WorldWideScience

Sample records for spinning filter wheel

  1. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  2. Considering the Influence of Prerequisite Performance on Wheel Spinning

    Science.gov (United States)

    Wan, Hao; Beck, Joseph Barbosa

    2015-01-01

    The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…

  3. Two Wien Filter Spin Flipper

    Energy Technology Data Exchange (ETDEWEB)

    Grames, J M; Benesch, J F; Clark, J; Hansknecht, J; Kazimi, R; Machie, D; Poelker, M; Stutzman, M L; Suleiman, R

    2011-03-01

    A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.

  4. Multispectral Imager With Improved Filter Wheel and Optics

    Science.gov (United States)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter

  5. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  6. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    Science.gov (United States)

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  7. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  8. A very accurate filter wheel for a large field IR imager

    Science.gov (United States)

    Lizon, J. L.

    2010-07-01

    HAWK-I is a near-infrared imager with a relatively large field of view. Two filter wheels with 6 positions each offer a choice of 10 filters. The filters are directly in front of the detector, a mosaic of 2 × 2HAWAII 2RG 2048×2048 pixels detectors. A rather high positioning reproducibility (ball bearings, mounting of the filters and cooling of the wheels.

  9. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    Science.gov (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  10. Spinning the Big Wheel on “The Price is Right”: A Spreadsheet Simulation Exercise

    Directory of Open Access Journals (Sweden)

    Keith A Willoughby

    2010-04-01

    Full Text Available A popular game played in each broadcast of the United States television game show “The Price is Right” has contestants spinning a large wheel comprised of twenty different monetary values (in 5-cent increments from $0.05 to $1.00. A player wins by scoring closest to, without exceeding, $1.00. Players may accomplish this in one or a total of two spins. We develop a spreadsheet modeling exercise, useful in an introductory undergraduate Spreadsheet Analytics course, to simulate the spinning of the wheel and to determine optimal spinning strategies.

  11. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  12. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  13. Novel multipole Wien filter as three-dimensional spin manipulator

    Science.gov (United States)

    Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.

    2014-04-01

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  14. Novel multipole Wien filter as three-dimensional spin manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, T., E-mail: yasue@isc.osakac.ac.jp; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)

    2014-04-15

    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  15. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  16. The molecular spin filter constructed from 1D organic chain

    International Nuclear Information System (INIS)

    Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan

    2014-01-01

    We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fe n+1 (C 6 H 4 ) n ). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [−1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fe n+1 and (C 6 H 4 ) n . In addition, negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain. The results can help us understand the spin transport properties of organic molecular chain. - Highlights: • Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect. • The effect of spin polarization origin from both of Fe n+1 and (C 6 H 4 ) n . • Negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain

  17. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  18. Designing organic spin filters in the coherent tunneling regime.

    Science.gov (United States)

    Herrmann, Carmen; Solomon, Gemma C; Ratner, Mark A

    2011-06-14

    Spin filters, that is, systems which preferentially transport electrons of a certain spin orientation, are an important element for spintronic schemes and in chemical and biological instances of spin-selective electronic communication. We study the relation between molecular structure and spin filtering functionality employing a theoretical analysis of both model and stable organic radicals based on substituted benzene, which are bound to gold electrodes, with a combination of density functional theory and the Landauer-Imry-Büttiker approach. We compare the spatial distribution of the spin density and of the frontier central subsystem molecular orbitals, and local contributions to the transmission. Our results suggest that the delocalization of the singly occupied molecular orbital and of the spin density onto the benzene ring connected to the electrodes, is a good, although not the sole indicator of spin filtering functionality. The stable radicals under study do not effectively act as spin filters, while the model phenoxy-based radicals are effective due to their much larger spin delocalization. These conclusions may also be of interest for electron transfer experiments in electron donor-bridge-acceptor complexes.

  19. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  20. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  1. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter

    Science.gov (United States)

    Rahimi, Afshin; Kumar, Krishna Dev; Alighanbari, Hekmat

    2017-05-01

    Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm. This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter. The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden changes in the system non-measurable parameters accurately. Results showed successful detection of reaction wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt, transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman filters, and thus, it can be a promising method for the development of fail-safe satellites.

  2. Simulations of Resonant Intraband and Interband Tunneling Spin Filters

    Science.gov (United States)

    Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.

    2001-01-01

    This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).

  3. Polarization of a stored beam by spin-filtering

    Energy Technology Data Exchange (ETDEWEB)

    Augustyniak, W. [National Centre for Nuclear Research, 00681 Warsaw (Poland); Barion, L. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Barsov, S. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Bechstedt, U. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Benati, P.; Bertelli, S.; Carassiti, V. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Chiladze, D. [High Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia (United States); Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Dymov, S. [Physikalische Institute II, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Engels, R. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Erwen, W. [Juelich Center for Hadron Physics, 52425 Juelich (Germany); Zentralinstitut fuer Elektronik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Fiorini, M. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); and others

    2012-11-15

    The PAX Collaboration has successfully performed a spin-filtering experiment with protons at the COSY-ring. The measurement allowed the determination of the spin-dependent polarizing cross section, that compares well with the theoretical prediction from the nucleon-nucleon potential. The test confirms that spin-filtering can be adopted as a method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons.

  4. Development of Cryogenic Filter Wheels for the HERSCHEL Photodetector Array Camera & Spectrometer (PACS)

    Science.gov (United States)

    Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.

    2014-01-01

    This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.

  5. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  6. Kalman Filter Sensor Fusion for Mecanum Wheeled Automated Guided Vehicle Localization

    Directory of Open Access Journals (Sweden)

    Sang Won Yoon

    2015-01-01

    Full Text Available The Mecanum automated guided vehicle (AGV, which can move in any direction by using a special wheel structure with a LIM-wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method for Mecanum AGV localization has certain limitations, such as slip phenomena, because there are variations in the surface of the road and ground friction. Therefore, precise localization is a very important issue for the inevitable slip phenomenon situation. So a sensor fusion technique is developed to cope with this drawback by using the Kalman filter. ENCODER and StarGazer were used for sensor fusion. StarGazer is a position sensor for an image recognition device and always generates some errors due to the limitations of the image recognition device. ENCODER has also errors accumulating over time. On the other hand, there are no moving errors. In this study, we developed a Mecanum AGV prototype system and showed by simulation that we can eliminate the disadvantages of each sensor. We obtained the precise localization of the Mecanum AGV in a slip phenomenon situation via sensor fusion using a Kalman filter.

  7. The {sup 3}He neutron-spin filter at ILL

    Energy Technology Data Exchange (ETDEWEB)

    Tasset, F.; Heil, W.; Humblot, H.; Lelievre-Berna, E.; Roberts, T. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Neutron-Spin Filters (NSF) using gaseous polarised {sup 3}He have long been recognised as of enormous potential value in many polarised neutron-scattering applications and, accordingly, ILL started a development programme some years ago. This report gives an account of the present status of the project. (author). 13 refs.

  8. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

    KAUST Repository

    Li, Peng

    2017-05-08

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across antiphase boundaries has been commonly employed to account for large magnetoresistance (MR) in ferrites, the magnetic anomalies, the two magnetic phases and enhanced molecular moment, are still unresolved. We observed a sizable MR in epitaxial spinel films (NiCo2O4-δ) that is much larger than that commonly observed in spinel ferrites. Detailed analysis reveals that this MR can be attributed to phase separation, in which the perfect ferrimagnetic metallic phase and ferrimagnetic insulating phase coexist. The magnetic insulating phase plays an important role in spin filtering in these phase separated spinel oxides, leading to a sizable MR effect. A spin filtering model based on Zeeman effect and direct tunneling is developed to account for MR of the phase separated films.

  9. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  10. Tuning Interfacial States Using Organic Molecules as Spin Filters

    Science.gov (United States)

    Deloach, Andrew; Wang, Jingying; Papa, Christopher M.; Myahkostupov, Mykhaylo; Castellano, Felix N.; Dougherty, Daniel B.; Jiang, Wei; Liu, Feng

    Organic semiconductors are known to have long spin relaxation times which makes them a good candidate for spintronics. However, an issue with these materials is that at metal-organic interfaces there is a conductivity mismatch problem that suppresses spin injection. To overcome this, orbital mixing at the interface can be tuned with an organic spacer layer to promote the formation of spin polarized interface states. These states act as a ``spin filters'' and have been proposed as an explanation for the large tunneling magnetoresistance seen in devices using tris-(8-hydroxyquinolate)-aluminum(Alq3). Here, we show that the spin polarized interface states can be tuned from metallic to resistive by subtle changes in molecular orbitals. This is done using spin polarized scanning tunneling microscopy with three different tris-(8-hydroxyquinolate) compounds: aluminum, chromium, and iron. Differences in d-orbital mixing results in different mechanisms of interfacial coupling, giving rise to metallic or resistive interface states. Supported by the U.S. DoE award No. DE-SC0010324.

  11. Polarized 3He Neutron Spin Filters

    Energy Technology Data Exchange (ETDEWEB)

    Sno, William Michael [Indiana Univ., Bloomington, IN (United States)

    2016-01-12

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3He neutron spin filter development is now sited at NIST and ORNL.

  12. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  13. Perfect spin filtering by symmetry in molecular junctions

    Science.gov (United States)

    Li, Dongzhe; Dappe, Yannick J.; Smogunov, Alexander

    2016-05-01

    Obtaining highly spin-polarized currents in molecular junctions is crucial and important for nanoscale spintronics devices. Motivated by our recent symmetry-based theoretical argument for complete blocking of one spin conductance channel in model molecular junctions [A. Smogunov and Y. J. Dappe, Nano Lett. 15, 3552 (2015), 10.1021/acs.nanolett.5b01004], we explore the generality of the proposed mechanism and the degree of achieved spin-polarized current for realistic molecular junctions made of various ferromagnetic electrodes (Ni, Co, Fe) connected by different molecules (quaterthiophene or p -quaterphenyl). A simple analysis of the spin-resolved local density of states of a free electrode allowed us to identify the Fe(110) as the most optimal electrode, providing perfect spin filtering and high conductance at the same time. These results are confirmed by ab initio quantum transport calculations and are similar to those reported previously for model junctions. It is found, moreover, that the distortion of the p -quaterphenyl molecule plays an important role, reducing significantly the overall conductance.

  14. Dual Control of Giant Field-like Spin Torque in Spin Filter Tunnel Junctions

    Science.gov (United States)

    Tang, Y.-H.; Chu, F.-C.; Kioussis, Nicholas

    2015-06-01

    We predict a giant field-like spin torque, , in spin-filter (SF) barrier tunnel junctions in sharp contrast to existing junctions based on nonmagnetic passive barriers. We demonstrate that has linear bias behavior, is independent of the SF thickness, and has odd parity with respect to the SF’s exchange splitting. Thus, it can be selectively controlled via external bias or external magnetic field which gives rise to sign reversal of via magnetic field switching. The underlying mechanism is the interlayer exchange coupling between the noncollinear magnetizations of the SF and free ferromagnetic electrode via the nonmagnetic insulating (I) spacer giving rise to giant spin-dependent reflection at the SF/I interface. These findings suggest that the proposed field-like-spin-torque MRAM may provide promising dual functionalities for both ‘reading’ and ‘writing’ processes which require lower critical current densities and faster writing and reading speeds.

  15. An adaptive unscented Kalman filter-based adaptive tracking control for wheeled mobile robots with control constrains in the presence of wheel slipping

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2016-09-01

    Full Text Available A novel control approach is proposed for trajectory tracking of a wheeled mobile robot with unknown wheels’ slipping. The longitudinal and lateral slipping are considered and processed as three time-varying parameters. The adaptive unscented Kalman filter is then designed to estimate the slipping parameters online, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the adaptive unscented Kalman filter context. Considering the practical physical constrains, a stable tracking control law for this robot system is proposed by the backstepping method. Asymptotic stability is guaranteed by Lyapunov stability theory. Control gains are determined online by applying pole placement method. Simulation and real experiment results show the effectiveness and robustness of the proposed control method.

  16. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    Science.gov (United States)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  17. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    Spinning wheels: The presented highly resolved multifrequency continuous wave EPR spectra (e.g., see figure) of the heterooctametalic "wheels" Cr(7)M provide rare examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited...... spin states is observed.We present highly resolved multifrequency (X-, K-, Q- and W-band) continous wave EPR spectra of the heterooctametalic "wheels", [(CH(3))(2)NH(2)][Cr(III) (7)M(II)F(8)((CH(3))(3)CCOO)(16)], hereafter Cr(7)M, where M=Cd, Zn, Mn, and Ni. These experimental spectra provide rare...... to 10(5) by use of the Davidson algorithm. We show that transferability of spin-Hamiltonian parameters across complexes of the Cr(7)M family is possible and that the spin-Hamiltonian parameters of Cr(7)M do not have sharply defined values, but are rather distributed around a mean value....

  18. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  19. The critical role of the barrier thickness in spin filter tunneling

    International Nuclear Information System (INIS)

    Miller, Casey W.

    2009-01-01

    Spin filter tunneling is considered in the low bias limit as functions of the temperature dependent barrier parameters. We demonstrate the generation of spin polarized tunneling currents in relation to the magnetic order parameter, and discuss how an interfacially suppressed order parameter leads to a temperature dependent tunneling current asymmetry. Analyzing the full parameter space reveals that the often overlooked barrier thickness plays a critical role in spin filter tunneling. With all else fixed, thicker barriers yield higher spin polarization, and allow a given polarization to be achieved at higher temperatures. This insight may open the door for new materials to serve as spin filter barriers.

  20. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  1. Multiterminal semiconductor/ferromagnet probes for spin-filter scanning tunneling microscopy

    NARCIS (Netherlands)

    Vera Marun, I.J.; Jansen, R.

    2009-01-01

    We describe the fabrication of multiterminal semiconductor/ferromagnet probes for a new technique to study magnetic nanostructures: spin-filter scanning tunneling microscopy. We describe the principle of the technique, which is based on spin-polarized tunneling and subsequent analysis of the spin

  2. Bias dependence of tunnel magnetoresistance in spin filtering tunnel junctions: Experiment and theory

    Science.gov (United States)

    Lüders, U.; Bibes, M.; Fusil, S.; Bouzehouane, K.; Jacquet, E.; Sommers, C. B.; Contour, J.-P.; Bobo, J.-F.; Barthélémy, A.; Fert, A.; Levy, P. M.

    2007-10-01

    A spin filter is a type of magnetic tunnel junction in which only one of the electrodes is magnetic and the insulating barrier is ferro- or ferrimagnetic. We report on spin-dependent transport measurements and their theoretical analysis in epitaxial spin filters integrating a tunnel barrier of the high-Curie-temperature ferrimagnetic spinel NiFe2O4 , with half-metallic La2/3Sr1/3MnO3 and Au electrodes. A positive tunnel magnetoresonance of up to ˜50% is obtained at low temperature, which we find decreases with bias voltage. In view of these experimental results, we propose a theoretical treatment of the transport properties of spin filters with epitaxial magnetic barriers, based on an elliptical variation of the decay rates within the spin-dependent gaps in analogy with what was calculated for nonmagnetic barrier materials such as MgO or SrTiO3 . Whereas the spin filtering efficiency for zero bias is of one sign, we show that this can easily change with bias; the degree of change hinges on the energy variation of the majority and minority spin decay rates of the transmission across the barrier. We point out some shortcomings of approaches based on models in which the transmission is related to spin-dependent barrier heights, and some implications for future experimental and theoretical research on spin filters.

  3. Limiting factor of defect-engineered spin-filtering effect at room temperature

    Science.gov (United States)

    Puttisong, Y.; Buyanova, I. A.; Chen, W. M.

    2014-05-01

    We identify hyperfine-induced electron and nuclear spin cross-relaxation as the dominant physical mechanism for the longitudinal electron spin relaxation time 1 of the spin-filtering Gai2+ defects in GaNAs alloys. This conclusion is based on our experimental findings that T1 is insensitive to temperature over 4-300 K, and its exact value is directly correlated with the hyperfine coupling strength of the defects that varies between different configurations of the Gai2+ defects present in the alloys. These results thus provide a guideline for further improvements of the spin-filtering efficiency by optimizing growth and processing conditions to preferably incorporate the Gai2+ defects with a weak hyperfine interaction and by searching for new spin-filtering defects with zero nuclear spin.

  4. Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs

    Science.gov (United States)

    Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.; hide

    2002-01-01

    Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.

  5. Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures

    International Nuclear Information System (INIS)

    Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer

  6. Spin-filtering junctions with double ferroelectric barriers

    International Nuclear Information System (INIS)

    Yan, Ju; Ding-Yu, Xing

    2009-01-01

    An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction

  7. Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Caruso, R. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Pal, A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, New York 11961 (United States); Pepe, G.P. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy); Blamire, M.G. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tafuri, F. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, 81031 Aversa (CE) (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, via Cinthia, 80126 Napoli (Italy)

    2017-02-15

    Highlights: • We study the phase dynamics of ferromagnetic NbN/GdN/NbN Josephson junctions. • The ferromagnetic insulator GdN barrier generates spin-filtering properties. • Spin filter junctions fall in the underdamped regime. • MQT occurs with the same phenomenology as in conventional Josephson junctions. • Dissipation is studied in a wide range of critical current density values. - Abstract: A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (J{sub c}), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low J{sub c} values.

  8. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Energy Technology Data Exchange (ETDEWEB)

    Tioukine, V. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)]. E-mail: tioukine@kph.uni-mainz.de; Aulenbacher, K. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0{sup o} and {+-}90{sup o} has been achieved without compromising the beam quality and operational stability of MAMI.

  9. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Science.gov (United States)

    Tioukine, V.; Aulenbacher, K.

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0° and ±90° has been achieved without compromising the beam quality and operational stability of MAMI.

  10. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  11. Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Brandbyge, Mads

    2012-01-01

    Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....

  12. Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin-orbit interaction

    Science.gov (United States)

    Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.

    2018-01-01

    The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.

  13. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device

    Science.gov (United States)

    Silva, P. V.; Saraiva-Souza, A.; Maia, D. W.; Souza, F. M.; Filho, A. G. Souza; Meunier, V.; Girão, E. C.

    2018-04-01

    Spin-polarized transport through a rhombic graphene quantum dot (rGQD) attached to armchair graphene nanoribbon (AGNR) electrodes is investigated by means of the Green's function technique combined with single-band tight-binding (TB) approach including a Hubbard-like term. The Hubbard repulsion was included within the mean-field approximation. Compared to anti-ferromagnetic (AFM), we show that the ferromagnetic (FM) ordering of the rGQD corresponds to a smaller bandgap, thus resulting in an efficient spin injector. As a consequence, the electron transport spectrum reveals a spin valve effect, which is controlled by doping with B/N atoms creating a p-n-type junction. The calculations point out that such systems can be used as spin-filter devices with efficiency close to a 100 % .

  14. Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer

    International Nuclear Information System (INIS)

    Matityahu, Shlomi; Aharony, Amnon; Entin-Wohlman, Ora; Tarucha, Seigo

    2013-01-01

    We study the spin-dependent transport of spin-1/2 electrons through an interferometer made of two elongated quantum dots or quantum nanowires, which are subject to both an Aharonov–Bohm flux and (Rashba and Dresselhaus) spin–orbit interactions. Similar to the diamond interferometer proposed in our previous papers (Aharony et al 2011 Phys. Rev. B 84 035323; Matityahu et al 2013 Phys. Rev. B 87 205438), we show that the double-dot interferometer can serve as a perfect spin filter due to a spin interference effect. By appropriately tuning the external electric and magnetic fields which determine the Aharonov–Casher and Aharonov–Bohm phases, and with some relations between the various hopping amplitudes and site energies, the interferometer blocks electrons with a specific spin polarization, independent of their energy. The blocked polarization and the polarization of the outgoing electrons is controlled solely by the external electric and magnetic fields and do not depend on the energy of the electrons. Furthermore, the spin filtering conditions become simpler in the linear-response regime, in which the electrons have a fixed energy. Unlike the diamond interferometer, spin filtering in the double-dot interferometer does not require high symmetry between the hopping amplitudes and site energies of the two branches of the interferometer and thus may be more appealing from an experimental point of view. (paper)

  15. A wide range of energy spin-filtering in a Rashba quantum ring using S-matrix method

    Science.gov (United States)

    Naeimi, Azadeh S.; Eslami, Leila; Esmaeilzadeh, Mahdi

    2013-01-01

    In this paper, spin-filtering properties of transmitted electrons through a quantum ring in the presence of Rashba spin-orbit interaction and magnetic flux are studied. To investigate the effects of coupling between the leads and ring on the spin-filtering, the S-matrix method is used. It is shown that by tuning the Rashba spin-orbit strength and the magnetic flux, the quantum ring can act as a perfect spin-filter with high efficiency. The spin-filtering can be changed from spin up to spin down and vice versa by changing the Rashba strength when the magnetic flux is held constant or by changing the magnetic flux when the Rashba strength is held constant. In addition, the effect of the angle between the leads on spin-filtering properties is taken into account and the angles at which the spin-filtering can occur are determined. The spin-filtering can take place in narrow ranges of electron energy for weak coupling, while for strong coupling it can take place in a wide range of electron energy.

  16. Spin dynamics on cyclic iron wheels in high magnetic fields; Spindynamik an zyklischen Eisen-Raedern in hohen magnetischen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Schnelzer, Lars

    2008-02-15

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe{sub 6}(tea){sub 6} and Cs rate at Fe{sub 8}(tea){sub 8} as probes of NMR both the protons and the centrally lying alkali atoms {sup 7}Li, {sup 23}Na, and {sup 133}Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T{approx}30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the {sup 23}Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe{sub 6}(tea){sub 6} of eq=4.78(11).10{sup 20} V/m{sup 2} was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to {theta}(c,B)=62.8 . The very low splitting of the {sup 7}Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10{sup 20} V/m{sup 2}. From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10{sup 21} V/m{sup 2}. The study of the field-dependent line position of the {sup 23}Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A{sub tHf}/2{pi}=140 kHz. For the first time on a cyclic iron

  17. Electronic transport through EuO spin-filter tunnel junctions

    KAUST Repository

    Jutong, Nuttachai

    2012-11-12

    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.

  18. Spin filtering in a δ-doped magnetic-electric-barrier nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuai; Lu, Mao-Wang, E-mail: maowanglu@126.com; Jiang, Ya-Qing; Chen, Sai-Yan [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2014-09-15

    We report a theoretical study on spin-polarized transport in a δ-doped magnetic-electric-barrier nanostructure, which can be realized in experiments by depositing two ferromagnetic stripes on top and bottom of a semiconductor heterostructure under an applied voltage and by using atomic layer doping technique. The spin-polarized behavior of the electron in this device is found to be quite sensitive to the δ-doping. One can conveniently tune the degree of the electron spin polarization by adjusting the weight and/or position of the δ-doping. Thus, the involved nansosystem can be employed as a controllable spin filter, which may be helpful for exploiting new spin-polarized source for spintronics applications.

  19. Spin Manipulation with an RF Wien-Filter at COSY

    OpenAIRE

    Mey, Sebastian; Gebel, Ralf

    2015-01-01

    The JEDI Collaboration (Jülich Electric Dipole Moment Investigations) is developing tools for the measurement of permanent EDMs (Electric Dipole Moments) of charged, light hadrons indedicated storage rings. The Standard Model predicts unobservably small magnitudes for these EDMs. A non-vanishing value due to CP violating sources beyond the Standard Model may bedetected by measuring a tiny vertical polarization buildup in a beforehand horizontally polarized beam. This technique requires a spin...

  20. Direct-drive digitally-commutated filter wheel positioning system for cryogenic optical applications

    Science.gov (United States)

    Lorell, Kenneth R.; Aubrun, Jean-Noel; Opyd, Walter G.; Wood, Allen D.

    1993-01-01

    A control system is presented for precise and rapid positioning of spectral filters in the multispectral infrared optical system used for the MUlti-Spectral Infrared Camera (MUSIC). A hybrid system employing a stepper motor as a direct-drive brushless servomotor presents an ideal solution, applying high torque at low speed for the optimum response as limited by available torque. As the end of the repositioning transient is approached, closed-loop proportional control of torque provides quick settling to a positioning accuracy of 0.02 degrees. The use of a stepper motor avoids the problems of a brushed DC servomotor, such as brush and bearing failures at high speeds in a cryogenic vacuum, and backlash in reduction gears. The analog servo loop with commutation hardware to optimally switch the current to the stepper motor windings, avoids problems typical of stepper motors, such as limited positioning precision and high power dissipation while holding position.

  1. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  2. Triple Rashba dots as a spin filter: Bound states in the continuum and Fano effect

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo, M.L.; Ladron de Guevara, M.L. [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Orellana, P.A., E-mail: orellana@ucn.c [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile)

    2010-11-01

    We propose an efficient spin-filter device by exploiting bound states (BICs) in the continuum and Fano effect on a triple Rashba quantum dot molecule embedded in an Aharonov-Bohm interferometer. We find that the coexistence of a BIC and a Fano antiresonance result in polarizations close to 100% in wide regions in the space of parameters.

  3. Spin-Filtering Transport in Double Parallel Quantum Wires on a Graphene Sheet

    Science.gov (United States)

    Yang, Fu-Bin; Cheng, Yan; Liu, Fu-Ti; Chen, Xiang-Rong; Cai, Ling-Cang

    2015-03-01

    We theoretically investigate the spin filtering transport of double parallel quantum wires (QWs) side-coupled to a graphene sheet and sandwiched between two ferromagnetic (FM) leads. The dependences of the wire-graphene coupling strength, wire-wire coupling strength, as well as the spin polarization of the ferromagnetic leads are studied. It is found that the wire-graphene coupling strength tends to reduce the current and the wire-wire coupling strength can first reinforce and then decrease the current. The spin polarization strength has an enhanced (identical) effect on the current under the parallel (anti-parallel) alignment of the FM leads, which gives rise to an obvious spin-filter and tunnel magnetoresistance (TMR) effect. Our results suggest that such a theoretical model can stimulate some experimental investigations about the spin-filter devices. Supported by the National Natural Science Foundation of China under Grant Nos. 11174214, 11204192, the NSAF Joint Fund Jointly set up by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics under Grant Nos. U1230201 and U1430117

  4. Polarized 3He Neutron Spin Filters at Oak Ridge National Laboratory

    Science.gov (United States)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Lee, W. T.; Ambaye, H.; Craig, J. W.; Crow, L.; Culbertson, H.; Goyette, R.; Graves-Brook, M. K.; Hagen, M. E.; Kadron, B.; Lauter, V.; McCollum, L. W.; Robertson, J. L.; Winn, B.; Vandegrift, A. E.

    The unique advantages of using polarized 3He as neutron spin filters, such as broadband and wide angular acceptance of neutron beams, have made it widely used in most neutron facilities. Over the last several years, we have developed a polarized 3He program to meet the increasing needs of 3He based neutron spin filters at the Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). At ORNL, polarized 3He is produced using Spin Exchange Optical Pumping (SEOP). We have constructed a 3He cell fabrication station to produce 3He cells of different pressures and dimensions. Two optical pumping stations have been built in the lab to perform ex situ pumping of 3He. A compact in situ3He analyzer has been constructed and installed for the Magnetism Reflectometer (MAGICS) at SNS. A novel polarized 3He filling station for the Hybrid Spectrometer (HYSPEC) at SNS is under development.

  5. Silk screen based dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells.

    Science.gov (United States)

    Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K

    2014-08-01

    Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.

  6. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    Science.gov (United States)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  7. Spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor junctions

    International Nuclear Information System (INIS)

    Li Hong; Yang Wei; Yang Xinjian; Qin Minghui; Xu Yihong

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator (FI), the spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the sub-energy gap conductance peaks and the spin polarization in the ferromagnetic insulator causes an imbalance of the peak heights. Different from the ferromagnet the spin-filtering effect of the FI cannot cause the reversion of the normalized conductance in NM/FI/NM/SC junctions

  8. Reaction Wheel with Embedded MEMS IMU, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to embed a MEMS IMU Sensor Chip into a reaction wheel to measure its spin rate as well as wheel attitude rate. We propose to use a reaction wheel...

  9. Matched filtering of numerical relativity templates of spinning binary black holes

    International Nuclear Information System (INIS)

    Vaishnav, Birjoo; Hinder, Ian; Herrmann, Frank; Shoemaker, Deirdre

    2007-01-01

    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes, and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary but nonprecessing spin and inclination for the axial case considered here

  10. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. rf Wien filter in an electric dipole moment storage ring: The ``partially frozen spin'' effect

    Science.gov (United States)

    Morse, William M.; Orlov, Yuri F.; Semertzidis, Yannis K.

    2013-11-01

    An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment (EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.

  12. Simulating gas-liquid mass transfer in a spin filter bioreactor

    OpenAIRE

    Niño López, Lilibeth Caridad; Gelves Zambrano, Germán Ricardo

    2015-01-01

    Computational fluid dynamics (CFD) and population balance model (PBM) model have been used to simulate hydrodynamics and mass transfer in a 0.014 m3 Spin Filter Bioreactor. The operating conditions chosen were defined by typical settings used for culturing plant cells. Turbulence, rotating flow, bubbles breakage and coalescence were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM approaches, respectively. The numerical results from different operational conditions are compa...

  13. Zeeman splitting spin filter in a single quantum dot electron transport with Coulomb blockade effect

    OpenAIRE

    Lai, Wenxi

    2014-01-01

    Electron spin filter induced by Zeeman splitting in a few-electron quantum dot coupled to two normal electrodes is studied considering Coulomb blockade effect. Based on the Anderson model and Liouville-von Neumann equation, equation of motion of the system is derived and analytical solutions are achieved. Transport windows for perfectly polarized current, partially polarized current and non-polarized current induced by the Zeeman splitting energy and Coulomb blockade potential are exploited. ...

  14. Spinning Wheel of Life

    DEFF Research Database (Denmark)

    Soon, Winnie

    2017-01-01

    This collection brings together artists, curators, programmers, theorists and heavy internet browsers whose practices make critical intervention into the broad concept of execution. It draws attention to their political strategies, asking: who and what is involved with those practices, and for wh...

  15. Spin the Wheels

    Science.gov (United States)

    Critchett, John

    2011-01-01

    The Fibonacci series has been studied since it was first described by Leonardo of Pisa--Fibonacci--in 1202. It begins with the sequence 1, 1, 2, 3, 5, 8... Each succeeding number is the sum of the previous two. In number theory courses, students are introduced to the concept of modulo arithmetic, sometimes called "clock" arithmetic. In modulo…

  16. CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh.

    Science.gov (United States)

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda R; Medronho, Ricardo A

    2009-11-01

    In the present work Computational Fluid Dynamics (CFD) was used to study the flow field and particle dynamics in an internal spin-filter (SF) bioreactor system. Evidence of a radial exchange flow through the filter mesh was detected, with a magnitude up to 130-fold higher than the perfusion flow, thus significantly contributing to radial drag. The exchange flow magnitude was significantly influenced by the filter rotation rate, but not by the perfusion flow, within the ranges evaluated. Previous reports had only given indirect evidences of this exchange flow phenomenon in spin-filters, but the current simulations were able to quantify and explain it. Flow pattern inside the spin-filter bioreactor resembled a typical Taylor-Couette flow, with vortices being formed in the annular gap and eventually penetrating the internal volume of the filter, thus being the probable reason for the significant exchange flow observed. The simulations also showed that cells become depleted in the vicinity of the mesh due to lateral particle migration. Cell concentration near the filter was approximately 50% of the bulk concentration, explaining why cell separation achieved in SFs is not solely due to size exclusion. The results presented indicate the power of CFD techniques to study and better understand spin-filter systems, aiming at the establishment of effective design, operation and scale-up criteria.

  17. Symmetry-Dependent Spin Transport Properties and Spin-Filter Effects in Zigzag-Edged Germanene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Can Cao

    2015-01-01

    Full Text Available We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs. We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although the σ mirror plane is absent in ZGeNRs. Furthermore, even-N and odd-N ZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.

  18. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains

    International Nuclear Information System (INIS)

    García-Fuente, A; Gallego, L J; Vega, A

    2015-01-01

    By means of density-functional-theoretic calculations, we investigated the structural, electronic and transport properties of hydrogen-passivated zigzag graphene nanoribbons (ZGNRs) on which a one-atom-thick Mo chain was adsorbed (with or without one or two missing atoms), or in which the passivating hydrogen atoms were replaced by Mo atoms. Mo-passivated ZGNRs proved to be nonmagnetic. ZGNRs with an adsorbed defect-free Mo chain were most stable with the Mo atoms forming dimers above edge bay sites, which suppressed the magnetic moments of the C atoms in that half of the ribbon; around the Fermi level of these systems, each spin component had a transmission channel via the Mo sp z band and one had an additional channel created by polarization of the ZGNR π * band, leading to a net spin current. The absence of an Mo dimer from an Mo chain adsorbed at the ZGNR edge made the system a perfect spin filter at low voltage bias by suppressing the Mo sp z band channels. Thus this last kind of hybrid system is a potential spin valve. (paper)

  19. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  20. How the wheel changed history

    CERN Document Server

    Higgins, Melissa

    2015-01-01

    How the Wheel Changed History examines the ancient origins of the wheel and explores the many inventions-from the spinning wheel to the phonograph-made possible by the simple machine. Features include essential facts, a glossary, selected bibliography, websites, source notes, and an index, plus a timeline and maps, charts, and diagrams. Aligned to Common Core Standards and correlated to state standards. Essential Library is an imprint of Abdo Publishing, a division of ABDO.

  1. Spin coating of ZnS nanostructures on filter paper and their characterization

    Science.gov (United States)

    Kumar, Nitin; Purohit, L. P.; Goswami, Y. C.

    2016-09-01

    In this paper we have reported spin coating of Cu doped Zinc sulphide nanostructures on filter paper flexible substrates. Zinc chloride and thiourea were used as precursors of zinc and sulphur. The samples were characterized by XRD, FE-SEM, EDAX and UV-visible spectrum studies. All the diffractogram peaks confirm the cubic structure of ZnS with small peak of Cu indicates incorporation of Cu into ZnS lattice. FE-SEM micrographs exhibit fibrous morphologies of ZnS structures on filter paper. Compound structures on flexible substrates show ohmic behavior with conductivity about 3.07×106 (Ωcm)-1 to 4.27×106 (Ωcm)-1. Excellent photoluminescence property doped with copper makes them suitable for flexible opto-electronic devices.

  2. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  3. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings

    Science.gov (United States)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.

    2001-01-01

    A bearing test apparatus was used to investigate lubricant degradation rates and elastohydrodynamic transition temperatures for several perfluoropolyether (Krytox) formulations, a pentasilahydrocarbon, and a synthetic hydrocarbon (Pennzane 2001 A) in an MPB 1219 bearing, which is used in the geostationary operational environmental satellite (GOES) mission filter wheel assembly. Test conditions were the following: 1000-hr duration, 75 C, 20 lb axial load, vacuum level less than 1 x 10(exp -6) Torr, and a 600-rpm rotational speed. Baseline tests were performed using unformulated Krytox 143AB, the heritage lubricant. Krytox additive formulations showed small reductions in degradation rate. Krytox GPL-105, a higher viscosity version, yielded the least amount of degradation products. Both the silahydrocarbon and Pennzane 2001A showed no signs of lubricant degradation and had ample amounts of free oil at test conclusion.

  4. Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip

    Science.gov (United States)

    Klomp, Matthijs; Gao, Yunlong; Bruzelius, Fredrik

    2014-05-01

    Vehicle speed is one of the important quantities in vehicle dynamics control. Estimation of the slope angle is in turn a necessity for correct dead reckoning from vehicle acceleration. In the present work, estimation of vehicle speed is applied to a hybrid vehicle with an electric motor on the rear axle and a combustion engine on the front axle. The wheel torque information, provided by electric motor, is used to early detect excessive wheel slip and improve the accuracy of the estimate. A best-wheel selection approach is applied as the observation variable of a Kalman filter which reduces the influence of slipping wheels as well as reducing the computational effort. The performance of the proposed algorithm is illustrated on a test data recorded at a winter test ground with excellent results, even for extreme conditions such as when all four wheels are spinning.

  5. Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions

    Directory of Open Access Journals (Sweden)

    Fen Liu

    2016-08-01

    Full Text Available Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsic properties.

  6. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    Science.gov (United States)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  7. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  8. Spin-Filtering Effects in Wurtzite and Graphite-Like AlN Nano wires with Mn Impurities

    International Nuclear Information System (INIS)

    Nemnes, G.A.

    2013-01-01

    Spin transport properties of magnetic nano wire systems —atomic-sized AlN nano wires with additional Mn impurities—are investigated employing ab initio constrained spin density functional theory calculations and nonequilibrium Green’s functions formalism. The analyzed nano wire structures exhibit a stress-induced phase transition, between wurtzite and graphite-like configurations. In these quasi-one dimensional systems, the surface states ensure the basic prerequisite in establishing spin and charge transfer, by reducing the relatively large bandgap of the group III nitride semiconductor. The results show in how far this phase transition affects the surface states, focusing on the consequences which appear in the spin-filtering processes.

  9. Omnidirectional wheel

    Science.gov (United States)

    Blumrich, J. F. (Inventor)

    1974-01-01

    The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.

  10. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation.

    Science.gov (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N

    2008-10-23

    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  11. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  12. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  13. Discussion on data correction for Polarization Analysis with a 3He spin filter analyzer

    Science.gov (United States)

    Babcock, Earl; Salhi, Zahir; Kentzinger, Emmanuel; Mattauch, Stefan; Ioffe, Alexander

    2017-06-01

    Fully polarized neutron reflectometry and grazing incidence small angle neutron scattering are effective methods to explore magnetic structures on the nm to μm length scales. This paper is an outline of how to fully correct for the polarization analysis (PA) inefficiencies of such an instrument and to determine the error contributions of the neutron polarizer and analyzer. This discussion considers the exact case of the polarization analysis instrumentation used on the MARIA neutron reflectometer at the MLZ or for a general polarized neutron scattering instrument using at least one 3He neutron spin filter that has the capability for adiabatic fast passage nuclear magnetic resonance flipping of the 3He polarization. This paper will work to build a conceptual understanding of how the inefficiencies of neutron polarization elements affect measured data in order to stress and encourage the application of PA corrections and to help perform successful measurements. Then, using data from a fully polarized neutron reflectometer test measurement we show how it is possible to recover signals on the order of, or even smaller than, the inefficiencies, or bleed-through, of the neutron polarization devices used.

  14. Electron-spin filter and polarizer in a standing light wave

    Science.gov (United States)

    Ahrens, Sven

    2017-11-01

    We demonstrate the theoretical feasibility of spin-dependent diffraction and spin polarization of an electron in two counterpropagating, circularly polarized laser beams. The spin dynamics appears in a two-photon process of the Kapitza-Dirac effect in the Bragg regime. We show the spin dependence of the diffraction process by comparison of the time evolution of spin-up and spin-down electrons in a relativistic quantum simulation. We further discuss the spin properties of the scattering by studying an analytically approximated solution of the time-evolution matrix. A classification scheme in terms of unitary or nonunitary propagation matrices is used for establishing a generalized and spin-independent description of the spin properties in the diffraction process.

  15. Simulating gas-liquid mass transfer in a spin filter bioreactor

    Directory of Open Access Journals (Sweden)

    Lilibeth Caridad Niño-López

    2015-01-01

    Full Text Available Mediante dinámica de fluidos computacional (CFD y métodos de balance poblacional (PBM se simuló la hidrodinámica líquido-gaseosa y la transferencia de masa en un biorreactor de 0,014 m 3 operado con un Spin Filter para cultivos en modo perfusión. Las condiciones de operación fueron definidas con base en los requerimientos para células vegetales en suspensión. Los fenómenos de turbulencia, flujo giratorio, ruptura y coalescencia de burbujas fueron simulados utilizando los modelos k-e, MRF (Multiple Reference Frame y PBM. Se logra una predicción aceptable mediante la comparación entre los resultados numéricos de las diferentes condiciones de operación y los datos experimentales de los valores del coeficiente de transferencia de masa Con la motivación de estos resultados simulados y validados experimentalmente, se observa que CFD puede ser una herramienta muy prometedora, no sólo para la predicción de la hidrodinámica líquido-gaseosa, sino también para encontrar los requisitos de diseño que se deben implementar para optimizar un proceso biológico aerobio útil para aplicaciones de cultivos celulares de plantas, que son comúnmente caracterizados por el requerimiento de mantener condiciones relativamente altas tasa de transferencia de masa y simultáneamente evitar el daño celular debido a las condiciones hidrodinámicas.

  16. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and noneq......We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  17. Large solid-angle polarisation analysis at thermal neutron wavelengths using a sup 3 He spin filter

    CERN Document Server

    Heil, W; Cywinski, R; Humblot, H; Ritter, C; Roberts, T W; Stewart, J R

    2002-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarised sup 3 He opens up the possibility of polarising neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. In this paper we describe the first large solid-angle polarisation analysis measurement using a sup 3 He neutron spin filter at thermal neutron wavelengths (lambda=2.5 A). This experiment was performed on the two-axis diffractometer D1B at the Institut Laue-Langevin using a banana-shaped filter cell (530 cm sup 3 ) filled with sup 3 He gas with a polarisation of P=52% at a pressure of 2.7 bar. A comparison is made with a previous measurement on D7 using a cold neutron beam on the same sample, i.e. amorphous ErY sub 6 Ni sub 3. Using uniaxial polarisation analysis both the nuclear and magnetic cross-sections could be extracted over the range of scattering-vectors [0.5<=Q(A sup - sup 1)<=3.5]. The results are in qualitative and quantitative agreement with the D7-data, whe...

  18. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2015-01-01

    This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank...... of residual filters organized in a generalized scheme, followed by a fault estimation module consisting of a bank of adaptive estimation filters. The residuals are decoupled from aerodynamic disturbances thanks to the Nonlinear Geometric Approach. The use of Radial Basis Function Neural Networks is shown...

  19. A Kalman Filter for Mass Property and Thrust Identification of the Spin-Stabilized Magnetospheric Multiscale Formation

    Science.gov (United States)

    Queen, Steven Z.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  20. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.

    1994-08-01

    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  1. Structure, magnetic ordering, and spin filtering efficiency of NiFe{sub 2}O{sub 4}(111) ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, S.; Moussy, J.-B., E-mail: jean-baptiste.moussy@cea.fr [CEA, IRAMIS, SPCSI, F-91191 Gif-sur-Yvette (France); Wei, P. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Gatel, C. [CEMES-CNRS, F-31055 Toulouse (France); Cezar, J. C. [ESRF, F-38043 Grenoble (France); Arrio, M. A.; Sainctavit, Ph. [IMPMC, F-75015 Paris (France); Moodera, J. S. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-05

    NiFe{sub 2}O{sub 4}(111) ultrathin films (3–5 nm) have been grown by oxygen-assisted molecular beam epitaxy and integrated as effective spin-filter barriers. Structural and magnetic characterizations have been performed in order to investigate the presence of defects that could limit the spin filtering efficiency. These analyses have revealed the full strain relaxation of the layers with a cationic order in agreement with the inverse spinel structure but also the presence of antiphase boundaries. A spin-polarization up to +25% has been directly measured by the Meservey-Tedrow technique in Pt(111)/NiFe{sub 2}O{sub 4}(111)/γ-Al{sub 2}O{sub 3}(111)/Al tunnel junctions. The unexpected positive sign and relatively small value of the spin-polarization are discussed, in comparison with predictions and previous indirect tunnelling magnetoresistance measurements.

  2. Word wheels

    CERN Document Server

    Clark, Kathryn

    2013-01-01

    Targeting the specific problems learners have with language structure, these multi-sensory exercises appeal to all age groups including adults. Exercises use sight, sound and touch and are also suitable for English as an Additional Lanaguage and Basic Skills students.Word Wheels includes off-the-shelf resources including lesson plans and photocopiable worksheets, an interactive CD with practice exercises, and support material for the busy teacher or non-specialist staff, as well as homework activities.

  3. Large interfacial exchange fields in a thick superconducting film coupled to a spin-filter tunnel barrier

    Science.gov (United States)

    Pal, Avradeep; Blamire, M. G.

    2015-11-01

    The differential conductance of NbN/GdN/TiN superconductor/ferromagnetic insulator/normal-metal junctions, with a thick NbN layer shows a large zero-field voltage offset interpreted as a spin-filtered Zeeman splitting of the NbN density of states by an effective exchange field (H0) from the GdN. The splitting increases linearly, with applied field (Hext) enabling the relative sign of H0 and Hext to be determined. We show that the short NbN coherence length concentrates H0 at the NbN/GdN interface and eliminates any averaging over the GdN domain structure leading to a large zero-field splitting.

  4. The spin filter effect of iron-cyclopentadienyl multidecker clusters: the role of the electrode band structure and the coupling strength

    International Nuclear Information System (INIS)

    Shen Xin; Yi Zelong; Shen Ziyong; Zhao Xingyu; Wu Jinlei; Hou Shimin; Sanvito, Stefano

    2009-01-01

    We present a theoretical study of spin transport in a series of organometallic iron-cyclopentadienyl, Fe n Cp n+1 , multidecker clusters sandwiched between either gold or platinum electrodes. Ab initio modeling is performed by combining the non-equilibrium Green's function formalism with spin density functional theory. Due to the intrinsic bonding nature, the low-bias conductance of the Fe n Cp n+1 clusters contacted to gold electrodes is relatively small even for strong cluster-electrode coupling. However, a nearly 100% spin polarization of the transmitted electrons can be achieved for the Fe n Cp n+1 (n>2) clusters. In contrast, the Fe n Cp n+1 (n>2) clusters attached to platinum electrodes through Pt adatoms not only can act as nearly perfect spin filters but also show a much larger transmission around the Fermi level, demonstrating their promising applications in future molecular spintronics.

  5. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  6. Adaptive FTC based on Control Allocation and Fault Accommodation for Satellite Reaction Wheels

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2016-01-01

    This paper proposes an active fault tolerant control scheme to cope with faults or failures affecting the flywheel spin rate sensors or satellite reaction wheel motors. The active fault tolerant control system consists of a fault detection and diagnosis module along with a control allocation...... estimation filters, which do not need a priori information about the internal model of the signal to be estimated. The adaptive control allocation and sensor fault accommodation can handle both temporal faults and failures. Simulation results illustrate the convincing fault correction and attitude control...

  7. Calibration of the Breit-Rabi Polarimeter for the PAX Spin-Filtering Experiment at COSY/Jülich and AD/CERN

    CERN Document Server

    Barschel, Colin

    2010-01-01

    The PAX(PolarizedAntiproton eXperiment) experiment is proposed to polarize a stored antiproton beam for use at the planned High Energy Storage Ring (HESR) of the FAIR facility at GSI (Darmstadt, Germany). The polarization build-up will be achieved by spin-filtering, i.e., by a repetitive passage of the antiproton beam through a polarized atomic hydrogen or deuterium gas target. The experimental setup requires a Polarized Internal gas Target (PIT) surrounded with silicon detectors. The PIT includes an Atomic Beam Source (ABS), the target cell and a Breit-Rabi Polarimeter (BRP). The first phase of the Spin-Filtering Studies for PAX covers the commissioning of the PIT components and themeasurement of an absolute calibration standard for the BRP at the COSY ring in Jülich. The spin-filtering with protons aim at confirming the results of the FILTEX experiment and determine the pp hadronic spin dependent cross sections at 50MeV.The second phase will be realized in the Antiproton Decelerator ring (AD) at CERN to po...

  8. Mapping protein–protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Changmiao; Hou, Guangjin, E-mail: hou@udel.edu; Lu, Xingyu; Polenova, Tatyana, E-mail: tpolenov@udel.edu [University of Delaware, Department of Chemistry and Biochemistry (United States)

    2017-02-15

    REDOR-based experiments with simultaneous {sup 1}H–{sup 13}C and {sup 1}H−{sup 15}N dipolar dephasing are explored for investigating intermolecular protein–protein interfaces in complexes formed by a U–{sup 13}C,{sup 15}N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U–{sup 13}C,{sup 15}N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by {sup 1}H–{sup 13}C or {sup 1}H–{sup 15}N cross polarization, permitting to establish the residues of the U–{sup 13}C,{sup 15}N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into {sup 13}C–{sup 13}C correlation experiments. We established the validity of this approach on U–{sup 13}C,{sup 15}N-histidine and on a structurally characterized complex of dynactin’s U–{sup 13}C,{sup 15}N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.

  9. Ligand-based transport resonances of single-molecule magnet spin filters: Suppression of the Coulomb blockade and determination of the orientation of the magnetic easy axis

    OpenAIRE

    Renani, Fatemeh Rostamzadeh; Kirczenow, George

    2011-01-01

    We investigate single molecule magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport ...

  10. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  11. Optimization of the polarized Klein tunneling currents in a sub-lattice: pseudo-spin filters and latticetronics in graphene ribbons.

    Science.gov (United States)

    López, Luis I A; Yaro, Simeón Moisés; Champi, A; Ujevic, Sebastian; Mendoza, Michel

    2014-02-12

    We found that with an increase of the potential barrier applied to metallic graphene ribbons, the Klein tunneling current decreases until it is totally destroyed and the pseudo-spin polarization increases until it reaches its maximum value when the current is zero. This inverse relation disfavors the generation of polarized currents in a sub-lattice. In this work we discuss the pseudo-spin control (polarization and inversion) of the Klein tunneling currents, as well as the optimization of these polarized currents in a sub-lattice, using potential barriers in metallic graphene ribbons. Using density of states maps, conductance results, and pseudo-spin polarization information (all of them as a function of the energy V and width of the barrier L), we found (V, L) intervals in which the polarized currents in a given sub-lattice are maximized. We also built parallel and series configurations with these barriers in order to further optimize the polarized currents. A systematic study of these maps and barrier configurations shows that the parallel configurations are good candidates for optimization of the polarized tunneling currents through the sub-lattice. Furthermore, we discuss the possibility of using an electrostatic potential as (i) a pseudo-spin filter or (ii) a pseudo-spin inversion manipulator, i.e. a possible latticetronic of electronic currents through metallic graphene ribbons. The results of this work can be extended to graphene nanostructures.

  12. Three-Wheel Brush-Wheel Sampler

    Science.gov (United States)

    Duckworth, Geoffrey A.; Liu, Jun; Brown, Mark G.

    2010-01-01

    A new sampler is similar to a common snow blower, but is robust and effective in sample collection. The brush wheels are arranged in a triangle shape, each driven by a brushless DC motor and planetary gearhead embedded in the wheel shaft. Its speed can be varied from 800 - 2,000 rpm, depending on the surface regolith resistance. The sample-collecting flow path, and internal features, are designed based on flow dynamics, and the sample-collecting rates have consistently exceeded the requirement under various conditions that span the range of expected surface properties. The brush-wheel sampler (BWS) is designed so that the flow channel is the main body of the apparatus, and links the brush-wheel assembly to the sample canister. The combination of the three brush wheels, the sample flow path, and the canister location make sample collection, storage, and transfer an easier task.

  13. Brillouin zone spin filtering mechanism of enhanced tunneling magnetoresistance and correlation effects in a Co(0001 )/h -BN/Co(0001 ) magnetic tunnel junction

    Science.gov (United States)

    Faleev, Sergey V.; Parkin, Stuart S. P.; Mryasov, Oleg N.

    2015-12-01

    The Brillouin zone spin filtering mechanism of enhanced tunneling magnetoresistance (TMR) is described for magnetic tunnel junctions (MTJs) and studied for an example of the MTJ with hcp Co electrodes and hexagonal BN (h -BN) spacer. Our calculations based on the local density approximation of density-functional theory (LDA-DFT) for Co(0001 )/h -BN/Co(0001 ) MTJ predict high TMR in this device due to Brillouin zone filtering mechanism. Owning to the specific complex band structure of the h -BN the spin-dependent tunneling conductance of the system is ultrasensitive to small variations of the Fermi energy position inside the BN band gap. Doping of the BN and, consequentially, changing the Fermi energy position could lead to variation of the TMR by several orders of magnitude. We show also that taking into account correlation effects on beyond DFT level is required to accurately describe position of the Fermi level and thus transport properties of the system. Our study suggests that new MTJ based on hcp Co-Pt or Co-Pd disordered alloy electrodes and p -doped hexagonal BN spacer is a promising candidate for the spin-transfer torque magnetoresistive random-access memory.

  14. Ligand-based transport resonances of single-molecule-magnet spin filters: Suppression of Coulomb blockade and determination of easy-axis orientation

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2011-11-01

    We investigate single-molecule-magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate-controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport regimes, and that if such switching is observed, then the magnetic easy axis of the SMM is parallel to the direction of the current through the SMM.

  15. Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering

    Science.gov (United States)

    Nesmelova, Irina V.; Idiyatullin, Djaudat; Mayo, Kevin H.

    2004-01-01

    Here we report a modified pulsed gradient spin-echo (PGSTE) pulse sequence to measure diffusion coefficients. This approach incorporates WATERGATE combined with isotopic filtering into a standard PGSTE experiment. Doing this eliminates much of the disadvantages from the combination of diffusion encoding and heteronuclear selection intervals and allows for facile modification of the diffusion pulse sequence with flexibility of the time period between RF pulses. The new diffusion pulse sequence is demonstrated using an 15N-labeled peptide and an 15N-labeled protein in a mixture with a protein of similar size.

  16. Slow Progress in Dune (Right Rear Wheel)

    Science.gov (United States)

    2005-01-01

    The right rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The wheel is largely hidden by a cable bundle. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  17. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  18. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  19. Reimagining the Color Wheel

    Science.gov (United States)

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  20. Reinventing the Wheel

    Science.gov (United States)

    Kim, Mihyeon; Bland, Lori C.; Chandler, Kimberley

    2009-01-01

    "The Wheel of Scientific Investigation and Reasoning" (Kramer 1987; Paul and Binker 1992) is a graphic representation of the scientific investigative process. The scientific process is depicted in a wheel rather than in a list because "the process of scientific inquiry can begin from any stage, and that stage may be revisited as often as the…

  1. Controlling T2 blurring in 3D RARE arterial spin labeling acquisition through optimal combination of variable flip angles and k-space filtering.

    Science.gov (United States)

    Zhao, Li; Chang, Ching-Di; Alsop, David C

    2018-02-09

    To improve the SNR efficiency and reduce the T 2 blurring of 3D rapid acquisition with relaxation enhancement stack-of-spiral arterial spin labeling imaging by using variable refocusing flip angles and k-space filtering. An algorithm for determining the optimal combination of variable flip angles and filtering correction is proposed. The flip angles are designed using extended phase graph physical simulations in an analytical and global optimization framework, with an optional constraint on deposited power. Optimal designs for correcting to Hann and Fermi window functions were compared with conventional constant amplitude or variable flip angle only designs on 6 volunteers. With the Fermi window correction, the proposed optimal designs provided 39.8 and 27.3% higher SNR (P variable flip angle designs. Even when power deposition was limited to 50% of the constant amplitude design, the proposed method outperformed the SNR (P variable flip angles can be derived as the output of an optimization problem. The combined design of variable flip angle and k-space filtering provided superior SNR to designs primarily emphasizing either approach singly. © 2018 International Society for Magnetic Resonance in Medicine.

  2. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  3. Wheeled hopping robot

    Science.gov (United States)

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  4. Slow Progress in Dune (Left Front Wheel)

    Science.gov (United States)

    2005-01-01

    The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  5. Slow Progress in Dune (Left Rear Wheel)

    Science.gov (United States)

    2005-01-01

    The left rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  6. Slow Progress in Dune (Right Front Wheel)

    Science.gov (United States)

    2005-01-01

    The right front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  7. Military wheeled vehicles

    CERN Document Server

    Hansen, Grace

    2016-01-01

    Wheeled vehicles are used in militaries around the world every single day. Readers will learn that wheeled vehicles in the military are not just for getting from place-to-place, but can also act as necessary protection for soldiers travelling through dangerous areas. Big full-bleed photographs, new glossary terms, and a close up look at a vehicle will keep readers wanting more! Aligned to Common Core Standards and correlated to state standards. Abdo Kids Jumbo is an imprint of Abdo Kids, a division of ABDO.

  8. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    Engine oil and filter change • Transmission fluid and filter change • Front and rear axle/differential fluid change • Air and fuel filter change...Prior to commencing with testing the following preparations were made to the vehicles. 1. All wheels were aligned. 2. The engine air filters and...fuel filters were replaced. 3. The engine , transmission, and transfer case fluids were changed. 4. A separate weigh tank was connected to each

  9. Evolution of Multidirectional Wheels Researches

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2006-10-01

    Full Text Available The problem of the insufficient space for the internal transport in industrial halls have generated new constructive solutions of wheels, able to facilitate the movement of vehicle in any direction without a rotation of chassis. The main types of multidirectional wheels are presented in this paper (Grabowiecki patent, Mecanum wheel, Kilough platform, Blumrich wheel. In the final part of the paper a graphical analyses of the economized space by omnidirectional vehicles is presented. The paper represents a bibliographical study.

  10. 49 CFR 570.63 - Wheel assemblies.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.63 Section 570.63... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...) Inspection procedure. Examine visually for the conditions indicated. (b) Cast wheels. Cast wheels shall not...

  11. Broken rims in railroad wheels.

    Science.gov (United States)

    2014-12-01

    Broken wheels are one of the most common types of equipment-caused train accidents. The failure of rail car wheel rims, which : are usually the result of shattered rims or vertical split rims (VSR), are the leading cause of wheel-related accidents, a...

  12. Wheel/rail interface optimisation

    NARCIS (Netherlands)

    Shevtsov, I.Y.

    2008-01-01

    In this thesis, wheel/rail interface optimisation, and particularly the problems of wheel and rail profile design are considered. The research task pursued by this thesis engenders investigation of a range of problems. First, geometric properties of contact between wheel and rail are investigated.

  13. Wheel Diameter and Speedometer Reading

    Science.gov (United States)

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  14. Atomic Ferris wheel beams

    OpenAIRE

    Lembessis, Vasileios E.

    2017-01-01

    We study the generation of atom vortex beams in the case where an atomic wave-packet, moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  15. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  16. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  17. Influence on component behaviour by changing materials for a cast turbine-wheel

    Science.gov (United States)

    Domes, Bernd

    The present paper shows the results of 20 cyclic cold spin tests with an integral cast turbine wheel, stage 1 of the auxiliary power unit T312. Three different types of wheels were tested: an old type wheel of conventionally cast material MAR-M-246 with a thick grain matrix and low ductility, a new shaped wheel resulting in a lower stress level having the more ductile and fine grain material MAR-M-247 LC FK HIP, and an old type wheel with the same material MAR-M-247 LC FK HIP. All wheels of the first and second version broke in a circumferential groove near the balancing ring where the highest principal stresses are located. The third wheel type, however, always cracked at the central bore where for both wheel types the maximum equivalent stress (von Mises) occurs. The reason is that the damage mechanism of the ductile material rather follows the von Mises stress criterion. But this was not the fact for the new wheel shape, because of a higher relation between the maximum principal stress and the highest von Mises stress compared with the old wheel shape.

  18. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  19. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    Science.gov (United States)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  20. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  1. Wheels With Sense

    Science.gov (United States)

    Cambridge, Dwayne; Clauss, Douglas; Hewson, Fraser; Brown, Robert; Hisrich, Robert; Taylor, Cyrus

    2002-10-01

    We describe a student intrapreneurial project in the Physics Entrepreneurship Program at Case Western Reserve University. At the request of a major fortune 100 company, a study has been made of the technical and marketing issues for a new business of selling sensors on commercial vehicle wheels for monitoring pressure, temperature, rotations, and vibrations, as well as providing identification. The nature of the physics involved in the choice of the appropriate device such as capacitive or piezoresistive sensors is discussed, along with the possibility of MEMS (micro-electro-mechanical systems) technology and RFID (radiofrequency identification) readout on wheels. Five options (status quo, in-house development, external business acquisition, a large business national partnership, and a small-business Cleveland consortium partnership) were studied from both technological and business perspectives to commercialize the technology. The decision making process for making a choice is explained.

  2. Reaction wheel with HTS bearings for mini-satellite attitude control

    Science.gov (United States)

    Zhang, Yong; Postrekhin, Yevgeniy; Bui Ma, Ki; Chu, Wei-Kan

    2002-05-01

    We have developed a small reaction wheel, designed to be lightweight, compact and energy efficient. The main innovation is the use of the HTS magnet's bearings that promise low friction so that high momentum storage can be achieved with high spin speed. The bearings consist of seeded growth superconducting discs arranged in rings located above and below the rotating levitated wheel containing ring-magnets embedded at the top and bottom. The reaction wheel is in the shape of a hollow stainless steel cylinder. A brushless dc motor is installed inside the hollow cylinder to provide the necessary torque to the reaction wheel. The maximum design spin speed is 15 000 RPM to store 3.5 J s-1 of angular momentum. Spin-down test of the reaction wheel was performed in air. We have also measured the input power required to sustain rotational speed of the reaction wheel in air. Results from both of these measurements, when extrapolated to full speed in vacuum, indicate that power consumption, even accounting for the needs of the cooling system, is significantly smaller than that for state of the art commercial reaction wheels using mechanical ball bearings.

  3. Hopping Robot with Wheels

    Science.gov (United States)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  4. 49 CFR 570.10 - Wheel assemblies.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall... bead through one full wheel revolution and note runout in excess of one-eighth of an inch. (c) Mounting...

  5. 49 CFR 230.114 - Wheel centers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must extend...

  6. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  7. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  8. Robotic Two-Wheeled Vehicle

    Science.gov (United States)

    Nesnas, Issa A. D. (Inventor); Matthews, Jaret B. (Inventor); Edlund, Jeffrey E. (Inventor); Burdick, Joel (Inventor); Abad-Manterola, Pablo (Inventor)

    2014-01-01

    A robotic two-wheeled vehicle comprising a connection body interposed between the two wheels are described. A drum can be coaxially located in a central region of the connection body and can support a hollow arm projecting radially from the drum. A tether can be inserted in the arm and connected to a second drum. Instruments and sensors can be accommodated in a case housed inside each wheel.

  9. 14 CFR 27.731 - Wheels.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.731 Wheels. (a) Each landing gear wheel must be approved. (b) The maximum static load rating of each wheel may not be less than the...

  10. 14 CFR 29.731 - Wheels.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.731 Wheels. (a) Each landing gear wheel must be approved. (b) The maximum static load rating of each wheel may not be less than...

  11. Finite element analysis of rail-wheel interaction

    International Nuclear Information System (INIS)

    Rahman, F.; Kharlamov, Y.A.; Islam, S.; Khan, A.A.

    2006-01-01

    Damage mechanisms such as surface cracks, plastic deformation and wear can significantly reduce the service life of railway track and rolling stock. They also have a negative impact on the rolling noise as well as: on the riding comfort. A proper understanding of these mechanisms requires a detailed knowledge of physical interaction between wheel and rail. Furthermore, demands for higher train speeds and increased axle loads implies that the consequences of larger contact. forces between wheel and rail must be thoroughly investigated. Two methods have traditionally been used to investigate the rail-wheel contact, that is the Hertz analytical method and simplified numerical method based on the boundary element (BE) method. These methods rely on a half-space assumption and a linear material model. This paper presents that to overcome these limitations, a tool for FE-based quasistatic wheel-rail contact simulations has been developed. The tool is a library of ANSYS macro routines for configuring, meshing and loading of a parametric wheel-rail model. The meshing is based on measured wheel and rail profiles. The wheel and rail materials in the contact region are treated as elastic-plastic with kinematic hardening. By controlling the values of the configuration parameters, representations of various driving cases can be generated. The quasi-static loads are obtained from train motion. Interaction phenomena such as rolling, spinning and sidling can be included. The modeling tool and a methodology are described in the presented paper. Significant differences in the calculated state between the FE solution and the traditional approaches can be observed. These differences are most significant in situations with flange contact. (author)

  12. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  13. A brushless dc spin motor for momentum exchange altitude control

    Science.gov (United States)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  14. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  15. Estimation of wheel-rail contact conditions and adhesion using the multiple model approach

    Science.gov (United States)

    Hussain, I.; Mei, T. X.; Ritchings, R. T.

    2013-01-01

    This paper presents the development of a multiple model estimation approach for the identification of the adhesion limit to overcome the problem of the wheel slip/slide at the rail wheel-rail contact. The contact characteristics at the rail wheel-rail interface are both highly nonlinear and subject to changes due to exposure to external contaminations. The detection of adhesion and its changes is therefore scientifically challenging, but would provide a critical information in the control of trains to avoid undesirable wear of the wheels/track but also the safety compromise of rail operations. This study exploits the variations in the dynamic behaviour of the railway wheelset caused by the contact condition changes and applies a bank of Kalman filters designed at selected operation points for the adhesion estimation. A fuzzy logic system is then developed to identify the contact conditions by examining the residuals from the Kalman filters.

  16. Wheel running in the wild.

    Science.gov (United States)

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  17. Wheels lining up for ATLAS

    CERN Multimedia

    2003-01-01

    On 30 October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It is the second wheel for the Tilecal completely assembled this year.

  18. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  19. The big wheels of ATLAS

    CERN Multimedia

    2006-01-01

    The ATLAS cavern is filling up at an impressive rate. The installation of the first of the big wheels of the muon spectrometer, a thin gap chamber (TGC) wheel, was completed in September. The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons (see Bulletin No. 13/2006). The installation of the 688 muon chambers in the barrel is progressing well, with three-quarters of them already installed between the coils of the toroid magnet.

  20. 49 CFR 215.103 - Defective wheel.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective wheel. 215.103 Section 215.103... § 215.103 Defective wheel. A railroad may not place or continue in service a car, if— (a) A wheel flange... tread of the wheel; (b) The height of a wheel flange on the car, from the tread to the top of the flange...

  1. The wheel of retail gravitation?

    OpenAIRE

    S Brown

    1992-01-01

    Reilly's Law of Retail Gravitation ranks among the classics of marketing geography. In this paper an examination of the evolution of Reilly's law is made, the contemporaneous wheel of retailing theory being used as an organisational framework. In line with the wheel, the gravity model commenced as a simple conceptualisation of consumer spatial behaviour, became increasingly sophisticated through time, and thereby created conditions conducive to the reemergence of the basic interaction model. ...

  2. Design of two wheel self balancing car

    Science.gov (United States)

    He, Chun-hong; Ren, Bin

    2018-02-01

    This paper proposes a design scheme of the two-wheel self-balancing dolly, the integration of the gyroscope and accelerometer MPU6050 constitutes the car position detection device.System selects 32-bit MCU stmicroelectronics company as the control core, completed the processing of sensor signals, the realization of the filtering algorithm, motion control and human-computer interaction. Produced and debugging in the whole system is completed, the car can realize the independent balance under the condition of no intervention. The introduction of a suitable amount of interference, the car can adjust quickly to recover and steady state. Through remote control car bluetooth module complete forward, backward, turn left and other basic action..

  3. Rover's Wheel Churns Up Bright Martian Soil

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  4. Scaling strategy of a new experimental rig for wheel-rail contact

    NARCIS (Netherlands)

    Naeimi, M.; Li, Z.; Dollevoet, R.P.B.J.

    2014-01-01

    A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel

  5. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  6. The Read Out Controller for the ATLAS New Small Wheel

    CERN Document Server

    AUTHOR|(SzGeCERN)781403; The ATLAS collaboration; Popa, Stefan; Tulbure, Traian Tiberiu; Ivanovici, Mihail; Martoiu, Victor Sorin; Levinson, Lorne; Vermeulen, Jos

    2016-01-01

    In the upgrade process of the ATLAS detector, the innermost stations of the endcaps (Small Wheels, SW) will be replaced. The New Small Wheel (NSW) will have two chamber technologies, one for the Level-1 trigger function (small-strip Thin Gap Chambers, sTGC) and one primarily dedicated to precision tracking (Micromegas detectors, MM). Custom front-end Application Specific Integrated Circuits (ASICs) will be used to read and filter information from both the sTGC and MM detectors. In the context of the New Small Wheel data path, we designed the Read Out Controller (ROC) ASIC for handling, preprocessing and formatting the data generated by the NSW VMM upstream chips. The ROC will concentrate the data streams from 8 VMMs, filter data based on the BCID and transmit the data to FELIX via the L1DDC. ROC is composed of 8 VMM Capture modules, a cross-bar and 4 SubROC modules. The output data is sent via 4 high-speed e-links.

  7. The Read Out Controller for the ATLAS New Small Wheel

    Science.gov (United States)

    Coliban, R.-M.; Popa, S.; Tulbure, T.; Nicula, D.; Ivanovici, M.; Martoiu, S.; Levinson, L.; Vermeulen, J.

    2016-02-01

    In the upgrade process of the ATLAS detector, the innermost stations of the endcaps (Small Wheels) will be replaced. The New Small Wheel will have two chamber technologies, small-strip Thin Gap Chambers and Micromegas, each providing triggering and precision track measurement. Custom front-end Application Specific Integrated Circuits will be used to read and filter information from both types of detectors. In the context of the New Small Wheel data path, the Read Out Controller ASIC is used for handling, preprocessing and formatting the data generated by the VMM upstream chips. The Read Out Controller will concentrate the data streams from 8 VMMs, filter data based on the ATLAS Level-1 trigger which identifies bunch crossings of interest and transmit the data to FELIX via the L1DDC. The Read Out Controller is composed of 8 VMM Capture modules, a cross-bar and 4 sROC modules. The output data is sent via up to 4 serial links with a configurable speed of 80, 160 or 320 Mbps per link.

  8. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  9. Analysis of power wheeling services

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Jewell, W.; Johnson, R.; Maddigan, R.

    1986-11-01

    Purpose of this study is to examine existing wheeling arrangements to determine the terms of the agreements, to analyze the terms relative to regulatory goals, and finally, to suggest ways in which the arrangements can be modified to lead to outcomes more closely in line with the goals. The regulatory goals that are considered are: Does the arrangement meet the revenue requirement of the wheeling firm. Is efficient use promoted. Are the costs fairly apportioned. And, is the arrangement practical and feasible to implement.

  10. Optical wheel-rotation sensor

    Science.gov (United States)

    Veeser, Lynn R.; Rodriguez, Patrick A.; Forman, Peter; Deeter, Merritt N.

    1994-09-01

    We describe a fiber-optic rotation sensor being developed for anti-lock braking systems. The basis of the sensor is the magneto-optic detection of the magnetic fields generated by a wheel of alternating magnetized magnets fixed to a wheel of the automobile. Highly sensitive iron garnet crystals serve as the magneto-optic sensing elements. For films with perpendicularly- magnetized domains, the domain structure produces diffraction which is magnetic-field dependent. Exploitation of this effect permits the construction of magneto-optic magnetic field sensors requiring no polarization elements or lenses.

  11. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  12. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  13. 16 CFR 1507.8 - Wheel devices.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Wheel devices. 1507.8 Section 1507.8... FIREWORKS DEVICES § 1507.8 Wheel devices. Drivers in fireworks devices commonly known as “wheels” shall be... operation. Wheel devices intended to operate in a fixed location shall be designed in such a manner that the...

  14. 49 CFR 229.73 - Wheel sets.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel sets. 229.73 Section 229.73 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Suspension System § 229.73 Wheel sets. (a...) when applied or turned. (b) The maximum variation in the diameter between any two wheel sets in a three...

  15. Friction in wheel - rail contacts

    NARCIS (Netherlands)

    Popovici, R.I.

    2010-01-01

    In the autumn, railroad traffic is often interrupted due to the occurrence of slippery tracks. The Dutch main operator (NS) and the infrastructure manager (ProRail) struggle with repeated delays. The layer between wheel and rail causing this phenomenon has not yet been identified, but can be

  16. The diffuse ensemble filter

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-07-01

    Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious

  17. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  18. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  19. Wheel arch aerodynamics of a modern road vehicle

    International Nuclear Information System (INIS)

    Apsley, S.; Aroussi, A.

    2003-01-01

    A geometrically faithful model of the Aston Martin V12 Vanquish was formed in 3D CAD and used to perform an extensive CFD study into the airflow in and around the wheel arch of the vehicle. Parameters such as spin ratio, ground clearance, vertical and horizontal insertion into the wheel arch and the yaw angles experienced during cornering, were all under investigation. The additional aim of the research was to validate or refute the use of CFD as a tool in this complex area of fluid flow. This research serves to highlight a number of problems and potential solutions in the use of CFD. Meshing problems can be eliminated with increased computational power and suggestions have been made to improve the modeling of rotating boundaries that include radial features such as wheel spokes. Much of the CFD data ties well with previously conducted experimental work, if not numerically then in trend. Without additional physical validation however, it is difficult to ascertain the overall accuracy and usefulness of the remaining results, which have not yet been conducted in physical reality. Despite its limitations, the use of CFD permitted an extensive analysis in a comparatively short length of time and served to highlight potential areas for increased scrutiny. As an example, results from the final yaw angle case drew attention to a potential concern for aerodynamic destabilisation of the vehicle during cornering, generating lift on the front arch of the car that is already lifted due to cornering forces and body roll. (author)

  20. Measurement of wheel rim wear on railway wheels using radioisotopes

    International Nuclear Information System (INIS)

    Kail, E.

    1979-01-01

    A radioisotopic measuring method developed for studying the wear process of wheel rims of railway vehicles is described. The wear process may be monitored by the measurement of activity of a thin galvanic layer deposited onto the rim and labelled by iron 59. The high sensitivity of the method allows the determination of the wear rate distribution even within a few days. The results of measurements on three different rim profiles are analysed. (R.J.)

  1. On fan-wheel and tree-wheel Ramsey numbers

    NARCIS (Netherlands)

    Zhang, Yanbo; Zhang, Yanbo; Broersma, Haitze J.; Chen, Yaojun

    2016-01-01

    For graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that, for any graph G of order N, G contains G1 as a subgraph or the complement of G contains G2 as a subgraph. Let Tn denote a tree of order n, Wn a wheel of order n+1 and Fn a fan of order 2n+1. We establish Ramsey

  2. The Read Out Controller for the ATLAS New Small Wheel

    CERN Document Server

    Coliban, Radu Mihai; The ATLAS collaboration; Tulbure, Traian Tiberiu; Martoiu, Victor Sorin; Levinson, Lorne; Vermeulen, Jos

    2016-01-01

    In the context of the New Small Wheel data path, we designed the Read Out Controller (ROC) ASIC for handling, preprocessing and formatting the data generated by the NSW VMM upstream chips. The ROC will concentrate the data streams from 8VMMs, filter data based on the BCID and transmit the data to FELIX via the L1DDC. ROC is composed of 8 VMM Capture modules, a cross-bar and 4 SubROC modules. The output data is sent via 4 high-speed e-links.

  3. Rapid 4-Stokes Parameter Determination Via Stokes Filter Wheel

    National Research Council Canada - National Science Library

    Gerhart, Grant R; Matchko, Roy M

    2007-01-01

    A system for determining polarization profiles of points in a scene from video frames using Stokes parameters includes a scene having a region that emits scene light rays that correspond to the points...

  4. Theory of electrically controlled resonant tunneling spin devices

    Science.gov (United States)

    Ting, David Z. -Y.; Cartoixa, Xavier

    2004-01-01

    We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.

  5. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  6. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  7. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)

    2008-01-01

    and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  8. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.

    Science.gov (United States)

    Ba, Yong; Wongskhaluang, Jeff; Li, Jiabo

    2003-01-15

    Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.

  9. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    Science.gov (United States)

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  10. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  11. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  12. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family.

    Science.gov (United States)

    Zheng, Xiu-Ying; Jiang, You-Hong; Zhuang, Gui-Lin; Liu, Da-Peng; Liao, Hong-Gang; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun

    2017-12-20

    Nanoscale inorganic wheel-shaped structures are one of the most striking types of molecular aggregations. Here, we report the synthesis of a gigantic lanthanide wheel cluster containing 140 Gd 3+ atoms. As the largest lanthanide cluster reported thus far, {Gd 140 } features an attractive wheel-like structure with 10-fold symmetry. The nanoscopic molecular wheel possesses the largest diameter of 6.0 nm and displays high stability in solution, which allows direct visualization by scanning transmission electron microscopy. The newly discovered lanthanide {Gd 140 } cluster represents a new member of the molecular wheel family.

  13. REINVENTING THE WHEEL: Comparison of Two Wheel Cage Styles for Assessing Mouse Voluntary Running Activity.

    Science.gov (United States)

    Seward, Tanya; Harfmann, Brianna D; Esser, Karyn A; Schroder, Elizabeth A

    2017-12-21

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different labs. The purpose of this study was to determine whether the distance run or average speed data differs depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to higher greater running distance/day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus, investigators need to report wheel cage type/ wheel resistance and use caution when interpreting distance/speed run across studies.

  14. Riding the Ferris Wheel: A Sinusoidal Model

    Science.gov (United States)

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  15. Dynamic and Acoustic Characterisation of Automotive Wheels

    Directory of Open Access Journals (Sweden)

    Francesca Curà

    2004-01-01

    Full Text Available The subject of this paper is the dynamic and acoustic characterisation of an automotive wheel. In particular, an experimental research activity previously performed by the authors about the dynamic behaviour of automotive wheels has been extended to the acoustic field.

  16. Meals on Wheels Association of America

    Science.gov (United States)

    ... Meals About Meals on Wheels Get Started The Issue The Problem & Our Solution Meals on Wheels Health Facts & Resources Senior Facts Map State Fact Sheets Research More Than a Meal Pilot Research Study Medicare Claims Analyses Policy Myths Hunger in Older Adults Take Action Volunteer Advocate #SAVELUNCH ...

  17. 21 CFR 880.6910 - Wheeled stretcher.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheeled stretcher. 880.6910 Section 880.6910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... platform mounted on a wheeled frame that is designed to transport patients in a horizontal position. The...

  18. Automobile wheel clearance estimation using magnetism

    Science.gov (United States)

    Le Goff, A.; Lacoume, J.-L.; Blanpain, R.; Dauvé, S.; Serviere, C.

    2012-01-01

    With development and miniaturization of magnetic sensors for several years, it is now possible to imagine new applications using magnetic measures for monitoring and diagnostics. In this article this new way of research and development is presented with a concrete example concerning monitoring of wheels in an automobile. Our approach consists in using the low magnetic field created by the metallic elements of the wheel in order to localize them with low-cost high-sensitivity miniature magnetic sensors. The measures are made via a sensor network set up on a vehicle around the wheel. Then we use a physical model of the wheel in order to interpret the signals we get from the sensors. This method shows the interest of the magnetic measurement for monitoring in automobile. In this paper we present the magnetic signal created by a wheel, the mechanical model of the wheel and we present how we use them for an application: the real-time estimation of the distance between wheels and chassis (wheel clearance).

  19. 14 CFR 25.731 - Wheels.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wheels. 25.731 Section 25.731 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Landing Gear § 25.731 Wheels. (a) Each main...

  20. Crack detection in a wheel end spindle using wave propagation via modal impacts and piezo actuation

    Science.gov (United States)

    Ackers, Spencer; Evans, Ronald; Johnson, Timothy; Kess, Harold; White, Jonathan; Adams, Douglas E.; Brown, Pam

    2006-03-01

    This research demonstrates two methodologies for detecting cracks in a metal spindle housed deep within a vehicle wheel end assembly. First, modal impacts are imposed on the hub of the wheel in the longitudinal direction to produce broadband elastic wave excitation spectra out to 7000 Hz. The response data on the flange is collected using 3000 Hz bandwidth accelerometers. It is shown using frequency response analysis that the crack produces a filter, which amplifies the elastic response of the surrounding components of the wheel assembly. Experiments on wheel assemblies mounted on the vehicle with the vehicle lifted off the ground are performed to demonstrate that the modal impact method can be used to nondestructively evaluate cracks of varying depths despite sources of variability such as the half shaft angular position relative to the non-rotating spindle. Second, an automatic piezo-stack actuator is utilized to excite the wheel hub with a swept sine signal extending from 20 kHz. Accelerometers are then utilized to measure the response on the flange. It is demonstrated using frequency response analysis that the crack filters waves traveling from the hub to the flange. A simple finite element model is used to interpret the experimental results. Challenges discussed include variability from assembly to assembly, the variability in each assembly, and the high amount of damping present in each assembly due to the transmission gearing, lubricant, and other components in the wheel end. A two-channel measurement system with a graphical user interface for detecting cracks was also developed and a procedure was created to ensure that operators properly perform the test.

  1. Development of the FASTER Wheeled Bevameter

    Science.gov (United States)

    Richter, L.; Eder, V.; Hoheneder, W.; Imhof, B.; Lewinger, W.; Ransom, S.; Saaj, C.; Weclewski, P.; Waclavicek, R.,

    2014-04-01

    This paper describes the development of a Wheeled Bevameter (WB) within the FASTER project (Forward Acquisition of Soil and Terrain Data for Exploration Rovers), funded by the European Union's FP7 programme. In FASTER, novel and innovative concepts for in situ forward sensing of soil properties and terrain conditions in the planned path of a planetary rover are developed. Terrain strength measurements for assessment of the mobility of crosscountry vehicles have decades of heritage on Earth, but typically trafficability of terrains is only gauged by human operators ahead of vehicle operations rather than in-line by probes deployed from the vehicle itself, as is intended for FASTER. For FASTER, a Wheeled Bevameter (WB) has been selected as the terrain sensing instrument for the vehicle. Wheeled Bevameters are suitable for terrain measurements while driving but traditionally have mostly been employed on terrestrial vehicles to evaluate particular wheel designs. The WB as conceived in FASTER uses a dedicated, passive-rolling test wheel (‚test wheel') placed on the terrain as the loading device to enable to determine bearing strength, compressive strength and shear strength of the terrain immediately ahead of the vehicle, as well as rover-terrain interaction parameters used in semi-empirical vehicle-terrain traction models. The WB includes a placement mechanism for the test wheel. The test wheel would remain lowered onto the ground during nominal rover motion, including when climbing and descending slopes. During normal operations, the placement mechanism assumes the function of a passive suspension of the wheel, allowing it to follow the terrain contour. Quantities measured with the WB are: test wheel sinkage (through a laser sensor), test wheel vertical load, test wheel horizontal reaction force, and test wheel rotation rate. Measurements are performed while the rover is in motion. Measured test wheel rotation rate (with appropriate corrections for slight skid) can

  2. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  3. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  4. Influence of polygonal wear of railway wheels on the wheel set axle stress

    Science.gov (United States)

    Wu, Xingwen; Chi, Maoru; Wu, Pingbo

    2015-11-01

    The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen-Hedrick-Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.

  5. Wien filter

    NARCIS (Netherlands)

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis

  6. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  7. FILTER TREATMENT

    Science.gov (United States)

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  8. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  9. Filter unit

    International Nuclear Information System (INIS)

    Shiba, Kazuo; Nagao, Koji; Akiyama, Toshio; Tanaka, Fumikazu; Osumi, Akira; Hirao, Yasuhiro.

    1997-01-01

    The filter unit is used by attaching to a dustproof mask, and used in a radiation controlled area such as in a nuclear power plant. The filter unit comprises sheet-like front and back filtering members disposed vertically in parallel, a spacer for keeping the filtering members to a predetermined distance and front and back covering members for covering the two filtering members respectively. An electrostatic filter prepared by applying resin-fabrication to a base sheet comprising 100% by weight of organic fibers as fiber components, for example, wool felt, synthetic fiber non-woven fabric, wool and synthetic fiber blend non-woven fabric and then electrifying the resin is used for the filtering members. Then, residue of ashes can be eliminated substantially or completely after burning them. (I.N.)

  10. Impact and modal analysis for different alloy wheel compositions

    Science.gov (United States)

    Suman, Shwetabh; Abhimanyu Abrol, J.; Ravi, K.

    2017-11-01

    Wheels are an important component in the vehicle. The strength of the Alloy wheel rim is an important property of the Alloy wheel, which plays an important part in determining the overall performance of the vehicle, the structural integrity of the rim and the life of the Alloy wheel rim. With the advent of new Alloy wheel materials, new options are available to replace the conventional Aluminium Alloy wheels with new ones. The new Alloy wheel rim material and design need to be tested virtually for optimizing the appropriate design and material and the optimised wheel in virtual mode can be tested experimentally for the performance in real-time conditions before they can be used in the vehicles. The work in this project includes doing the impact and modal analysis for different alloy wheel compositions. From the results obtained, the optimum alloy wheel is suggested, which can be considered with further experimental validation.

  11. The influence of wheel/rail contact conditions on the microstructure and hardness of railway wheels.

    Science.gov (United States)

    Molyneux-Berry, Paul; Davis, Claire; Bevan, Adam

    2014-01-01

    The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an "in-service" wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  12. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Science.gov (United States)

    Davis, Claire

    2014-01-01

    The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets. PMID:24526883

  13. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Directory of Open Access Journals (Sweden)

    Paul Molyneux-Berry

    2014-01-01

    Full Text Available The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing. The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  14. Experimental Setup for Diamond Grinding Using Electrochemical InProcess Controlled Dressing (ECD of Grinding Wheel

    Directory of Open Access Journals (Sweden)

    M. A. Shavva

    2014-01-01

    is no insulating layer formed. The oxides are washed out by electrolyte flow. The method provides a constant escape of abrasive grain. The grain escape reaches 100-120% of average diameter.Adaptation of ECD on conventional grinding machine is performed. For this, the copper electrode is mounted to the grinding wheel. The electrolyte circulates in the gap between the wheel and electrode. The control system for the normal and tangential forces of process is also used during the adaptation.The enterprise VNIIINSTRUMENT has designed a special experimental stand for diamond grinding. At this stand the ECD-dressing of diamond wheel with metal bond is implemented. This machine consists of a longitudinal support and a cross slide. Spindle of grinding wheel is set on the longitudinal support. A rotating speed of this spindle is about 50-3000 rev/min. A spindle of work piece is set on the cross slide. A rotating speed of this spindle is about 10-1000 rev/min.The copper electrode is mounted on the spindle of grinding wheel. An area of electrode surface is 1/3 of the wheel area. The gap between the grinding wheel and electrode is about 0.3 mm. The electrolyte is placed in the gap.The electrode is anode and the grinding wheel is cathode. Wheel and electrode are connected to the direct current source. When switching on the power source, the process of electrolysis begins. A bond of the wheel is oxidized and washed out. Waste of dressing is carried away with electrolyte.The electrolyte leaves the zone of cutting. Next, the liquid gets into a special trough. Thereafter, the electrolyte enters the filter unit to have three steps of purification. The purified liquid is supplied to the pump, and then again enters the cutting zone.ECD provides a large escape abrasive grain out of bond. It ensures that the cutting force is constant. The constant cutting force ensures the surface finish consistency, decreased surface roughness, and improved accuracy of work piece form.Due to ECD, space

  15. Electrostatic Spectrometer for Mars Rover Wheel

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a simple electrostatic spectrometer that can be mounted on the wheels of a Mars rover to continuously and unobtrusively determine the mineral composition and...

  16. UT Biomedical Informatics Lab (BMIL) Probability Wheel.

    Science.gov (United States)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B; Sun, Clement; Fan, Kaili; Reece, Gregory P; Kim, Min Soon; Markey, Mia K

    2016-01-01

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant," about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  17. Reaction Wheel with Embedded MEMS IMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheels are used to stabilize satellites and to slew their orientation from object to object with precision and accuracy by varying the rotational speed of...

  18. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  19. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  20. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B., Jr.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822. In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns…

  1. Wheeled and Tracked Vehicle Endurance Testing

    Science.gov (United States)

    2014-10-02

    Wheeled Heavy 30 50 10 10 Mine Resistant Ambush Protected (MRAP) / Route Clearance Vehicle (RCV) 10 40 30 20 Wheeled Truck-Tractor and...fall under this category. d. Mine Resistant Ambush Protected (MRAP) / Route Clearance Vehicle (RCV). Special purpose armored trucks used for...2 October 2014 11 Vehicles such as the Skid Steer Loader (SSL) would fall under the rubber tracked engineering vehicle category. o

  2. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  3. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  4. Fractional Control of An Active Four-wheel-steering Vehicle

    Science.gov (United States)

    Wang, Tianting; Tong, Jun; Chen, Ning; Tian, Jie

    2018-03-01

    A four-wheel-steering (4WS) vehicle model and reference model with a drop filter are constructed. The decoupling of 4WS vehicle model is carried out. And a fractional PIλDμ controller is introduced into the decoupling strategy to reduce the effects of the uncertainty of the vehicle parameters as well as the unmodelled dynamics on the system performance. Based on optimization techniques, the design of fractional controller are obtained to ensure the robustness of 4WS vehicle during the special range of frequencies through proper choice of the constraints. In order to compare with fractional robust controller, an optimal controller for the same vehicle is also designed. The simulations of the two control systems are carried out and it reveals that the decoupling and fractional robust controller is able to make vehicle model trace the reference model very well with better robustness.

  5. Modulation bandwidth of a spin laser

    Science.gov (United States)

    Banerjee, D.; Adari, R.; Murthy, M.; Suggisetti, P.; Ganguly, S.; Saha, D.

    2011-04-01

    We have studied small signal frequency response of a spin laser. We have shown that the response is characterized by two distinct resonant peaks corresponding to the two polarization modes of the spin laser. It is observed that the modulation bandwidth of a spin laser can be smaller or larger than that of a conventional laser depending upon the current bias and spin relaxation time constant. A small value for spin relaxation constant may not be detrimental for modulation bandwidth. This anomalous observation is explained by considering both the amplitude and phase response of the two polarization modes. A spin laser can act as a combination of low-pass and bandpass filters. The passband frequency range is tunable by external bias. We have also studied the evolution of resonant peaks and modulation bandwidth as a function of spin relaxation time constant.

  6. Wien filter

    OpenAIRE

    Mook, H.W.

    1999-01-01

    The invention relates to a Wien filter provided with electrodes for generating an electric field, and magnetic poles for generating a magnetic field, said electrodes and magnetic poles being positioned around and having a finite length along a filter axis, and being positioned around the filter axis such that electric and magnetic forces induced by the respective fields and exerted on an electrically charged particle moving substantially along the fileter axis at a certain velocity

  7. The Goal Wheel: Adapting Navajo Philosophy and the Medicine Wheel to Work with Adolescents

    Science.gov (United States)

    Garner, Holly; Bruce, Mary Alice; Stellern, John

    2011-01-01

    The purpose of this article is to describe a group counseling model that is based on the indigenous medicine wheel as well as Navajo philosophy by which to help troubled adolescents restore harmony and balance in their lives, through establishing goals and sequential steps to accomplish these goals. The authors call this model the Goal Wheel. A…

  8. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  9. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2016-05-01

    Full Text Available This study aims to design, and analyze a mobilerobot that can handle some of the obstacles, they are unevensurfaces, slopes, can also climb stairs. WMR in this study is Tristarwheel that is containing three wheels for each set. Onaverage surface only two wheels in contact with the surface, ifthere is an uneven surface or obstacle then the third wheel willrotate with the rotation center of the wheel in contact with theleading obstacle then only one wheel in contact with the surface.This study uses the C language program. Furthermore, theminimum thrust to be generated torque of the motor andtransmission is 9.56 kg. The results obtained by calculation andanalysis of DC motors used must have a torque greater than14.67 kg.cm. Minimum thrust to be generated motor torque andthe transmission is 9.56 kg. The experimental results give goodresults for robot to moving forward, backward, turn left, turnright and climbing the stairs

  10. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  11. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  12. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    Science.gov (United States)

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  13. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test.

    Science.gov (United States)

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-12-07

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results.

  14. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    Directory of Open Access Journals (Sweden)

    Xin Huo

    2016-12-01

    Full Text Available GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results.

  15. Estimation of the friction coefficient between wheel and rail surface using traction motor behaviour

    International Nuclear Information System (INIS)

    Zhao, Y; Liang, B; Iwnicki, S

    2012-01-01

    The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles thus monitoring this friction coefficient is important. Restricted by the difficulty in directly measuring the friction coefficient, the creep force or creepage, indirect methods using state observers are used more frequently. This paper presents an approach using a Kalman filter to estimate the creep force and creepage between the wheel and rail and then to identify the friction coefficient using the estimated creep force-creepage relationship. A mathematic model including an AC motor, wheel and roller is built to simulate the driving system. The parameters are based on a test rig at Manchester Metropolitan University. The Kalman filter is designed to estimate the friction coefficient based on the measurements of the simulation model. Series of residuals are calculated through the comparison between the estimated creep force and theoretical values of different friction coefficient. Root mean square values of the residuals are used in the friction coefficient identification.

  16. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  17. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  18. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  19. Stress Measurements in Railroad Wheels Via the Barkhausen Effect

    Science.gov (United States)

    1977-02-01

    The feasibility of utilizing the Barkhausen Effect in ferromagnetic steels as a nondestructive means for ascertaining residual stresses in railroad wheels was investigated. Railroad wheels are generally manufactured with compressive stress distributi...

  20. Reaction Wheel Disturbance Model Extraction Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  1. 29 CFR 1910.215 - Abrasive wheel machinery.

    Science.gov (United States)

    2010-07-01

    ... end, nut, and flange projections. The safety guard shall be mounted so as to maintain proper alignment... diameter of wheel fits in the depressed side of wheel to prevent interference in side grinding and serves...

  2. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  3. Tensegrital Wheel for Enhanced Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations introduces the "tensegrital wheel" an inventive concept for wheeled locomotion that exploits the geometric and mechanical attributes of a tensegrity...

  4. 14 CFR 23.745 - Nose/tail wheel steering.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Landing Gear § 23.745 Nose/tail wheel steering. (a) If nose/tail wheel steering is installed, it must be... gear. Floats and Hulls ...

  5. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  6. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  7. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  8. Robust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan

    OpenAIRE

    Duan, Zhuohua; Cai, Zixing; Min, Huaqing

    2014-01-01

    Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such ...

  9. Shock-absorbing caster wheel is simple and compact

    Science.gov (United States)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  10. Disturbances in reaction wheels; from measurement to modelling

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.

    2014-01-01

    Disturbances in reaction wheels have been long a crucial aspect for many scientific observation missions. An accurate and reliable disturbance model to understand and evaluate the influence of reaction wheel disturbances to the spacecraft is critically needed. Several reaction wheel disturbance

  11. 14 CFR 25.497 - Tail-wheel yawing.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail-wheel yawing. 25.497 Section 25.497... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of equal...

  12. All-wheel drive and winter-weather safety.

    Science.gov (United States)

    2013-03-01

    It is frequently stated that people living in northern states, the so called Snowbelt of the United : States, benefit with respect to safety from driving all-wheel or four-wheel drive vehicles as : opposed to front or rear-wheel drive only. This stud...

  13. 77 FR 27249 - Certain Steel Wheels From China

    Science.gov (United States)

    2012-05-09

    ... COMMISSION Certain Steel Wheels From China Determinations On the basis of the record \\1\\ developed in the... of imports of certain steel wheels from China, provided for in subheading 8708.70 of the Harmonized... notification of preliminary determinations by Commerce that imports of certain steel wheels from China were...

  14. Examination of a failed fifth wheel coupling

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1998-03-01

    Full Text Available to prevent inadvertent opening of the coupling locking mechanism. No alternative safety device was employed to ensure the safety of the modified design. Furthermore, the rubbing plate on the pup-trailer was significantly smaller than that on the fifth wheel...

  15. Experiments on a Tail-wheel Shimmy

    Science.gov (United States)

    Harling, R; Dietz, O

    1954-01-01

    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  16. Investigating Functions with a Ferris Wheel

    Science.gov (United States)

    Johnson, Heather Lynn; Hornbein, Peter; Azeem, Sumbal

    2016-01-01

    The authors provide a dynamic Ferris wheel computer activity that teachers can use as an instructional tool to help students investigate functions. They use a student's work to illustrate how students can use relationships between quantities to further their thinking about functions.

  17. The Physics of Wheel-Rail Stability

    Science.gov (United States)

    Tan, B. T. G.

    2018-01-01

    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure

  18. Vegetation response to wagon wheel camp layouts.

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  19. Reinventing the Wheel: Design and Problem Solving

    Science.gov (United States)

    Blasetti, Sean M.

    2010-01-01

    This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…

  20. The time has come for retail wheeling

    International Nuclear Information System (INIS)

    Dahlen, D.O.; Achinger, S.K.

    1993-01-01

    Retail wheeling, the transmission and distribution of electric power for end users, fosters competition and promotes the efficient use of resources. Access to electric-utility transmission and distribution systems would establish competitive electric markets by permitting retail customers to obtain the lowest cost for energy which would meet their specific needs. Among electric utilities and their customers, the idea of allowing market forces to attract supply and set prices is a current controversy. To counter the anticompetitive effects of recent mergers in the wholesale market, the Federal Energy Regulatory Commission (FERC) has mandated open transmission access for wholesale customers. However, the FERC denied access to retail customers and qualifying facilities (QF) in both its Northeast Utilities (FERC case No. EC-90-1 90) and PacifiCorp (U.S. Circuit Court of Appeals for D.C., 89-1333) decisions. Retail wheeling will benefit both consumers and producers. The ability of large customers to purchase power from the lowest cost sources and have it transmitted to their facilities, will save American industrial and commercial customers at least $15 billion annually. The Increased efficiency resulting from competition would also reduce residential electric bills. Through retail wheeling, independent power producers can market their capacity to a greater customer base, and traditional utilities will benefit from access to other utilities markets with the more efficient utilities prospering. Retail wheeling will, therefore, reward efficient utilities and encourage inefficient utilities to improve

  1. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should...

  2. The physics of wheel-rail stability

    Science.gov (United States)

    Tan, B. T. G.

    2018-05-01

    This article discusses, at a simple level, the dynamics of the wheel-rail interface, which is fundamental to the stability of rail vehicles. The physics underlying this topic deserves to be better known by physicists and physics students, as it underpins such an important part of our technological infrastructure.

  3. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  4. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  5. 14 CFR 23.731 - Wheels.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wheels. 23.731 Section 23.731 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Landing Gear...

  6. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    Science.gov (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  7. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2014-10-01

    Full Text Available This study aims to design, and analyze a mobile robot that can handle some of the obstacles, they are uneven surfaces, slopes, can also climb stairs. WMR in this study is Tristar wheel that is containing three wheels for each set. On average surface only two wheels in contact with the surface, if there is an uneven surface or obstacle then the third wheel will rotate with the rotation center of the wheel in contact with the leading obstacle then only one wheel in contact with the surface. This study uses the C language program. Furthermore, the minimum thrust to be generated torque of the motor and transmission is 9.56 kg. The results obtained by calculation and analysis of DC motors used must have a torque greater than 14.67 kg.cm. Minimum thrust to be generated motor torque and the transmission is 9.56 kg. The experimental results give good results for robot to moving forward, backward, turn left, turn right and climbing the stairs.

  8. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome

    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...... situation. Modeling the trajectory of the wheel when as it ascends or descends stairs is given and the results are analyzed....

  9. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome

    2017-01-01

    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...... situation. Modeling the trajectory of the wheel when as it ascends or descends stairs is given and the results are analyzed....

  10. Latent effectiveness of desiccant wheel: A silica gels- water system

    International Nuclear Information System (INIS)

    Rabah, A. A.; Mohamed, S. A.

    2009-01-01

    A latent heat effectiveness model in term of dimensionless groups? =f (NTU, m * ,Crm * ) for energy wheel has been analytically derived. The energy wheel is divided into humidification and dehumidification sections. For each section macroscopic mass differential equations for gas and the matrix were applied. In this process local latent effectiveness (? c ,? h ) for the humidification and dehumidification section of the wheel were obtained. The Latent effectiveness of the wheel is then derived form local effectiveness [? =f (? c ,? h)]. The model is compared with the existing experimental investigation and manufacturer data for energy wheel. More than 90% of the experimental data within a confidence limit of 95%. (Author)

  11. Physichal parameters for wedge filters used in radiotherapy

    International Nuclear Information System (INIS)

    Strunga, Emil

    1995-01-01

    Wedge filters using in radiotherapy up two important problems: attenuation of gamma rays introduced by the presence of wedge filters and spinning of isodoses curves plate. Depending of irradiation geometry, characterised by D w , - source filter distance, D c - source dose's estimate point distance, a - side of irradiation field; nature and size filter: α - wedge angle, μ - linear adsorption coefficient, ε - filter cover attenuation w - filter side, and nature of target volume characterised by μ' - linear absorption coefficient of medium has been estimated absorption factor of wedge filter (k w ) for two irradiation geometry: and spinning angle of isodose plate (Θ): 3) tg θ (μD w (μ'D c - 2 Calculated values has been compared with the experimental measured values, for a cobaltotherapy unit Rokus-M, and the result was that between the two series of dates it is a good concordance

  12. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.

    Science.gov (United States)

    Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.

  13. Cassini Attitude Control Operations - Guidelines Levied on Science to Extend Reaction Wheel Life

    Science.gov (United States)

    Mittelsteadt, Carson O.

    2011-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe, which descended through the Titan atmosphere (Saturn's largest moon) and landed on its surface on January 14, 2005. The Cassini mission has recently been approved by NASA to continue through September of 2017. This 7-year extension is called the Solstice mission and it presents challenges to the spacecraft operations team and its ability to maintain the health of the spacecraft. To keep the spacecraft healthy for 7 more years, the spacecraft team must carefully manage hydrazine use (about 48% of the 132 kg launch load remains as of January 2011). A vital part of conserving hydrazine is to use the reaction wheel assembly (RWA) control system for precise pointing and slews wherever possible. In any given week, the Cassini spacecraft is commanded to use RWA control about 99% of the time, with about 1% of the time requiring reaction control system (RCS) thruster control (to perform Delta V course corrections or to bias the RWA momentum). Such extensive use of the RWA hardware throughout the mission requires that the RWAs be operated in a way that minimizes degradation in the RWA electronics, DC motor, and spin bearing for each reaction wheel. Three consumables in particular have been identified for the RWAs: (1) Total number of revolutions for each RWA. (2) Time spent at very low wheel speeds. At these low speeds, good elasto-hydrodynamic (EHD) film lubrication may be compromised. (3) Total number of on/off power cycles. The second of these consumables, minimizing the time spent at very low wheel speeds, is especially important to keep the spin bearing healthy and well-lubricated. These consumables are actively managed by the attitude control operations team throughout the mission. One vital management

  14. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  15. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  16. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  17. Advanced Control of Wheeled Inverted Pendulum Systems

    CERN Document Server

    Li, Zhijun; Fan, Liping

    2013-01-01

    Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics,dynamics modeling, advanced control design techniques,and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by.   The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation met...

  18. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  19. Peculiarities of Clutch Forming Rails and Wheel Block Construction

    Science.gov (United States)

    Shiler, V. V.; Galiev, I. I.; Shiler, A. V.

    2018-03-01

    The clutch of the wheel and rail is significantly influenced by the design features of the standard wheel pair, which are manifested in the presence of "parasitic" slipping of the wheels along the rails during its movement. The purpose of the presented work is to evaluate new design solutions for wheel sets. The research was carried out using methods of comparative simulation modelling and physical prototyping. A new design of the wheel pair (block wheel pair) is proposed, which features an independent rotation of all surfaces of the wheels in contact with the rails. The block construction of the wheel pair forms open mechanical contours with the track gauge, which completely eliminates the "parasitic" slippage. As a result, in the process of implementing traction or braking forces, the coupling coefficient of the block construction of the wheel pair is significantly higher than that of existing structures. In addition, in the run-out mode, the resistance to movement of the block wheel pair is half as much. All this will allow one to significantly reduce the energy consumption for traction of trains, wear of track elements and crew, and to increase the speed and safety of train traffic.

  20. Eyeglass Filters

    Science.gov (United States)

    1987-01-01

    Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.

  1. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis

    2013-08-01

    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  2. Analysis of wound filter performance from DREF yarn spun at different suction pressure

    Directory of Open Access Journals (Sweden)

    Pragnya S. Kanade

    2017-03-01

    Full Text Available Wound filters are quite popular in the domestic water purification systems. The performance of these filters is based on the distinctive yarn and winding variables. Yarn used for filtration application is normally produced on DREF spinning system. Several researchers have reported the influence of DREF spinning variables on yarn properties. However none of them are in context of filtration application. Since elucidation of influence of winding parameters on the filter performance has already been reported; it thus becomes intriguing to explore the influence of spinning suction pressure on filtration behavior. Yarn spun at different suction pressures was used to produce wound filter cartridges, keeping winding variables unchanged. Filters wound using yarn spun at higher spinning suction pressure resulted in greater pressure drop but showed better micron rating. However the pressure drop encountered also affects the retention capacity of the wound filter. The outcome of this study helps in establishing the relation between spinning suction pressure and performance parameters of wound filters. Design expert® software was used to develop regression equations to predict performance of wound filter for the given spinning suction pressure which is of practical significance for yarn and filter manufacturers, without performing filter test.

  3. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  4. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  5. The colour wheels of art, perception, science and physiology

    Science.gov (United States)

    Harkness, Nick

    2006-06-01

    Colour is not the domain of any one discipline be it art, philosophy, psychology or science. Each discipline has its own colour wheel and this presentation examines the origins and philosophies behind the colour circles of Art, Perception, Science and Physiology (after image) with reference to Aristotle, Robert Boyle, Leonardo da Vinci, Goethe, Ewald Hering and Albert Munsell. The paper analyses and discusses the differences between the four colour wheels using the Natural Colour System® notation as the reference for hue (the position of colours within each of the colour wheels). Examination of the colour wheels shows the dominance of blue in the wheels of art, science and physiology particularly at the expense of green. This paper does not consider the three-dimensionality of colour space its goal was to review the hue of a colour with regard to its position on the respective colour wheels.

  6. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  7. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  8. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  9. Perspectives on energy storage wheels for space station application

    Science.gov (United States)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  10. Analysis of traversable pits model to make intelligent wheeled vehicles

    Directory of Open Access Journals (Sweden)

    F. Abbasi

    2017-11-01

    Full Text Available In this paper, the issue of passing wheeled vehicles from pits is discussed. The issue is modeled by defining the limits of passing wheeled vehicles. The proposed model has been studied based on changes in the effective parameters. Finally, in order to describe the problem, the proposed model has been solved for wheeled vehicles based on the effective parameters by using one of the numerical methods.

  11. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES

    2011-06-01

    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  12. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet

  13. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  14. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    The impact of wheel traffic on soil physical properties is usually quantified by randomly collecting soil cores at specific depths below the wheeled surface. However, modeling studies as well as few measurements indicated a non-uniform stress distribution in a catena across the wheel rut, which...... might induce different effects on soil physical properties. The objective of this study was to investigate the impact of vehicle traffic on soil physical properties and air permeability by systematic collection of samples in a transect running from the center to the outside of the wheel rut. A field...... experiment was conducted on a clay loam soil at Suberg, Switzerland, in 2010. Four repeated wheeling were performed by driving a forage harvester (wheel load of 6100 kg and a tyre width of 0.8 m) forward and rearward in the same track. We sampled 100 cm3 intact cores at 10, 30 and 50 cm depth in a soil...

  15. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  16. A Robust Control Method for Lateral Stability Control of In-Wheel Motored Electric Vehicle Based on Sideslip Angle Observer

    Directory of Open Access Journals (Sweden)

    Yaxiong Wang

    2018-01-01

    Full Text Available In-wheel motored powertrain on electric vehicles has more potential in maneuverability and active safety control. This paper investigates the longitudinal and lateral integrated control through the active front steering and yaw moment control systems considering the saturation characteristics of tire forces. To obtain the vehicle sideslip angle of mass center, the virtual lateral tire force sensors are designed based on the unscented Kalman filtering (UKF. And the sideslip angle is estimated by using the dynamics-based approaches. Moreover, based on the estimated vehicle state information, an upper level control system by using robust control theory is proposed to specify a desired yaw moment and correction front steering angle to work on the electric vehicles. The robustness of proposed algorithm is also analyzed. The wheel torques are distributed optimally by the wheel torque distribution control algorithm. Numerical simulation is carried out in Matlab/Simulink-Carsim cosimulation environment to demonstrate the effectiveness of the designed robust control algorithm for lateral stability control of in-wheel motored vehicle.

  17. Delta FosB regulates wheel running.

    Science.gov (United States)

    Werme, Martin; Messer, Chad; Olson, Lars; Gilden, Lauren; Thorén, Peter; Nestler, Eric J; Brené, Stefan

    2002-09-15

    DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.

  18. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  19. Influence of wheel configuration on wheelchair basketball performance : Wheel stiffness, tyre type and tyre orientation

    NARCIS (Netherlands)

    Mason, B. S.; Lemstra, M.; van der Woude, L. H. V.; Vegter, R.; Goosey-Tolfrey, V. L.

    The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and

  20. Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-04-01

    Full Text Available The wheel driving torque on four-wheel-drive electric vehicles (4WDEVs can be modulated precisely and continuously, therefore maneuverability and energy-saving control can be carried out at the same time. In this paper, a wheel torque distribution strategy is developed based on multi-objective optimization to improve vehicle maneuverability and reduce energy consumption. In the high-layer of the presented method, sliding mode control is used to calculate the desired yaw moment due to the model inaccuracy and parameter error. In the low-layer, mathematical programming with the penalty function consisting of the yaw moment control offset, the drive system energy loss and the slip ratio constraint is used for wheel torque control allocation. The programming is solved with the combination of off-line and on-line optimization to reduce the calculation cost, and the optimization results are sent to motor controllers as torque commands. Co-simulation based on MATLAB® and Carsim® proves that the developed strategy can both improve the vehicle maneuverability and reduce energy consumption.

  1. Drowsy Driver Detection via Steering Wheel

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2010-09-01

    Full Text Available The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  2. MULTIAXIAL FATIGUE OF A RAILWAY WHEEL STEEL

    Directory of Open Access Journals (Sweden)

    CHIN-SUNG CHUNG

    2015-09-01

    Full Text Available Uniaxial and biaxial torsional fatigue specimens were extracted from a railway wheel steel. The fatigue tests were performed with the stress ratio of R= -1 by using uniaxial and biaxial torsional fatigue test specimens at room temperature in air. The ultimate and yield strengths of the steel were evaluated. The uniaxial fatigue limit was 422.5 MPa, which corresponds to 67% of the ultimate tensile strength. The ratio of e  e  / was 0.63. Appropriate parameters to predict the fatigue life of the steel under multiaxial stress states were reviewed.

  3. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  4. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  5. Chiral tunneling of topological states: towards the efficient generation of spin current using spin-momentum locking.

    Science.gov (United States)

    Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W

    2015-05-01

    We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.

  6. Longitudinal wheel slip during ABS braking

    Science.gov (United States)

    Hartikainen, Lassi; Petry, Frank; Westermann, Stephan

    2015-02-01

    Anti-lock braking system (ABS) braking tests with two subcompact passenger cars were performed on dry and wet asphalt, as well as on snow and ice surfaces. The operating conditions of the tyres in terms of wheel slip were evaluated using histograms of the wheel slip data. The results showed different average slip levels for different road surfaces. It was also found that changes in the tyre tread stiffness affected the slip operating range through a modification of the slip value at which the maximum longitudinal force is achieved. Variation of the tyre footprint length through modifications in the inflation pressure affected the slip operating range as well. Differences in the slip distribution between vehicles with different brake controllers were also observed. The changes in slip operating range in turn modified the relative local sliding speeds between the tyre and the road. The results highlight the importance of the ABS controller's ability to adapt to changing slip-force characteristics of tyres and provide estimates of the magnitude of the effects of different tyre and road operating conditions.

  7. New Small Wheel Technical Design Report

    CERN Document Server

    AUTHOR|(CDS)2071368; Pontecorvo, L; Dubbert, J; Mikenberg, G; Iengo, P; Dallapiccola, C; Amelung, C; Levinson, L; Richter, R; Lellouch, D; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    In order to benefit from the expected high luminosity performance that will be provided by the Phase-I upgraded LHC, the first station of the ATLAS muon end-cap system (Small Wheel,SW) will need to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region (up to 15 kHz=cm2) while reconstructing muon tracks with high precision, as well as furnishing information for the Level-1 trigger. These performance criteria are demanding. In particular, the precision reconstruction of tracks for offline analysis requires a spatial resolution of about 100microns, and the Level-1 trigger track segments have to be reconstructed online with an angular resolution of approximately 1mrad. The NSW will have two chamber technologies, one primarily devoted to the Level-1 trigger function (small-strip Thin Gap Chambers, sTGC) and one dedicated to precision tracking (Micromegas detectors, MM). The sTGC are primarily deployed for triggering given their single bunch crossing identification capabi...

  8. Camber Angle Inspection for Vehicle Wheel Alignments.

    Science.gov (United States)

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-02-03

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x -axis or z -axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  9. Camber Angle Inspection for Vehicle Wheel Alignments

    Directory of Open Access Journals (Sweden)

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  10. Dynamics of Railway Vehicles and Rail/Wheel Contact

    DEFF Research Database (Denmark)

    True, Hans

    2007-01-01

    In these notes the fundamentals of the mechanics of rail/wheel contact and deterministic vehicle dynamics is explained. Chapter 1 describes the kinematics and dynamics of rail/wheel contact. Chapter 2 explains why vehicle dynamics must be treated as a nonlinear dynamic problem and how the model p...

  11. Sleeping At The Wheel And Psychoactive Substance Use Among ...

    African Journals Online (AJOL)

    To prevent sleeping at the wheel psychoactive substance used included marijuana, caffeine, and alcohol. Factors associated with high prevalence of sleeping at the wheel included long hours of driving =40 hours per week, types of substance use to prevent sleep, and previous use of alcohol. Conclusion: There would be ...

  12. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  13. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  14. Research on Walking Wheel Slippage Control of Live Inspection Robot

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Guo, Hao; Li, Jinliang; Liu, Lanlan

    2017-07-01

    To solve the problem of walking wheel slippage of a live inspection robot during walking or climbing, this paper analyzes the climbing capacity of the robot with a statics method, designs a pressing wheel mechanism, and presents a method of indirectly identifying walking wheel slippage by reading speed of the pressing wheel due to the fact that the linear speed of the pressing wheel and the walking wheel at the contract point is the same; and finds that the slippage state can not be controlled through accurate mathematical models after identifying the slippage state, whereas slippage can be controlled with fuzzy control. The experiment results indicate that due to design of the pressing wheel mechanism, friction force of the walking wheel is increased, and the climbing capability of the robot is improved. Within the range of climbing capability of the robot, gradient is the key factor that has influence on slippage of robot, and slippage can be effectively eliminated through the fuzzy control method proposed in this paper.

  15. 16 CFR 1512.12 - Requirements for wheel hubs.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other... the frame or fork when locked. (c) Front hubs. Front hubs not equipped with lever-operated quick...

  16. Anthropometry and Standards for Wheeled Mobility: An International Comparison

    Science.gov (United States)

    Steinfeld, Edward; Maisel, Jordana; Feathers, David; D'Souza, Clive

    2010-01-01

    Space requirements for accommodating wheeled mobility devices and their users in the built environment are key components of standards for accessible design. These requirements typically include dimensions for clear floor areas, maneuvering clearances, seat and knee clearance heights, as well as some reference dimensions on wheeled mobility device…

  17. Load-bearing processes in agricultural wheel-soil systems

    NARCIS (Netherlands)

    Tijink, F.G.J.

    1988-01-01

    In soil dynamics we distinguish between loosening and loadbearing processes. Load-bearing processes which can occur under agricultural rollers, wheels, and tyres are dealt with In this dissertation.

    We classify rollers, wheels, and tyres and treat some general aspects of these

  18. Prediction of aspects of soil-wheel systems.

    NARCIS (Netherlands)

    Koolen, A.J.; Lerink, P.; Kurstjens, D.A.G.; Akker, van den J.J.H.; Arts, W.B.M.

    1992-01-01

    A simple formula is given which predicts maximum stress-depth relationships under wheels from vertical wheel load and the tyre inflation pressure. Predictions were compared with stress measurements at a depth of 30 cm under a wide range of vehicles. Stress measurements at a depth of 15 cm showed

  19. Low Adhesion in the Wheel-Rail Contact

    NARCIS (Netherlands)

    Arias-Cuevas, O.

    2010-01-01

    Adhesion, or adhesion coefficient, is given by the ratio of the longitudinal tangential (i.e., braking or traction) force over the normal force at the wheel-rail contact. The tangential force that a braking or tractive railway wheel can exert on a rail is limited by the friction coefficient

  20. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Multimedia

    Oram, C.J.

    2002-01-01

    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  1. Procedure and applications of combined wheel/rail roughness measurement

    NARCIS (Netherlands)

    Dittrich, M.G.

    2009-01-01

    Wheel-rail roughness is known to be the main excitation source of railway rolling noise. Besides the already standardised method for direct roughness measurement, it is also possible to measure combined wheel-rail roughness from vertical railhead vibration during a train pass-by. This is a different

  2. Complex eigenvalue analysis of railway wheel/rail squeal

    African Journals Online (AJOL)

    DR OKE

    the effect of parameters such as friction coefficient, wheel/rail contact position, axle load, etc. on unstable vibration was examined. 2. Squeal Noise Tests. Figure 1 shows ..... static and dynamic behaviour of the wheel/rail depends on the boundary conditions and the constraints by springs. So the analysis was performed for ...

  3. 76 FR 29265 - Certain Steel Wheels From China

    Science.gov (United States)

    2011-05-20

    ... COMMISSION Certain Steel Wheels From China Determinations On the basis of the record \\1\\ developed in the... threatened with material injury by reason of imports from China of certain steel wheels, provided for in... United States at less than fair value (LTFV) and subsidized by the Government of China.\\2\\ \\1\\ The record...

  4. 76 FR 18781 - Certain Steel Wheels From China

    Science.gov (United States)

    2011-04-05

    ... COMMISSION Certain Steel Wheels From China AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of imports from China of certain steel wheels... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  5. Residual stress distribution of wheel tread for freight car due to aging effect

    Science.gov (United States)

    Kwon, Seok-Jin; Lee, Dong-Hyung; Seo, Jung-Won; Kwon, Sung-Tae

    2010-03-01

    Recently, several wheels for freight car in running had experienced the wheel failure due to fatigue crack, overheat braking and other factors. Severe heating of the wheel during tread braking was believed to be a contributing factor of derailment. It is necessary to evaluate the residual stress in wheel tread in order to manage the safety of wheel. In the present paper, the residual stress of wheel regarding to running distance using x-ray diffraction system is investigated. The result shows that the residual stress of wheel is depend on the running distance, wear rate of wheel and thermal gradient during brake application.

  6. Technological development of multispectral filter assemblies for micro bolometer

    Science.gov (United States)

    Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre

    2017-11-01

    Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).

  7. Control of wheeled mobile robot in restricted environment

    Science.gov (United States)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  8. Cooling of a Bose-Einstein Condensate by Spin Distillation

    Science.gov (United States)

    Naylor, B.; Maréchal, E.; Huckans, J.; Gorceix, O.; Pedri, P.; Vernac, L.; Laburthe-Tolra, B.

    2015-12-01

    We propose and experimentally demonstrate a new cooling mechanism leading to purification of a Bose-Einstein condensate (BEC). Our scheme starts with a BEC polarized in the lowest energy spin state. Spin excited states are thermally populated by lowering the single particle energy gap set by the magnetic field. Then, these spin-excited thermal components are filtered out, which leads to an increase of the BEC fraction. We experimentally demonstrate such cooling for a spin 3 52Cr dipolar BEC. Our scheme should be applicable to Na or Rb, with the perspective to reach temperatures below 1 nK.

  9. Spin separation in a T ballistic nanojunction due to lateral-confinement-induced spin-orbit coupling

    International Nuclear Information System (INIS)

    Bellucci, S; Carillo, F; Onorato, P

    2007-01-01

    We propose a new scheme of spin filtering employing ballistic nanostructures in two-dimensional electron gases (2DEGs). The proposal is essentially based on the spin-orbit (SO) interaction arising from the lateral confining electric field. This sets the basic difference from other works employing ballistic crosses and T junctions with the conventional SO term arising from 2DEG confinement. We discuss the consequences of this different approach for the magnetotransport properties of the device, showing that the filter can in principle be used not only to generate a spin polarized current but also to perform an electric measurement of the spin polarization of a charge current. We focus on single-channel transport and investigate numerically the spin polarization of the current

  10. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    Science.gov (United States)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  11. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  12. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  13. The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

    NARCIS (Netherlands)

    Idarraga Alarcon, G.A.; Burgelman, N.D.M.; Meza Meza, J.; Toro, A.; Li, Z.

    2015-01-01

    This work investigates the energy dissipation in a wheel/rail system through friction work modeling. In order to identify the effect of the friction coefficient on the energy dissipation in the wheel/rail contact, several simulations were performed using a 3D multibody model of a railway vehicle

  14. Installation of the first of the big wheels of the ATLAS muon spectrometer, a thin gap chamber (TGC) wheel

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    The muon spectrometer will include four big moving wheels at each end, each measuring 25 metres in diameter. Of the eight wheels in total, six will be composed of thin gap chambers for the muon trigger system and the other two will consist of monitored drift tubes (MDTs) to measure the position of the muons

  15. 77 FR 70478 - RG Steel Wheeling, LLC, Wheeling Office, A Division Of RG Steel, LLC, Including On-Site Leased...

    Science.gov (United States)

    2012-11-26

    ... Unlimited and Green Energy Initiatives LLC, Including Workers Whose Wages Were Reported Through Severstal..., Wheeling Office, a division of RG Steel, LLC, including on-site leased workers from Pro Unlimited and Green Energy Initiatives, LLC, Wheeling, West Virginia (TA-W-81,880) and Mountain State Carbon, LLC, including...

  16. Photos taken during the assembly of the first 4-plane wheel prototype, built in 1998.

    CERN Multimedia

    Dixon, N.

    1998-01-01

    Photo 1 - End Cap. 4 -plane wheel prototype - One plane complete. Photo 2 - End Cap. 4 -plane wheel prototype - Radiator Foil. Photo 3 - End Cap. 4-plane wheel prototype - Glueing technique. Photo 4 - End Cap. 4-plane wheel prototype - Glueing ring. Photo 5 - End Cap. 4-plane wheel prototype - Glueing ring. Photo 6 - End Cap. 4-plane wheel prototype - Completed straw plane. Photo 7 - End Cap. 4-plane wheel prototype - Webs on assembly table. Photo 8 - End Cap. 4-plane wheel prototype - Operations on inner ring. Photo 9 - End Cap. 4-plane wheel prototype - Glueing operations. Photo 10 - End Cap. 4-plane wheel prototype - Glueing equipment. Photo 11 - End Cap. 4-plane wheel prototype - Assembly of 4-plane wheel. Photo 12 - End Cap. 4-plane wheel prototype - Positioning tool. Photo 13 - End Cap. 4-plane wheel prototype - Testing. Photo 14 - End Cap. 4-plane wheel prototype - Glued to web ring 2. Photo 15 - End Cap. 4-plane wheel prototype - Positioning tool. Photo 16 - End Cap. 4-plane wheel prototype - Detail o...

  17. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  18. Infinity properads and infinity wheeled properads

    CERN Document Server

    Hackney, Philip; Yau, Donald

    2015-01-01

    The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.

  19. The Manchester Colour Wheel: enhancing its utility.

    Science.gov (United States)

    Carruthers, Helen R; Whorwell, Peter J

    2013-06-01

    The Manchester Colour Wheel was developed to investigate the role of colour in the perception of illness in gastroenterology. During validation it was found that positive, neutral, or negative connotations of the shade of a colour were more important than the colour itself. However, when asked to relate mood to a colour, the response rate was greater in individuals with mood disorders than healthy controls. This study assessed whether response rate could be made more uniform by changing the wording of the question. Mood/colour choice was compared, using two slightly different questions, in 105 and 203 healthy volunteers, resulting in response rates of 39% and 95% respectively, with the latter not associated with increased false positive responses. These results show that adjustment of the wording of a mood-related question may allow equal response rates irrespective of the mood status of participants.

  20. The sensory wheel of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Mojet, Jos

    1994-04-01

    Full Text Available During a 3-year FLAIR study extra virgin olive oils, varying in species, degree of ripeness and extraction method, were evaluated by 6 different institutes according to QDA or GDI-methods in order to identify parameters related to the quality of extra virgin olive oil. The current COI-method yields a poor between-panel reproducibility. This could well be caused by a difference in the perception of positive quality aspects. Whereas the QDA-method is especially suitable for determining sensory profiles according to the perception of the consumer, the COI-method should be tailored to detect possible defects only.
    In order to cluster all attributes to one condensed set of sensory attributes for describing virgin olive oil, the COI and QDA data of ail panels were pooled and analyzed separately for appearance, texture and flavour. This approach resulted in a set of 3 appearance, 3 texture and 12 flavour descriptors which can be conveniently represented graphically in the form of a "sensory wheel".
    On the basis of the findings it is recommended to base the "extra virgin" qualification for olive oils solely on the absence of defects. The between-panel reproducibility of such a simplified COI-test can be assessed by means of ring tests and improved by training with reference products. When an oil passes this screening it can be profiled subsequently using the attributes of the sensory wheel. Such a profile can be linked to preferential profiles derived from consumer studies enabling the production of most preferred olive oils.

  1. Modeling and Control of Wheeled Mobile Robots.

    Science.gov (United States)

    Muir, Patrick Fred

    The accurate model-based servo-control of wheeled mobile robots (WMRs) relies upon the formulation of realistic kinematic and dynamic models. We identify six special WMR characteristics (closed-chains, higher-pair joints, unactuated and unsensed joints, friction, and pulse-width modulation) that require methodologies for modeling and control beyond those conventionally applied to stationary manipulators. Then, we develop methodologies for the kinematic and dynamic modeling of robotic mechanisms incorporating these special characteristics. We introduce instantaneously coincident coordinate systems and the wheel Jacobian to resolve WMR kinematic modeling. We introduce the concepts of force/torque propagation and frictional coupling at a joint to formulate a powerful unifying dynamic modeling framework. We compute the inverse and forward kinematic and dynamic solutions for model-based WMR servo-control and simulation. We demonstrate the applicability of (kinematics -based) resolved motion rate and (dynamics-based) resolved acceleration servo-control methodologies to WMRs through computer simulation evaluation studies. We exemplify our modeling and servo-control methodologies through Uranus, a three degree-of-freedom (DOF) WMR, and Bicsun-Bicas, a two DOF WMR. Our results show that resolved motion rate servo-control is adequate for general-purpose applications of Uranus. In contrast, the mechanically simpler Bicsun -Bicas requires the computationaly complex resolved acceleration servo-control to compensate for the significant coupling and nonlinear components in its dynamic model. We recommend Bicsun-Bicas with resolved acceleration servo-control for general-purpose indoor applications because it is mechanically simple, capable of tracking any spatial x-y path, and if a turret is added, provides onboard manipulators, sensors, or docking instruments with three DOFs.

  2. Wheel liner design for improved sound and structural performances

    Science.gov (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  3. Diagnostics of the wheel thread of railway rolling stock

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2013-02-01

    Full Text Available Purpose. At present, the devastating impact of faulty wheels on rails on the move is a major problem of railway transport. This factor is one of the most important, which causes the shift from traditional manual methods of verification and external examination to the automated diagnostic system of rolling stock in operation. Methodology. To achieve this goal the main types of wheel damages and the way they appear are analyzed. The methods for defects and abnormalities of the wheel thread determining as well as their advantages and disadvantages were presented. Nowadays these methods are under usage in both the international practice and in the one of the CIS countries. Findings. The faulty wheel sound on the move was researched and analyzed. The necessity of using the automated system, enabling one to reduce significantly the human factor is substantiated. Originality. The method to determine the wheel thread damage on the basis of a sound diagnostic is proposed. Practical value. Automatic tracking system of the wheels condition allows performing their more qualitative diagnostics, detecting a fault at the early stage and forecasting the rate of its extension. Besides detecting the location of the faulty wheel in the rolling stock, it is also possible to trace the dynamics of the fault extension and to give the recommendations on how to eliminate it.

  4. TO SUBSTANTIATION OF COMBINE WHEELED CHASSIS FOR BEET HARVESTING EQUIPMENT

    Directory of Open Access Journals (Sweden)

    G. A. Tajanowskij

    2016-01-01

    Full Text Available The paper considers a current scientific and technical problem pertaining to creation of multi-bridge wheeled chassis for highly efficient modular sugar beet harvesters of large cargo capacity and, in particular, to selection of main parameters of chassis and wheeled drive. Such machines are designed for operation under complicated soil and climatic conditions during sugar beet harvesting. Methodological rules and regulations have been developed for solution of problems pertaining to scientifically sunstantiated selection of a manufactured or developed wheeled chassis model, building-block parameters of a working device and a chassis, rational control algorithm of the unit running system while using a specified (domestic or foreign semi-mounted equipment for beet harvesting. While solving the problem theoretical provisions for wheeled vehicles regarding specific features of a wheeled chassis for modular sugar beet harvesters with extensive mechanical or hydrostatic wheel drive of a multi-bridge propulsion system have been developed in the paper. Calculated and theoretical expressions for determination of main parameters for a wheeled chassis have been obtained and they include physical quantities of operational conditions that explicitly determine its working process. Such approach has made it possible to realize the obtained expressions as a software application which is suitable for analysis of main parameters in respect of the investigated harvester chassis and rational parameters of a branch wheel drive and also for a complete set of tires in the case when a sugar beet harvester is designed on the basis of wheeled chassis according to the selected scheme. Investigations have theoretical significance and represent practical interest for development spesialists of new modular multi-bridge sugar beet harvesters.

  5. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  6. Spin-polarizated transmissivity in an asymmetrical double barrier

    International Nuclear Information System (INIS)

    Teixeira, J D S; Frota, H O; Bittencourt, A C R

    2014-01-01

    The spin-polarized electron resonant tunnelling at zero magnetic field through a double barrier heterostructure like InAs/GaSb/InAs/GaSb/InAs has been calculated as a function of the electron energy. A model is proposed to study the combined effects of Dresselhaus and in-plane Rashba spin-orbit interactions on the spin-dependent tunnelling, taking into account the k 3 dependence of the Dresselhaus Hamiltonian. For the directions ϕ=45 ∘ and 135 ∘ the spin mixing produces a 100% efficiency of polarization. Moreover, the effect of the Dresselhaus and Rashba spin-orbit interactions are shown to be quite favorable for the fabrication of spin filters and spintronic devices. (paper)

  7. Life Assessment and Life Extension of an Aircraft Wheel

    Directory of Open Access Journals (Sweden)

    M. Aghaie-Khafri

    2012-01-01

    Full Text Available The effect of heat treatment and shot peening on the fatigue life of an aluminum aircraft wheel was studied. The effect of residual stress and heat treatment on the fatigue of specimens was studied by means of fatigue testing, residual stress measurement, and fractography. Finite element simulation was used for life assessment and evaluation of the effect of surface treatments on the life extension of the aircraft wheel. The results obtained show that the operational life of the aircraft wheel extended by imposed compressive residual stress and aging treatment.

  8. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  9. Model-based analysis and simulation of regenerative heat wheel

    DEFF Research Database (Denmark)

    Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.

    2006-01-01

    of mathematical models for the thermal analysis of the fluid and wheel matrix. The effect of heat conduction in the direction of the fluid flow is taken into account and the influence of variations in rotating speed of the wheel as well as other characteristics (ambient temperature, airflow and geometric size......The rotary regenerator (also called the heat wheel) is an important component of energy intensive sectors, which is used in many heat recovery systems. In this paper, a model-based analysis of a rotary regenerator is carried out with a major emphasis given to the development and implementation...

  10. Dynamics of omnidirectional unmanned rescue vehicle with mecanum wheels

    Science.gov (United States)

    Typiak, Andrzej; Łopatka, Marian Janusz; Rykała, Łukasz; Kijek, Magdalena

    2018-01-01

    The work presents the dynamic equations of motion of a unmanned six-wheeled vehicle with mecanum wheels for rescue applications derived with the of Lagrange equations of the second kind with multipliers. Analysed vehicle through using mecanum wheels has three degrees of freedom and can move on a flat ground in any direction with any configuration of platform's frame. In order to derive dynamic equations of motion of mentioned object, kinetic potential of the system and generalized forces affecting the system are determined. The results of a solution of inverse dynamics problem are also published.

  11. 14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.

    Science.gov (United States)

    2010-01-01

    ... multiple-wheel units. 23.511 Section 23.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Structure Ground Loads § 23.511 Ground load; unsymmetrical loads on multiple-wheel units... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...

  12. 14 CFR 29.511 - Ground load: unsymmetrical loads on multiple-wheel units.

    Science.gov (United States)

    2010-01-01

    ... multiple-wheel units. 29.511 Section 29.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Requirements Ground Loads § 29.511 Ground load: unsymmetrical loads on multiple-wheel units. (a) In dual-wheel gear units, 60 percent of the total ground reaction for the gear unit must be applied to one wheel and...

  13. 76 FR 55012 - Certain Steel Wheels From the People's Republic of China: Preliminary Affirmative Countervailing...

    Science.gov (United States)

    2011-09-06

    ... based on use that could present customs classification problems as well as enable steel wheels of the... DEPARTMENT OF COMMERCE International Trade Administration [C-570-974] Certain Steel Wheels From... provided to producers and exporters of certain steel wheels (steel wheels) from the People's Republic of...

  14. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  15. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  16. Determining Wheel-Soil Interaction Loads Using a Meshfree Finite Element Approach Assisting Future Missions with Rover Wheel Design

    Science.gov (United States)

    Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan

    2012-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.

  17. Modeling of Railway Wheels Made of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available A person is forced to travel constantly throughout its entire life. The more modern the society, the greater the pace of life, and the greater the need to be present in many places that are distant from each other. Rail transport occupies second place in this regard, after air transport. This means of transportation has many advantages, however the time of travel requires continuous improvement, in particular, to match the competition. One factor limiting the speed of travel is inter-operation between the wheels – rail kinematic pair. When rolling on a rail, a wheel is subject to wear, which unavoidably leads to its degradation. Frequent damage to both the wheel and the rail necessitates consideration of this problem. Because any changes to the rail are very expensive and time-consuming, this paper focuses on possible changes to the wheel.

  18. Characterization of grinding wheels: An annotated Bibliography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McClung, R.W.

    1995-12-01

    The characteristics of grinding wheels, after both fabrication and periods of operation, have a significant effect on the processed surface and the mechanical properties of advanced ceramics. An extensive literature survey and review has been conducted to determine and catalogue the various characterization methods that have been investigated and reported. Although many of the references have addressed the grinding of metals, the historical and technical merit justify their inclusion in this bibliography. For convenience, the references have been subdivided into nine subheadings: Nondestructive examination; elasticity and stiffness; wheel hardness; topography and profilometry; observation of texture of wheel surfaces wheel wear; in process monitoring of grinding, acoustic emission, other; characteristics of ground surfaces; and miscellaneous.

  19. Stereotypic wheel running decreases cortical activity in mice

    Science.gov (United States)

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  20. GPM Ground Validation Doppler on Wheels (DOW) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Doppler on Wheels (DOW) OLYMPEX dataset was obtained by a dual-polarization and dual-frequency X-band mobile radar operated by the Center...

  1. Evaluation of bias in the Hamburg wheel tracking device.

    Science.gov (United States)

    2013-09-01

    As the list of states adopting the Hamburg Wheel Tracking Device (HWTD) continues to grow, there is a need to evaluate how results are utilized. American Association of State Highway and Transportation Officials T 324 does not standardize the analysi...

  2. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  3. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  4. Numerical and experimental analysis of a solid desiccant wheel

    Directory of Open Access Journals (Sweden)

    Koronaki Irene P.

    2016-01-01

    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  5. Reaction Wheel Disturbance Model Extraction Software, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  6. Miniature Reaction Wheel for Small Satellite Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project is to design, develop, demonstrate, and deliver a miniature, high torque, low-vibration reaction wheel for use on small satellites....

  7. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. Deepak Gupta Palanisamy Rajakannu Bhaskaran Shankar Firasat Hussain Malaichamy Sathiyendiran. Special issue on Chemical Crystallography Volume 126 ...

  8. Characteristics of The Magnet Wheel As A Magnetic Levitation Device of Induction Type

    OpenAIRE

    藤井, 信男; 小川, 幸吉; 松本, 敏雄; Nobuo, FUJII; Kokichi, OGAWA; Toshio, MATSUMOTO; 九州大学; 大分大学; 安川電機; Kyushu University; Oita University; Yaskawa Electric Co., Ltd.

    1996-01-01

    A new type of magnetic wheel called the "magnet wheel" has been proposed. The magnet wheel has both magnetic levitation and linear drive functions combined into one. In the magnet wheel, the permanent magnets are rotated over the conducting plate so that an induction type of repulsive lift force is obtained. To produce thrust from the drag torque which is simultaneously induced with the lift force, the "tilt type" and "partial overlap type" magnet wheels have been proposed. Poor power factor ...

  9. Wheel rolling constraints and slip in mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, S.

    1997-03-01

    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The author establishes that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  10. FUNCTIONAL PEARL : lazy wheel sieves and spirals of primes

    OpenAIRE

    Runciman, C.

    1997-01-01

    The popular method of enumerating the primes is the Sieve of Eratosthenes. It can be programmed very neatly in a lazy functional language, but runs rather slowly. A little-known alternative method is the Wheel Sieve, originally formulated as a fast imperative algorithm for obtaining all primes up to a given limit, assuming destructive access to a bit-array. This article describes functional variants of the wheel sieve that enumerate all primes as a lazy list.

  11. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  12. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  13. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  14. In-wheel hub SRM simulation and analysis

    Science.gov (United States)

    Sager, Milton W., III

    Is it feasible to replace the conventional gasoline engine and subsequent drive system in a motorcycle with an electric switched reluctance motor (SRM) by placing the SRM inside the rear wheel, thereby removing the need for things such as a clutch, chain, transmission, gears and sprockets? The goal of this thesis is to study the theoretical aspect of prototyping and analyzing an in-wheel electric hub motor to replace the standard gasoline engine traditionally found on motorcycles. With the recent push for clean energy, electric vehicles are becoming more common. All currently produced electric motorcycles use conventional, prefabricated electric motors connected to the traditional sprocket and chain design. This greatly restricts the efficiency and range of these motorcycles. My design stands apart by turning the rear wheel into a SRM which uses electromagnets around a non-magnetic core to convert electrical energy into mechanical force driving the rear wheel. To my knowledge, there is currently no motorcycle designed with an in-wheel hub SRM. A three-phase SRM and a five-phase SRM will be simulated and analyzed using MATLAB with Simulink. Factors such as friction, weight, power, etc. will be taken into account in order to create a realistic simulation as if it were inside the rear wheel of a motorcycle. Since time and finances will not allow for a full scale build, a scaled model three-phase SRM will be attempted for demonstration purposes.

  15. Milestone reached for the Big Wheels of the Muon Spectrometer

    CERN Multimedia

    Sandro Palestini

    The assembly and integration of the Big Wheels sectors of the Muon Spectrometer is reaching its conclusion, with only a few sectors of Wheel TGC-A-3 remaining on the assembly stations in building 180. The six trigger chambers (TGCs) wheels and two precision chambers wheels (MDTs) contain in total 104 sectors, which were assembled, equipped with detectors and fully tested over a period of two years. The few remaining Big Wheel sectors still stored in building 180 Most of the sectors left building 180 over the last twelve months, and form the six Wheels currently installed in the ATLAS detector. The remaining two will be installed before the end of the summer. The commitment of the personnel from the many teams who contributed to different parts of the project was essential to its success. In particular, teams coming from countries of different traditions and languages, such as China, Israel, Japan, Pakistan, Russia and USA contributed and collaborated very effectively to the timely completion of the p...

  16. High accuracy motor controller for positioning optical filters in the CLAES Spectrometer

    Science.gov (United States)

    Thatcher, John B.

    The Etalon Drive Motor (EDM), a precision etalon control system designed for accurate positioning of etalon filters in the IR spectrometer of the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment is described. The EDM includes a brushless dc torque motor, which has an infinite resolution for setting an etalon filter to any desired angle, a four-filter etalon wheel, and an electromechanical resolver for angle information. An 18-bit control loop provides high accuracy, resolution, and stability. Dynamic computer interaction allows the user to optimize the step response. A block diagram of the motor controller is presented along with a schematic of the digital/analog converter circuit.

  17. Tap water filters.

    Science.gov (United States)

    2003-02-01

    Moen PureTouch filters remove impurities from tap water without removing fluoride. These carbon block filters consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The filters are available with different filtering capabilities (Table 1). The filters mount in the faucet spout or under the sink.

  18. FxLMS Method for Suppressing In-Wheel Switched Reluctance Motor Vertical Force Based on Vehicle Active Suspension System

    Directory of Open Access Journals (Sweden)

    Yan-yang Wang

    2014-01-01

    Full Text Available The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV. The analysis results suggest that SRM vertical force has a great effect on suspension performance. The direct cause for this phenomenon is that SRM vertical force is directly exerted on the wheel, which will result in great variation in tyre dynamic load and the tyre will easily jump off the ground. Furthermore, the frequency of SRM vertical force is broad which covers the suspension resonance frequencies. So it is easy to arouse suspension resonance and greatly damage suspension performance. Aiming at the new problem, FxLMS (filtered-X least mean square controller is proposed to improve suspension performance. The FxLMS controller is based on active suspension system which can generate the controllable force to suppress the vibration caused by SRM vertical force. The conclusion shows that it is effective to take advantage of active suspensions to reduce the effect of SRM vertical force on suspension performance.

  19. Paper recycling framework, the "Wheel of Fiber".

    Science.gov (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Control of two Wheeled Welding Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    M. D. Ngo

    2007-09-01

    Full Text Available A three-linked manipulator mounted on a two-wheeled mobile platform is used to weld a long curved welding path. A welding torch mounted at the end of a manipulator of the welding mobile manipulator (WMM must be controlled for tracking a welding path with constant velocity and constant welding angle of torch. In this paper, a decentralized control method is applied to control the WMM considered as two separate subsystems such as a mobile platform and a manipulator. Two decentralized motion controllers are designed to control two subsystems of WMM, respectively. Firstly, based on a tracking error vector of the manipulator and a feedback motion of the mobile platform, a kinematic controller is designed for manipulator. Secondly, based on an another tracking error vector of the mobile platform and a feedback angular velocities of revolution joints of three-link, a sliding mode controller is designed for the mobile platform. These controllers are obtained based on the Lyapunov's function and its stability condition to ensure for the tracking error vectors to be asymptotically stable. Furthermore, simulation and experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  1. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  2. Quantum Interference in the Longitudinal Oscillations of the Total Spin of a Dimeric Molecular Nanomagnet

    Science.gov (United States)

    Ramsey, Christopher; Del Barco, Enrique; Hill, Stephen; Shah, Sonali; Beedle, Christopher; Hendrickson, David

    2008-03-01

    The synthetic flexibility of molecular magnets allows one to systematically produce samples with desirable properties such as those with entangled spin states for implementation in quantum logic gates. Here we report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel.

  3. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu

    2017-12-01

    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  4. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  5. Torque blending and wheel slip control in EVs with in-wheel motors

    Science.gov (United States)

    de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino

    2012-01-01

    Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.

  6. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  7. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  8. Modeling of traction-coupling properties of wheel propulsor

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.

  9. Spin-polarization of an electro-static positron beam

    International Nuclear Information System (INIS)

    Kawasuso, A.; Maekawa, M.

    2008-01-01

    We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E x B filter

  10. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  11. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  12. Electric pulse treatment of rim wheel metal after operation

    Directory of Open Access Journals (Sweden)

    L.I.Vakulenko

    2013-02-01

    Full Text Available Introduction. Load increase on the wheel pair ax requires the use of railway wheels with the advanced complex of properties. Except strength properties, the properties of metal resistance to defect nucleation on the wheel thread are of high importance. The above mentioned properties increase is possible by using different technological decisions: alloying and heat strengthening. Purpose. The purpose is an attempt to estimate the softening degree of the wheel thread metal using the electric pulse treatment. Methodology. Electric pulse treatment (ET was carried out on the special plant in the conditions of JSC DS (Nikolayev city. As the property of metal strength the Vickers hardness number is used. The microstructure research was carried out using the light microscope. The material for research is the carbon steel of the rim fragment of railway wheel №181732, withdrawn after operation, containing 0,55%С, 0,74%Mn, 0,33%Si, 0,009%P, 0,01%S, 0,06% Ni, 0,1%Cr, 0,08%Cu. Findings. Exposing the rim fragment to electric pulse treatment (ET, the qualitative changes of internal structure of the wheel rim metal corresponded to the experimentally observed geometrical dimensions change of the specimen, depending on the cycles number. As a result of the treatment the reduction of cold strained metal hardness is observed. It was found out 20 % softening on the wheel thread for the І rim area the, for the ІІ rim area the 8% softening and for the ІІІ 11% softening in relation to the initial state. Originality. As a result of electric pulse treatment, the change of the specimen geometrical dimensions is observed. Depending on the number of cycles it causes softening effect. It is proved that the observed softening value during ET is qualitatively connected with the cold strain level on the rail wheel thread. Practical value. As a result of metal cold work on the wheel thread its resistance to the defect nucleation is being reduced. The resulted data can

  13. Analysis of motion of the three wheeled mobile platform

    Directory of Open Access Journals (Sweden)

    Jaskot Anna

    2018-01-01

    Full Text Available The work is dedicated to the designing motion of the three wheeled mobile platform under the unsteady conditions. In this paper the results of the analysis based on the dynamics model of the three wheeled mobile robot, with two rear wheels and one front wheel has been included The prototype has been developed by the author's construction assumptions that is useful to realize the motion of the platform in a various configurations of wheel drives, including control of the active forces and the direction of their settings while driving. Friction forces, in longitudinal and in the transverse directions, are considered in the proposed model. Relation between friction and active forces are also included. The motion parameters of the mobile platform has been determined by adopting classical approach of mechanics. The formulated initial problem of platform motion has been solved numerically using the Runge-Kutta method of the fourth order. Results of motion analysis with motion parameters values are determined and sample results are presented.

  14. DESIGN OF BACKWARD SWEPT TURBINE WHEEL FOR CRYOGENIC TURBOEXPANDER

    Directory of Open Access Journals (Sweden)

    BALAJI K. CHOUDHURY

    2014-08-01

    Full Text Available With support from the Department of Atomic Energy, our institute has initiated a programme on development and study of a low capacity (20 liters/hr. turboexpander based Nitrogen liquefier. Hence a process design was carried out and a turboexpander was designed to meet the requirement of the liquefier. The turboexpander is used for lowering the temperature of the process gas (Nitrogen by the isenthalpic expansion. The efficiency of the turboexpander mainly depends on the specific speed and specific diameter of the turbine wheel. The paper explains a general methodology for the design of any type of turbine wheel (radial, backward swept and forward swept for any pressure ratio with different process gases. The design of turbine wheel includes the determination of dimensions, blade profile and velocity triangles at inlet and outlet of the turbine wheel. Generally radial turbine wheels are used but in this case to achieve the high efficiency at desired speed, backward curved blades are used to maintain the Mach number of the process gas at the nozzle exit, close to unity. If the velocity of fluid exceeds the speed of sound, the flow gets choked leading to the creation of shock waves and flow at the exit of the nozzle will be non-isentropic.

  15. HEPA filter monitoring program

    Science.gov (United States)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  16. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved........ The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...

  17. UV holographic filters

    Science.gov (United States)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  18. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  19. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  20. Spinning our wheels: improving our ability to respond to bullying and cyberbullying.

    Science.gov (United States)

    Englander, Elizabeth K

    2012-01-01

    Bullying is physical and or psychological abuse perpetuated by one powerful child upon another, with the intention to harm or dominate. Bullying and aggression in schools has reached epidemic proportions. Abusive bullying behaviors begin in elementary school, peak during middle school, and begin to subside in high school. Bullying behaviors are associated with catastrophic violence. Cyberbullying has emerged as one result of the increasingly online social life in which modern teens and children engage. Mediation may be inappropriate. The only safety mechanism that children will ultimately retain is the one between their ears.

  1. Nyquist Sampling Theorem: Understanding the Illusion of a Spinning Wheel Captured with a Video Camera

    Science.gov (United States)

    Levesque, Luc

    2014-01-01

    Inaccurate measurements occur regularly in data acquisition as a result of improper sampling times. An understanding of proper sampling times when collecting data with an analogue-to-digital converter or video camera is crucial in order to avoid anomalies. A proper choice of sampling times should be based on the Nyquist sampling theorem. If the…

  2. High spin rate magnetic controller for nanosatellites

    Science.gov (United States)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  3. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...

  4. Oriented Fiber Filter Media

    OpenAIRE

    R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  5. HEPA filter encapsulation

    Science.gov (United States)

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  6. Filter service system

    Science.gov (United States)

    Sellers, Cheryl L [Peoria, IL; Nordyke, Daniel S [Arlington Heights, IL; Crandell, Richard A [Morton, IL; Tomlins, Gregory [Peoria, IL; Fei, Dong [Peoria, IL; Panov, Alexander [Dunlap, IL; Lane, William H [Chillicothe, IL; Habeger, Craig F [Chillicothe, IL

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  7. The Role of Antisymmetric Exchange on the Quantum Interference between States of Different Spin Length in a dimeric Molecular Nanomagnet.

    Science.gov (United States)

    Del Barco, Enrique

    2009-03-01

    We report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel. Magnetization results obtained in two other versions of this compound, in which the ligands have been modified, show that slight variations of the relative distance between the Mn ions determine whether the molecule behaves as a rigid magnetic unit of spin S = 7 or as two exchange-coupled halves of spin S = 7/2. We analyze the effect of the Dzyaloshinskii-Moriya antisymmetric exchange interaction in a molecule with a centre of inversion symmetry and propose a formal model to account for the observed broken degeneracy that preserves the molecular inversion symmetry.

  8. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration

    Science.gov (United States)

    Liu, Wei; Ma, Weihua; Luo, Shihui; Zhu, Shengyang; Wei, Chongfeng

    2015-04-01

    This study mainly focuses on the mechanism of wheel tread spalling through wheelset longitudinal vibration that has been often neglected. Analysis of two actual cases of the wheel tread spalling problem leads to the conclusion that the wheel tread spalling is closely related to the wheelset longitudinal vibration in some locomotives, and many of these problems can be reasonably explained if the wheelset longitudinal vibration is considered. For better understanding of some abnormal wheel spalling problems, the formations of the wheelset longitudinal vibration and the wheel/rail contact parameters were analysed in the initial wheel tread spalling. With the preliminary analytical results, the wheelset longitudinal dynamic behaviour, the characteristics of wheel/rail contact and the mechanics in the condition of the wheelset longitudinal vibration were further studied quantitatively. The results showed that the wheelset longitudinal vibration changed not only the limit of these parameters and the position of principal stress, but also the direction of the principal stress on the surface of wheel/rail contact patch. It is likely that the significant stress changes provoke too much stress on the surface of wheel/rail contact patch, cause fatigue in wheel/rail contact patch and eventually lead to wheel tread spalling. The results of these studies suggest that the suppression of the wheelset longitudinal vibration extends wheel/rail life and the addition of a vertical damper with an ahead angle provides a possible solution to the wheel spalling problem.

  9. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  10. Modeling and analysis of linearized wheel-rail contact dynamics

    International Nuclear Information System (INIS)

    Soomro, Z.

    2014-01-01

    The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)

  11. A Ferris Wheel Accident at a Movable Amusement Park.

    Science.gov (United States)

    Cho, Young-Jin; Ji, Hong-Keun; Moon, Byung-Sun; Park, Ha-Sun; Goh, Jae-Mo; Park, Nam-Kyu; Choi, Don-Mook

    2017-05-01

    This study presented a Ferris wheel accident case. A Ferris wheel is composed of many parts, and the outmost ring of it is assembled using a lock pin. This accident occurred because the lock pin caught the door of a gondola and the gondola overturned. Five of the seven passengers in the gondola fell to the ground, along with the gondola's viewing window. The investigation revealed that the gondola became stuck when its door was caught by a lock pin at the Ferris wheel's three o'clock position. The contact between the door and the lock pin was due to a structural problem: There was not enough space allotted between the door and the lock pin. Therefore, if a passenger pushed on the gondola's door, the potential existed for contact between the door and the lock pin. © 2016 American Academy of Forensic Sciences.

  12. Railway Wheel Flat Detection Based on Improved Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Yifan Li

    2016-01-01

    Full Text Available This study explores the capacity of the improved empirical mode decomposition (EMD in railway wheel flat detection. Aiming at the mode mixing problem of EMD, an EMD energy conservation theory and an intrinsic mode function (IMF superposition theory are presented and derived, respectively. Based on the above two theories, an improved EMD method is further proposed. The advantage of the improved EMD is evaluated by a simulated vibration signal. Then this method is applied to study the axle box vibration response caused by wheel flats, considering the influence of both track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method is verified by a test rig experiment. Research results demonstrate that the improved EMD can inhibit mode mixing phenomenon and extract the wheel fault characteristic effectively.

  13. Wheel slip control of ABS using ER valve pressure modulator

    Science.gov (United States)

    Choi, Seung-Bok; Cho, Myung-Soo; Kim, Yong-Il; Choi, Young-Tai; Wereley, Norman M.

    2004-07-01

    This paper presents a wheel slip control via sliding mode controller for a new anti-lock brake system (ABS) of a passenger vehicle using electrorheological (ER) valve pressure modulator. The principal design parameters of the ER valves and hydraulic booster are appropriately determined by considering braking pressure variation during ABS operation. An electrically controllable pressure modulator using the ER valves is then constructed and its governing equations are derived. Subsequently, the pressure control performance of the new pressure modulator is experimentally evaluated. The governing equations of motion for a quarter car wheel model are derived and the sliding mode controller is formulated for wheel slip control. Hardware in the loop simulation (HILS) for braking performance evaluation is undertaken in order to demonstrate the effectiveness of the proposed ABS associated with the ER valve pressure modulator.

  14. Transmission access and retail wheeling. The key questions

    International Nuclear Information System (INIS)

    Casazza, J.A.

    1996-01-01

    The key questions involving transmission access and retail wheeling are discussed, distinguishing between opposing views regarding the effect on system costs and the environment, particularly on optimal planning involving matching capacity and demand, generation use, demand side management, and economic operations. Also discussed are contrasting views regarding the effect of cost control pressures, regulatory advantages and disadvantages, the impact on system reliability, and the stranding of investment. The author's key concern is the effect of retail wheeling upon optimal planning and operation i.e., will competitors be willing to provide one another with the cost and technical information required for coordination? In his worst scenario, retail wheeling may lead to substantial production cost increases, lessened reliability, and unfair cost-shifting between customer classes. More optimistically, production costs and reliability may be unaffected and the cost-shifting could be salubrious. 7 figs., 11 refs

  15. Fuzzy model for predicting the number of deformed wheels

    Directory of Open Access Journals (Sweden)

    Ž. Đorđević

    2015-10-01

    Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.

  16. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  17. Stochastic stability of four-wheel-steering system

    International Nuclear Information System (INIS)

    Huang Dongwei; Wang Hongli; Zhu Zhiwen; Feng Zhang

    2007-01-01

    A four-wheel-steering system subjected to white noise excitations was reduced to a two-degree-of-freedom quasi-non-integrable-Hamiltonian system. Subsequently we obtained an one-dimensional Ito stochastic differential equation for the averaged Hamiltonian of the system by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Thus, the stochastic stability of four-wheel-steering system was analyzed by analyzing the sample behaviors of the averaged Hamiltonian at the boundary H = 0 and calculating its Lyapunov exponent. An example given at the end demonstrated that the conclusion obtained is of considerable significance

  18. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...... feedback control law based on dynamic feedback linearization is sufficient to stabilize the system and ensure asymptotically stable tracking. Transitions to other modes are derived systematically from this model, whenever the configuration space of the controlled system has some fundamental singular points....... The stability of the hybrid control scheme is finally analyzed using Lyapunov-like arguments....

  19. Simulation of the ATLAS New Small Wheel Trigger Sysmtem

    CERN Document Server

    Saito, Tomoyuki; The ATLAS collaboration

    2017-01-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the original design value to explore higher energy scale. In order to benefit from the expected high luminosity performance, the first station of the ATLAS muon end-cap Small Wheel system will be replaced by a New Small Wheel (NSW) detector. The NSW provide precise track segment information to the muon Level-1 trigger to reduce fake triggers. This contribution will summarize a detail of the NSW trigger decision system, track reconstruction algorithm implemented into the trigger processor and results of performance studies on the trigger system.

  20. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    OpenAIRE

    I. S. Shumilov

    2016-01-01

    The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems"). These requirements are essential when creating the landing gear wheel brake control system (WBCS) and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, ele...

  1. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    Directory of Open Access Journals (Sweden)

    Stefan-S. Jester

    2014-11-01

    Full Text Available Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system and its synthetic precursor are investigated by scanning tunneling microscopy (STM at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs, where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  2. Wheel inspection system environment qualification and validation : final report for public distribution.

    Science.gov (United States)

    2009-03-20

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  3. Engineering report. Part 1: NASA wheel air seal development for space shuttle type environmental requirements

    Science.gov (United States)

    1973-01-01

    The sealing techniques are studied for existing aircraft wheel-tire designs to meet the hard vacuum .00001 torr and cold temperature -65 F requirements of space travel. The investigation covers the use of existing wheel seal designs.

  4. Using wheel temperature detector technology to monitor railcar brake system effectiveness.

    Science.gov (United States)

    2013-12-01

    Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...

  5. PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    Directory of Open Access Journals (Sweden)

    A. V. Kliuchnikov

    2012-01-01

    Full Text Available The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. 

  6. Development and application of resilient wheels in urban rail transit vehicle

    Directory of Open Access Journals (Sweden)

    Juan WEN

    Full Text Available Urban rail transit vehicles have been more and more attractive to people as a kind of fast, comfortable, energy-saving, environmental protection and safe transportation. But because of the vehicle noise and vibration, urban rail vehicles also face severe challenges. The research of resilient wheels has been continuously developed and improved. Based on the review of development background and structure sorts of resilient wheels, the advantages of resilient wheels are described, and the research status of noise and vibration reducing, infinite element strength analysis, vehicle dynamic analysis and the wheel-rail wear of resilient wheels are discussed. Taking the low-floor LRVs (light rail vehicles in domestic and overseas as example, the development and application of the resilient wheels in city rail transit is described, and the application prospects of the resilient wheels in LRVs in domestic and the future research direction of elastic wheel are discussed.

  7. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    Science.gov (United States)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  8. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  9. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  10. Exhaust gas filter

    International Nuclear Information System (INIS)

    Wada, Tadamasa; Hiraki, Akimitsu.

    1993-01-01

    A filter material formed by joining glass clothes to both surfaces of a glass fiber non-woven fabric is used. The filter material is disposed at the inside of a square filter material support frame made of stainless steel. The filter material is attached in a zig-zag manner in the flowing direction of the exhaust gases so as to increase the filtration area. Separators, for example, made of stainless steel are inserted between the filter materials. The separator is corrugated so as to sandwich and support the filter materials from both sides by the ridged crests. The longitudinal bottom of the separator formed by corrugating it defines a flow channel of the exhaustion gases. The longitudinal bottom is also used as a channel for back blowing air. With such a constitution, combustion gases of radioactive miscellaneous solid wastes can be completely filtered. In addition, a back wash can be conducted under high temperature. (I.N.)

  11. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  12. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... Nuclear structure at high spin. Figure 1. Schematic of the orientation of HPGe detector in GDA [4]. These signals were fed to custom-made data acquisition system Freedom [10] which was later used for data reduction. We recorded γ-ray fold of nuclear reaction using multiplicity filter made of BGO scin-.

  13. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  14. Daily exposure to a running wheel entrains circadian rhythms in mice in parallel with development of an increase in spontaneous movement prior to running-wheel access.

    Science.gov (United States)

    Yamanaka, Yujiro; Honma, Sato; Honma, Ken-ichi

    2013-12-01

    Entrainment of circadian behavior rhythms by daily exposure to a running wheel was examined in mice under constant darkness. Spontaneous movement was individually monitored for more than 6 mo by a thermal sensor. After establishment of steady-state free running, mice were placed in a different cage equipped with a running-wheel for 3 h once per day at 6 AM. The daily exchange was continued for 80 days. The number of wheel revolutions during exposure to the running wheel was also measured simultaneously with spontaneous movement. In 13 out of 17 mice, circadian behavior rhythm was entrained by daily wheel exposure, showing a period indistinguishable from 24 h. The entrainment occurred in parallel with an increase in spontaneous movement immediately prior to the daily wheel exposure. A similar preexposure increase was observed in only one of four nonentrained mice. The preexposure increase appeared in 19.5 days on average after the start of daily wheel exposure and persisted for 36 days on average after the termination of the exposure schedule. The preexposure increase was detected only when daily wheel exposure came into the activity phase of the circadian behavior rhythm, which was accompanied by an increase in the number of wheel revolutions. These findings indicate that a novel oscillation with a circadian period is induced in mice by daily exposure to a running wheel at a fixed time of day and suggest that the oscillation is involved in the nonphotic entrainment of circadian rhythms in spontaneous movement.

  15. Steered wheel for the support and/or steering of a vehicle, particularly hovercraft

    Energy Technology Data Exchange (ETDEWEB)

    Duell, H.J.; Kirchner, G.

    1977-04-07

    The invention concerns a steered wheel for the support or steering of a hovercraft, whose wheel suspension is provided with an eccentric journal for automatic setting in the direction of travel. So that the vehicle will not leave its track during changes of direction when the wheel is turned around the eccentric axis, according to the invention the wheel is supported on movable bearings at the journal in the direction of the driving axle.

  16. Residual Stress in Wheels: Comparison of Neutron Diffraction and Ultrasonic Methods, with Trends in RCF

    OpenAIRE

    Molyneux-Berry, Paul; Bevan, Adam; Zhang, S. Y; Kabra, S

    2014-01-01

    The critical damage mechanism on many GB passenger train wheels is Rolling Contact Fatigue (RCF) cracking in the rim. Evidence from field observations suggests that RCF damage occurs much more quickly as the wheelsets near the end of their life. Wheel manufacturing processes induce a compressive hoop stress in the wheel rim; variations in residual stress through the life of a wheel may influence the observed RCF damage rates.\\ud This paper describes experiments to measure residual stresses in...

  17. French-Canadian translation of the WheelCon-M (WheelCon-M-F) and evaluation of its validity evidence using telephone administration.

    Science.gov (United States)

    Rushton, Paula W; Routhier, François; Miller, William C; Auger, Claudine; Lavoie, Marie-Pier

    2015-01-01

    The objectives of this study were to: (1) translate the Wheelchair Use Confidence Scale for Manual Wheelchair Users (WheelCon-M) into a French-Canadian version (WheelCon-M-F); and (2) evaluate the WheelCon-M-F validity evidence based on response processes, internal structure, and relations with other variables. The WheelCon-M was translated from English to French using the Translation and Cultural Adaptation of Patient Reported Outcomes Measures - Principles of Good Practice guidelines. We used a test-retest design to examine the validity of the WheelCon-M-F with 24 community dwelling, experienced manual wheelchair users who had a variety of musculoskeletal and neurological diagnoses. The mean ± SD WheelCon-M-F score was 63.8 ± 19.9. All WheelCon-M-F items were either identical or similar in meaning to the WheelCon-M items. Clarification issues were identified with 27/63 items. Cronbach's alpha was 0.98 and the retest intraclass correlation coefficient was 0.87. The standard error of measurement and smallest real difference were 7.2 and 19.9, respectively. There were no floor or ceiling effects. WheelCon-M-F correlations with social support and participation were r = 0.54 and 0.78, respectively. The WheelCon-M-F is a valid outcome measure for assessing manual wheelchair confidence in the French-Canadian population. The WheelCon-M-F is a valid outcome measure available for assessing wheelchair confidence, a modifiable barrier to wheelchair use. Translation of the WheelCon-M into the WheelCon-M-F allows collection of both clinical and research wheelchair confidence data using the two official Canadian languages, English and French.

  18. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703

  19. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state-space NN, and the unscented Kalman filter is used to train NN's weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model.

  20. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  1. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  2. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  3. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  4. 16 CFR 1420.4 - Restrictions on three-wheel ATVs.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Restrictions on three-wheel ATVs. 1420.4... REGULATIONS REQUIREMENTS FOR ALL TERRAIN VEHICLES § 1420.4 Restrictions on three-wheel ATVs. Until a mandatory consumer product safety standard applicable to three-wheel ATVs promulgated pursuant to the Consumer...

  5. 16 CFR 1420.3 - Requirements for four-wheel ATVs.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for four-wheel ATVs. 1420.3... REGULATIONS REQUIREMENTS FOR ALL TERRAIN VEHICLES § 1420.3 Requirements for four-wheel ATVs. (a) Each ATV shall comply with all applicable provisions of the American National Standard for Four Wheel All-Terrain...

  6. Spinning magnetic trap for automated microfluidic assay systems†

    Science.gov (United States)

    Verbarg, Jasenka; Kamgar-Parsi, Kian; Shields, Adam R.; Howell, Peter B.; Ligler, Frances S.

    2012-01-01

    While sophisticated analyses have been performed using lab-on-chip devices, in most cases the sample preparation is still performed off chip. The global need for easy-to-use, disposable testing devices necessitates that sample processing is automated and that transport complexity between the processing and analytical components is minimal. We describe a complete sample manipulation unit for performing automated target capture, efficient mixing with reagents, and controlled target release in a microfluidic channel, using an array of spinning magnets. The “MagTrap” device consists of 6 pairs of magnets in a rotating wheel, situated immediately beneath the microchannel. Rotation of the wheel in the direction opposite to the continuous flow entraps and concentrates the bead-target complexes and separates them from the original sample matrix. As the wheel rotates and the active pair of magnets moves away from the microchannel, the beads are released and briefly flow downstream before being trapped and pulled upstream by the next pair of magnets. This dynamic and continuous movement of the beads ensures that the full surface area of each bead is exposed to reagents and prevents aggregation. The release of the target-bead complexes for further analysis is facilitated by reversing the rotational direction of the wheel to sweep the beads downstream. Sample processing with the MagTrap was demonstrated for the detection of E. coli in a range of concentrations (1 × 103, 1 × 104 and 1 × 106 cells ml−1). Results show that sample processing with the MagTrap outperformed the standard manual protocols, improving the detection capability while simultaneously reducing the processing time. PMID:22344487

  7. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  8. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  9. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  10. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  11. Autonomous mobile robot localization using Kalman filter

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Nabil Zhafri

    2017-01-01

    Full Text Available Autonomous mobile robot field has gain interest among researchers in recent years. The ability of a mobile robot to locate its current position and surrounding environment is the fundamental in order for it to operate autonomously, which commonly known as localization. Localization of mobile robot are commonly affected by the inaccuracy of the sensors. These inaccuracies are caused by various factors which includes internal interferences of the sensor and external environment noises. In order to overcome these noises, a filtering method is required in order to improve the mobile robot’s localization. In this research, a 2- wheeled-drive (2WD mobile robot will be used as platform. The odometers, inertial measurement unit (IMU, and ultrasonic sensors are used for data collection. Data collected is processed using Kalman filter to predict and correct the error from these sensors reading. The differential drive model and measurement model which estimates the environmental noises and predict a correction are used in this research. Based on the simulation and experimental results, the x, y and heading was corrected by converging the error to10 mm, 10 mm and 0.06 rad respectively.

  12. Short Communication: Vegetation response to wagon wheel camp ...

    African Journals Online (AJOL)

    Wagon wheel camp layouts have been favoured, in some quarters, for rotational grazing due to the economy and convenience of having the camps radially arranged around central facilities. A possible disadvantage of such layouts is the tendency for over-grazing near the hub and under-grazing at the extremities.

  13. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco

    2015-01-01

    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  14. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi

    2016-12-01

    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  15. Complex eigenvalue analysis of railway wheel/rail squeal | Goo ...

    African Journals Online (AJOL)

    The effect of parameters such as friction coefficient, wheel/rail contact position, axle load, etc. on the instable vibration was examined. The instability of the vibration system was sensitive to the stiffness of rail support. In lateral creepage when the adhesion coefficient was less than 0.1, instable vibration modes did not occur.

  16. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)

    SIDHARTHAN, R. K.

    2016-05-01

    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  17. Rating Pregnancy Wheel Applications Using the APPLICATIONS Scoring System.

    Science.gov (United States)

    Chyjek, Kathy; Farag, Sara; Chen, Katherine T

    2015-06-01

    To identify the top-rated pregnancy wheel applications (apps) using a newly developed APPLICATIONS scoring system. A list of pregnancy wheel apps was identified. Consumer-based and inaccurate apps were excluded. The APPLICATIONS scoring system was developed to rate the remaining apps. Application comprehensiveness was evaluated. Objective rating components included price, paid subscription, literature used, in-app purchases, connectivity to the Internet, advertisements, text search field, interdevice compatibility, and other components such as images or figures, videos, and special features. Subjective rating components were ease of navigation and subjective presentation. A complete list of 55 pregnancy wheel apps was created from three sources. Thirty-nine (71%) were consumer-based, inaccurate, or both, leaving 16 (29%) for analysis using the APPLICATIONS scoring system. More than two thirds of pregnancy wheel apps were excluded from our study secondary to being consumer-based, inaccurate, or both. This highlights the importance of identifying systematically, reviewing critically, and rating the thousands of available apps to health care providers to ensure accuracy and applicability. We propose that our APPLICATIONS scoring system be used to rate apps in all specialties with the goal of improving health care provider performance and thereby patient outcomes. III.

  18. Estimating Friction Parameters in Reaction Wheels for Attitude Control

    Directory of Open Access Journals (Sweden)

    Valdemir Carrara

    2013-01-01

    Full Text Available The ever-increasing use of artificial satellites in both the study of terrestrial and space phenomena demands a search for increasingly accurate and reliable pointing systems. It is common nowadays to employ reaction wheels for attitude control that provide wide range of torque magnitude, high reliability, and little power consumption. However, the bearing friction causes the response of wheel to be nonlinear, which may compromise the stability and precision of the control system as a whole. This work presents a characterization of a typical reaction wheel of 0.65 Nms maximum angular momentum storage, in order to estimate their friction parameters. It used a friction model that takes into account the Coulomb friction, viscous friction, and static friction, according to the Stribeck formulation. The parameters were estimated by means of a nonlinear batch least squares procedure, from data raised experimentally. The results have shown wide agreement with the experimental data and were also close to a deterministic model, previously obtained for this wheel. This model was then employed in a Dynamic Model Compensator (DMC control, which successfully reduced the attitude steady state error of an instrumented one-axis air-bearing table.

  19. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  20. Stuart Cloete's construction of voortrekker religion in Turning Wheels ...

    African Journals Online (AJOL)

    Stuart Cloete's novel of 1937, Turning Wheels, was unquestionably the most controversial of many fictional reconstructions of the Great Trek, a book which fell foul of Afrikaner nationalism and whose further importation into the Union of South Africa was long consequently banned. Religious motifs reflecting the popularised ...

  1. Development of New Wheel-Chair for Sports Competition

    Directory of Open Access Journals (Sweden)

    Akira Shionoya

    2018-03-01

    Full Text Available The purpose of this study was to develop the new wheel-chair which had the function to drive straight by one-hand operation. To perform this purpose, the driving force transmission axis (DFTA which had transmitted the driving force from the one side of wheel to another side of that was developed. The wheel-chair could drive straight by one-hand operation by the DFTA. The large torque, however, was generated in the DFTA, because the DFTA transmitted the driving force from the one side of wheel to another side by the axis of small diameter. Furthermore, the shear stress in the DFTA generated by this torque would lead to the DFTA break. The shear stress in the DFTA was calculated to examine the axial strength and durability. On the DETA of the wheelchair, the maximum shear stress calculated from the torque in driving was 39.53 MP and this was defined as the standard of the demand specifications as a strength and durability of the DFTA.

  2. performance (assessment) of two- wheel tractors for small holder

    African Journals Online (AJOL)

    CHIKA

    countered by an increased food demand. Fossil fuelled agricultural machinery offers a technically feasible ... into Nigeria and the demand has particularly been increasing in a place like Niger State where its use for the ... The engine is one cylinder, water cooled and hand- cranking type. The driving wheels are of two types; ...

  3. Using the Pottery Wheel to Explore Topics in Calculus

    Science.gov (United States)

    Farnell, Elin; Snipes, Marie A.

    2015-01-01

    Students sometimes struggle with visualizing the three-dimensional solids encountered in certain integral problems in a calculus class. We present a project in which students create solids of revolution with clay on a pottery wheel and estimate the volumes of these objects using Riemann sums. In addition to giving students an opportunity for…

  4. Wheel-rail interaction at short-wave irregularities

    NARCIS (Netherlands)

    Steenbergen, M.J.M.M.

    2008-01-01

    Short-wave irregularities in the wheel-rail interface are at the basis of track and vehicle damage and deterioration. On the short term, they result into high dynamic train-track interaction forces and a high energy input into the system that must be dissipated in the different system components or

  5. Performance Assessment of Two- Wheel Tractor on a Loamy Sand ...

    African Journals Online (AJOL)

    Field performance evaluation of a 9kW two-wheel tractor has been carried out. Field operations carried out include: disc ploughing, mould board ploughing, cultivation, cultivation cum planting and harvesting; following the types of accompanying implements available. The parameters measured and determined for each ...

  6. The TASC Wheel Supports a Honey Bee Challenge

    Science.gov (United States)

    Seeley, Claire

    2011-01-01

    The concept of TASC (Thinking Actively in a Social Context) was created by Belle Wallace (Wallace et al., 1993) as a model that can be used to nurture and develop thinking skills. As children work through the TASC wheel, the teacher has a very good opportunity to facilitate explicit conversations about thinking. This allows the children to grow in…

  7. Design of wheel-type walking-assist device

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk

    2006-03-15

    In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed.

  8. Three-wheeled scooter taxi: A safety analysis

    Indian Academy of Sciences (India)

    1Transportation Research and Injury Prevention Programme, Indian Institute of. Technology, Hauz Khas, New Delhi 110 016. 2TVS Motors Ltd, Hosur, Bangalore 635 109 e-mail: sudipto@me.iitd.ernet.in. Abstract. The rollover propensity of a three-wheeled scooter taxi used extensively on SE Asian roads is analysed in this ...

  9. Effect of machinery wheel load on grass yield

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    2010-01-01

    Effect of machinery wheel load on grass   Ole Green1, Rasmus N. Jørgensen2, Kristian Kristensen3, René Gislum3, Dionysis Bochtis1, & Claus G. Sørensen1   1University of Aarhus, Dept. of Agricultural Engineering 2University of Southern Denmark, Inst. of Chemical Eng., Biotechnology and Environmental...

  10. Development of a Large Scale, High Speed Wheel Test Facility

    Science.gov (United States)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  11. Prosthetic Rasa: Dance on Wheels and Challenged Kinesthetics

    Science.gov (United States)

    Vimal C., Akhila

    2017-01-01

    This paper analyses "Bharatanatyam on Wheels" by Ability Unlimited Foundation, Delhi. It interrogates the possibilities and challenges that disability performance presents to codifications in the form and grammar of "Bharatanatyam," a "classical" dance form of India. The Indian classical scriptures of performance…

  12. Three-wheeled scooter taxi: A safety analysis

    Indian Academy of Sciences (India)

    -wheel diesel-powered taxis (the so-called 'baby-taxis') account for more than one-third of the total number of kilometers traveled by all vehicles. In Bangkok 7,400 three-wheelers (the so-called. 'tuk-tuks') powered by LPG were on the roads.

  13. Disturbance rejection in formation keeping control of nonholonomic wheeled robots

    NARCIS (Netherlands)

    Jafarian, Matin; Vos, Ewoud; De Persis, Claudio; Scherpen, Jacquelien; Schaft, van der Arjan

    2016-01-01

    This paper presents the results of formation keeping control of a group of nonholonomic wheeled robots within the port-Hamiltonian framework and in the presence of matched input disturbances. Two scenarios on the internal damping of the dynamics of the robots are considered: strictly output passive

  14. Possibilities of using welding-on technologies in crane wheel ...

    Indian Academy of Sciences (India)

    WINTEC

    wearing where surface resistance was examined according to their weight loss. Influence of a particular ele- ment on the welds-on chemical composition was examined by EDX analyses. Keywords. Traverse crane wheel; weld-on; weld-on wire; wearing. 1. Introduction. The most common causes of machine component ...

  15. Cold Regions Test of Tracked and Wheeled Vehicles

    Science.gov (United States)

    2015-12-11

    2-704 as a general guideline): (1) The CTIS will remain off until the vehicle wheels are exercised on the chassis by driving a distance of 10 km...long cold spell has chilled the ground. Other causes are automobile exhaust or the compressed remnants of a snowfall. c. Black ice (sometimes known

  16. The Botswana medical eligibility criteria wheel: adapting a tool to ...

    African Journals Online (AJOL)

    The main objectives of this process were to present technical updates of the various contraceptive methods, to update the current medical conditions prevalent to Botswana and to adapt the MEC wheel to meet the needs of the Botswanian people. This commentary focuses on the adaptation process that occurred during the ...

  17. Analysis of Stress Distributions Under Lightweight Wheeled Vehicles

    Science.gov (United States)

    2013-10-09

    aLaboratory for Manufacturing and Productivity , Massachusetts Institute of Technology, Cambridge, MA 02141, USA. Abstract In recent years, the need for...are vectorial quantities, not to be confused with the tangential soil velocity which is only the component tangent to the wheel rim). The data clearly

  18. Development of Cad Software for Wheel Chair Design | Ayodeji ...

    African Journals Online (AJOL)

    Anthropometric data of Nigerian paraplegics was used to design wheel chair for the paraplegics. This was done by developing suitable software using Visual Basic, AutoCAD, Access and Corel- Draw programs. The software developed is capable of designing an ergonomically viable wheelchair for any category of ...

  19. Synthesis and crystal structure of a wheel-shaped supramolecular ...

    Indian Academy of Sciences (India)

    Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. DEEPAK GUPTA, PALANISAMY RAJAKANNU, BHASKARAN SHANKAR,. FIRASAT HUSSAIN and MALAICHAMY SATHIYENDIRAN. ∗. Department of Chemistry, University of Delhi, Delhi 110 007, India e-mail: mvdiran@yahoo.com; ...

  20. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  1. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  2. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  3. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  4. Variational Bayesian Filtering

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Quinn, A.

    2008-01-01

    Roč. 56, č. 10 (2008), s. 5020-5030 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian filtering * particle filtering * Variational Bayes Subject RIV: BC - Control Systems Theory Impact factor: 2.335, year: 2008 http://library.utia.cas.cz/separaty/2008/AS/smidl-variational bayesian filtering.pdf

  5. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  6. Simulation modeling of wheeled vehicle dynamics on the stand "Roller"

    Directory of Open Access Journals (Sweden)

    G. O. Kotiev

    2014-01-01

    Full Text Available The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.It is known that the benefits of test "M" type (using a roller dynamometer include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.

  7. Wheeled mobility (wheelchair) service delivery: scope of the evidence.

    Science.gov (United States)

    Greer, Nancy; Brasure, Michelle; Wilt, Timothy J

    2012-01-17

    Identifying the appropriate wheelchair for a person who needs one has implications for both disabled persons and society. For someone with severe locomotive problems, the right wheelchair can affect mobility and quality of life. However, policymakers are concerned about the increasing demand for unnecessarily elaborate chairs. The Office of Inspector General, U.S. Department of Health and Human Services, issued 4 reports between 2009 and 2011 detailing fraud and misapplication of Medicare funds for powered wheelchairs, more than a decade after similar concerns were first raised by 4 contractors who process claims for durable medical equipment. Subsequent concerns have arisen about whether some impaired persons who need wheeled mobility devices may now be inappropriately denied coverage. A transparent, evidence-based approach to wheeled mobility service delivery (the matching of mobility-impaired persons to appropriate devices and supporting services) might lessen these concerns. This review describes the process of wheeled mobility service delivery for long-term wheelchair users with complex rehabilitation needs and presents findings from a survey of the literature (published and gray) and interviews with key informants. Recommended steps in the delivery process were identified in textbooks, guidelines, and published literature. Delivery processes shared many commonalities; however, no research supports the recommended approaches. A search of bibliographic databases through March 2011 identified 24 studies that evaluated aspects of wheeled mobility service delivery. Most were observational, exploratory studies designed to determine consumer use of and satisfaction with the process. The evidence base for the effectiveness of approaches to wheeled mobility service delivery is insufficient, and additional research is needed to develop standards and guidelines.

  8. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  9. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    Science.gov (United States)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  10. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Science.gov (United States)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  11. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  12. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  13. Independent task Fourier filters

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    Since the early 1960s, a major part of optical computing systems has been Fourier pattern recognition, which takes advantage of high speed filter changes to enable powerful nonlinear discrimination in `real time.' Because filter has a task quite independent of the tasks of the other filters, they can be applied and evaluated in parallel or, in a simple approach I describe, in sequence very rapidly. Thus I use the name ITFF (independent task Fourier filter). These filters can also break very complex discrimination tasks into easily handled parts, so the wonderful space invariance properties of Fourier filtering need not be sacrificed to achieve high discrimination and good generalizability even for ultracomplex discrimination problems. The training procedure proceeds sequentially, as the task for a given filter is defined a posteriori by declaring it to be the discrimination of particular members of set A from all members of set B with sufficient margin. That is, we set the threshold to achieve the desired margin and note the A members discriminated by that threshold. Discriminating those A members from all members of B becomes the task of that filter. Those A members are then removed from the set A, so no other filter will be asked to perform that already accomplished task.

  14. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed......Filtering every global constraint of a CPS to are consistency at every search step can be costly and solvers often compromise on either the level of consistency or the frequency at which are consistency is enforced. In this paper we propose two randomized filtering schemes for dense instances...

  15. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  16. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  17. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  18. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  19. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  20. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent