19. Phase conjugate Michelson interferometer for optical logic (United States)

    Khoury, Jed


    The interference theory is developed for of the phase conjugate Michelson interferometer in which its ordinary mirrors are replaced by a single externally pumped phase conjugate mirror. According to the theory, it was found that for an interferometer with two equal arms, the path length difference depends solely on the initial alignment of the two input beams, and the vertical alignment readout. Small vertical misalignments in the readout beam by mrad causes a huge change in the phase difference in the phase between the two interferometer arms beam. The phase difference is proportional to the interferometer arm lengths. The overlap between the phase conjugate beams is not affected by the interferometer beam alignment. The interferometer is proposed for nondestructive testing and the design all optical logic and associated fuzzy logic for ultrafast optical pattern recognition.

  20. Faraday-Michelson system for quantum cryptography. (United States)

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can


    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  1. Distributed acoustic sensing with Michelson interferometer demodulation (United States)

    Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong


    The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.

  2. Naturally stable Sagnac-Michelson nonlinear interferometer. (United States)

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C


    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  3. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas


    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  4. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.


    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  5. Michelson-Morley Experiment within the Quantum Mechanics Framework

    International Nuclear Information System (INIS)

    Khokhlov, D.L.


    It is revisited the Michelson-Morley experiment within the quantum mechanics framework. One can define the wave function of photon in the whole space at a given moment of time. The phase difference between the source and receiver is a distance between the source and receiver at the time of reception hence it does not depend on the velocity of the frame. Then one can explain the null result of the Michelson-Morley experiment within the quantum mechanics framework. (author)

  6. Adaptive Optics, LLLFT Interferometry, Astronomy

    National Research Council Canada - National Science Library


    We propose to build a three telescope Michelson optical interferometer equipped with wavefront compensation technology as a demonstration and test bed for high resolution Deep Space Surveillance (DSS) and Astronomy...

  7. Damping in Materials for Spintronic Applications (United States)

    Mewes, Claudia

    The next generation of spintronic devices relies strongly on the development of new materials with high spin polarization, optimized intrinsic damping and tunable magnetic anisotropy. Therefore, technological progress in this area depends heavily on the successful search for new materials as well as on a deeper understanding of the fundamental mechanisms of the spin polarization, the damping and the magnetic anisotropy. This talk will focus on different aspects of materials with a low intrinsic relaxation rate. Our results are based on first principles calculations in combination with a non-orthogonal tight-binding model to predict those material properties for complex materials which can be used for example in new spin based memory devices or logic devices. However, the intrinsic damping parameter predicted from first principle calculations does not take into account adjacent layers that are present in the final device. Spin pumping is a well-known contribution that has to be taken into account for practical applications using multilayer structures. More recently a strong unidirectional contribution to the relaxation in exchange bias systems has been observed experimentally. To describe this phenomenon theoretically we use the formalism of an anisotropic Gilbert damping tensor that takes the place of the (scalar) Gilbert damping parameter in the Landau-Lifshitz-Gilbert equation of motion. While for single crystals this anisotropy is expected to be small, making experimental confirmation difficult, the broken symmetry in exchange bias systems provides an excellent testing ground to study the modified magnetization dynamics under the influence of unidirectional damping. C.K.A. Mewes would like to thank her colleague T. Mewes and her students J.B. Mohammadi, A.E. Farrar. We acknowledge support by the NSF-CAREER Award No. 1452670, and NSF-CAREER Award No. 0952929.

  8. LISA Long-Arm Interferometry (United States)

    Thorpe, James I.


    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  9. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating. (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L


    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  10. EIT Based Gas Detector Design by Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Abbasian, K.; Rostami, A.; Abdollahi, M. H.


    Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

  11. Simultaneous Immersion Mirau Interferometry (United States)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  12. Proposal of Michelson-Morley experiment via single photon interferometer: Interpretation of Michelson-Morley experimental results using de Broglie-Bohm picture


    Sato, Masanori


    The Michelson-Morley experiment is considered via a single photon interferometer and we propose the interpretation of the Michelson-Morley experimental results using de Broglie-Bohm picture. We point out that the Michelson-Morley experiment revealed the interference of photons, however, it did not reveal the photons simultaneous arrival at the beam splitter. According to the de Broglie-Bohm picture, the quantum potential nonlocally determines the interference of photons. The interference of t...

  13. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola


    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  14. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing


    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  15. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.


    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  16. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan


    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  17. Quantitative Phase Determination by Using a Michelson Interferometer (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian


    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  18. Measurement of Refractive Index Using a Michelson Interferometer. (United States)

    Fendley, J. J.


    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  19. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.


    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  20. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter


    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  1. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  2. Basics of interferometry

    CERN Document Server

    Hariharan, P


    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  3. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space (United States)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; hide


    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  4. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto


    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  5. Complex master slave interferometry. (United States)

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  6. Analysis of a four-mirror-cavity enhanced Michelson interferometer. (United States)

    Thüring, André; Lück, Harald; Danzmann, Karsten


    We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.

  7. Phase correction for a Michelson interferometer with misaligned mirrors (United States)

    Goorvitch, D.


    The phase correction for a Michelson interferometer with misaligned mirrors in converging light is shown to give rise to a quadratic phase shift. In general, the calculation of a spectrum from the measured interferogram needs phase correction. Phase corrections have been well worked out for the cases of a linear phase shift and a phase that is slowly varying. The standard procedures for correcting calculated spectra need to be modified, however, to remove any phase errors resulting from misaligned mirrors.

  8. Infrared spectra of lunar soils. [using a Michelson interferometer (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.


    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  9. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi


    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  10. Fiber inline Michelson interferometer fabricated by a femtosecond laser. (United States)

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai


    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  11. The Michelson Era in American Science, 1870--1930

    International Nuclear Information System (INIS)

    Goldberg, S.; Stuewer, R.H.


    The articles in this volume relate, in one way or another, to a single experiment: the Michelson-Morley ether-drift experiment of 1887. About one-half of the articles in the collection are based on papers delivered at a two-day symposium ''The Michelson Era in American Science: 1870--1930,'' held a Case Western Reserve University in Cleveland, Ohio, 28--29 October 1987, commemorating the centennial of the experiment. The Michelson-Morley experiment was designed to detect the motion of the earth through the luminiferous ether. At the time, physicists did not question the existence of the ether. The experiment, like many physical probes of nature, was simple in conception, yet uncompromisingly demanding of the art of contemporary craftsmanship. The state of the mechanical arts and its relationship to the pursuit of physical science in late nineteenth- century America is well documented in Section I, which also addresses the more general question of the link between state-of-the-art shop practice and engineering theory

  12. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers


    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René


    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  13. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation. (United States)

    Connelly, Michael J; Galeti, José Henrique; Kitano, Cláudio


    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is a Michelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

  14. PREFACE International Symposium on Spintronic Devices and Commercialization 2010 (United States)

    Du, You-wei; Judy, Jack; Qian, Zhenghong; Wang, Jianping


    SSDC logo Preface The International Symposium on Spintronic Devices and Commercialization (ISSDC' 2010) was held in Beijing, China, from 21 to 24 October 2010. The aim of the symposium was to provide an opportunity for international experts, academics, researchers, practitioners and students working in the areas of spintronic theories, spintronic materials, and spintronic devices to exchange information on the R&D and commercialization of spintronic materials and devices. New developments, concepts, future research trends and potential commercialization areas were also discussed. The topics covered by ISSDC' 2010 were: Fundmental Spintronic Theories/Experiments Spin polarization, spin-dependent scattering, spin relaxation, spin manipulation and optimization, as well as other related characterizations and applications, etc. Spintronic Materials Giant magnetoresistance materials, magnetic tunnel junction materials, magnetic semiconductor materials, molecular spintronic materials. Spintronic Devices Sensors, isolators, spin logic devices and magnetic random access memories (MRAMs), microwave devices, spin diodes, spin transistor, spin filters and detectors, spin optoelectronic devices, spin quantum devices, single chip computer, spin molecule and single electron devices. Other Magnetic Materials Soft magnetic materials, hard magnetic materials, magneto-optical materials, magnetostriction materials. Applications of Spintronic Devices Magnetic position/angle/velocity/rotation velocity sensors, magnetic encoders, magnetic compasses, bio-medical magnetic devices and other applications. Future Research Trends and the Commercialization of Spintronic Devices Approximately 85 scientists from almost 10 countries participated in the conference. The conference featured 6 keynote lectures, 8 invited lectures, 12 contributed lectures and about 30 posters. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference

  15. Fiscal 2000 pioneering research on the spintronic device basic technology; 2000 nendo spintronic soshi kiban gijutsu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    Researchers specializing in technologies of magnetism or semiconductor were drafted from the industrial, official, and academic circles, who conducted hearings, patent investigations, overseas surveys, and the like, concerning spintronics. Collected in this report are the outline of the research and development of spintronic device technology, its current state and tasks and its importance from social and economic viewpoints, and the strategy that Japan should follow in the research and development of the technology. Important spintronic device technologies now attracting attention are mentioned below. The nonvolatile magnetic memory device MRAM (magnetic random access memory) is supposed to be the device which will enjoy practical application first among like devices. It is expected that the spin conduction device will lead to novel functions when the possibilities of the spin-dependent electric conduction phenomenon are further pursued. It is hoped that the spin optical device will be used as a light isolator, light spin logic device, field induced variable wavelength laser device, spin laser device, high-speed light switch, and so forth. It is necessary to watch the development of a spin-aided quantum computer which is still at the stage of basic study. (NEDO)

  16. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)


    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  17. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  18. Decoherence Free Neutron Interferometry (United States)

    Pushin, Dmitry A.; Cory, David G.; Huber, Michael G.; Abutaleb, Mohamed; Arif, Muhammad; Clark, Charles W.


    A neutron interferometer (NI) is a unique example of the macroscopic quantum coherence and has been used to test fundamental principles of quantum mechanics. In practice, neutron interferometers are not widely used because of their extreme sensitivity to environmental noise which is in part due to the slow velocity (relative to light) of the neutron. We show that a neutron interferometer design can benefit from concepts of quantum information processing. We have machined a Decoherence Free (DF) neutron interferometer designed using a quantum error correction code, and have shown it to be much less sensitive to mechanical vibrations than is the standard Mach-Zehnder (MZ) interferometer. Both the MZ and DF geometries are incorporated in one crystal, which allows direct comparisons to be made. We believe that our results and related quantum information approaches, such as ``the power of one qubit,''will enable a new series of compact neutron interferometers that can be tailored to specific applications in soft condensed matter and spintronics. D. A. Pushin, M. Arif, and D. G. Cory, Phys. Rev. A ( 79, 053635 (2009)

  19. High Annular Resolution Stellar Interferometry. (United States)


    Double- Scar Interferometry and l:s Lessons Astrophys. and Space Sci. 11, 13-19 (1971) Finsen, W. S. Interferometer Observation of Binary Stars Astron. J...Interferometry Sky and Telescope 53, 346-350 (1977) McAlister, H. A. Speckle Interferometric Measurements of Binary Scars IV Astrophys. J. 230, 497-501...Ergebn. Exacten. Naturwiss. 10, 84-96 (1931) Pease, F.G. The Fifty-foot rnterferometer Telescope Armour Engineer, , 125-130 (1925) Perrier, C. An

  20. Phase referencing in optical interferometry


    Filho, Mercedes E; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie


    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  1. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif


    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  2. Oxide thin films for spintronics application growth and characterization


    Popovici, Nicoleta, 1973-


    Tese de doutoramento, Física (Física), Universidade de Lisboa, Faculdade de Ciências, 2009 During my PhD research I have synthesized thin films of a material known as a diluted magnetic semiconductor (DMS) using the pulsed laser deposition (PLD) technique. This material is envisioned to be of importance in the emerging field of spintronics where both the charge and the spin of the carriers can be combined to yield unique functionalities. It was envisaged that if spin polarized charge carri...

  3. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics


    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  4. Analysis of the Localization of Michelson Interferometer Fringes Using Fourier Optics and Temporal Coherence (United States)

    Narayanamurthy, C. S.


    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…

  5. Maurice Car̊me'i lihtsad laulud lastele / Helle Michelson

    Index Scriptorium Estoniae

    Michelson, Helle, 1929-


    Car̊me, Maurice. Muinasjutud Caprine'ile / tõlkinud Helle Michelson. [Tallinn] : Tiritamm, 2002 ; Car̊me, Maurice. Naeruhull kirsipuu : [luuletused] / prantsuse keelest tõlkinud Helvi Jürisson. [Tallinn] : Tiritamm, 2002 ; Car̊me, Maurice. Margareetapäev : [jutustused] / tõlkinud Helle Michelson. [Tallinn] : Varrak, 2000

  6. Superposition of helical beams by using a Michelson interferometer. (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst


    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  7. Modulation depth of Michelson interferometer with Gaussian beam. (United States)

    Välikylä, Tuomas; Kauppinen, Jyrki


    Mirror misalignment or the tilt angle of the Michelson interferometer can be estimated from the modulation depth measured with collimated monochromatic light. The intensity of the light beam is usually assumed to be uniform, but, for example, with gas lasers it generally has a Gaussian distribution, which makes the modulation depth less sensitive to the tilt angle. With this assumption, the tilt angle may be underestimated by about 50%. We have derived a mathematical model for modulation depth with a circular aperture and Gaussian beam. The model reduces the error of the tilt angle estimate to below 1%. The results of the model have been verified experimentally.

  8. Near-infrared spectral imaging Michelson interferometer for astronomical applications (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.


    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  9. Shaken Lattice Interferometry (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana


    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  10. Preview of Blackbeard interferometry (United States)

    Carter, M. J.

    Blackbeard is a broadband VHF measurement satellite experiment designed and built by the Space Science and Technology Division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  11. Spintronic materials and devices based on antiferromagnetic metals

    Directory of Open Access Journals (Sweden)

    Y.Y. Wang


    Full Text Available In this paper, we review our recent experimental developments on antiferromagnet (AFM spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.

  12. Recent Advance in Organic Spintronics and Magnetic Field Effect (United States)

    Valy Vardeny, Z.


    In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].

  13. Magnetization switching schemes for nanoscale three-terminal spintronics devices (United States)

    Fukami, Shunsuke; Ohno, Hideo


    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  14. Quantifying the critical thickness of electron hybridization in spintronics materials (United States)

    Pincelli, T.; Lollobrigida, V.; Borgatti, F.; Regoutz, A.; Gobaut, B.; Schlueter, C.; Lee, T.-L.; Payne, D. J.; Oura, M.; Tamasaku, K.; Petrov, A. Y.; Graziosi, P.; Granozio, F. Miletto; Cavallini, M.; Vinai, G.; Ciprian, R.; Back, C. H.; Rossi, G.; Taguchi, M.; Daimon, H.; van der Laan, G.; Panaccione, G.


    In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1-xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1-xSrxMnO3, for fully restoring bulk properties.

  15. Giant magnetoresistance in lateral metallic nanostructures for spintronic applications. (United States)

    Zahnd, G; Vila, L; Pham, V T; Marty, A; Beigné, C; Vergnaud, C; Attané, J P


    In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

  16. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.


    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on Ga......As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...... are controlled by uniaxial magnetic anisotropy. The dynamic response of the sample shows a heavily damped precessional response to the applied field pulses. In the Heusler alloy system of Co-2 MnGa on GaAs, we found that the magnetic moment was reduced for thicknesses down to 10 nm, which may account...

  17. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)


    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  18. Quantitative phase determination by using a Michelson interferometer

    International Nuclear Information System (INIS)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D'


    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement

  19. Development of stable monolithic wide-field Michelson interferometers. (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping


    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  20. Astronomical Observations by Speckle Interferometry. (United States)


    most notably for Betelgeuse , that have errors in the range of 10 to 20%. A version of the Michelson interferometer was a’’ developed by Currie and...applied by Lynds et al. (125) to a reconstructed image of Betelgeuse , as has been done by McDonnell & Bates (158), Wilkerson & Worden (229), Worden (233...8217 ~ % ~ ’ ’ 9 r~.** ~ .* a a’ -’ * % hr 78 McALISTER obtained observations of Betelgeuse using their rotation-shearing inter- ferometer. Indeed, Betelgeuse

  1. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod


    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  2. Evaluating Graphene as a Channel Material in Spintronic Logic Devices (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  3. LSMO - growing opportunities by PLD and applications in spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M; Caricato, A P; Maruccio, G; Martino, M, E-mail: [Physics Department, University of Salento, Via Arnesano, 73100, Lecce (Italy)


    Ferromagnetic materials exhibiting at room temperature combination of good conductivity, magnetic and opto-electronic properties are needed for the development of functional spin-devices. Mixed-valence LSMO is an optimal source of fully spin-polarized carriers and shows a rich physics of magnetic phases and transport mechanisms. Many factors, such as growth temperature, oxygen stoichiometry, temperature-dependent oxygen desorption rate, structural matching between the growing film and substrate, film thickness, and defects, influence the LSMO properties. Stabilization of ferromagnetic and conductive behaviours is linked to structural order. Therefore a growth approach allowing congruent deposition of complex materials under controlled, reproducible and tunable conditions is strongly needed. In this respect pulsed laser deposition reveals a well-suited choice. This review aims to give an overview on LSMO thin film properties, deposition and applications, especially in the emerging organic spintronics.

  4. Optimization of Materials and Interfaces for Spintronic Devices (United States)

    Clark, Billy

    In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.

  5. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber. (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo


    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  6. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation. (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki


    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  7. Speckle fields in holographic interferometry (United States)

    Lockshin, Gennady R.; Kozel, Stanislav M.; Bielonuchkin, V. E.


    The objects which are investigated which are investigated with the help of the holographic interferometry methods as a rule scatter light diffusely, therefore the two-expositional hologram reconstructs the result of interference of the speckle-fields f ('4 and f() scattered by th object at the initial (1) and final (2) states.

  8. Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Kim, Kyung Cho; Yamawaki, Hisashi; Jhang, Kyung Young


    In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature

  9. Detection of laser generated ultrasonic wave using Michelson interferometer

    International Nuclear Information System (INIS)

    Kim, Kyung Cho; Nakano, Hidetoshi; Jhang, Kyung Young


    A stabilized Michelson Interferometer is proposed in order to detect the laser-generated ultrasonic waves in fee from the external noise such as low frequency mechanical vibration. In order to confirm the performance, theoretically expected waveforms were compared with experimentally detected ones in thermo-elastic region, where we generated ultrasonic wave in steel disk by using a Q-switched Nd:YAG laser. Also sound velocities of longitudinal and shear components were measured and they showed good agreement with the typical values in steel. Finally, the change of sound velocity according to the temperature change was measured to show that the proposed technique could be applied to the characterization of high temperature materials.

  10. A Michelson interferometer for X-rays and thermal neutrons

    International Nuclear Information System (INIS)

    Appel, A.


    The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.) [de

  11. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer (United States)


    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  12. The Michelson interferometer-how to detect invisible interference patterns

    International Nuclear Information System (INIS)

    Verovnik, Ivo; Likar, Andrej


    In a Michelson interferometer, the contrast of the interference pattern fades away due to incoherence of light when the mirrors are not in equidistant positions. We propose an experiment where the distance between the interference fringes can be determined, even when the difference in length of the interferometer arms is far beyond the coherence length of the light, i.e. when the interference pattern disappears completely for the naked eye. We used a semiconductor laser with two photodiodes as sensors, which enabled us to follow the fluctuations of the light intensity on the screen. The distance between invisible interference fringes was determined from periodic changes of the summed fluctuating signal, obtained by changing the distance between the two sensors

  13. Investigation of michelson interferometer for volatile organic compound sensor

    International Nuclear Information System (INIS)

    Marzuarman; Rivai, Muhammad; Sardjono, Tri Arief; Purwanto, Djoko


    The sensor device is required to monitor harmful gases in the environments and industries. Many volatile organic compounds adsorbed on the sensor material will result in changes of the optical properties including the refractive index and the film thickness. This study designed and realized a vapor detection device using the principle of Michelson Interferometer. The laser light beamed with a wavelength of 620 nm was divided by using a beam splitter. Interference occurredwhen the two separated lights were recombined. The phase difference between the two beams determined whether the interference would destruct or construct each other to produce the curved fringes. The vapor samples used in these experiments were ethanol and benzene. The results showed that the ethanol concentration of 1611-32210 ppm produced a fringe shift of 197 pixels, while the concentration of benzene of 964-19290 ppm produced a fringe shift of 273 pixels. (paper)

  14. Transverse coherence measurement using a folded Michelson interferometer. (United States)

    Dean, Jesse; Bercx, Martin; Nantel, Marc; Marjoribanks, Robin


    The transverse coherence of a 1 ps pulsed laser beam was measured using a technique involving a modified Michelson interferometer and separate reference images. Using this technique, the transverse coherence of a selected plane in the laser beam was determined, in this case at the exit of a channel in a metal foil self-drilled by the laser. Images of each arm were used as references. Through this technique, it is possible to use the interference patterns produced with uneven intensity distributions and for pulsed lasers on a single-shot basis. The results of these measurements were then shown to be in agreement with those obtained using a Young's double-slit setup.

  15. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions (United States)

    Shepherd, G. G.


    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  16. Dissipative optomechanics in a Michelson-Sagnac interferometer. (United States)

    Xuereb, André; Schnabel, Roman; Hammerer, Klemens


    Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

  17. The tempo-spatially modulated polarization atmosphere Michelson interferometer. (United States)

    Zhang, ChunMin; Zhu, HuaChun; Zhao, Baochang


    A space-based tempo-spatially modulated polarization atmosphere Michelson interferometer (TSMPAMI) is described. It uses the relative movement between the TSMPAMI and the measured target to change optical path difference. The acquisition method of interferogram is presented. The atmospheric temperatures and horizontal winds can be derived from the optical observations. The measurement errors of the winds and temperatures are discussed through simulations. In the presence of small-scale structures of the atmospheric fields, the errors are found to be significantly influenced by the mismatch of the scenes observed by the adjacent CCD sub-areas aligned along the orbiter's track during successive measurements due to the orbital velocity and the exposure time. For most realistic conditions of the orbit and atmosphere, however, the instrument is proven suitable for measuring the atmospheric parameters. © 2011 Optical Society of America

  18. Analysis of the localization of Michelson interferometer fringes using Fourier optics and temporal coherence

    International Nuclear Information System (INIS)

    Narayanamurthy, C S


    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in Principles of Optics by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer have never been analysed seriously in any book. Because Michelson's interferometer is one of the important and fundamental optical experiments taught at both undergraduate and graduate levels, it would be appropriate to explain the localization of these fringes. In this paper, we analyse the localization of Michelson interferometer fringes using Fourier optics and temporal coherence, and show that they never localize at any plane even at infinity

  19. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata


    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  20. Preliminary result of bunch length measurement using a modified Michelson interferometer

    International Nuclear Information System (INIS)

    Lin Xuling; Luo Feng; Bei Hua; Dai Zhimin; Chinese Academy of Sciences, Beijing; Zhang Jianbing; Lu Shanliang; Yu Tiemin


    Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method. Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror. The experimental setup and results of the bunch length measurement will be described in this paper. (authors)

  1. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bainsla, Lakhan, E-mail:, E-mail:; Suresh, K. G., E-mail:, E-mail: [Magnetic Materials Lab, Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)


    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (T{sub C}) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X{sub 2}YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L2{sub 1} structure with four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX′YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are

  2. Precision Geodesy via Radio Interferometry. (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F


    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  3. Angular-domain scattering interferometry. (United States)

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J


    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  4. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M


    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  5. Graphene based superconducting junctions as spin sources for spintronics (United States)

    Emamipour, Hamidreza


    We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.

  6. From Spintronics to CFD/ContractForDifferences (United States)

    Maksoed, W. H.


    Involve the CFD/Computational Fluid Dynamics & HCCI/Homogeneous Charge Compression Ignition - Marcine Frackowiak, dissertation, 2009, for CFD/Contract For Differences accompanied by ``One Man's Crusade to Exonerate Hydrogen for Hindenburg Disaster'' of Addison BAIN, APS News, v. 9, n.7 (July 2000) concludes ``ignition of the blaze'' are responsible to those May, 1937 Accidents. Spintronics their selves include active control & manipulation of spin degree of freedom ever denotes: the nano-obelisk of scanning electron microscopy of galliumnitride/GaN nanostructures-Yong-Hon Cho et al.:``Novel Photonic Device using core-shell nanostructures'', SPIE-newsroom,10.1117/2.1201503.005864. Herewith commercial activated carbon/C can be imaged directly using abberation-corrected transmission electron microscopy[PJF Harris et al.: ``Imaging the Atomic Structures of activated C'', J. Phys. Condens. Matt, 20 (2008) in fig b & c- images networks of hexagonal rings can be clearly be seen depicts equal etchings of 340 px Akhenaten, Nefertiti & their childrens. Incredible acknowledgments to Minister of Education & Culture RI 1998-1999 HE. Mr. Prof. Ir. WIRANTO ARISMUNANDAR, MSME.

  7. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.


    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  8. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.


    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  9. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. (United States)

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro


    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  10. Early Type Stars as Calibrators for Ground-Based Interferometry

    National Research Council Canada - National Science Library

    Yoon, Jinmi; Peterson, Deane M; Amstrong, Thomas; Clark III, James H; Gilbreath, Charmaine; Pauls, Thomas; Schmitt, Henrique R


    Visibility measurements with Michelson interferometers, particularly the measurement of fringe contrast, are affected by various atmospheric and instrumental effects, all of which reduce the measured contrast...

  11. Infrared spectroscopy with a balloon borne Michelson interferometer. Pt. 2

    International Nuclear Information System (INIS)

    Moorwood, A.F.M.; Salinari, P.; Furniss, I.; Jennings, R.E.; King, K.J.


    Observations of the [O III] ionic fine structure lines at 52 μm and 88 μm, made at a resolution of 0.05 cm -1 with a balloon borne telescope and Michelson interferometer, are presented for the H II regions W 51, G33.6-0.2. M 17 S, M 17 N, NGC 6357, and NGC 6334. This is the first time that both [O III] lines have been measured simultaneously. Values for the electron density deduced from the line ratios are found to agree with the radio data, while the O ++ abundances indicate a lower excitation than expected in many cases. The [O I] line at 63 μm was also detected in NGC 6357. In addition, we report the first detection of the [N III] line at 57 μm which was observed from both sources in M 17 and gives the abundance ratio N/O = 0.13. This line was also marginally detected on W 51. (orig.)

  12. PREFACE: International Conference "Trends in Spintronics and Nanomagnetism" (TSN-2010) (United States)

    Maruccio, Giuseppe; Sanvito, Stefano; Hoffmann, Germar; Wiesendanger, Roland; Rowan, Alan


    Conference banner The International Conference "Trends in Spintronics and Nanomagnetism" (TSN-2010), was organized by partners of the EU-project SpiDME and held in the historical city of Lecce, Italy from 23-27 May 2010, at the Ecotekne Campus, University of Salento. The conference provided an international forum to discuss recent progress and future trends in the field. In particular, the aim was to bring together the community of more conventional spin-transport, with that of molecular and nano-magnetism. The main topics of TSN-2010 were: MATERIALSSPIN-PHYSICS AND THEORY - Molecular Magnets- Spin injection - Magnetic nanoparticles and nanowires- Domain walls, spin torque and vortex dynamics - Magnetic semiconductors- Numerical modeling of organic nanomagnetism - Multiferroics and transition metal oxides APPLICATIONSADVANCES IN CHARACTERIZATION - Magnetic Multilayers- Magneto-optical characterization and spin manipulation - Spin-photonics- Intrinsic spin transport mechanism in organics - Molecular and nano-spintronics- Organometallic molecules on surfaces - Spin-based quantum computation- Single molecular magnets on surfaces - Magnetism for sensing and nanomedicine- Nanoscale characterization and spin-sensitive SPM The scientific programme started on Monday 24 May and ended on Thursday 27 May. The Nobel Laureate A Fert attended the conference giving a plenary talk and the programme also featured invited presentations by (in alphabetical order): M Aeschlimann, M Affronte, N Atodiresei, P A Bobbert, A Dediu, N Kioussis, L W Molenkamp, J Moodera, V Prigodin, M Ruben, R Sessoli, R Tan, and H Wende. TSN2010 had 150 attendees who came from around the globe to present their latest research in 100 oral presentations. Contributed talks were selected by the program committee, composed of Giuseppe Maruccio, Ross Rinaldi, Valentina Arima, Fabio Della Sala, Maurizio Martino (Universitá del Salento, NNL Institute Nanoscience-CNR, Lecce, Italy), Stefano Sanvito (Trinity College

  13. CURIE: Cubesat Radio Interferometry Experiment (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.


    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  14. Spintronic microfluidic platform for biomedical and environmental applications (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.


    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  15. Interferometry to Image Surface Spots (United States)

    Perrin, Guy


    I present in this lecture the technique of interferometric imaging at optical/infrared wavelengths. The technique has matured since the pioneering work of Michelson at the end of the XIXth—beginning of the XXth when he first resolved the surface of a star, Betelgeuse, with his colleague Pease. Images were obtained for the first time 20 years ago with the COAST instrument and interferometers have made constant progress to reach the minimum level where blind image reconstruction can be achieved. I briefly introduce the topic to recall why studying the surface and close environment of stars is important in some fields of stellar physics. I introduce the theory of imaging with telescopes and interferometers. I discuss the nature of interferometric data in this wavelength domain and give a few insights on the importance of getting access to visibility phases to obtain information on asymmetries of stellar surfaces. I then present the issue of aperture synthesis with a small number of telescopes, a signature of optical/infrared interferometers compared to the radio domain. Despite the impossibility to measure the phase of visibilities because of turbulence I show that useful information can be recovered from the closure phase. I eventually introduce the principles of image reconstruction and I discuss some recent results on several types of stars.

  16. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.


    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  17. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer. (United States)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo


    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  18. Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection. (United States)

    Müller, Guido; Delker, Tom; Tanner, David B; Reitze, David


    The baseline design for an Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) is a dual-recycled Michelson interferometer with cavities in each of the Michelson interferometer arms. We describe one possible length-sensing and control scheme for such a dual-recycled, cavity-enhanced Michelson interferometer. We discuss the principles of this scheme and derive the first-order sensing signals. We also present a successful experimental verification of our length-sensing system using a prototype tabletop interferometer. Our results demonstrate the robustness of the scheme against deviations from the idealized design. We also identify potential weaknesses and discuss possible improvements. These results as well as other benchtop experiments that we present form the basis for a sensing and control scheme for Advanced LIGO.

  19. Determination of refractive indices of biconvex lenses by use of a Michelson interferometer. (United States)

    Chhaniwal, Vani K; Anand, Arun; Narayanamurthy, C S


    Measurements of lens parameters such as focal length, radius of curvature, and refractive index are important. We describe a measurement method that utilizes a Michelson interferometer to determine parameters of thin, convex lenses. The real fringe system formed by a Michelson interferometer is used to determine the focal lengths and the radii of curvature of the lenses. The refractive index of the lens material is determined from the thin-lens formula. We were able to determine the refractive indices to an accuracy as great as 99.97%. A detailed theoretical and experimental analysis is given.

  20. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer. (United States)

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa


    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  1. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer. (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua


    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  2. A wave optics approach to the theory of the Michelson-Morley experiment (United States)

    Smid, Thomas


    A consistent classical wave optics approach to the theory of the Michelson-Morley experiment shows that the original theory as applied by Michelson and Morley and others does not calculate the optical paths of the two beams correctly, primarily because of incorrectly assuming a right angle reflection in the instrument’s reference frame for the transverse beam, but also because of the incorrect assumption of aberration for the wave fronts. The theory presented in this work proves the expected variation of the phase difference when rotating the interferometer to be more than twice as large and also strongly asymmetrical around the zero line.

  3. Tuning molecular orbitals in molecular electronics and spintronics. (United States)

    Kim, Woo Youn; Kim, Kwang S


    With the advance of nanotechnology, a variety of molecules, from single atoms to large-scale structures such as graphene or carbon nanotubes, have been investigated for possible use as molecular devices. Molecular orbitals (MOs) are a key ingredient in determining the transport properties of molecules, because they contain all the quantum mechanical information of molecular electronic structures and offer spatial conduction channels for electron transport. Therefore, the delicate modulation of the MOs enables us to tune the performance of electron transport through the molecule. Electric and magnetic fields are powerful and readily accessible means for that purpose. In this Account, we describe the effects of external fields on molecular electronic and spintronic devices. Quantum transport through a molecule that connects source and drain electrodes depends strongly on the alignment of molecular energy levels with respect to the chemical potentials at both electrodes. This dependence results from the energy levels being exploited in resonant tunneling processes when the molecule is weakly coupled to the electrodes in the molecular junction. Molecular energy levels can be shifted by the Stark effect of an external electric field. For a molecule with no permanent dipole moment, the polarizability is the primary factor determining the energy shift of each MO, according to the second-order Stark effect; more polarizable MOs undergo a larger energy shift. Interestingly, even a small shift may lead to a completely nontrivial result. For example, we show a magnetic on-off switching phenomenon of a molecule controlled by an electric field. If a molecule has a nonmagnetic ground state but a highly polarizable magnetic excited state with an energy slightly above the ground state, the magnetic excited state can have lower energy than the ground state under a sufficiently strong electric field. A magnetic field is normally used to control spin orientation in a ferromagnetic

  4. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Martinez, E; Malin, M; DeWerd, L [University of WI-Madison/ADCL, Madison, WI (United States)


    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9 cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.

  5. Two particle interferometry at RHIC

    CERN Document Server

    Laue, F


    We present preliminary results from a pion interferometry analysis of Au+Au collisions at square root (S/sub NN/)=130 GeV, recorded with the STAR (Solenoidal Tracker At RHIC) detector at the Relativistic Heavy Ion Collider (RHIC). The evaluation of three-dimensional correlation functions indicates increasing source sizes with increasing event centrality. The dependence of the calculated HBT radii on transverse momentum is attributed to strong space-momentum correlations (transverse flow). In the study presented in this paper we have not observed anomalously large source sizes as have been predicted as a signal for quark-qluon plasma formation. However, the measured HBT radii seem to follow the trend established at lower energies (AGS/SPS). We find the ratio R/sub o//R/sub s/ approximately =1, suggesting a short duration of pion emission. The "universal" pion phase space density, observed at AGS/SPS, seems to hold also at RHIC. (26 refs).

  6. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  7. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  8. Spin-polarized transport properties of a pyridinium-based molecular spintronics device (United States)

    Zhang, J.; Xu, B.; Qin, Z.


    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  9. Some applications of holographic interferometry in biomechanics (United States)

    Ebbeni, Jean P. L.


    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  10. Space Interferometry Mission Instrument Mechanical Layout (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.


    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  11. High-contrast Nulling Interferometry Techniques Project (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  12. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)


    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  13. Novel Polarimetric SAR Interferometry Algorithms, Phase II (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  14. Novel Polarimetric SAR Interferometry Algorithms, Phase I (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  15. Speckle Shearing Interferometry And Its Application (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang


    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  16. Simple Ultra-Low-Cost Undergraduate Holography Using a Modified Michelson Interferometer. (United States)

    Rudmin, J. W.; And Others


    A technique is presented for producing holograms using equipment which is already in the possesion of the majority of college physics departments, which includes a slightly modified Michelson interferometer, a helium-neon laser, and a long focal-length lens. Production of high quality holograms has been achieved by inexperienced undergraduates…

  17. Digital holographic amplification of interferograms in the Michelson interferometer using the phase-only LCOS modulator (United States)

    Balbekin, Nikolay; Petrov, Nikolay; Pul'kin, Sergey; Shoev, Vladislav; Sevryugin, Alexander; Tursunov, Ibrohim; Venediktov, Dmitrii; Venediktov, Vladimir


    The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific "hooks", whose curvature provides the information about the atomic oscillator force. The holographic amplification "smoothes" the hooks and thus makes their analysis much simpler.

  18. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration. (United States)

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman


    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  19. Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement (United States)

    Brown, Daniel D.; Miao, Haixing; Collins, Chris; Mow-Lowry, Conor; Töyrä, Daniel; Freise, Andreas


    We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams is considered.

  20. Quantum Mechanical Noise in a Michelson Interferometer with Nonclassical Inputs: Nonperturbative Treatment (United States)

    King, Sun-Kun


    The variances of the quantum-mechanical noise in a two-input-port Michelson interferometer within the framework of the Loudon-Ni model were solved exactly in two general cases: (1) one coherent state input and one squeezed state input, and (2) two photon number states inputs. Low intensity limit, exponential decaying signal and the noise due to mixing were discussed briefly.

  1. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.


    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  2. A calibration mechanism based on the principles of the Michelson interferometer micro-thrust test device (United States)

    Yan, Biao; Wang, Hai; Yang, Chunlai; Wen, Li


    A micro-thrust test system based on Michelson interferometer was proposed and tested. The relationship between thrust and output voltage of the calibration component in the system was calculated and verified with numerical modeling. The fitting function of the calibration component was obtained, which will be tested during future thrust test experiments.

  3. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.


    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  4. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system. (United States)

    Wu, Sijin; He, Xiaoyuan; Yang, Lianxiang


    Digital shearography based on Michelson interferometers suffers from the disadvantage of a small angle of view due to the structure. We demonstrate a novel digital shearography system with a large angle of view. In the optical arrangement, the imaging lens is in front of the Michelson interferometer rather than behind it as in traditional digital shearography. Thus, the angle of view is no longer limited by the Michelson interferometer. The images transmitting between the separate lens and camera are accomplished by a 4f system in the new style of shearography. The influences of the 4f system on shearography are also discussed. © 2011 Optical Society of America

  5. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki


    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  6. Spin-polarized supercurrents for spintronics: a review of current progress. (United States)

    Eschrig, Matthias


    During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, [Formula: see text]-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

  7. Crystalline CoFeB/graphite interfaces for carbon spintronics fabricated by solid phase epitaxy

    NARCIS (Netherlands)

    Wong, P.K.J.; van Geijn, Elmer; van Geijn, E.; Zhang, W.; Starikov, A.A.; Tran, T. Lan Ahn; Sanderink, Johannes G.M.; Siekman, Martin Herman; Brocks, Gerardus H.L.A.; Kelly, Paul J.; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter


    Structurally ordered interfaces between ferromagnetic electrodes and graphene or graphite are of great interest for carbon spintronics, since they allow spin-filtering due to k-vector conservation. By solid phase epitaxy of amorphous/nanocrystalline CoFeB at elevated temperatures, the feasibility of

  8. Theory of supervirtual refraction interferometry

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  9. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  10. Spectral Interferometry with Electron Microscopes. (United States)

    Talebi, Nahid


    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  11. LED driver for stroboscopic interferometry (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.


    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  12. A new phase-shift microscope designed for high accuracy stitching interferometry

    International Nuclear Information System (INIS)

    Thomasset, Muriel; Idir, Mourad; Polack, François; Bray, Michael; Servant, Jean-Jacques


    Characterizing nanofocusing X-ray mirrors for the soon coming nano-imaging beamlines of synchrotron light sources motivates the development of new instruments with improved performances. The sensitivity and accuracy goal is now fixed well under the nm level and, at the same time, the spatial frequency range of the measurement should be pushed toward 50 mm −1 . SOLEIL synchrotron facility has therefore undertaken to equip with an interferential microscope suitable for stitching interferometry at this performance level. In order to keep control on the whole metrology chain it was decided to build a custom instrument in partnership with two small optics companies EOTECH and MBO. The new instrument is a Michelson micro-interferometer equipped with a custom-designed telecentric objective. It achieves the large depth of focus suitable for performing reliable calibrations and measurements. The concept has been validated with a predevelopment set-up, delivered in July 2010, which showed a static repeatability below 1 nm PV despite a non-thermally stabilized environment. The final instrument was delivered early this year and was installed inside SOLEIL's controlled environment facility, where thorough characterization tests are under way. Latest test results and first stitching measurements are presented

  13. Novel method to measure the soil clay’s permeability by laser interferometry

    Directory of Open Access Journals (Sweden)

    Asselman H.


    Full Text Available In this study, we’ll present a new method to measure the permeability of clay soils (or infiltration rate by laser interferometry. The device is a modified Michelson interferometer. Indeed on the movable mirror is glued a clay sample in the form of a parallelepiped, dried, of length L, height H and shaped to retain the drops of water on its surface to control water’s content .When injecting a volume of distilled water (a few drops to the surface of the sample, it swells and moves the mirror, then we can measure the swelling depending on the depth of a clay soil and its permeability. Therefore we measure time that takes water to reach a depth of Z and we determine the infiltration rate: V=6μm/s ± 3% in concordance with literal values included between 2,8 and 13,9μm/s in clayey silt. For this comparison, we used the study of the characterization of the clay fraction to our sample by XRD.

  14. A new phase-shift microscope designed for high accuracy stitching interferometry (United States)

    Thomasset, Muriel; Idir, Mourad; Polack, François; Bray, Michael; Servant, Jean-Jacques


    Characterizing nanofocusing X-ray mirrors for the soon coming nano-imaging beamlines of synchrotron light sources motivates the development of new instruments with improved performances. The sensitivity and accuracy goal is now fixed well under the nm level and, at the same time, the spatial frequency range of the measurement should be pushed toward 50 mm-1. SOLEIL synchrotron facility has therefore undertaken to equip with an interferential microscope suitable for stitching interferometry at this performance level. In order to keep control on the whole metrology chain it was decided to build a custom instrument in partnership with two small optics companies EOTECH and MBO. The new instrument is a Michelson micro-interferometer equipped with a custom-designed telecentric objective. It achieves the large depth of focus suitable for performing reliable calibrations and measurements. The concept has been validated with a predevelopment set-up, delivered in July 2010, which showed a static repeatability below 1 nm PV despite a non-thermally stabilized environment. The final instrument was delivered early this year and was installed inside SOLEIL's controlled environment facility, where thorough characterization tests are under way. Latest test results and first stitching measurements are presented.

  15. Infrared Interferometry of Auroral Ionosphere-Thermosphere Energetics Project (United States)

    National Aeronautics and Space Administration —  The FWMI prototype development is underway at USU/SDL. To develop the FWMI, USU/SDL is leveraging the successful implementation of a rocket-borne Michelson...

  16. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel

    International Nuclear Information System (INIS)

    Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B


    A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.

  17. Wide band interferometry for thickness measurement (United States)

    Costantino, Santiago; Martinez, Oscar E.; Torga, Jorge R.


    In this work we present the concept of wide band interferometry as opposed to white-light interferometry to introduce a thickness measurement method that gains precision when the bandwidth is reduced to an adequate compromise in order to avoid the distortions arising from the material dispersion. The use of the widest possible band is a well established dogma when the highest resolution is desired in distance measurements with white-light interferometry. We will show that the dogma falls when thickness measurements must be carried out due to material dispersion. In fact the precise knowledge of the frequency dependence of the refractive index is essential for adequate thickness retrieval from the optical experiments. The device we present is also useful to obtain the group refractive index that is necessary to calculate the absolute thickness value. As an example, we show the spreading of a silicone oil on a reference surface in real time.

  18. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y


    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  19. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  20. Q-switched operation with Fox-Smith-Michelson laser cavity

    International Nuclear Information System (INIS)

    Huang, X; Huang, L; Gong, M


    A new kind of three-mirror composite cavity, Fox-Smith-Michelson cavity has been configured. This laser cavity is capable of high power output, owing to the low threshold of Michelson cavity. Also, thanks to the mode selection function of Fox-Smith cavity, stable pulses at high repetition rate can be generated. In our experiment, 15.54 W CW output at 1064 nm has been achieved, with an optic-to-optic conversion efficiency of 42.2%. At the Q-switching repetition rate of 100 kHz, the average output power is 11.92 W, with an optic-to-optic conversion efficiency of 38.2%. For Q-switching frequency from 30 kHz to 100 kHz, the pulse width variation is below 4.4% and the amplitude variation is below 4.8%

  1. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer. (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L


    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  2. Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer

    International Nuclear Information System (INIS)

    Sakata, Shihori; Kawamura, Seiji; Sato, Shuichi; Somiya, Kentaro; Arai, Koji; Fukushima, Mitsuhiro; Sugamoto, Akio


    We developed a control scheme of homodyne detection. To operate the homodyne detector as easy as possible, a simple Michelson interferometer is used. Here a motivation that the control scheme of the homodyne detection is developed is for our future experiment of extracting the ponderomotively squeezed vacuum fluctuations. To obtain the best signalto- noise ratio using the homodyne detection, the homodyne phase should be optimized. The optimization of the homodyne phase is performed by changing a phase of a local oscillator for the homodyne detection from a point at which a signal is maximized. In fact, in this experiment, using the developed control scheme, we locked the Michelson interferometer with the homodyne detector and changed the phase of the local oscillator for the homodyne detection. Then, we measured signals quantity changed by changing the phase of the local oscillator for the homodyne detection. Here we used the output from the homodyne detection as the signal

  3. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P


    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  4. Study of optically thin electron cyclotron emission from TFTR using a Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.


    The TFTR Michelson interferometer, which is used as an electron temperature diagnostic, has a spectral range of 75-540 GHz. This range is adequate for measuring at least the first three cyclotron harmonics, and it spans both optically thick and thin portions of the ECE spectrum. During the most recent opening of the TFTR vacuum vessel, a concave, carbon reflector was installed on the back wall of the vessel, opposite the light collecting optic of the Michelson system. The reflector is designed to prevent the observation of optically thin ECE that originates from a location that is outside the field of view of the light collecting optic. If this is achieved, it should be possible to derive the electron density profile from measurements of either the extraordinary mode third harmonic or the ordinary mode second harmonic. An analysis of ECE spectra that have been measured before and after installation of the reflector is presented

  5. Michelson mode selector for spectral range stabilization in a self-sweeping fiber laser. (United States)

    Tkachenko, A Yu; Vladimirskaya, A D; Lobach, I A; Kablukov, S I


    We report on spectral range stabilization in a self-sweeping laser by adding a narrowband fiber Bragg grating (FBG) to the output mirror in the Michelson configuration. The effects of FBG reflectivity and optical path difference in the Michelson interferometer on the laser spectral dynamics are investigated. Optimization of the interferometer allows us to demonstrate broadband (over 16 nm) self-sweeping operation and reduction of the start and stop wavelength fluctuations by two orders and one order of magnitude (∼100 and 15 times) for start and stop bounds, respectively (down to several picometers). The proposed approaches significantly improve quality of the spectral dynamics and facilitate application of the self-sweeping lasers.

  6. Microwave Michelson interferometer system report of first use on a railgun, Green Farm, San Diego, CA (United States)

    Hawke, R. S.; Greenwood, D.; Morrison, J.; Schildmeyer, F.


    This report summarizes the successful first attempt to use a Michelson microwave interferometer to measure the position of a projectile throughout its acceleration by a railgun. The test was performed at the DNA Green Farm facility operated by Maxwell Labs Inc. The test was performed using the ARDEC-ACB gun to accelerate a 1.1 kg polycarbonate projectile to about 2.5 km/s. The projectile had an initial injection velocity of about 490 m/s.

  7. Experiments on the Porch Swing Bearing of Michelson Interferometer for Low Resolution FTIR


    Tuomas Välikylä; Jyrki Kauppinen


    Porch swing bearing for the linear motion of the mirror in Michelson interferometer for mid-infrared low resolution Fourier transform spectrometer was studied experimentally using the modulation depth of the collimated laser beam. The mirror tilting was measured to be lower than 5 μrad over 3 mm mirror travel using two different bearings assemblies. Additionally, the manufacturing tolerances of the bearing type were proved to be loose enough not to limit the interferometer application. These ...

  8. Reduction of quantum noise in the Michelson interferometer by use of squeezed vacuum states

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob


    We develop further the unified model for treating photon-counting and radiation-pressure fluctuations in the Michelson interferometer with input of squeezed vacuum state. The dependence of the quantum fluctuations on the phase of the input light is calculated. The analysis is restricted to a single-mode interferometer, but generalized in a way that includes both harmonic-oscillator and floating mirrors. We compare our results with those of other authors

  9. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer. (United States)

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune


    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  10. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet (United States)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.


    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  11. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter


    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  12. Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing. (United States)

    Zhang, Juan; Yang, Xiaowei


    Optical interleavers based on Michelson Gires-Tournois interferometer (MGTI) with arbitrary cascaded reflectors for symmetrical or asymmetrical periodic frequency response with arbitrary duty cycles are defined as universal MGTI optical interleaver (UMGTIOI). It can significantly enhance flexibility and applicability of optical networks. A novel and simple method based on digital signal processing is proposed for the design of UMGTIOI. Different kinds of design examples are given to confirm effectiveness of the method.

  13. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer. (United States)

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad


    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  14. Dynamic spectro-polarimeter based on a modified Michelson interferometric scheme. (United States)

    Dembele, Vamara; Jin, Moonseob; Baek, Byung-Joon; Kim, Daesuk


    A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter. The proposed dynamic spectro-polarimeter enables us to extract highly accurate spectral Stokes vector of any transmissive anisotropic object with a frame rate of more than 20Hz.

  15. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity

    International Nuclear Information System (INIS)

    Kang, S.H.; Lee, K.


    A spintronic integrated circuit (IC) is made of a combination of a semiconductor IC and a dense array of nanometer-scale magnetic tunnel junctions. This emerging field is of growing scientific and engineering interest, owing to its potential to bring disruptive device innovation to the world of electronics. This technology is currently being pursued not only for scalable non-volatile spin-transfer-torque magnetoresistive random access memory, but also for various forms of non-volatile logic (Spin-Logic). This paper reviews recent advances in spintronic IC. Key discoveries and breakthroughs in materials and devices are highlighted in light of the broader perspective of their application in low-energy mobile computing and connectivity systems, which have emerged as leading drivers for the prevailing electronics ecosystem

  16. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons (United States)

    Liu, Y. S.; Dong, Y. J.; Zhang, J.; Yu, H. L.; Feng, J. F.; Yang, X. F.


    Zigzag silicene nanoribbons (ZSiNRs) in the ferromagnetic edge ordering have a metallic behavior, which limits their applications in spintronics. Here a robustly half-metallic property is achieved by the boron substitution doping at the edge of ZSiNRs. When the impurity atom is replaced by the aluminum atom, the doped ZSiNRs possess a spin semiconducting property. Its band gap is suppressed with the increase of ribbon’s width, and a pure thermal spin current is achieved by modulating ribbon’s width. Moreover, a negative differential thermoelectric resistance in the thermal charge current appears as the temperature gradient increases, which originates from the fact that the spin-up and spin-down thermal charge currents have diverse increasing rates at different temperature gradient regions. Our results put forward a promising route to design multi-functional spintronic devices which may be applied in future low-power-consumption technologies.

  17. Triple Michelson interferometer for a third-generation gravitational wave detector

    International Nuclear Information System (INIS)

    Freise, A; Chelkowski, S; Hild, S; Pozzo, W Del; Perreca, A; Vecchio, A


    The upcoming European design study 'Einstein gravitational-wave Telescope' represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second-generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this paper, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore, the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational-wave detector.

  18. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar. (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan


    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  19. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan


    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  20. Superconducting spin switch based on superconductor-ferromagnet nanostructures for spintronics

    International Nuclear Information System (INIS)

    Kehrle, Jan; Mueller, Claus; Obermeier, Guenter; Schreck, Matthias; Gsell, Stefan; Horn, Siegfried; Tidecks, Reinhard; Zdravkov, Vladimir; Morari, Roman; Sidorencko, Anatoli; Prepelitsa, Andrei; Antropov, Evgenii; Socrovisciiuc, Alexei; Nold, Eberhard; Tagirov, Lenar


    Very rapid developing area, spintronics, needs new devices, based on new physical principles. One of such devices - a superconducting spin-switch, consists of ferromagnetic and superconducting layers, and is based on a new phenomenon - reentrant superconductivity. The tuning of the superconducting and ferromagnetic layers thickness is investigated to optimize superconducting spin-switch effect for Nb/Cu 41 Ni 59 based nanoscale layered systems.

  1. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    International Nuclear Information System (INIS)

    Quesada, A.; Garcia, M.A.; Crespo, P.; Hernando, A.


    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn 3+ and Mn +4 in MnO 2 grains where diffusion of Zn promotes the Mn 4+→ Mn 3+ reduction. Potential uses of this material in spintronic devices are analysed

  2. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru


    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  3. Precision measurements with atom interferometry (United States)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.


    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601

  4. Rare earth doped III-nitride semiconductors for spintronic and optoelectronic applications (Conference Presentation) (United States)

    Palai, Ratnakar


    Since last four decades the information and communication technologies are relying on the semiconductor materials. Currently a great deal of attention is being focused on adding spin degree-of-freedom into semiconductor to create a new area of solid-state electronics, called spintronics. In spintronics not only the current but also its spin state is controlled. Such materials need to be good semiconductors for easy integration in typical integrated circuits with high sensitivity to the spin orientation, especially room temperature ferromagnetism being an important desirable property. GaN is considered to be the most important semiconductor after silicon. It is widely used for the production of green, blue, UV, and white LEDs in full color displays, traffic lights, automotive lightings, and general room lighting using white LEDs. GaN-based systems also show promise for microwave and high power electronics intended for radar, satellite, wireless base stations and spintronic applications. Rare earth (Yb, Eu, Er, and Tm) doped GaN shows many interesting optoelectronic and magnetoptic properties e. g. sharp emission from UV through visible to IR, radiation hardness, and ferromagnetism. The talk will be focused on fabrication, optoelectronic (photoluminescence, cathodeluminescence, magnetic, and x-ray photoelectron spectroscopy) properties of some rare earth doped GaN and InGaN semiconductor nanostructures grown by plasma assisted molecular beam epitaxy (MBE) and future applications.

  5. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu


    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  6. Experimental demonstration of a variable reflectivity signal recycled Michelson interferometer for gravitational wave detection

    International Nuclear Information System (INIS)

    De Vine, G.; Shaddock, D.; McClelland, D.


    Full text: One technique of improving the sensitivity of interferometric gravitational wave detectors is to implement a signal mirror. This involves placing a mirror at the output of the Michelson interferometer. The gravitational wave signal is then 'recycled' back into the interferometer where it can coherently add with the gravitational wave signal still being produced. The frequency of the improved sensitivity is dependent on the position of the signal mirror, while the peak height and bandwidth are dependent on the reflectivity of the signal mirror. This is because the signal mirror forms a cavity with the Michelson interferometer and this cavity has a resonant frequency dependent on its length and a bandwidth dependent on its finesse, which are a function of signal mirror position and reflectivity, respectively. Due to the varying and/or unknown nature of the gravitational wave frequencies and wave-forms, it is desirable to be able to control both the peak frequency and bandwidth of the detector. The peak frequency can be easily adjusted by altering the signal mirror position. The bandwidth, however, is fixed with the signal mirror reflectivity. In a long base-line gravitational wave detector it is impractical to swap the signal mirror with one of different reflectivity for a number of reasons, for example, the detector's high vacuum would have to be broken, realignment performed and locking re-acquired. This is addressed by the proposal of two different forms of variable reflectivity signal mirror (VRSM): a Fabry-Perot cavity and a Michelson interferometer. These are analysed and the reasons for choosing to investigate the Michelson VRSM are given. The reasons include the potential for easier control and the smooth variation in reflectivity with arm length difference. The experiment is discussed and the results of the first demonstration of variable reflectivity signal recycling are presented in the form of frequency responses obtained by injecting a second

  7. Seismic interferometry-turning noise into signal

    NARCIS (Netherlands)

    Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, C.P.A.


    Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered

  8. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  9. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.


    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers

  10. Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics (United States)

    Wang, Xuefeng

    Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. The crystal growth strategy demonstrated in this work

  11. Future Looks Bright for Interferometry (United States)


    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  12. Study on the wide-angle Michelson interferometer with large air gap. (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen


    A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7 nm, 630.0 nm, 732.0 nm, 834.6 nm, and 865.7 nm, the optimal results under ideal condition are obtained with air gaps of 1.0 cm, 1.5 cm, and 2.0 cm, respectively. With the fixed optical path difference (OPD) of 7.495 cm, three pairs of glass arms are optimized. The pair with length of 1.5 cm for air gap, 5.765 cm for H-ZF12, and 2.956 cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445 cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment. © 2011 Optical Society of America

  13. Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Friedrich, Daniel; Westphal, Tobias; Gossler, Stefan; Danzmann, Karsten; Schnabel, Roman; Somiya, Kentaro; Danilishin, Stefan L.


    Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes (≅100 ng) with high mechanical Q values at room temperature (≥10 6 ) have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity (<0.4 at a wavelength of 1064 nm) which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror for the Michelson interferometer part. In this topology, both power and signal recycling can be used even if the reflectance of the membrane is much lower than unity. In particular, signal recycling is a useful tool because it does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure noise and the shot noise of an oscillator position measurement and compare them with theoretical models of the thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central beam splitter of the interferometer and a membrane temperature of 1 K.

  14. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  15. Joint Multi-baseline SAR Interferometry

    Directory of Open Access Journals (Sweden)

    S. Tebaldini


    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  16. Kinetic Titration Series with Biolayer Interferometry (United States)

    Frenzel, Daniel; Willbold, Dieter


    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  17. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D


    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  18. Issues related to YIG spintronics - thin film growth, spin pumping efficiency, and spin current generation (United States)

    Wu, Mingzhong


    If a magnetic field is applied to a magnetic material, the field produces a torque on the magnetization of the material and drives it to precess. This precession is similar to the motion of a spinning top where the gravitational field produces a torque, instead of the magnetic field. It turns out that magnetization precession in yttrium iron garnets (YIG) decays slower than in any other known magnetic materials. This fact gives rise to the recent birth of a new paradigm in the discipline of spintronics - ``spintronics using YIG.'' This talk will touch on several topics related to YIG spintronics. The first part will demonstrate the feasibility of the use of pulsed laser deposition and magnetron sputtering to grow low-damping, nanometer-thick YIG films. The second part will address the efficiency of spin angular momentum transfer across YIG/normal metal interfaces. The last part will report on the use of YIG thin films to produce pure spin currents; Detailed discussions will be provided on the comparison between spin current generations using traveling spin waves and uniform ferromagnetic resonance modes, the field dependence of spin current generation, and spin current enhancement in YIG/Pt structures via the use of a thin Cu spacer. This work was supported in part by U.S. National Science Foundation (No. ECCS-1231598), the U.S. Army Research Office (No. W911NF-12-1-0518, No. W911NF-11-C-0075), and the U.S. National Institute of Standards and Technology (No. 60NANB10D011).

  19. Control of the phase characteristics of Stokes waves in a Michelson interferometer with SBS mirrors (United States)

    Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.


    It is found that, when using stimulated Brillouin scattering (SBS) mirrors (mounted in a ring Michelson interferometer) with counterfocusing, under pumping by pulses with steep (2 - 3 {\\text{ns}}) leading edges and applying Freon FC-75 as an active medium, the phase difference of the Stokes waves on the semitransparent interferometer mirror obeys the dependence Δ \\varphi = 2Δ k Δ l (Δ k is the difference in the magnitudes of the pump and Stokes component wave vectors and Δ l is the difference in the optical arm lengths).

  20. Development of a steel ball center alignment device based on Michelson interference concept. (United States)

    Lee, Hau-Wei; Liu, Chien-Hung


    This study presents a ball center alignment method based on the Michelson interferometer where one of the reflecting mirrors is replaced by a lens and steel ball. By locating the ball away from the focal length of the lens, the beam is reflected as a spherical wave. The interference ring formed by the planar and spherical waves can be clearly observed using a camera without a lens. The distance of the offset of the ball center can be enhanced by more than 140% using this method. A fast ring profile fitting method can reduce circle fitting time to around a third of that needed for Hough transformation.

  1. Einstein, the exponential metric, and a proposed gravitational Michelson-Morley experiment

    International Nuclear Information System (INIS)

    Yilmaz, H.


    An early but potentially important remark of Einstein on the exponential nature of time-dilation is discussed. Using the same argument for the length-contraction, plus two alternative kinematical assumptions, the Schwarzschild and exponential metrics are derived. A gravitational Michelson-Morley experiment with one arm directed along the vertical is proposed to test the metrics. The experiment may be considered as a laboratory test of the Schwarzschild field and possibly a test of the black-hole interpretation of collapsed matter

  2. Analysis of a sub-shot-noise power recycled Michelson interferometer

    International Nuclear Information System (INIS)

    McKenzie, K; Buchler, B C; Shaddock, D A; Lam, P K; McClelland, D E


    The sensitivity of interferometric gravitational wave detectors is ultimately limited by the 'quantum noise' of light. In this paper we compare results from a bench-top experiment and a theoretical model which show how squeezed states of light may be used to modify the quantum noise behaviour of a power recycled Michelson interferometer. We develop a simple theoretical model of the experiment and find close agreement of theoretical and experimental results. We measure quantum noise suppression of 2.3 dB and demonstrate the lock stability of the experiment for long periods

  3. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV. (United States)

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R


    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  4. Correction of detector nonlinearity for the balloonborne Michelson Interferometer for Passive Atmospheric Sounding. (United States)

    Kleinert, Anne


    The detectors used in the cryogenic limb-emission sounder MIPAS-B2 (Michelson Interferometer for Passive Atmospheric Sounding) show a nonlinear response, which leads to radiometric errors in the calibrated spectra if the nonlinearity is not taken into account. In the case of emission measurements, the dominant error that arises from the nonlinearity is the changing detector responsivity as the incident photon load changes. The effect of the distortion of a single interferogram can be neglected. A method to characterize the variable responsivity and to correct for this effect is proposed. Furthermore, a detailed error estimation is presented.

  5. Improvement on a Michelson interferometer for bunch length measurement of a femtosecond accelerator

    International Nuclear Information System (INIS)

    Lin Xuling; Bei Hua; Zhang Jianbing; Dai Zhimin


    Based on the femtosecond accelerator facility at Shanghai Institute of Applied Physics (SINAP), a conventional far-infrared Michelson interferometer was built to measure the bunch length by means of optical autocorrelation. However, according to the preliminary experiment result, the resolution of interferometer is not good enough, because the mirror-driving mechanism makes the moving mirror tend to tilt or wobble as it retards. Considering of the allowable errors, we calculate the maximum allowable titling angle of the moving mirror, and discuss the alignment plan in this paper. (authors)

  6. Correlated two-photon interference in a dual-beam Michelson interferometer

    International Nuclear Information System (INIS)

    Kwiat, P.G.; Vareka, W.A.; Hong, C.K.; Nathel, H.; Chiao, R.Y.


    We report on an interference effect arising from a two-photon entangled state produced in a potassium dihydrogen phosphate (KDP) crystal pumped by an ultraviolet argon-ion laser. Two conjugate beams of signal and idler photons were injected in a parallel configuration into a single Michelson interferometer, and detected separately by two photomultipliers, while the difference in its arm lengths was slowly scanned. The coincidence rate exhibited fringes with a visibility of nearly 50%, and a period given by half the ultraviolet (not the signal or idler) wavelength, while the singles rate exhibited no fringes

  7. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling. (United States)

    Thüring, André; Gräf, Christian; Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman


    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on what we believe to be the first experimental realization of a TSR Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked, and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4 dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

  8. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.


    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  9. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer


    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  10. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains. (United States)

    Shalloo, R J; Corner, L


    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  11. Active feedback regulation of a Michelson interferometer to achieve zero-background absorption measurements. (United States)

    Lundin, Patrik; Guan, Zuguang; Svanberg, Sune


    An active phase-controlling scheme based on a proportional-integral-derivative-controlled piezoelectric transducer is presented with the purpose of stabilizing a quasi-zero-background absorption spectrometer. A fiber-based balanced Michelson interferometer is used, and absorption due to a gas sample in one of its arms results in an increased light signal to a detector, which otherwise, thanks to destructive interference, experiences a very low light level. With the presented approach, the sensitivity of already potent absorption measurement techniques, e.g., based on modulation, could be improved even further.

  12. Adaption of the Michelson interferometer for a better understanding of the temporal coherence in lasers (United States)

    Illarramendi, M. A.; Zubia, J.; Arrue, J.; Ayesta, I.


    In this work, we show a design of a laboratory exercise in which a digital camera has been coupled to a Michelson interferometer based on free-propagation arms. By using the camera, our students measure the evolution of the interference patterns as a function of the difference between the optical paths of the arms. In this way, they obtain the corresponding reduction of the contrast of the fringes. The analysis of the results allows one to calculate the coherence length, and also to relate the temporal coherence of the employed laser with its spectral line profile. The exercise has been carried out with two lasers, which present different coherence lengths.

  13. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. (United States)

    Wang, Ying-Ju; Anderson, Dana Z; Bright, Victor M; Cornell, Eric A; Diot, Quentin; Kishimoto, Tetsuo; Prentiss, Mara; Saravanan, R A; Segal, Stephen R; Wu, Saijun


    An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

  14. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight. (United States)

    Wan, Xiaoke; Ge, Jian


    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  15. Michelson interferometer with separated inputs and outputs, double pass, and compensation (United States)

    Mather, J. C.; Jennings, D. E.


    A novel configuration is proposed for a Michelson interferometer spectrometer, which will be insensitive to tilts or displacements, and which employs separated inputs and outputs and double passing for higher resolution. The great advantage of such a compensated design is a relaxation of mechanical tolerances, which is especially beneficial for instruments in hostile environments. The Atmospheric Trace Molecule Spectroscopy project, which must work reliably after being subjected to the vibrations of a Space Shuttle launch, would benefit from the use of such an instrument.

  16. Atom Michelson interferometer on a chip using a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Wang Yingju; Anderson, Dana Z.; Cornell, Eric A.; Diot, Quentin; Kishimoto, Tetsuo; Segal, Stephen R.; Bright, Victor M.; Saravanan, R.A.; Prentiss, Mara; Wu Saijun


    An atom Michelson interferometer is implemented on an 'atom chip'. The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms

  17. Fast and low power Michelson interferometer thermo-optical switch on SOI. (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L


    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  18. Measuring the separation of the sodium D-doublet with a Michelson interferometer (United States)

    D'Anna, M.; Corridoni, T.


    Revisiting a method proposed by Fizeau in 1862, in this paper we measure the separation of the Na-doublet (the wavelength difference {{Δ }}λ between the two emission D-lines of the sodium spectrum) with a didactical Michelson interferometer. We describe the setup, how the measurements have been done and develop a mathematical model in order to explain the principal features of the collected data. Discussing the limits of this model, we suggest further experimental and theoretical extensions of the experience, also focusing on the didactical aspects to show how this experiment could bring advanced modern physics topics into high schools.

  19. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer. (United States)

    Lee, Jehyun; Park, Sooyoung; Seo, Dae Han; Yim, Sin Hyuk; Yoon, Seokchan; Cho, D


    We report on measurement of small displacements with sub-nanometer precision using an optoelectronic oscillator (OEO) with an intra-loop Michelson interferometer. In comparison with conventional homodyne and heterodyne detection methods, where displacement appears as a power change or a phase shift, respectively, in the OEO detection, the displacement produces a shift in the oscillation frequency. In comparison with typical OEO sensors, where the frequency shift is proportional to the OEO oscillation frequency in radio-frequency domain, the frequency shift in our method with an intra-loop interferometer is proportional to an optical frequency. We constructed a hybrid apparatus and compared characteristics of the OEO and heterodyne detection methods.

  20. Future prospects for stellar intensity interferometry

    International Nuclear Information System (INIS)

    Lake, R.J.W.


    Full text: The technique of Stellar Intensity lnterferometry (SII) was first successfully demonstrated by Hanbury-Brown in 1956 at Jodrell Bank. SII uses the correlation in intensity fluctuations of starlight as a function of observational baseline to determine angular diameters and other gross features of main sequence stars. In 1962 an observatory was established by Hanbury-Brown in Narrabri NSW. Between 1965 and 1972 the angular diameters of 32 stars covering the spectral range O to F were measured. Orbital parameters of several unresolved binary stars were also determined and attempts were made by the author to directly measure the limb darkening of Sirius and the rotational distortion of Altair. Following the success of the Narrabri SII the Australian Federal Government provided a grant to Sydney University to develop a Very Large SII capable of making observational measurements on about a thousand stars. The development of this VLSII was however shelved in preference to the development of a potentially more sensitive long baseline Michelson Stellar Interferometer. This latter instrument known as SUSI (Sydney University Stellar Interferometer) has been in operation at Narrabri since 1995. Encouraged by the early results of SUSI and their own efforts in the use of active optics to reduce the effects of atmospheric scintillation a number of international observatories are now active in the development of long baseline or large aperture Michelson Stellar Interferometers. However SII while sacrificing sensitivity has a number of technical advantages over MSI as SII is far less sensitive to atmospheric effects and can be readily developed to work over very long baselines. This paper through technical review and theoretical modeling examines how a modern VLSII could be constructed and operated and addresses the limitations to its sensitivity. In particular it examines how existing Australian industry could contribute to the development of a VLSII with sufficient

  1. Fabry-Perot interferometry: astronomical applications

    International Nuclear Information System (INIS)

    Pismis, P.


    Some properties of the interference of light are presented with emphasis on interferometry by means of a Fabry-Perot etalon. The application of the etalon with a focal reducer to astronomical problems is discussed related in particular to the determination of radial velocities of extended emission objects, in galactic and extragalactic nebulae. Mention is also made of the work carried out in Mexico in this field as well as of developments under way. (author)

  2. Laser interferometry for the Big Bang Observer

    International Nuclear Information System (INIS)

    Harry, Gregory M; Fritschel, Peter; Shaddock, Daniel A; Folkner, William; Phinney, E Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme

  3. Refining molecular potentials using atom interferometry

    International Nuclear Information System (INIS)

    Forrey, R.C.; Kharchenko, V.; Dalgarno, A.; You, L.


    We present a theoretical study of the index of refraction of argon for the propagation of sodium matter waves. The sensitivity of the index of refraction to the details of the molecular potential curve is analyzed. Our calculations reveal velocity-dependent oscillations in the index of refraction that may be detectable, particularly at low temperatures, in atom interferometry measurements. A procedure for refining molecular potential curves is outlined. copyright 1997 The American Physical Society

  4. Monitoring civil infrastructure using satellite radar interferometry


    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new, with potential for operational applications, but currently not exploited to full advantage. Here we investigate how to optimally assess and monitor the structural health of civil infrastructure usi...

  5. Laser interferometry for the Big Bang Observer


    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  6. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  7. Mn-based hard magnets with small saturation magnetization and low spin relaxation for spintronics

    International Nuclear Information System (INIS)

    Mizukami, S.; Sakuma, A.; Sugihara, A.; Suzuki, K.Z.; Ranjbar, R.


    The pursuit of high saturation magnetization is an important area of hard magnetic materials research. However, spintronics requires hard magnets exhibiting small saturation magnetization and low spin relaxation. Mn-based alloys that are composed of Mn and light group III and/or group IV elements exhibit such properties and may belong to a new category of magnetic materials. In this article, we review the magnetic properties of Mn-based hard magnet films. In particular, we focus on low spin relaxation as a new viewpoint for hard magnets, and we discuss the origin of their extraordinary magnetism in terms of their unique electronic structures.

  8. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W


    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  9. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement (United States)

    Baker, John; Thorpe, Ira


    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  10. Optical path difference measurements with a two-step parallel phase shifting interferometer based on a modified Michelson configuration (United States)

    Toto-Arellano, Noel Ivan; Serrano-Garcia, David I.; Rodriguez-Zurita, Gustavo


    We report an optical implementation of a parallel phase-shifting quasi-common path interferometer using two modified Michelson interferometers to generate two interferograms. By using a displaceable polarizer's array, placed on the image plane, we can obtain four phase-shifted interferograms in two captures. The system operates as a quasi-common path interferometer generating four beams, which are to interfere with alignment procedures on the mirrors of the Michelson configurations. The optical phase data are retrieved using the well-known four-step algorithms. To present the capabilities of the system, experimental results obtained from transparent structures are presented.

  11. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.


    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  12. Quantum Interferometry in Phase Space Theory and Applications

    CERN Document Server

    Suda, Martin


    Quantum Interferometry in Phase Space is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.

  13. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature. (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M


    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  14. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework. (United States)

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian


    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  15. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer. (United States)

    Abd El-Maksoud, Rania H


    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  16. Physical interpretation of the fringe shift measured on Michelson interferometer in optical media

    International Nuclear Information System (INIS)

    Demjanov, V.V.


    The shift of the interference fringe in the Michelson interferometer is absent in vacuum but present in measurements performed in dielectric media with the refractive index greater than unity. This experimental observation induced me to interpret physical processes occurred in the Michelson interferometer in a conceptually new way. I rejected the generally accepted additive rule c±v for composition of the velocity v of the inertial body and the speed c of light as inapplicable in principle to non-inertial objects which electromagnetic waves just belong to. I used instead the non-relativistic formula of Fresnel for drag of light by a moving optical medium. This formula, and taking into account the physical effect of Lorentz contraction of the arm of interferometer, enabled me to construct the theoretical model that reproduces in essential features the parabolic dependence of the shift of the interference fringe on the dielectric permittivity of the light-carrying material. The Earth's speed relative to aether found from the experimental curve was estimated as 140-480 km/s. The range of the values refers to the projection of the speed on the horizontal plane of the experimental setup measured at various time of day and night.

  17. Perpendicularly magnetized Mn x Ga films: promising materials for future spintronic devices, magnetic recording and permanent magnets (United States)

    Zhu, Lijun; Zhao, Jianhua


    In this article, we review the recent progress in synthesis, characterization and related spintronic devices of tetragonal Mn x Ga alloys with L10 or D022 ordering. After a brief introduction to the growing demands for perpendicularly magnetized materials and the prospective candidate of Mn x Ga, we focus on lattice structures and synthesis of Mn x Ga bulks, and epitaxial growth, structural characterization and magnetic properties of Mn x Ga films. Then we discuss effective ways to tailor and improve the structure and magnetism for possible applications in spintronics, magnetic recording and permanent magnets. Finally, we outline the recent progress in spin polarization, magnetic damping, magneto-optical and magneto-transport behaviors and thermal and chemical stability of Mn x Ga films and related spintronic devices like magnetic tunneling junctions, spin valves and spin injectors into semiconductors.

  18. Full-field displacement and strain measurement of small complex bony structures with digital speckle pattern interferometry and shearography (United States)

    Soons, Joris; Dirckx, Joris J. J.


    We have developed a simple digital speckle pattern interferometry (DSPI) and shearography setup to measure the displacement and the corresponding strains of small complex bony structures. We choose both optical techniques because we want to obtain very small deformations (+/- 20 μm) of small objects (+/- 1cm). Furthermore full field and in situ measurements are preferred. We first use a Michelson DSPI arrangement with phase shifting. In this way we can obtain the out-of-plane displacements precisely. Second, shearography is introduced to measure the derivative of the out-ofplane displacement. In this way some intrinsic disadvantages of DSPI can be overcome. We have developed these setups to measure the out-of-plane deformations of (small) bird beaks when realistic external forces are applied. In this way, we have a full field validation measurement to which we can compare the outcome of realistic finite element models. The aim is to determine whether the shape, and not only the size, of the bird beaks are optimized to deal with the biting forces that a species encounters. This quantitative analysis will help biologists to investigate if beak morphology is adapted to feeding habits. Applying the method to the famous evolution model of the Darwin's finches will provide scientific proof of functional evolution. In this paper we will present both the DSPI and shearography setup, a comparison of the performance of both techniques on a simple deflection of a cantilever beam and the first results obtained on loaded bird beaks.

  19. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement. (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping


    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  20. Application of Young-Michelson and Brown-Twiss interferometers for determining geometric parameters of nonplanar rough objects

    NARCIS (Netherlands)

    Mandrosov, V. I.

    The possibility of using Young-Michelson and Brown-Twiss interferometers for measuring the angular dimensions and parameters of the surface shape of remote passively scattering and self-luminous nonplanar rough objects by optical radiation propagating from them is substantiated. The analysis is

  1. The use of balanced homodyne and squeezed states for detecting weak optical signals in a Michelson interferometer

    International Nuclear Information System (INIS)

    Ben-Aryeh, Y.


    The possibility of using squeezed states and balanced homodyne detection of optical signals in a Michelson interferometer is discussed. The present analysis describes photon statistics measurements effects related to quadrature balanced homodyne detection showing the advantage of using this scheme for detecting weak optical signals.

  2. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm


    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  3. Scanning White light interferometry: calibration and application to roughness assesment

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...

  4. Powertrain engineering using holographic/electronic speckle pattern interferometry (United States)

    Chen, Fang; Marchi, Mitchell M.; Allen, Thomas E.


    Novel applications of computer aided holographic interferometry and electronic speckle pattern interferometry in automotive powertrain engineering are presented. Four applications are described: engine manifold/cylinder head interface deformation measurement, engine camcover strain analysis, throttle bore deformation measurement, and alternator modal characterization.

  5. Method and device for carrying out speckle interferometry

    NARCIS (Netherlands)

    Somers, P.A.A.


    Device and method for obtaining a series of interference patterns from an interferometry device, comprising processing means (21) that are connected to detection means (2) of the interferometry device (1). The processing means (21) comprise computing means (22) and memory means (23) connected to the

  6. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space (United States)

    Kohel, James M.


    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  7. Fabry-Perot interferometry for microplasma diagnostics

    International Nuclear Information System (INIS)

    Hojo, H.; Mase, A.


    A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers. The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are demonstrated. It is shown that the electron density can be determined from the measurement of the Fabry-Perot resonance frequencies. This method can also be applied to the measurement of conduction electron density in semiconductor films

  8. Ten Years of Speckle Interferometry at SOAR (United States)

    Tokovinin, Andrei


    Since 2007, close binary and multiple stars are observed by speckle interferometry at the 4.1 m Southern Astrophysical Research (SOAR) telescope. The HRCam instrument, observing strategy and planning, data processing and calibration methods, developed and improved during ten years, are presented here in a concise way. Thousands of binary stars were measured with diffraction-limited resolution (29 mas at 540 nm wavelength) and a high accuracy reaching 1 mas; 200 new pairs or subsystems were discovered. To date, HRCam has performed over 11,000 observations with a high efficiency (up to 300 stars per night). An overview of the main results delivered by this instrument is given.

  9. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry. (United States)

    Nowbahar, Arash; Mansard, Vincent; Mecca, Jodi M; Paul, Mou; Arrowood, Tina; Squires, Todd M


    A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

  10. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail:, E-mail:, E-mail: [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  11. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  12. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department


    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  13. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    International Nuclear Information System (INIS)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.


    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies

  14. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    International Nuclear Information System (INIS)

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian


    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials

  15. Large phase coherence effects in GaMnAs-based nanostructures: Towards a quantum spintronics

    International Nuclear Information System (INIS)

    Giraud, R.; Vila, L.; Lemaitre, A.; Faini, G.


    Quantum coherent transport of spin-polarized carriers is observed on a very unusual large scale within epitaxial nanowires of GaMnAs, a diluted ferromagnetic semiconductor. From the analysis of the amplitude of strong universal conductance fluctuations, an effective phase coherence length of about 100 nm is inferred at T=100 mK, which is one order of magnitude larger than in a granular 3d-metal ferromagnets. Together with the temperature and bias dependence of these reproducible fluctuations, their wire-length dependence is studied in single-domain sub-micron long nanowires with a perprendicular anisotropy. In particular, variations for two equivalent probe configurations are shown when the length becomes comparable to the actual phase coherence length. This result forecasts the possible observation of non-local voltage drops in GaMnAs nanostructures smaller than about 200 nm. Generally speaking, this research contributes to pave the way towards the realization of quantum spintronics devices

  16. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin-Orbitronics. (United States)

    Kepenekian, Mikaël; Even, Jacky


    In halide hybrid organic-inorganic perovskites (HOPs), spin-orbit coupling (SOC) presents a well-documented large influence on band structure. However, SOC may also present more exotic effects, such as Rashba and Dresselhaus couplings. In this Perspective, we start by recalling the main features of this effect and what makes HOP materials ideal candidates for the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques able to characterize these effects and their application to HOPs. Finally, we discuss potential applications in spintronics and in spin-orbitronics in those nonmagnetic systems, which would complete the skill set of HOPs and perpetuate their ride on the crest of the wave of popularity started with optoelectronics and photovoltaics.

  17. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin


    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  18. Large resistance change on magnetic tunnel junction based molecular spintronics devices (United States)

    Tyagi, Pawan; Friebe, Edward


    Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.

  19. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal


    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  20. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.


    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  1. Cr-Doped III-V Nitrides: Potential Candidates for Spintronics (United States)

    Amin, B.; Arif, S.; Ahmad, Iftikhar; Maqbool, M.; Ahmad, R.; Goumri-Said, S.; Prisbrey, K.


    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al0.75Cr0.25N, Ga0.75Cr0.25N, and In0.75Cr0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al0.75Cr0.25N and Ga0.75Cr0.25N are half-metallic dilute magnetic semiconductors while In0.75Cr0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices.


    KAUST Repository

    Monteblanco, Elmer


    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  3. Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics. (United States)

    Lupton, John M; McCamey, Dane R; Boehme, Christoph


    Organic semiconductors offer expansive grounds to explore fundamental questions of spin physics in condensed matter systems. With the emergence of organic spintronics and renewed interest in magnetoresistive effects, which exploit the electron spin degree of freedom to encode and transmit information, there is much need to illuminate the underlying properties of spins in molecular electronic materials. For example, one may wish to identify over what length of time a spin maintains its orientation with respect to an external reference field. In addition, it is crucial to understand how adjacent spins arising, for example, in electrostatically coupled charge-carrier pairs, interact with each other. A periodic perturbation of the field may cause the spins to precess or oscillate, akin to a spinning top experiencing a torque. The quantum mechanical characteristic of the spin is then defined as the coherence time, the time over which an oscillating spin, or spin pair, maintains a fixed phase with respect to the driving field. Electron spins in organic semiconductors provide a remarkable route to performing "hands-on" quantum mechanics since permutation symmetries are controlled directly. Herein, we review some of the recent advances in organic spintronics and organic magnetoresistance, and offer an introductory description of the concept of pulsed, electrically detected magnetic resonance as a technique to manipulate and thus characterize the fundamental properties of electron spins. Spin-dependent dissociation and recombination allow the observation of coherent spin motion in a working device, such as an organic light-emitting diode. Remarkably, it is possible to distinguish between electron and hole spin resonances. The ubiquitous presence of hydrogen nuclei gives rise to strong hyperfine interactions, which appear to provide the basis for many of the magnetoresistive effects observed in these materials. Since hyperfine coupling causes quantum spin beating in electron

  4. Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Varun, E-mail: [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Jaiswal, Neeraj K. [Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur 482005 (India)


    Highlights: • Asymmetric hydrogen termination of Zigzag Germanene Nanoribbons (ZGeNR) is presented with their plausible spintronic device application. • It is revealed that asymmetric terminations are energetically more favourable compared to symmetric terminations. • The magnetic moment analysis depicts that asymmetric ZGeNR have a magnetic ground state with a preferred ferromagnetic (FM) coupling. • Presented doped asymmetric ZGeNR exhibits a half-metallic character which makes them qualify for spin-filtering device. - Abstract: First-principles investigations have been performed to explore the spin based electronic and transport properties of asymmetrically H-terminated zigzag germanene nanoribbons (2H−H ZGeNR). Investigations reveal a significant formation energy difference (ΔE{sub F} = E{sub F(2H-H)} − E{sub F(H-H)} ∼ −0.49 eV), highlighting more energetic stability for asymmetric edge termination compared to symmetric edge termination, irrespective of the ribbon width. Further, magnetic moment analysis and total energy calculations were performed to unveil that these structures have a magnetic ground state with preferred ferromagnetic (FM) coupling. The calculated E-k structures project a unique bipolar semiconducting behaviour for 2H−H ZGeNR which is contrast to H-terminated ZGeNR. Half-metallic transformation has also been revealed via suitable p-type or n-type doping for these structures. Finally, transport calculations were performed to highlight the selective contributions of spin-down (spin-up) electrons in the I–V characteristics of the doped 2H−H ZGeNR, suggesting their vitality for spintronic device applications.

  5. The role of ion-implantation in the realization of spintronic devices in diamond (United States)

    Kalish, Rafi


    The application of single photons emitted by specific quantum systems is promising for quantum computers, cryptography and for other future nano-applications. These heavily rely on ion implantation both for selective single ion implantations as well as for the introduction of controlled damage with specific properties. Of particular promise is the negatively charged nitrogen-vacancy (NV -) defect center in diamond. This center has many desirable luminescence properties required for spintronic devices operational at room temperature, including a long relaxation time of the color center, emission of photons in the visible and the fact that it is produced in diamond, a material with outstanding mechanical and optical properties. This center is usually realized by nitrogen and/or vacancy producing ion implantations into diamond which, following annealing, leads to the formation of the desired NV - center. The single photons emitted by the decay of this center have to be transported to allow their exploitation. This can be best done by realizing very thin wave guides in single crystal diamond with/or without nano-scale cavities in the same diamond in which NV centers are produced. For this, advantage is taken of the unique property of heavily ion-damaged diamond to be converted, following annealing, to etchable graphite. Thus a free standing submicron thick diamond membrane containing the NV center can be obtained. If desirable, specific photonic crystal structures can be realized in them by the use of FIB. The various ion-implantation schemes used to produce NV centers in diamond, free standing diamond membranes, and photonic crystal structures in them are reviewed. The scientific problems and the technological challenges that have to be solved before actual practical realization of diamond based spintronic devices can be produced are discussed.

  6. Teaching stellar interferometry with polymer optical fibers (United States)

    Illarramendi, M. A.; Arregui, L.; Zubia, J.; Hueso, R.; Sanchez-Lavega, A.


    In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.

  7. Diffusion in solids with holographic interferometry (United States)

    Liu, Dingyu


    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  8. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  9. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.


    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  10. GLINT. Gravitational-wave laser INterferometry triangle (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine


    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  11. A reliable, compact and low-cost Michelson wavemeter for laser wavelength measurement

    International Nuclear Information System (INIS)

    Fox, P.J.; Scholten, R.E.; Walkiewicz, M.R.; Drullinger, R.E.


    We describe the construction and operation of a simple, compact and cost effective Michelson wavemeter with picometer accuracy. The low cost of the device means that it can form the basis of an undergraduate laboratory experiment, yet it is sufficiently reliable and accurate that it has become an important tool in our research laboratory, where it is regularly used to tune lasers to atomic transitions. The usefulness and accuracy of the wavemeter is demonstrated by tuning two separate extended cavity diode lasers to achieve two-step excitation of the Rb 5 2 D state, observed by detecting 420 nm blue fluorescence from the 5 2 D → 6 2 P → 5 2 S decay path. (authors)

  12. Effect of imperfect Faraday mirrors on the security of a Faraday–Michelson quantum cryptography system

    International Nuclear Information System (INIS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi


    The one-way Faraday–Michelson system is a very useful practical quantum cryptography system where Faraday mirrors (FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by imperfect FMs in Alice’s and Bob’s security zones. Then we implement a passive FM attack in this system. By changing the values of the imperfection parameters of Alice’s FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice’s two FMs makes the system sensitive to an attack. Finally we give a modified key rate as a function of the FM imperfections. The security analysis indicates that both Alice’s and Bob’s imperfect FMs can compromise the secure key. (paper)

  13. Performance of a Rapid-Scan Vacuum Michelson Interferometer at the NSLS

    International Nuclear Information System (INIS)

    Brierly, P.; Dumas, P.; Smith, M.; Williams, G.P.


    A commercial Nicolet Magna series rapid-scan Michelson Fourier Transform Infrared (FTIR) was installed in a vacuum housing and integrated into the U4IR beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. The frequency reference laser was mounted outside vacuum, but the moving mirror mechanism and the dynamic alignment system for the fixed mirror were in vacuum. The performance of the instrument was measured in the usual way by measuring the repeatability of data collected under specific conditions of aperture, resolution and mirror scanning velocity. We briefly discuss the beamline design, to put the interferometer in context, then present signal to noise data which we discuss in terms of both instrument performance and also storage ring stability. Under optimal conditions, the instrument has a reproducibility of 0.01% in 1 minute of measuring time at a resolution of 2 cmss, -1 , over a range from 100-3000 cm -1

  14. Improved operation of the Michelson interferometer electron cyclotron emission diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Austin, M.E.; Ellis, R.F.; Doane, J.L.; James, R.A.


    The measurement of accurate temperature profiles is critical for transport analysis and equilibrium reconstruction in the DIII-D tokamak. Recent refinements in the Michelson interferometer diagnostic have produced more precise electron temperature measurements from electron cyclotron emission and made them available for a wider range of discharge conditions. Replacement of a lens-relay with a low-loss corrugated waveguide transmission system resulted in an increase in throughput of 6 dB and a reduction of calibration error from 15% to 5%. The waveguide exhibits a small polarization scrambling fraction of 0.05 at the quarter-wavelength frequency and very stable transmission characteristics over time. Further reduction in error was realized through special signal processing of the calibration and plasma interferograms. copyright 1997 American Institute of Physics

  15. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob


    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  16. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin


    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  17. Hyperfine spectrum measurement of an optically pumped far-infrared laser with a Michelson interferometer

    International Nuclear Information System (INIS)

    Zuo, Z G; Ling, F R; Wang, P; Liu, J S; Yao, J Q; Weng, C X


    In this letter, we present a Michelson interferometer for the hyperfine spectrum measurement of an optically pumped far-infrared laser with a highest frequency resolution of 3–5 GHz. CH 3 OH gas with a purity of 99.9%, is pumped by the CO 2 9P36 and 9R10 laser lines to generate terahertz lasers with frequencies of 2.52 and 3.11 THz, respectively. Moreover, except for the center frequency, which is in good agreement with theoretical work, some additional frequencies on both sides of the center frequency are obtained at a frequency interval of 0.15 THz. Meanwhile, the mechanism behind the observed experimental results is also investigated. (letter)

  18. Optical stream-cipher-like system for image encryption based on Michelson interferometer. (United States)

    Yang, Bing; Liu, Zhengjun; Wang, Bo; Zhang, Yan; Liu, Shutian


    A novel optical image encryption scheme based on interference is proposed. The original image is digitally encoded into one phase-only mask by employing an improved Gerchberg-Saxton phase retrieval algorithm together with another predefined random phase mask which serves as the encryption key. The decryption process can be implemented optically based on Michelson interferometer by using the same key. The scheme can be regarded as a stream-cipher-like encryption system, the encryption and decryption keys are the same, however the operations are different. The position coordinates and light wavelength can also be used as additional keys during the decryption. Numerical simulations have demonstrated the validity and robustness of the proposed method.

  19. Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination

    International Nuclear Information System (INIS)

    Rodrigo, Peter John; Lim, May; Saloma, Caesar


    An optical-feedback semiconductor laser Michelson interferometer (OSMI) is presented for measuring microscopic linear displacements without ambiguity in the direction of motion. The two waves from the interferometer arms, one from the reference mirror and the other from the reflecting moving target, are fed back into the lasing medium (λ=830 nm), causing variations in the laser output power. We model the OSMI into an equivalent Fabry-Perot resonator and derive the dependence of the output power (and the junction voltage) on the path difference between the two interferometer arms. Numerical and experimental results consistently show that the laser output power varies periodically (period, λ/2) with path difference. The output power variation exhibits an asymmetric behavior with the direction of motion, which is used to measure, at subwavelength resolution, the displacement vector (both amplitude and direction) of the moving sample. Two samples are considered in the experiments: (i) a piezoelectric transducer and (ii) an audio speaker

  20. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain


    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  1. Improved operation of the Michelson interferometer ECE diagnostic on DIII-D

    International Nuclear Information System (INIS)

    Austin, M.E.; Ellis, R.F.; Doane, J.L.; James, R.A.


    The measurement of accurate temperature profiles is critical for transport analysis and equilibrium reconstruction in the DIII-D tokamak. Recent refinements in the Michelson interferometer diagnostic have produced more precise electron temperature measurements from electron cyclotron emission and made them available for a wider range of discharge conditions. Replacement of a lens-relay with a low-loss corrugated waveguide transmission system resulted in an increase in throughput of 6 dB and reduction of calibration error to around 5%. The waveguide exhibits a small polarization scrambling fraction of 0.05 at the quarter wavelength frequency and very stable transmission characteristics over time. Further reduction in error has been realized through special signal processing of the calibration and plasma interferograms

  2. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui


    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  3. ECE diagnostic for the TARA tandem mirror machine using a fast-scanning Michelson interferometer

    International Nuclear Information System (INIS)

    Guharay, S.K.; Boyd, D.A.; Ellis, R.F.


    This ECE (electron cyclotron emission) diagnostic utilizes a fast-scanning Michelson interferometer to determine two parameters, the temperature and the loss cone angle, of the distribution function of the hot electrons (Tapprox. >100 keV) generated in the axisymmetric plug plasma of the TARA tandem mirror device. The radiation transport system employs a lens relay and a low-pass grating filter in order to transmit the synchrotron radiation over a spectral range of 2.9--18.6 cm -1 . This enables us to study the emitted radiation spectrum up to the 40th harmonic of the electron--cyclotron frequency in the plug plasma (B = 5 kG). Details of the design principles and the development of the diagnostic at TARA will be presented

  4. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1 Bands

    Directory of Open Access Journals (Sweden)

    Young-In Won


    Full Text Available As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1 bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E. These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1 airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  5. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing. (United States)

    Duan, Li; Zhang, Peng; Tang, Ming; Wang, Ruoxu; Zhao, Zhiyong; Fu, Songnian; Gan, Lin; Zhu, Benpeng; Tong, Weijun; Liu, Deming; Shum, Perry Ping


    A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system's performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved.

  6. Measurements of refractive indices and thermo-optical coefficients using a white-light Michelson interferometer. (United States)

    Rocha, A C P; Silva, J R; Lima, S M; Nunes, L A O; Andrade, L H C


    A dispersive white-light Michelson interferometer was used to determine the wavelength dependence of the refractive index (n) in the visible range from 425 to 775 nm and the thermo-optical coefficient (dn/dT) of fused silica (FS) and borosilicate glass (BK7). For FS, the values obtained for n and dn/dT at 546 nm were 1.46079 and 11.3×10-6  K-1, respectively, while the values for BK7 glass were 1.51825 and 2.2×10-6  K-1, respectively, which is in good agreement with the literature. The accuracy of the methodology used for n was almost 10-6, enabling precise spectroscopic characterization of materials across a wide spectral range.

  7. Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer. (United States)

    Brundavanam, Maruthi M; Viswanathan, Nirmal K; Rao, D Narayana


    We report here a detailed experimental study to demonstrate the effect of source spectral characteristics such as spectral bandwidth (Deltalambda), peak wavelength (lambda(0)), and shape of the spectrum on the spectral shifts and spectral switches measured due to temporal correlation in a white-light Michelson interferometer operated in the spectral domain. Behavior of the spectral switch characteristics such as the switch position, switch amplitude, and switch symmetry are discussed in detail as a function of optical path difference between the interfering beams. The experimental results are compared with numerical calculations carried out using interference law in the spectral domain with modified source spectral characteristics. On the basis of our results we feel that our study is of critical importance in the selection of source spectral characteristics to further improve the longitudinal resolution or the measurement sensitivity in spectral-domain optical coherence tomography and microscopy.

  8. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning. (United States)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming


    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  9. Monitoring gas reservoirs by seismic interferometry (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico


    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  10. Plasma diagnostics by resonant interferometry and holography

    Energy Technology Data Exchange (ETDEWEB)

    Dreiden, G.V.; Zaidel, A.N.; Ostrovskaya, G.V.; Ostrovskii, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.


    The methods of resonant interferometry and holography are discussed, and their ranges of applicability are estimated. Resonant methods enjoy a high sensitivity and a high selectivity in comparison with ordinary interferometric and holographic methods. Their primary field of application is with dense plasmas, although in individual cases it is possible to determine atomic densities down to N/sub a/ = 10/sup 9/ cm/sup -3/ and below. For a plasma with N/sub a/ = 10/sup 18/-10/sup 19/ cm/sup -3/ the minimum detectable atomic density is about N/sub a/ = 10/sup 14/ cm/sup -3/. The specific requirements on light sources and methods for studying them are described. The capabilities of these methods are demonstrated for the cases of potassium, sodium, lithium, and hydrogen plasmas; the atomic and electron densities are determined, and the plasma dynamics is studied.

  11. Atom interferometry using a shaken optical lattice (United States)

    Weidner, C. A.; Yu, Hoon; Kosloff, Ronnie; Anderson, Dana Z.


    We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms. Through a sequence of shaking functions, the atoms undergo an interferometer sequence of splitting, propagation, reflection, reverse propagation, and recombination. Each shaking function in the sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions. As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer increases with interrogation time. The shaken lattice interferometer may also be optimized to sense signals of interest while rejecting others, such as the measurement of an ac inertial signal in the presence of an unwanted dc signal.

  12. Compressed-sensing wavenumber-scanning interferometry (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli


    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  13. Active SU(1,1) atom interferometry (United States)

    Linnemann, D.; Schulz, J.; Muessel, W.; Kunkel, P.; Prüfer, M.; Frölian, A.; Strobel, H.; Oberthaler, M. K.


    Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get spontaneously populated in the process of parametric amplification. This nonlinear mechanism scatters atoms into both modes in a pairwise fashion and generates a non-classical state. Finally, a matched second period of spin exchange is performed that nonlinearly amplifies the output signal and maps the phase onto readily detectable first moments. Depending on the accumulated phase this nonlinear readout can reverse the initial dynamics and deamplify the entangled state back to empty spin states. This sequence is described in the framework of SU(1,1) mode transformations and compared to the SU(2) angular momentum description of passive interferometers.

  14. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.


    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  15. Edge effects in composites by moire interferometry (United States)

    Czarnek, R.; Post, D.; Herakovich, C.


    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  16. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.


    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  17. Multi-Axis Heterodyne Interferometry (MAHI) (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  18. Speckle interferometry of asteroids. I - 433 Eros (United States)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.


    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  19. Structure and properties of quarternary and tetragonal Heusler compounds for spintronics and spin transver torque applications

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Vajiheh Alijani


    This work is divided into two parts: part 1 is focused on the prediction of half-metallicity in quaternary Heusler compounds and their potential for spintronic applications and part 2 on the structural properties of Mn{sub 2}-based Heusler alloys and tuning the magnetism of them from soft to hard-magnetic for spin-transfer torque applications. In part 1, three different series of quaternary Heusler compounds are investigated, XX'MnGa (X=Cu, Ni and X'=Fe,Co), CoFeMnZ (Z=Al,Ga,Si,Ge), and Co{sub 2-x}Rh{sub x}MnZ (Z=Ga,Sn,Sb). All of these quaternary compounds except CuCoMnGa are predicted to be half-metallic ferromagnets by ab-initio electronic structure calculations. In the XX'MnGa class of compounds, NiFeMnGa has a low Curie temperature for technological applications but NiCoMnGa with a high spin polarization, magnetic moment, and Curie temperature is an interesting new material for spintronics applications. All CoFeMnZ compounds exhibit a cubic Heusler structur and their magnetic moments are in fair agreement with the Slater-Pauling rule indicating the halfmetallicity and high spin polarization required for spintronics applications. Their high Curie temperatures make them suitable for utilization at room temperature and above. The structural investigation revealed that the crystal structure of all Co{sub 2-x}Rh{sub x}MnZ compounds aside from CoRhMnSn exhibit different types of anti-site disorder. The magnetic moments of the disordered compounds deviate from the Slater-Pauling rule indicating that 100% spin polarization are not realized in CoRhMnGa, CoRhMnSb, and Co{sub 0.5}Rh{sub 1.5}MnSb. Exchange of one Co in Co{sub 2}MnSn by Rh results in the stable, well-ordered compound CoRhMnSn. This exchange of one of the magnetic Co atoms by a non-magnetic Rh atom keeps the magnetic properties and half-metallicity intact. In part 2, two series of Mn{sub 2}-based Heusler alloys are investigated, Mn{sub 3-x}Co{sub x}Ga and Mn{sub 2-x}Rh{sub 1+x}Sn. It has been

  20. Group IV all-semiconductor spintronics. Materials aspects and optical spin selection rules

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Narayan


    In the scope of the present thesis various aspects for the realization of spintronic applications based on group IV semiconductors are discussed. This work comprises a refined material characterization of the magnetic semiconductor GeMn. We furthermore present efforts to utilize this material as spin injector for a Si-based optical spintronic device. Applying transmission electron microscopy and atom probe tomography, we are able to resolve a vertical anisotropy in the self-assembly, leading to the stacking of well-defined clusters in the growth direction. Three-dimensional atom distribution maps confirm that clusters are built from a nonstoichiometric GeMn alloy and exhibit a high-Mn-concentration core with a decreasing Mn concentration toward a shell. An amorphous nature of the cluster cores as well as the crystallinity of the shells, coherent with the surrounding Ge lattice, are revealed in scanning transmission electron microscopy. We localize a strain field surrounding each GeMn cluster by scanning transmission electron microscopy. The importance of strain to the stacking phenomenon of the clusters becomes clear in studies of Ge/GeMn superlattice structures, where a vertical spatial correlation of clusters over 30 nm-thick Ge spacer layers is observed. We present evidence that electrical transport properties of the p-type GeMn thin films fabricated on high-resistivity Ge substrates are severely influenced by parallel conduction through the substrate. It is shown that substrate conduction persists also for wellconducting degenerate p-type reference thin films, giving rise to an effective two-layer conduction scheme. GeMn thin films fabricated on these substrates exhibit only a negligible magnetoresistance effect. Before integrating GeMn in an optical spintronic device, some key aspects important for an understanding of the optical injection and detection of carrier spins in Si and Si-based heterostructures are clarified in the second part of this thesis. In

  1. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid. (United States)

    Deng, Ming; Sun, Xiaokang; Han, Meng; Li, Decai


    We report a magnetic-field sensor by merging the advantages of optical fiber Michelson interferometers with that of magnetic fluid. Compact and low-cost optical fiber Michelson interferometers were first fabricated by a high-frequency CO(2) laser, and then they were inserted into glass capillaries with water-based Fe(3)O(4) magnetic fluid as sensing elements. The sensing characteristics have been investigated and the experimental results show that the reflective spectrum of the fiber-magnetic sensor linearly shifted with the change of the magnetic-field strength that is perpendicular to the axial of the devices. The fiber-magnetic sensor with interference arm's diameter of 50 μm is most sensitive to the external magnetic field, and the sensitivity is up to 64.9 pm/mT, which is 20 times higher than that of 125 μm diameter.

  2. Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam. (United States)

    Wan, Xiaoke; Wang, Ji; Ge, Jian


    An actively stabilized interferometer with a constant optical path difference is a key element in long-term astronomical observation, and resolving interference fringe ambiguities is important to produce high-precision results for the long term. We report a simple and reliable method of resolving fringe ambiguities of a wide-field Michelson interferometer by measuring the interference visibility of a noncollimated single-frequency laser beam. Theoretical analysis shows that the interference visibility is sensitive to a subfringe phase shift, and a wide range of beam arrangements is suitable for real implementation. In an experimental demonstration, a Michelson interferometer has an optical path difference of 7 mm and a converging monitoring beam has a numerical aperture of 0.045 with an incidental angle of 17 degrees. The resolution of visibility measurements corresponds to approximately 1/16 fringe in the interferometer phase shift. The fringe ambiguity-free region is extended over a range of approximately 100 fringes.

  3. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.


    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  4. Range Surveillance Using Radio Interferometry and TDOA Techniques Project (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  5. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)



    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  6. Topological Electronic Structures and Spintronics Applications for Silicene and Other Spin-Orbit Thin Films (United States)

    Lin, Hsin


    While spin-orbit coupling plays a critical role in generating topologically insulating phases, it also provides a novel route for realizing spin-split states in nonmagnetic materials without the need for exchange coupling. Two-dimensional thin films with significant spin-orbit coupling strength enable potential applications for spintronics devices because the spin-splitting energy can be controlled by an external field (gating). Moreover, spin-orbit coupling can induce nontrivial topological phases, i.e. quantum spin Hall phases, which could harbor back-scattering-free spin-polarized current at the edge. Recently, we have shown via first-principles calculations that field-gated silicene possesses two gapped Dirac cones exhibiting nearly 100% spin-polarization, situated at the corners of the Brillouin zone. Band gaps as well as the band topology can be tuned with an external electric field perpendicular to the plane, which breaks the inversion symmetry of the system due to the presence of buckling in the honeycomb structure. Using this fact, we propose a design for a silicene-based spin-filter that would enable the spin-polarization of an output current to be switched electrically, without the need to switch external magnetic fields. Our quantum transport calculations indicate that the proposed designs will be highly efficient (nearly 100% spin polarization) and robust against weak disorder and edge imperfections. We also propose a Y-shaped spin/valley separator that produces spin-polarized current at two output terminals with opposite spins. Ge, Sn, and Pb counterparts of silicene are shown to have similar properties, but their larger spin-orbit coupling results in larger energy differences between the spin-split states making these materials better suited for room temperature applications. Other spin-orbit thin films will be discussed. Our investigations demonstrate that spin-orbit thin films present great potential for manipulating spin/valley degrees of freedom

  7. A procedure for noise uncoupling in laser interferometry

    CERN Document Server

    Barone, F; Rosa, R D; Eleuteri, A; Milano, L; Qipiani, K


    A numerical procedure for noise recognition and uncoupling is described. The procedure is applied to a Michelson interferometer and is effective in seismic and acoustic noise uncoupling from the output signal of the interferometer. Due to the low data flow coming from the instrumentation this uncoupling can be performed in real time and it is useful as a data quality procedure for interferometer data output.

  8. Using Optical Interferometry for GEO Satellites Imaging: An Update (United States)


    Using Optical Interferometry for GEO satellites imaging: an update Sergio R. Restainoa,J. Thomas Armstronga, Ellyn K. Bainesa, Henrique R. Schmitta...of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...detection of a satellite . Keywords: geostationary satellites , optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  9. Pumped-Up SU(1,1) Interferometry. (United States)

    Szigeti, Stuart S; Lewis-Swan, Robert J; Haine, Simon A


    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these "side modes" is typically small, this limits the interferometer's absolute sensitivity. We propose an alternative "pumped-up" approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems-both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel-both absolutely and in comparison to conventional SU(1,1) interferometry-in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices.

  10. Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry. (United States)

    Pruttivarasin, T; Ramm, M; Porsev, S G; Tupitsyn, I I; Safronova, M S; Hohensee, M A; Häffner, H


    All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation

  11. 100 years since Michelson and Morley - the quest for the ultimate interferometer

    International Nuclear Information System (INIS)

    Bachor, H.A.; McClelland, D.E.


    This paper summarise some of the achievements of optical interferometry in its 100 years of existence. It is shown how over the decades, developments in optics, lasers, electronics and quantum mechanics have led to dramatic improvements in sensitivity, with the most recent developments aiming at a δL/L of 10 -12 . In addition, digital image processing and laser stabilisation techniques were combined to analyse optical surfaces with a resolution of 1/500 of a fringe. Some of interferometer applications are discussed and these include radio astronomy, laser gyroscopes, the visualisation of flows and the diagnostic of laboratory plasmas. 18 refs., 2 figs

  12. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chantis, Athanasios N [Los Alamos National Laboratory


    In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

  13. The first radical-based spintronic memristors: Towards resistive RAMs made of organic magnets (United States)

    Goss, Karin; Krist, Florian; Seyfferle, Simon; Hoefel, Udo; Paretzki, Alexa; Dressel, Martin; Bogani, Lapo; Institut Fuer Anorganische Chemie, University of Stuttgart Collaboration; 1. Physikalisches Institut, University of Stuttgart Team


    Using molecules as building blocks for electronic devices offers ample possibilities for new device functionalities due to a chemical tunability much higher than that of standard inorganic materials, and at the same time offers a decrease in the size of the electronic component down to the single-molecule level. Purely organic molecules containing no metallic centers such as organic radicals can serve as an electronic component with magnetic properties due to the unpaired electron in the radical state. Here we present memristive logic units based on organic radicals of the nitronyl-nitroxide kind. Integrating these purely molecular units as a spin coated layer into crossbar arrays, electrically induced unipolar resistive switching is observed with a change in resistance of up to 100%. We introduce a model based on filamentary reorganization of molecules of different oxidation state revealing the importance of the molecular nature for the switching properties. The major role of the oxidation state of these paramagnetic molecules introduces a magnetic field dependence to the device functionality, which goes along with magnetoresistive charactistics observed for the material. These are the first steps towards a spintronic implementation of organic radicals in electronic devices.

  14. Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets (United States)

    Ramin Moayed, Mohammad Mehdi; Bielewicz, Thomas; Zöllner, Martin Sebastian; Herrmann, Carmen; Klinke, Christian


    Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tunable nanomaterials. Here, in order to benefit from both concepts, we investigate Rashba spin-orbit interaction in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.

  15. Energy-Efficient Hybrid Spintronic-Straintronic Nonvolatile Reconfigurable Equality Bit Comparator (United States)

    Biswas, Ayan K.; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We propose and analyze a “spintronic/straintronic” reconfigurable equality bit comparator implemented with a nanowire spin valve whose two contacts are two-phase multiferroic nanomagnets and possess bistable magnetization. A reference bit is “written” into a stable magnetization state of one contact and an input bit in that of the other with electrically generated strain. The spin-valve’s resistance is lowered (raised) if the bits match (do not match). Multiple comparators can be interfaced in parallel with a magneto-tunneling junction to determine if an N-bit input stream matches an N-bit reference stream bit by bit. The system is robust against thermal noise at room temperature and a 16-bit comparator can operate at ˜743MHz while dissipating ˜28fJ per cycle. This implementation is more energy-efficient than CMOS-based implementations and the reference bits can be stored in the comparator itself without the need for refresh cycles or the need to fetch them from a remote memory for comparison. That improves reliability, speed and security.

  16. Multi-parameter geometrical scaledown study for energy optimization of MTJ and related spintronics nanodevices (United States)

    Farhat, I. A. H.; Alpha, C.; Gale, E.; Atia, D. Y.; Stein, A.; Isakovic, A. F.

    The scaledown of magnetic tunnel junctions (MTJ) and related nanoscale spintronics devices poses unique challenges for energy optimization of their performance. We demonstrate the dependence of the switching current on the scaledown variable, while considering the influence of geometric parameters of MTJ, such as the free layer thickness, tfree, lateral size of the MTJ, w, and the anisotropy parameter of the MTJ. At the same time, we point out which values of the saturation magnetization, Ms, and anisotropy field, Hk, can lead to lowering the switching current and overall decrease of the energy needed to operate an MTJ. It is demonstrated that scaledown via decreasing the lateral size of the MTJ, while allowing some other parameters to be unconstrained, can improve energy performance by a measurable factor, shown to be the function of both geometric and physical parameters above. Given the complex interdependencies among both families of parameters, we developed a particle swarm optimization (PSO) algorithm that can simultaneously lower energy of operation and the switching current density. Results we obtained in scaledown study and via PSO optimization are compared to experimental results. Support by Mubadala-SRC 2012-VJ-2335 is acknowledged, as are staff at Cornell-CNF and BNL-CFN.

  17. Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications

    CERN Document Server

    O’Donnell, Kevin


    This book provides a snapshot of recent progress in the field of rare-earth-doped group III-nitride semiconductors, especially GaN, but extending to AlN and the alloys AlGaN, AlInN and InGaN. This material class is currently enjoying an upsurge in interest due to its ideal suitability for both optoelectronic and spintronic applications. The text first introduces the reader to the historical background and the major theoretical challenges presented when 4f electron systems are embedded in a semiconductor matrix. It details the preparation of samples for experimental study, either by in-situ growth or ion implantation/annealing, and describes their microscopic structural characterisation. Optical spectroscopy is a dominant theme, complicated by site multiplicity, whether in homogeneous hosts or in heterostructures such as quantum dots, and enlivened by the abiding fascination of the energy transfer mechanism between the host material and the lumophore. Finally, the rapid progress towards prospective optoelectro...

  18. Density Functional Study of the Phase Diagram and Pressure-Induced Superconductivity in P: Implication for Spintronics (United States)

    Ostanin, S.; Trubitsin, V.; Staunton, J. B.; Savrasov, S. Y.


    The high-pressure phase diagram of P is studied using density functional total energy, linear response lattice dynamics and model Debye-Grüneisen theories. The volume dependent electron-phonon coupling λ˜0.7 0.9 is extracted for the bcc structure and found to increase with increasing volume. We propose that this phase might be realized in epitaxial thin films using templates such as V(100), Fe(100), or Cr(100) relevant to spintronics applications.

  19. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.


    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  20. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng


    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  1. A review on organic spintronic materials and devices: I. Magnetic field effect on organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng


    Full Text Available Organic spintronics is an emerging and potential platform for future electronics and display due to the intriguing properties of organic semiconductors (OSCs. For the past decade, studies have focused on three types of organic spintronic phenomena: (i magnetic field effect (MFE in organic light emitting diodes (OLEDs, where spin mixing between singlet and triplet polaron pairs (PP can be influenced by an external magnetic field leading to organic magnetoresistive effect (OMAR; (ii magnetoresistance (MR in organic spin valves (OSVs, where spin injection, transport, manipulation, and detection have been demonstrated; and (iii magnetoelectroluminescence (MEL bipolar OSVs or spin-OLEDs, where spin polarized electrons and holes are simultaneously injected into the OSC layer, leading to the dependence of electroluminescence intensity on relative magnetization of the electrodes. In this first of two review papers, we present major experimental results on OMAR studies and current understanding of OMAR using several spin dependent processes in organic semiconductors. During the discussion, we highlight some of the outstanding challenges in this promising research field. Finally, we provide an outlook on the future of organic spintronics.

  2. Using Seismic Interferometry to Investigate Seismic Swarms (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.


    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  3. A Michelson interferometer/polarimeter on the Tokamak Fusion Test Reactor (TFTR)

    International Nuclear Information System (INIS)

    Park, H.K.; Mansfield, D.K.; Johnson, L.C.; Ma, C.H.


    A multichannel interferometer/polarimeter for the Tokamak Fusion Test Reactor (TFTR) has been developed in order to study the time dependent plasma current density (J/sub p/) and electron density (n/sub e/) profile simultaneously. The goal of the TFTR is demonstration of breakeven via dueuterium and tritium (DT) plasma. In order to be operated and maintained during DT operation phase, the system is designed based on the Michelson geometry which possesses intrinsic standing wave problems. So far, there has been no observable signals due to these standing waves. However, a standing wave resulted from the beam path design to achieve a optimum use of the laser power was found. This standing wave has not prevented initial 10 channel interferometer operation. However, a single channel polarimeter test indicated this standing wave was fatal for Faraday notation measurements. Techniques employing 1/2 wave plates and polarizers have been applied to eliminate this standing wave problem. The completion of 10 channel Faraday rotation measurements may be feasible in the near future

  4. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities. (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman


    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  5. An improved Michelson interferometer: smoothing out the rough spots for a more effective teaching tool (United States)

    Eastman, Clarke K.


    The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students' experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students' chances of success, as defined by achieving "white light fringes". When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly "polished' state after several design iterations.

  6. Elimination of drift in a fiber-Bragg-grating-based multiplexed Michelson interferometer measurement system. (United States)

    Ren, Junyu; Xie, Fang; Chen, Zhimin


    Random phase drift in single-mode optical fiber interferometers used with measurement systems, which is resulted from various types of environmental disturbances, should be eliminated in order to obtain high measurement precision. We propose an optical fiber interferometric measurement system which has the function of self-eliminating the random phase drift and is stable and robust enough for real-time precision measurement. By employing the characteristics of fiber Bragg gratings, the system interleaves two fiber Michelson interferometers together that share the common-interferometric-optical path. The signal of one of the interferometers is used to stabilize the system while the signal of the other interferometer is used for measurement. An electronic feedback loop for the stabilizing action is designed. The bandwidth of the feedback loop is 5 kHz, sufficiently wide to eliminate random phase drift resulted from various environmental disturbances. The system is endowed with high stability and therefore suitable for real-time precision measurement. By means of an active phase tracking technique to measure displacement, the linear regression coefficient of the displacement measurement results is 0.9998.

  7. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle. (United States)

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad


    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  8. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development. (United States)

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Yang, Yongying; Zhou, Yudi; Luo, Jing; Bai, Jian; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Su, Lin; Yang, Liming


    A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

  9. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.


    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  10. Measurements of femtosecond pulse temporal profile by means of a Michelson interferometer with a Schottky junction. (United States)

    Ling, Yan; Lu, Fang


    We introduce a new method for femtosecond pulse shape measurement. The interference of two pulses is employed rather than the second-harmonic generation (SHG). Usually, the measurements of the femtosecond pulse is realized by an interferometer in combination with a nonlinear optical material, while the measurement that we describe is realized by means of a Michelson interferometer with a Schottky junction. Only a metal-semiconductor junction (Schottky junction) is needed, and neither the nonlinear optical material nor a photodetector is included. The two-photon absorption arises when the light is strong enough, while there is only a one-photon absorption when the light is weak. And the calculations are in good agreement with the experimental results. In principle, the new technique could be used for the measuring of pulses with any duration and with very low power. Unlike the SHG scheme, in the new method the quality of optics, mechanics, and other elements of the scheme are not essential, and the measurement is easily realized, but the results are quite precise and very sensitive to the light.

  11. Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection. (United States)

    Du, Yanying; Qiao, Xueguang; Rong, Qiangzhou; Zhang, Jing; Feng, Dingyi; Wang, Ruohui; Sun, Hao; Hu, Manli; Feng, Zhongyao


    An in-line fiber quasi-Michelson interferometer (IFQMI) working on reflection is proposed and experimentally demonstrated. The sensing head is fabricated by splicing a section of polarization-maintaining photonic crystal fiber (PM-PCF) with a lead-in single mode fiber (SMF). Some cladding modes are excited into the PM-PCF via the mismatch-core splicing interface between PM-PCF and SMF. Besides, two orthogonal polarized-modes are formed due to the inherent multiholes cladding structure of the PM-PCF. A well-defined interference pattern is obtained as the result of cladding-orthogonal modes interference. The IFQMI with 20 cm long PM-PCF is proposed for strain and torsion measurements. A strain sensitivity of -1.3 pm/με and a torsion sensitivity of -19.17 pm/deg are obtained, respectively. The proposed device with 10 cm long PM-PCF exhibits a considered temperature sensitivity of 9.9 pm/°C. The IFQMI has a compact structure and small size, making it a good candidate for multiparameter measurements.

  12. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai


    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  13. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.


    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  14. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.


    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  15. White light interferometry applications in nanometrology (United States)

    Damian, V. S.; Bojan, M.; Schiopu, P.; Iordache, I.; Ionita, B.; Apostol, D.


    Precise three-dimensional (3D) information is demanded by many new industries such as: semiconductor, photonics, MEMS, communications, microprocessing etc. [1, 2]. The problem is to select the proper measurement methods for material characteristics in the measurement field, from the point of view of the measurement accuracy and errors that can appear [1, 4, 3, 5]. There are several optical 3D measurements approaches, e.g.: triangulation, grating projection with phase shift, moiré with phase shift, confocal and (white light) interferometry (WLI) [2, 3]. They can measures: surface profile, roughness, step height, microstructure, and other surface parameters. The white light interferometers allows generally surface profiling with high accuracy with no phase ambiguity errors, making them more suitable for profiling stepped or discontinuous surfaces. WLI technique to determine the thickness of thin coating on reflective materials is very effective. One of the first techniques to utilize the short coherence of the white light source was the scanning interference microscope. There are on the market a variety of scanning white light interferometers. Measurement calibration is done using the short coherence feature of white light. Some of the presented applications in nanometrology are thin films thickness measurements of: carbons films on glass, metallic films on Silicon, ablated small holes diameter, and profiles of micro / nanostructure.

  16. Multifrequency perturbations in matter-wave interferometry (United States)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.


    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  17. Bounding the Higgs boson width through interferometry. (United States)

    Dixon, Lance J; Li, Ye


    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  18. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.


    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  19. From master slave interferometry to complex master slave interferometry: theoretical work (United States)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  20. Synthesis and study of strontium ferromolybdate nanopowders with high degree of superstructural ordering for spintronics

    Directory of Open Access Journals (Sweden)

    Yarmolich M. V.


    Full Text Available The metal oxide compounds Sr2FeMoO6-δ systems with an ordered double perovskite structure due to their unique and extremely important magnetotransport and magnetic properties are among the most promising materials for spintronic devices. In the present work, we investigated the correlation between the citrate-gel synthesis conditions (pH of initial solutions and annealing temperature and the microstructure, phase transformations and magnetic properties of the Sr2FeMoO6-δ nanopowders. According to the results the average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing of pH values. Single-phase nanosized Sr2FeMoO6-δ powders had various degrees of superstructural ordering of Fe3+ and Mo5+ (P = 65% for pH = 4, P = 51% for pH = 6 and P = 20 % for pH = 9. With increasing of pH, the Fe2+ concentration increases from 63% to 72%, and the Fe+3 concentration drops from 37% to 28%. According to the results of investigations of magnetization temperature dependence in Sr2FeMoO6-δ powders a metastable superparamagnetic state was established at TS<19 K in low-dimensional grains. An optimized synthesis procedure, based on an initial solution of pH = 4, has allowed obtaining a single-phase Sr2FeMoO6-δ compound having grain size in the range of 50-120 nm and a superstructural ordering of iron and molybdenum cations of 88%. The optimum conditions of synthesis of nanopowders strontium ferromolybdate allow for the directional change of the phase composition of the synthesized nanosized ceramic with reproducible physical and chemical properties.

  1. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin


    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed magnet (Bhowmik et al., 2014). The possibility of setting the magnetization to both stable magnetization states in a controlled manner using a similar concept remains unknown, but the proposed structure poses to be a solution to this difficulty. The second cell proposed takes advantage of the multiple stable magnetic states that exist in ferromagnets with configurational anisotropy and also uses spin torques to manipulate its magnetization. It utilizes a square-shaped ferromagnet whose stable magnetization has preferred directions along the diagonals of the square, giving four stable magnetic states allowing to use the structure as a multi-bit memory cell. Both devices use spin currents generated in heavy metals by the Spin Hall effect present in these materials. Among the advantages of the structures proposed are their inherent non-volatility and the fact that there is no need for applying external magnetic fields during their operation, which drastically improves the energy efficiency of the devices. Computational simulations using the Object Oriented Micromagnetic Framework (OOMMF) software package were performed to study the dynamics of the magnetization process in both structures and predict their behavior. Besides, we fabricated a 4-terminal memory cell with configurational anisotropy similar to the device proposed, and found four stable resistive states on the structure, proving the feasibility of this technology for implementation of high-density, non-volatile memory cells.

  2. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani


    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  3. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results

    NARCIS (Netherlands)

    Raucoules, D.; Bourgine, B.; Michele, M. de; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; Agudo, M.; Engdahl, M.


    This article presents the main results of the Persistent Scatterer Interferometry Codes Cross Comparison and Certification for long term differential interferometry (PSIC4) project. The project was based on the validation of the PSI (Persistent Scatterer Interferometry) data with respect to

  4. Progress in electron- and ion-interferometry

    International Nuclear Information System (INIS)

    Hasselbach, Franz


    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  5. Absolute marine gravimetry with matter-wave interferometry. (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F


    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  6. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)


    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  7. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F


    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  8. Integrated Optics Achromatic Nuller for Stellar Interferometry (United States)

    Ksendzov, Alexander


    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  9. Intracavity interferometry using synchronously pumped OPO (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr


    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  10. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.


    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  11. Super-virtual refraction interferometry: Theory

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  12. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D' Andrea, R.F. Jr. (comps.)


    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  13. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration (United States)

    Marathay, Arvind S.; Shiefman, Joe


    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  14. [A new method of anti-jamming ability improvement for Michelson Interferometer]. (United States)

    Li, Yang-Jun; Lian, Su-Jie; Shi, Jia; Guo, Ya-Fei; Wang, Gao


    In order to improve anti-jamming capability of Michelson interferometer system, replace the traditional structure of the moving mirror scanning was replaced, an interference system based on electro-optic modulation of crystal refractive index was designed to achieve optical path scanning. The system modulated voltage signal on the variable refractive crystal, to generate cyclical changes, changed the refractive index to control optical path difference in the original optical path system. Using electronic scanning to replace of mechanical scanning, improved the system's noise immunity was improved. In the electro-optic modulation process, computed the maximum optical path difference of the system was computed, and analyzed of the crystal thickness and crystal diffraction efficiency of the modulation process were analyzed. The simulation experiment shows that, with the modulation voltage range increasing, the available range of the optical path is also increased, and the system spectrum resolving power will also increase accordingly. Meanwhile, in the modulation process set the modulation range was set to make the energy of diffraction energy losses less than 10% of the total energy, so as to ensure a better signal to noise ratio. Experimental results show that, as the modulation voltage changes, interference fringes occurred continuously moved. When the voltage is further increased, the nonlinear error appears. After non-linear error correction for the system, spectrum resolution reached to 7. 2 cm-1, slightly lower than the original system. But its anti-jamming capability is greatly enhanced, as in the absence of experimental platform for seismic conditions, conventional interferometer relative error is more than 20%, while the relative error of the system is less than 5%, in line with the design requirements. It was proved that the anti-jamming capability of the system was enhanced greatly, when the static electro-optical modulation was used.

  15. Interferometry correlations in central p+Pb collisions (United States)

    Bożek, Piotr; Bysiak, Sebastian


    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.

  16. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Malak, M.; Marty, F.; Bourouina, T. [Universite Paris-Est, Laboratoire ESYCOM, ESIEE Paris, Cite Descartes, 2 Boulevard Blaise Pascal, 93162 Noisy-le-Grand Cedex (France); Nouira, H.; Vailleau, G. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris Cedex 15 (France)


    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  17. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry

    International Nuclear Information System (INIS)

    Malak, M.; Marty, F.; Bourouina, T.; Nouira, H.; Vailleau, G.


    A miniature Michelson interferometer is analyzed theoretically and experimentally. The fabricated micro-interferometer is incorporated at the tip of a monolithic silicon probe to achieve contactless distance measurements and surface profilometry. For infrared operation, two approaches are studied, based on the use of monochromatic light and wavelength sweep, respectively. A theoretical model is devised to depict the system characteristics taking into account Gaussian beam divergence and light spot size. Furthermore, preliminary results using visible light demonstrate operation of the probe as a visible light spectrometer, despite silicon absorbance, thanks to the micrometer thickness involved in the beam splitter.

  18. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler. (United States)

    Xu, Dan; Yang, Fei; Chen, Dijun; Wei, Fang; Cai, Haiwen; Fang, Zujie; Qu, Ronghui


    A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

  19. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, V.; Rödel, C.; Zastrau, U., E-mail: [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Döppner, T.; Ma, T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Fletcher, L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Förster, E. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Glenzer, S. H.; Lee, H. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartley, N. J. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kazak, L.; Komar, D.; Skruszewicz, S. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others


    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  20. Epitaxial growth of cobalt oxide phases on Ru(0001) for spintronic device applications (United States)

    Olanipekun, Opeyemi; Ladewig, Chad; Kelber, Jeffry A.; Randle, Michael D.; Nathawat, Jubin; Kwan, Chun-Pui; Bird, Jonathan P.; Chakraborti, Priyanka; Dowben, Peter A.; Cheng, Tao; Goddard, W. A., III


    Cobalt oxide films are of technological interest as magnetic substrates that may support the direct growth of graphene, for use in various spintronic applications. In this work, we demonstrate the controlled growth of both Co3O4(111) and CoO(111) on Ru(0001) substrates. The growth is performed by Co molecular beam epitaxy, at a temperature of 500 K and in an O2 partial pressure of 10-4 Torr for Co3O4(111), and 7.5 × 10-7 Torr for CoO(111). The films are distinguished by their dissimilar Co 2p x-ray photoemission (XPS) spectra, while XPS-derived O/Co stoichiometric ratios are 1.33 for Co3O4(111) and 1.1 for CoO(111). Electron energy loss (EELS) spectra for Co3O4(111) indicate interband transitions at ˜2.1 and 3.0 eV, while only a single interband transition near 2.0 eV is observed for CoO(111). Low energy electron diffraction (LEED) data for Co3O4(111) indicate twinning during growth, in contrast to the LEED data for CoO(111). For Co3O4(111) films of less than 20 Å average thickness, however, XPS, LEED and EELS data are similar to those of CoO(111). XPS data indicate that both Co oxide phases are hydroxylated at all thicknesses. The two phases are moreover found to be thermally stable to at least 900 K in UHV, while ex situ atomic force microscopy measurements of Co3O4(111)/Ru(0001) indicate an average surface roughness below 1 nm. Electrical measurements indicate that Co3O4(111)/Ru(0001) films exhibit dielectric breakdown at threshold voltages of ˜1 MV cm-1. Collectively, these data show that the growth procedures yield Co3O4(111) films with topographical and electrical characteristics that are suitable for a variety of advanced device applications.

  1. The importance of Fe interface states for ferromagnet-semiconductor based spintronic devices (United States)

    Chantis, Athanasios


    I present our recent theoretical studies of the bias-controlled spin injection, detection sensitivity and tunneling anisotropic magnetoresistance in ferromagnetic-semiconductor tunnel junctions. Using first-principles electron transport methods we have shown that Fe 3d minority-spin surface (interface) states are responsible for at least two important effects for spin electronics. First, they can produce a sizable Tunneling Anisotropic Magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, Tunneling Magnetoresistance junctions with a single ferromagnetic electrode that can function at room temperatures. Second, in Fe/GaAs(001) magnetic tunnel junctions they produce a strong dependence of the tunneling current spin-polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is found. This explains the observed sign reversal of spin-polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistcance through vertical Fe/GaAs/Fe trilayers. We also present a theoretical description of electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from that of the tunneling current spin-polarization. We show that in realistic ferromagnet/semiconductor junctions this bias dependence can originate from two distinct physical mechanisms: 1) the bias dependence of tunneling current spin-polarization, which is of microscopic origin and depends on the specific properties of the interface, and 2) the macroscopic electron spin transport properties in the semiconductor. Our numerical results show that the magnitude of the voltage signal

  2. A Low-Power High-Speed Spintronics-Based Neuromorphic Computing System Using Real Time Tracking Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf


    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect lead to a significant increase in stimulation time...... of such NCSs. Moreover, current NCSs need an extra phase to read the MTJ state after stimulation which is in contrast with real neuron functionality in human body. In this paper, the read circuit is replaced with a proposed real-time sensing (RTS) circuit. The RTS circuit tracks the MTJ state during...

  3. Mechanical Strain Measurement from Coda Wave Interferometry (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.


    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  4. Laser interferometry of radiation driven gas jets (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.


    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  5. Matter wave interferometry in the light of Schroedinger's wave mechanics

    International Nuclear Information System (INIS)


    This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)

  6. Phase knife-edge laser Schlieren diffraction interferometry with ...

    Indian Academy of Sciences (India)

    The use of phase knife-edge as viewing diaphragm in Schlieren diffraction interferometry not only enhances the fringe contrast but also avoids the loss in phase information as it lets through light from all parts of the test object and its thin interfacing makes the method suitable even for studying weak disturbances. Keywords.

  7. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Thomas D.


    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  8. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  9. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  10. Microquake seismic interferometry with SVD-enhanced Green's function recovery


    Melo, Gabriela; Malcolm, Alison E.


    The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?

  11. Application of Persistent Scatterer Interferometry (PSI) in monitoring ...

    Indian Academy of Sciences (India)

    Keywords. Slope instability; landslide; Lesser Himalaya; remote sensing; radar interferometry. Abstract. Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan ...

  12. Radio astronomical interferometry and x-ray's computerized tomography

    International Nuclear Information System (INIS)

    Rodriguez, L.F.


    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science. (author)

  13. Application of interferometry to studies of glacier dynamics

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob


    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics on th...

  14. Exploitation of distributed scatterers in synthetic aperture radar interferometry

    NARCIS (Netherlands)

    Samiei Esfahany, S.


    During the last decades, time-series interferometric synthetic aperture radar (InSAR) has emerged as a powerful technique to measure various surface deformation phenomena of the earth. Early generations of time-series InSAR methodologies, i.e. Persistent Scatterer Interferometry (PSI), focused on

  15. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.


    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  16. Micro-Gal level gravity measurements with cold atom interferometry

    International Nuclear Information System (INIS)

    Zhou Min-Kang; Duan Xiao-Chun; Chen Le-Le; Luo Qin; Xu Yao-Yao; Hu Zhong-Kun


    Developments of the micro-Gal level gravimeter based on atom interferometry are reviewed, and the recent progress and results of our group are also presented. Atom interferometric gravimeters have shown high resolution and accuracy for gravity measurements. This kind of quantum sensor has excited world-wide interest for both practical applications and fundamental research. (topical review)

  17. Global-scale seismic interferometry : Theory and numerical examples

    NARCIS (Netherlands)

    Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.


    Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been

  18. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji


    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  19. Optimization of a Michelson interferometer with a rotating retroreflector in opitcal design, spectral resolution, and optical throughput

    International Nuclear Information System (INIS)

    Haschberger, P.; Tank, V.


    A newly designed Michelson interferometer for Fourier spectroscopy utilizes a nutating retroreflector (cube corner mirror) to generate alterations in geometrical and optical paths. The practical optomechanical design of a Fourier-transform spectrometer incorporating a rotating retroreflector for path-length alteration is considered. (The instrument has been given the name MIROR, for Michelson Interferometer with a Rotating Retroreflector.) Two parameters of the instrument are essential: the maximum optical path difference, which yields the spectral resolution of the instrument, and the diameter of the transmitted beam, which determines the throughput and hence the achievable signal-to-noise ratio. The maximum allowable beam diameter is calculated as a function of the geometry and the orientation of the rotating retroreflector and the other optical components. The geometrical configuration and the orientation of all the optical components with respect to one another are also optimized for the maximum transmitted beam diameter when the required path difference is given. A principal investigation of different possible configurations of the optical components is presented. Then a quantitative optimization for an interferometer employing a retroreflector having a 5-in. (12.7-cm) aperture diameter requiring an optical path difference of more than 10 cm (spectral resolution better than 0.1 cm -1 ) is performed. Finally a simplified but enhanced design is described. 10 refs., 15 figs

  20. Design of a birefringent Michelson interferometer-based interleaver with ultra-low dispersion and low cost. (United States)

    Hu, Haocheng; Zheng, Baozhong; Liu, Qingming; Li, Yang; Wu, Li; Gu, Shijie


    We design and demonstrate a birefringent Michelson interferometer based interleaver with ultra-low dispersion and low cost. The interleaver consists of polarizing beam splitters (PBS's) and quarter-wave plates and half-wave plates. The PBS's based Michelson interferometers provide the optical path difference for interference between the two orthogonal polarization components and the half-wave plates provide the birefringent needed to minimize ripple of output. The designed interleaver with two-stage interferometer in a 50 GHz channel spacing application exhibits a 0.5 dB passband and a 25 dB stopband both 27 GHz; a channel isolation higher than 35 dB and chromatic dispersion less than ±5 ps/nm within 0.5 dB passband; 1.3 dB insertion loss and 0.3 dB PDL; 0.04 GHz/°C thermal stability. Since all of the optical components can be optically bonded together, the device is robust and easy to be aligned, which reduces labor cost. © 2011 Optical Society of America

  1. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.


    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  2. Electronic structure and physical properties of Heusler compounds for thermoelectric and spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ouardi, Siham


    This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications. The first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co{sub 2}MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound. A major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. This thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi{sub 1-x}M{sub x}Sn (where M=Sc, V and 0

  3. TOPICAL REVIEW: Highly spin-polarized materials and devices for spintronics

    Directory of Open Access Journals (Sweden)

    Koichiro Inomata et al.


    Full Text Available The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x and Co2FeSi1 ? xAlx (CFSA(x and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs using Co2FeSi0.5Al0.5 (CFSA(0.5 Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5 at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD and nuclear magnetic resonance (NMR analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001 substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5 electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001 single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO

  4. Electronic structure and physical properties of Heusler compounds for thermoelectric and spintronic applications

    International Nuclear Information System (INIS)

    Ouardi, Siham


    This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications. The first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co 2 MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound. A major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. This thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi 1-x M x Sn (where M=Sc, V and 0 0.26 Sc 0.04 Zr 0.35 Hf 0.35 Sn. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi 0.3 Zr 0.35 Hf 0.35 Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT=0.2) and a Hall mobility μh of 300 cm 2 /Vs at 350 K. The last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band

  5. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback. (United States)

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J


    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods.

  6. Improvement of input power dynamic range for 20 Gbit/s optical WDM switch nodes using an integrated Michelson wavelength converter

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Jørgensen, Carsten


    be improved compared to switch blocks without IWCs. This is especially important at high bit rates where the cascadability of the SOA gates decreases. Here, more than 15 dB improvement of the input power dynamic range is achieved at 20 Gbit/s using a high-speed Michelson interferometer wavelength converter...

  7. Dimensional Measurements under High Radiation with Optical Fibre Sensors based on White Light Interferometry - Report on Irradiation Tests

    International Nuclear Information System (INIS)

    Cheymol, G.; Caron, N.; Gusarov, A.; Gaillot, S.; Destouches, C.


    Abstract-Optical fibre sensors (OFS) can bring substantial advantages over conventional sensing approaches for in-situ measurement in fission Material Testing Reactors (MTRs) and other nuclear research or industrial facilities: easy remote sensing, possibilities of multiplexing, passive operation, low sensitivity to electromagnetic interference, compact size, high resolution and accuracy even under high radiation dose and high temperature, once necessary adaptations have been achieved. In this paper firstly we remind the three undesired effects of high level of irradiation on OFS: radiation induced attenuation, radio luminescence and compaction due to fast neutrons. Then we present two types of sensor that we develop: elongation Fabry Perot sensor - jointly with SCK.CEN - and Michelson type displacement sensor; they both rely on white light interferometry to retrieve the desired measurement. We report the results of irradiation of Fabry-Perot sensors in the core of BR2 material testing reactor in Mol (Belgium), under intense neutron-gamma flux and at high temperature. Six Fabry Perot fibre optics sensors are mounted on a support insensitive to radiation. The objective is to test the survival and the drift of the sensors. The temperature is maintained steady at 200 deg. C during 22 days then the temperature is increased up to 390 deg. C. Among five sensors built according to nominal scheme, four are still alive at the end of the cycle and three show a low drift of 1 to 4 μm. These results show a clear progress compared to the previous irradiation and make it possible to consider the use of these sensors in real tests of material in MTR reactor. However, improvement in the robustness of the interfaces is still necessary. The next part is devoted to the measurement of displacements perpendicular to the direction of the lead-in fibre, of interest for small room environments where the fibre cannot make a 90 deg. turn. The optical scheme is based on the Michelson

  8. A neutral oxygen-vacancy center in diamond: A plausible qubit candidate and its spintronic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. G.; Tang, Z., E-mail:; Zhao, X. G.; Cheng, G. D.; Tu, Y.; Cong, W. T.; Zhu, Z. Q.; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China); Peng, W., E-mail: [Supercomputer Center, Administration Department of Equipments, East China Normal University, Shanghai 200062 (China)


    Spintronic and electronic properties of a neutral oxygen-vacancy (O-V) center, an isoelectronic defect similar to the negatively charged nitrogen-vacancy center in diamond, were studied by combining first-principles calculations and a mean-field theory for spin hyperfine interaction. It is elucidated that the neutral O-V center is stable in the p-type diamond and possesses an S = 1 triplet ground state and four spin-conserved excited states with the spin coherence times in an order of second at T = 0 K. The results indicate that the neutral O-V center is another promising candidate for spin coherent manipulation and qubit operation.

  9. Generalized non-Local Resistance Expression and its Application in F/N/F Spintronic Structure with Graphene Channel (United States)

    Wei, Huazhou; Fu, Shiwei

    We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.

  10. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Directory of Open Access Journals (Sweden)

    Ondřej Číp


    Full Text Available In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  11. Understanding interferometry for micro-cantilever displacement detection

    Directory of Open Access Journals (Sweden)

    Alexander von Schmidsfeld


    Full Text Available Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions.

  12. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya


    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  13. A recent history of science cases for optical interferometry (United States)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre


    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  14. High-speed real-time holographic interferometry (United States)

    Yamamoto, Yoshitaka


    The principle of holography was invented by Dr. Gabor in 1948 before the invention of the laser. In 1962, after the invention of laser (in 1960: the first demonstration of laser oscillation by Maiman was achieved using a ruby cubic crystal), the off-axis reference beam holography was developed by Prof. Leith and Mr. Upatnieks. One of the most useful measuring techniques of the holography is a holographic interferometry. Holography enable to storage signal wave fronts and reconstruct it at later time, then the interference between the reconstructed signal wave fronts and the wave fronts come from the object to be able to generate an interference fringes. Real-time holographic interferometry can measure real-time phase-change of phenomena. Therefore, this method has the performance of continuously measuring phase change by coupling with high-speed cameras.

  15. Phase and fringe order determination in wavelength scanning interferometry. (United States)

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel


    A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.

  16. Optical Distortion Evaluation in Large Area Windows using Interferometry (United States)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.


    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  17. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M


    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy


    Directory of Open Access Journals (Sweden)

    Muchiar Muchiar


    Full Text Available Simpangan getaran sebuah membran berupa membran bundar yang bergetar sinusoidal, telah dvisualisasikan dengan menggunakan Metode Interferometri Pola Spekel Elektronik. Pola spekel dari permukaan membran pada saat tidak bergetar dan pada saat sedang bergetar pada frekuensi dan amplitudo tertentu, masing-masing, direkam dengan kamera CCD dan datanya disimpan didalam komputer. Selanjutnya, masing-masing data pola spekel membran yang sedang bergetar tersebut di substraksi dengan data pola spekel membran dalam keadaan diam. Hasil yang diperoleh berupa visualisasi citra spekel simpangan rata-rata permukaan membran yang disertai dengan pola frinji tertentu. Bentuk dari pola frinji yang terjadi bersesuaian dengan pola simpangan getaran yang dialami oleh bagian permukaan membran. Sedangkan jumlah pola frinji yang terjadi bersesuain dengan besarnya simpangan rata-rata yang terjadi. Metode ini mensyaratkan perioda getaran membran jauh lebih pendek dibandingkan waktu perekaman kamera CCD. Dari segi kualitas, metode ini menghasilkan citra tidaklah sebaik atau setajam yang diperoleh dengan Metode Interferometri Holografi.

  19. Spectrally controlled interferometry for measurements of flat and spherical optics (United States)

    Salsbury, Chase; Olszak, Artur G.


    Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.

  20. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight. (United States)

    Abramson, Nils H


    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.