WorldWideScience

Sample records for spinning bloch states

  1. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons.

    Science.gov (United States)

    Gradhand, M; Fedorov, D V; Pientka, F; Zahn, P; Mertig, I; Györffy, B L

    2012-05-30

    Recent progress in wave packet dynamics based on the insight of Berry pertaining to adiabatic evolution of quantum systems has led to the need for a new property of a Bloch state, the Berry curvature, to be calculated from first principles. We report here on the response to this challenge by the ab initio community during the past decade. First we give a tutorial introduction of the conceptual developments we mentioned above. Then we describe four methodologies which have been developed for first-principle calculations of the Berry curvature. Finally, to illustrate the significance of the new developments, we report some results of calculations of interesting physical properties such as the anomalous and spin Hall conductivity as well as the anomalous Nernst conductivity and discuss the influence of the Berry curvature on the de Haas-van Alphen oscillation.

  2. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    DEFF Research Database (Denmark)

    H. Lieb, Elliott; Solovej, Jan Philip

    2014-01-01

    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb...

  3. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  4. Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model.

    Science.gov (United States)

    Ma, Yu-Quan

    2014-10-01

    We study the Riemannian metric and the Euler characteristic number of the Bloch band in a one-dimensional spin model with multisite spins exchange interactions. The Euler number of the Bloch band originates from the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone. We study this approach analytically in a transverse field XY spin chain with three-site spin coupled interactions. We define a class of cyclic quantum distance on the Bloch band and on the ground state, respectively, as a local characterization for quantum phase transitions. Specifically, we give a general formula for the Euler number by means of the Berry curvature in the case of two-band models, which reveals its essential relation to the first Chern number of the band insulators. Finally, we show that the ferromagnetic-paramagnetic phase transition in zero temperature can be distinguished by the Euler number of the Bloch band.

  5. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  6. Phase-space dynamics of semiclassical spin- 1/2 Bloch electrons.

    Science.gov (United States)

    Kerr, W C; Rave, M J; Turski, L A

    2005-05-06

    Following recent interest in a kinetic description of the semiclassical Bloch electron dynamics, we propose a new formulation based on the previously developed Lie-Poisson formulation of dynamics. It includes modifications required to account for the Berry curvature contribution to the electron's equation of motion as well as essential ingredients of a quantum treatment of spin- 1/2 degrees of freedom. Our theory is also manifestly gauge invariant and thus permits inclusion of the electron interactions. The scope of our formulation extends beyond its solid state physics motivation and includes recently discussed noncommutative generalizations of classical mechanics as well as historically important models from quantum gravity physics.

  7. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.

  8. Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions

    Science.gov (United States)

    Mruczkiewicz, M.; Gruszecki, P.; Krawczyk, M.; Guslienko, K. Y.

    2018-02-01

    We study azimuthal spin-wave (SW) excitations in a circular ferromagnetic nanodot in different inhomogeneous, topologically nontrivial magnetization states, specifically, vortex, Bloch-type skyrmion, and Néel-type skyrmion states. A continuous transition between these states is realized by gradually changing the out-of-plane magnetic anisotropy and the Dzyaloshinskii-Moriya exchange interaction (DMI), and the corresponding SW spectra are calculated for each state. We observe the lifting of degeneracy of SW mode frequencies and a change in the systematics of frequency levels. The latter effect is induced by the geometric Berry phase, which occurs in SWs localized at the edge of the dot in the vortex state, and vanishes in the skyrmion states. Furthermore, channeling of edge-localized azimuthal SWs and a related large frequency splitting are observed in the skyrmion states. This is attributed to DMI-induced nonreciprocity, while the coupling of the breathing and gyrotropic modes is related to the skyrmion motion. Finally, we demonstrate efficient coupling of the dynamic magnetization to a uniform magnetic field in nanodots of noncircular symmetry in the skyrmion states.

  9. Selective scattering between Floquet-Bloch and Volkov states in a topological insulator

    Science.gov (United States)

    Mahmood, Fahad; Chan, Ching-Kit; Alpichshev, Zhanybek; Gardner, Dillon; Lee, Young; Lee, Patrick A.; Gedik, Nuh

    2016-04-01

    The coherent optical manipulation of solids is emerging as a promising way to engineer novel quantum states of matter. The strong time-periodic potential of intense laser light can be used to generate hybrid photon-electron states. Interaction of light with Bloch states leads to Floquet-Bloch states, which are essential in realizing new photo-induced quantum phases. Similarly, dressing of free-electron states near the surface of a solid generates Volkov states, which are used to study nonlinear optics in atoms and semiconductors. The interaction of these two dynamic states with each other remains an open experimental problem. Here we use time- and angle-resolved photoemission spectroscopy (Tr-ARPES) to selectively study the transition between these two states on the surface of the topological insulator Bi2Se3. We find that the coupling between the two strongly depends on the electron momentum, providing a route to enhance or inhibit it. Moreover, by controlling the light polarization we can negate Volkov states to generate pure Floquet-Bloch states. This work establishes a systematic path for the coherent manipulation of solids via light-matter interaction.

  10. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    Science.gov (United States)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  11. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  12. Behavior of the magnetization in spin-locking magnetic resonance imaging using numerical solutions to the time-dependent Bloch equations

    Science.gov (United States)

    Murase, Kenya

    2012-12-01

    We present a simple method for calculating the magnetization in spin-locking (SL) magnetic resonance imaging (MRI), in which a simple matrix equation was derived for solving the time-dependent Bloch equations in the 2-pool chemical exchange model. We also present a method for visualizing the trajectory of a magnetization vector in a three-dimensional (3D) space. The longitudinal relaxation time in the rotating frame (T1ρ) was calculated by fitting the z component of magnetization for a duration of SL (tSL) (Mz(tSL)) to Mz(tSL) = (M0 - Mzss)exp ( - tSL/T1ρ) + Mzss, where M0 and Mzss denote the thermal equilibrium and steady-state z component of magnetization, respectively, and was compared with that calculated from the solution given by Trott and Palmer. Our 3D plots clearly visualized the effect of SL. When the population of the two pools was highly asymmetric, there was good agreement between the T1ρ values obtained by our method and Trott and Palmer's solutions. The difference between them increased with decreasing asymmetry in the population of the two pools. Our method will be useful for better understanding and optimization of SL MRI, because it allows us to calculate the magnetization vector and to visualize its trajectory simply and quickly.

  13. Visualizing spin states using the spin coherent state representation

    Science.gov (United States)

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  14. Optical excitation of valley and spin currents of chiral edge states in graphene with Rashba spin-orbital coupling

    Science.gov (United States)

    Luo, Ma; Li, Zhibing

    2017-10-01

    Graphene on a substrate with a topological line defect possesses chiral edge states that exhibit linear dispersion and have opposite Fermi velocities for two valleys. The chiral edge states are localized at the line defect. With the presence of Rashba spin-orbital coupling, the dispersion of the chiral edge states splits into two. The optical excitation is modeled by the generalized semiconductor Bloch equation based on tight-binding theory. Charge, valley, and spin currents generated by normally incident plane waves through the photogalvanic effect as well as those generated by oblique light through the surface-plasmon drag effect are studied. Conditions for optical generation of purely localized valley or spin currents, which are solely originated from the chiral edge states, are discussed.

  15. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  16. High spin states in Cu

    Indian Academy of Sciences (India)

    The mechanism for the generation of high angular momentum states in the restricted va- lence space around ... The generation of higher spin states re- .... Channel Number. 1. Counts. 0. 200. 400. 600. Channel Number. 1. Counts multiplicity. 0cp. 1cp. 2cp. 3cp. 4cp. 5cp. 0a. 1a. 2a. Charged particle. 6cp. Alpha multiplicity. −.

  17. Generalized Bloch theorem and chiral transport phenomena

    Science.gov (United States)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  18. Spherical designs and anticoherent spin states

    International Nuclear Information System (INIS)

    Crann, Jason; Pereira, Rajesh; Kribs, David W

    2010-01-01

    Anticoherent spin states are quantum states that exhibit maximally nonclassical behaviour in a certain sense. Any spin state whose Majorana representation is a Platonic solid is called a perfect state. By direct calculation, it has been shown that any perfect state is an anticoherent spin state. We show that any spin state whose Majorana representation is both the orbit of a finite subgroup of O(3) and a spherical t-design must be an anticoherent spin state of order t. Since all Platonic solids are spherical designs, this result gives an explanation of the anticoherence of perfect states and explains their observed order. We also show that any spin state whose Majorana representation lies in any single open hemisphere cannot be anticoherent of any order. This result is then used to give further relations between spherical designs and anticoherent spin states. We also pose some questions relating spherical designs and geometric entanglement.

  19. High spin states in Cu

    Indian Academy of Sciences (India)

    September 2000 physics pp.L471–L478. High spin states in. 63. Cu. B MUKHERJEE. ½,¾. , S MURALITHAR. ½. , R P SINGH. ½. , R KUMAR. ½. , K RANI. ½. ,. S C PANCHOLI. ¿ and R K BHOWMIK. ½. ½. Nuclear Science Centre, P.B. No. 10502, New Delhi 110 067, India. 2. Jawaharlal Nehru University, New Delhi 110 ...

  20. Excited state electron spin coherence (ESESC) studies of triplet states in molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Tarrasch, M.E.

    1978-02-01

    The field of coherent spectroscopy of two-level systems is applied to the lowest triplet state of organic molecules. By neglecting the triplet sublevel not coupled by the field, it is possible to describe the remaining two levels with Feynman-Vernon-Hellwarth geometrical representation of a general two-level system. The equations of motion of the pseudomagnetization are derived after transformation to the rotating frame, as are Bloch-type equations which include phenomenological relaxation times. The loss of coherence due to exchange between triplet states with different Larmor frequencies but identical zero-field dipolar tensor axes is then discussed. By writing two sets of coupled Bloch equations, expressions for the effective decay rate and frequency shift of the experimentally monitored triplet system are derived and discussed in the limits of slow and rapid exchange. This analysis is applied to intramolecular tunneling between different configurations of cyclopentanone. It is shown by both spin locking and CW spectra that the tunneling rate is considerably slower than the phosphorescence decay rate of the lowest triplet state. Rotary echoes are considered, both on- and off-resonance, with Average Hamiltonian theory. It is shown that relaxation fields perpendicular to the driving field are averaged while those parallel to it are not. The inhomogeneity in the broadening mechanism is completely removed by on-resonance rotary echoes but only partially eliminated by off-resonance rotary echoes. Calculations for off-resonance rotary echo intensities are presented and extended to include triplet sublevel population kinetics and inhomogeneous broadening. Finally, experimental observation of rotary echoes in several 1,2,4,5-Tetrachlorobenzene systems is reported and compared with the theoretical predictions made.

  1. Spin state switching in iron coordination compounds

    Directory of Open Access Journals (Sweden)

    Philipp Gütlich

    2013-02-01

    Full Text Available The article deals with coordination compounds of iron(II that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices.The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II, with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

  2. Electronic states in crystals of finite size quantum confinement of bloch waves

    CERN Document Server

    Ren, Shang Yuan

    2017-01-01

    This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...

  3. Quantum spin liquid and spin ice states in new pyrochlores

    Science.gov (United States)

    Sibille, Romain

    Magnetic systems with competing interactions can adopt exotic ground states. A particularly promising class is that of the geometrically frustrated magnets, such as the A2B2O7 pyrochlores, in which unusual spin liquids appear. Some of these phases feature short-range correlated states analogous to a Coulomb phase and give rise to emergent quasiparticle excitations. Although cases like the classical spin ice are reasonably well understood, the theoretical expectation is that quantum fluctuations lead to novel phases which are quantum spin liquids (QSLs). For instance, the quantum spin ice (QSI) is a generalization of the classical spin ice state to include quantum fluctuations, such that the effective theory becomes emergent quantum electrodynamics - the classical monopoles become coherent quantum quasiparticles, and a novel excitation playing the role of the photon appears. In this talk, I will present results on three novel materials with potential for QSL states. Each of them corresponds to a way to potentially strengthen the role of quantum fluctuations on the ground state properties of pyrochlore magnets. Firstly, I will demonstrate that, in Tb2Hf2O7, where a sizeable gap isolates the non-Kramers ground state doublet at low temperature, a large amount of anion Frenkel disorder leads to quenched random crystal fields and disordered magnetic interactions. The detailed study of this material demonstrates that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly-fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom. Secondly, I will present results on another QSL candidate based on non-Kramers ions, Pr2Hf2O7, which displays striking characteristics of the ferromagnetic correlations expected in a QSI. Finally, in the pyrochlore Ce2Sn2O7, where macroscopic measurements suggest an antiferromagnetic liquid ground state with quantum fluctuations, I will present

  4. Controlled Population of Floquet-Bloch States via Coupling to Bose and Fermi Baths

    Directory of Open Access Journals (Sweden)

    Karthik I. Seetharam

    2015-12-01

    Full Text Available External driving is emerging as a promising tool for exploring new phases in quantum systems. The intrinsically nonequilibrium states that result, however, are challenging to describe and control. We study the steady states of a periodically driven one-dimensional electronic system, including the effects of radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir. Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state distribution can be controlled using the momentum and energy relaxation pathways provided by the coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits incompressible behavior, while hosting a small density of excitations. We discuss transport signatures and describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet topological insulators.

  5. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  6. Mesonic states in quantum spin ice

    Science.gov (United States)

    Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji

    We study magnetic monopoles in quantum spin ice, whose dynamics is induced by a transverse field term. We find that the bipartiteness of the state graph of the model and the local spin ice rule constraints result in the presence of an approximately flat band at the classical energy of the nearest neighbor monopole pair. The degeneracy of the so-called mesonic states making up the flat band splits at the same order as the spin ice ground state manifold. We show that the mesonic states result in a crisp neutron scattering signature of magnetic monopoles in the system, and that the momentum dependence of the structure factor may allow for the detection of quantum fluctuations in a spin ice system near the classical limit. This work was supported by the Helmholtz Virtual Institute New States of Matter and their Excitations, NSF Grant No. DMR-1311781; Alexander von Humboldt Foundation; DFG via SFB 1143; and LabEX ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*.

  7. High-spin states in 66Zn

    International Nuclear Information System (INIS)

    Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.

    1975-01-01

    The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr

  8. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  9. Low-spin states of 23Na

    International Nuclear Information System (INIS)

    Bakkum, E.L.

    1987-01-01

    A study of 23 Na via the 22 Ne(p,γ) 23 Na and 23 Na(γ,γ) 23 Na reactions is presented. Only a limited number of resonances has been studied, selected on the basis of strong excitation of the lowest levels of which the spin was unknown. As a result the spins are now known of all levels of 23 Na with excitation energies up to 7 MeV, except for a few high-spin states which are too weakly excited in the decay of the known 22 Ne(p,γ) resonances. The mean lifetimes of the 23 Na levels at 4.43 and 7.89 MeV were found to be 350±70 and 220±17 attoseconds (1 attosecond = 10 -18 seconds) respectively. 97 refs.; 22 figs.; 12 tabs

  10. Strong Linear Dichroism in Spin-Polarized Photoemission from Spin-Orbit-Coupled Surface States.

    Science.gov (United States)

    Bentmann, H; Maaß, H; Krasovskii, E E; Peixoto, T R F; Seibel, C; Leandersson, M; Balasubramanian, T; Reinert, F

    2017-09-08

    A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

  11. Bloch — Sulzberger syndrome

    Directory of Open Access Journals (Sweden)

    Slesarenko N.A.

    2015-09-01

    Full Text Available Five clinical observations in pediatric patients with Bloch — Sulzberger syndrome are presented. The observation had been performed for six months. The differential diagnosis depending on the stage of the disease was done. The article contains variants of treating patients of this category.

  12. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xi-guang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn; Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Wang, D. [Department of Physics, National University of Defense Technology, Changsha 410073 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  13. Holographic spin networks from tensor network states

    Science.gov (United States)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.

    2018-01-01

    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  14. Spin State Estimation of Tumbling Small Bodies

    Science.gov (United States)

    Olson, Corwin; Russell, Ryan P.; Bhaskaran, Shyam

    2016-06-01

    It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. "tumbling"). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.

  15. Factorized ground state in dimerized spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Gian Luca, E-mail: gianluca@ifisc.uib-csic.e [Institute for Cross-Disciplinary Physics and Complex Systems, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain)

    2010-09-01

    The possibility of observing factorized ground states in dimerized spin systems is studied. A set of sufficient conditions is derived which allows one to establish whether or not it is possible to have factorization both in nearest-neighbour and long-range Hamiltonians. These conditions can be derived by forcing factorization for each of the pairwise terms of the total Hamiltonian. Due to the peculiar structure of a dimerized chain, an antiferromagnetic factorized ground state of the kind |nearr), |nearr), |nwarr), |nwarr) (forbidden in regular chains) is possible.

  16. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  17. Anomalous Tunneling of Spin Wave in Polar State of Spin-1 BEC

    International Nuclear Information System (INIS)

    Watabe, Shohei; Ohashi, Yoji; Kato, Yusuke

    2012-01-01

    We investigate tunneling properties of collective spin-wave excitations in the polar state of a spin-1 spinor Bose-Einstein condensate. Within the mean-field theory at T = 0, we show that when the condensate is in the critical supercurrent state, the spin wave mode exhibits perfect transmission through a nonmagnetic potential barrier in the low energy limit, unless the strength of a spin-independent interaction c o equals that of a spin-dependent interaction c o Such an anomalous tunneling behavior is absent in the case of a magnetic barrier. We also clarify a scaling law of the transmission probability as a function of the mode energy.

  18. Anomalous Tunneling of Spin Wave in Polar State of Spin-1 BEC

    Science.gov (United States)

    Watabe, Shohei; Kato, Yusuke; Ohashi, Yoji

    2012-12-01

    We investigate tunneling properties of collective spin-wave excitations in the polar state of a spin-1 spinor Bose-Einstein condensate. Within the mean-field theory at T = 0, we show that when the condensate is in the critical supercurrent state, the spin wave mode exhibits perfect transmission through a nonmagnetic potential barrier in the low energy limit, unless the strength of a spin-independent interaction co equals that of a spin-dependent interaction co Such an anomalous tunneling behavior is absent in the case of a magnetic barrier. We also clarify a scaling law of the transmission probability as a function of the mode energy.

  19. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  20. Bloch oscillations in organic and inorganic polymers

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; de Almeida Fonseca, Antonio Luciano; e Silva, Geraldo Magela

    2017-04-01

    The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion—those polaron profile signatures are absent—nor in the energy levels—as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.

  1. A new permutational behaviour of spin -3/2 states

    International Nuclear Information System (INIS)

    Jayaraman, J.; Nobre, M.A.S.

    1982-01-01

    A new permutational behaviour of spin -3/2 states under the symetric group S 3 defined solely on the spin -3/2 space is demonstrated. The transposition elements of S 3 are expressed succintly in terms of the squares of the spin -3/2 matrices. (Author) [pt

  2. Yrast and high spin states in 22Ne

    International Nuclear Information System (INIS)

    Szanto, E.M.; Toledo, A.S. de

    1982-08-01

    High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt

  3. Quantum communication and state transfer in spin chains

    International Nuclear Information System (INIS)

    Van der Jeugt, Joris

    2011-01-01

    We investigate the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. We consider first the simplest possible spin chain, where the spin chain data (the nearest neighbour interaction strengths and the magnetic field strengths) are constant throughout the chain. The time evolution of a single spin state is determined, and this time evolution is illustrated by means of an animation. Some years ago it was discovered that when the spin chain data are of a special form so-called perfect state transfer takes place. These special spin chain data can be linked to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials. We discuss here the case related to Krawtchouk polynomials, and illustrate the possibility of perfect state transfer by an animation showing the time evolution of the spin chain from an initial single spin state. Very recently, these ideas were extended to discrete orthogonal polynomials of q-hypergeometric type. Here, a remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. This case is discussed here, and again illustrated by means of an animation.

  4. Skyrmion clusters from Bloch lines in ferromagnetic films

    KAUST Repository

    Garanin, Dmitry A.

    2017-12-29

    Conditions under which various skyrmion objects emerge in experiments on thin magnetic films remain largely unexplained. We investigate numerically centrosymmetric spin lattices in films of finite thickness with ferromagnetic exchange, magnetic anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination of Bloch lines, the magnetic domains evolve into individual skyrmions, biskyrmions, or more complex topological objects. While the geometry of such objects is sensitive to the parameters, their topological charge is uniquely determined by the topological charge of Bloch lines inside the magnetic domain from which the object emerges.

  5. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  6. Multiple spin-state scenarios in organometallic reactivity

    NARCIS (Netherlands)

    Dzik, W.I.; Böhmer, W.; de Bruin, B.; Swart, M.; Costas, M.

    2016-01-01

    This chapter gives an overview of the different spin-state crossing scenarios affecting the reactivity of organometallic compounds. It focuses on the effects of crossing spin states in a number of elementary reactions typically observed for organometallic compounds, such as ligand exchange,

  7. Classical ground states of symmetric Heisenberg spin systems

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Luban, Marshall

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems

  8. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  9. Quantum state transfer in spin chains via shortcuts to adiabaticity

    Science.gov (United States)

    Huang, Bi-Hua; Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2018-01-01

    Based on shortcuts to adiabaticity and quantum Zeno dynamics, we present a protocol to implement quantum state transfer (QST) in a quantum spin-1/2 chain. In the protocol, the complex Hamiltonian of an N -site system is simplified, and a simple effective Hamiltonian is present. It is shown that only the control of the coupling strengths between the boundary spins and the bulk spins are required for QST. Numerical simulations demonstrate that the protocol possesses high efficiency and is robust against the decay and the fluctuations of the control fields. The protocol might provide an alternative choice for transferring quantum states via spin chain systems.

  10. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  11. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    Science.gov (United States)

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2017-10-31

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    Science.gov (United States)

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  13. Effect of Second-Order Spin-Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems.

    Science.gov (United States)

    Sousa, Carmen; Domingo, Alex; de Graaf, Coen

    2017-11-16

    The second-order spin-orbit coupling is evaluated in two transition-metal complexes to establish the effect on the deactivation mechanism of the excited low-spin state in systems that undergo spin transitions under the influence of light. We compare the standard perturbational approach to calculate the second-order interaction with a variational strategy based on the effective Hamiltonian theory and show that the former one can only be applied in some special cases and even then gives results that largely overestimate the interaction. The combined effect of geometry distortions and second-order spin-orbit coupling leads to sizeable interactions for states that are nearly uncoupled in the symmetric (average) structure of the complex. This opens the possibility of a direct deactivation from the singlet and triplet states of the metal-to-ligand charge-transfer manifold to the final high-spin state as suggested from the interpretation of experimental data but so far not supported by theoretical descriptions of the light-induced spin crossover. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  15. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  16. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  17. Optimized dynamical control of state transfer through noisy spin chains

    Science.gov (United States)

    Zwick, Analia; Álvarez, Gonzalo A.; Bensky, Guy; Kurizki, Gershon

    2014-06-01

    We propose a method of optimally controlling the tradeoff of speed and fidelity of state transfer through a noisy quantum channel (spin-chain). This process is treated as qubit state-transfer through a fermionic bath. We show that dynamical modulation of the boundary-qubits levels can ensure state transfer with the best tradeoff of speed and fidelity. This is achievable by dynamically optimizing the transmission spectrum of the channel. The resulting optimal control is robust against both static and fluctuating noise in the channel's spin-spin couplings. It may also facilitate transfer in the presence of diagonal disorder (on site energy noise) in the channel.

  18. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  19. Probing photoinduced spin states in spin-crossover molecules with neutron scattering

    Science.gov (United States)

    Ridier, K.; Craig, G. A.; Damay, F.; Fennell, T.; Murrie, M.; Chaboussant, G.

    2017-03-01

    We report a neutron-scattering investigation of the spin-crossover compound [Fe (ptz) 6] (BF4)2 , which undergoes an abrupt thermal spin transition from high spin (HS), S =2 , to low spin (LS), S =0 , around 135 K. The HS magnetic state can be restored at low temperature under blue/green light irradiation. We have developed a specially designed optical setup for neutron scattering to address the magnetic properties of the light-induced HS state. By using neutron diffraction, we demonstrate that significant HS/LS ratios (of up to 60%) can be obtained with this experimental setup on a sample volume considered large (400 mg), while a complete recovery of the LS state is achieved using near-infrared light. Finally, with inelastic neutron scattering (INS) we have observed magnetic transitions arising from the photo-induced metastable HS S =2 state split by crystal-field and spin-orbit coupling. We interpret the INS data assuming a spin-only model with a zero-field splitting of the S =2 ground state. The obtained parameters are D ≈-1.28 ±0.03 meV and |E |≈0.08 ±0.03 meV. The present results show that in situ magnetic inelastic neutron-scattering investigations on a broad range of photomagnetic materials are now possible.

  20. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  1. An Ising spin state explanation for financial asset allocation

    Science.gov (United States)

    Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit

    2016-03-01

    We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.

  2. A preliminary survey on parasitic occurrence in indigenous climbing perch, Anabas testudineus (Bloch, 1972 from West Bengal state of India

    Directory of Open Access Journals (Sweden)

    Basudev Mandal

    2016-08-01

    Full Text Available Objective: To describe the parasitic infestations of Anabas testudineus (A. testudineus collected from three different fish producing districts of West Bengal state in India. Methods: A total number of 75 specimens of A. testudineus were collected from different floodplain areas of West Bengal, India. These specimens were examined for parasites using established techniques after measuring basic morphometric parameters. Results: A total 165 individual of 20 parasites (13 ectoparasites and 7 endoparasites belonging to 7 phyla were recorded from 64 infected A. testudineus. Among the observed parasites, 8 were protozoan including 3 ciliates; 2 monogenic trematodes, 2 strigeidid trematodes, 1 nematode, 3 crustaceans, 3 myxozoans and 1 echinorhynchus acanthocephalan parasites. The quantitative abundance of parasites were highest in gill (37% followed by body outer layer (35% and intestine (28%. District wise quantitative count of parasites in different investigated organ from A. testudineus revealed that North 24 Parganas is highly infected followed by West Midnapore and East Midnapore. The highest prevalence (% and mean abundance of parasitic occurrence was observed in North 24 Parganas followed by West Midnapore and East Midnapore. The highest mean intensity was found at West Midnapore followed by North 24 Parganas and East Midnapore. Conclusions: Especially West Bengal state of India, inland culture and capture fishery mainly rural based and operated by poor farmers. Developing right kind of interventions and management practice can prevent adverse impact of diseases and assist poor farmers for sustainable production.

  3. Cycloid trajectory for a spin in a rotating magnetic field

    Science.gov (United States)

    Oh, Sangchul; Hu, Xuedong

    2013-03-01

    A cycloid is a curve traced by a point on the rim of a circle rolling on a straight (or in general, a base) line. In classical mechanics, it is known as the solution of two famous problems: the brachistochrone (least-time) curve and tautochrone (equal-time) curve. Here we show that a cycloid is the quantum trajectory on the Bloch sphere when a spin is dragged along by a rotating magnetic field. Here an imaginary circle, whose radius is determined by how fast the magnetic field is rotating, rolls on the base line of the rotating magnetic field on the Bloch sphere. If the magnetic field rotates slower, the radius of the rolling circle shrinks (to a point at the adiabatic limit, when the trajectory traces a circle that spans a solid angle proportional to the Berry phase). We find that like classical cycloid curves, the curtate cycloid on a Bloch sphere is generated for initial states within a circle on the Bloch sphere surface, and a prolate cycloid results from initial states outside of this circle. If the initial state is given by the center of the circle, the quantum trajectory is a line of a constant latitude on the Bloch sphere, parallel to the curve of the rotating magnetic field.

  4. Spin-liquid state in an inhomogeneous periodic Anderson model

    Science.gov (United States)

    Caro, R. C.; Franco, R.; Silva-Valencia, J.

    2018-02-01

    We studied the ground state of alkaline-earth-metal atoms confined in one-dimensional optical lattices with an effective hybridization generated by a suitable laser field. This system is modeled by the periodic Anderson model plus a quadratic confining potential, and we adopted the density-matrix renormalization group to calculate its ground state. We found a one-to-one correspondence between the local variance, the local von Neumann entropy, and the on-site spin-spin correlation. For low global densities, we observed the formation of local singlets between delocalized and localized atoms and found Kondo spin-liquid domains that can be tuned with the confining potential, the hybridization, and the local repulsion. Band insulator, metallic, phase separation, and Kondo spin-liquid regions coexist in the ground state.

  5. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  6. Tuning Interfacial States Using Organic Molecules as Spin Filters

    Science.gov (United States)

    Deloach, Andrew; Wang, Jingying; Papa, Christopher M.; Myahkostupov, Mykhaylo; Castellano, Felix N.; Dougherty, Daniel B.; Jiang, Wei; Liu, Feng

    Organic semiconductors are known to have long spin relaxation times which makes them a good candidate for spintronics. However, an issue with these materials is that at metal-organic interfaces there is a conductivity mismatch problem that suppresses spin injection. To overcome this, orbital mixing at the interface can be tuned with an organic spacer layer to promote the formation of spin polarized interface states. These states act as a ``spin filters'' and have been proposed as an explanation for the large tunneling magnetoresistance seen in devices using tris-(8-hydroxyquinolate)-aluminum(Alq3). Here, we show that the spin polarized interface states can be tuned from metallic to resistive by subtle changes in molecular orbitals. This is done using spin polarized scanning tunneling microscopy with three different tris-(8-hydroxyquinolate) compounds: aluminum, chromium, and iron. Differences in d-orbital mixing results in different mechanisms of interfacial coupling, giving rise to metallic or resistive interface states. Supported by the U.S. DoE award No. DE-SC0010324.

  7. High spin states and Yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1981-01-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2 - . Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  8. High spin states and yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1980-12-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2. Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  9. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  10. High spin states in 62Cu

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.

    1977-06-01

    The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr

  11. Felix Bloch (1905–1983)

    Indian Academy of Sciences (India)

    IAS Admin

    In 1933, when Hitler came to power, Felix left Germany and decided to move to USA, landing up on the West Coast, in the University of Stanford, where he stayed for the rest of his academic life. He made contacts with University of Berkeley. At the time, Robert Oppenheimer was teaching at Berkeley, and since Bloch had ...

  12. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  13. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    Science.gov (United States)

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-02-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.

  14. Generalized Spin Coherent States: Construction and Some Physical Properties

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.

    2009-12-01

    A generalized deformation of the su(2) algebra and a scheme for constructing associated spin coherent states is developed. The problem of resolving the unity operator in terms of these states is addressed and solved for some particular cases. The construction is carried using a deformation of Holstein-Primakoff realization of the su(2) algebra. The physical properties of these states is studied through the calculation of Mandel's parameter. (author)

  15. 3 QP plus rotor model and high spin states

    International Nuclear Information System (INIS)

    Mathur, Tripti

    1995-01-01

    Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs

  16. "First stone" ceremony for the SC : authorities in the audience. From right: Sir Ben Lockspeiser, President of the CERN Council, Felix Bloch, Francois Perreard, President of the Council of State of the canton of Geneva, C.J. Bakker and A.Pennetta

    CERN Multimedia

    1955-01-01

    "First stone" ceremony for the SC : authorities in the audience. From right: Sir Ben Lockspeiser, President of the CERN Council, Felix Bloch, Francois Perreard, President of the Council of State of the canton of Geneva, C.J. Bakker and A.Pennetta

  17. Ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates

    Science.gov (United States)

    Irikura, Naoki; Eto, Yujiro; Hirano, Takuya; Saito, Hiroki

    2018-02-01

    We investigate the ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates at zero magnetic field. In addition to the intraspin interactions, two spin-dependent interaction coefficients are introduced to describe the interspin interaction. We systematically explore the wide parameter space, and obtain phase diagrams containing a rich variety of phases. For example, there exists a phase in which the spin-1 and spin-2 vectors are tilted relative to each other breaking the axial symmetry.

  18. High spin states in the f-p shell

    International Nuclear Information System (INIS)

    Delaunay, J.

    1975-01-01

    The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr

  19. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)

  20. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  1. Spin flip of multiqubit states in discrete phase space

    Science.gov (United States)

    Srinivasan, K.; Raghavan, G.

    2017-02-01

    Time reversal and spin flip are discrete symmetry operations of substantial importance to quantum information and quantum computation. Spin flip arises in the context of separability, quantification of entanglement and the construction of universal NOT gates. The present work investigates the relationship between the quantum state of a multiqubit system represented by the discrete Wigner function (DWFs) and its spin-flipped counterpart. The two are shown to be related through a Hadamard matrix that is independent of the choice of the quantum net used for the tomographic reconstruction of the DWF. These results are of interest to cases involving the direct tomographic reconstruction of the DWF from experimental data, and in the analysis of entanglement related properties purely in terms of the DWF.

  2. High spin states and backbending in the light tungsten isotopes

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.

    1976-09-01

    High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)

  3. Chiral tunneling of topological states: towards the efficient generation of spin current using spin-momentum locking.

    Science.gov (United States)

    Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W

    2015-05-01

    We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.

  4. Ground states of unfrustrated spin Hamiltonians satisfy an area law

    Science.gov (United States)

    de Beaudrap, Niel; Osborne, Tobias J.; Eisert, Jens

    2010-09-01

    We show that ground states of unfrustrated quantum spin-1/2 systems on general lattices satisfy an entanglement area law, provided that the Hamiltonian can be decomposed into nearest-neighbor interaction terms that have entangled excited states. The ground state manifold can be efficiently described as the image of a low-dimensional subspace of low Schmidt measure, under an efficiently contractible tree-tensor network. This structure gives rise to the possibility of efficiently simulating the complete ground space (which is in general degenerate). We briefly discuss 'non-generic' cases, including highly degenerate interactions with product eigenbases, using a relationship to percolation theory. We finally assess the possibility of using such tree tensor networks to simulate almost frustration-free spin models.

  5. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  6. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  7. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  8. Hybridization between Indian catfish, Heteropneustes fossilis (Bloch ...

    African Journals Online (AJOL)

    Hybridization between Indian catfish, ♀Heteropneustes fossilis (Bloch) and Asian catfish, Clarias batrachus ♂ (Linn.) N Jothilakshmanan, K Karal Marx. Abstract. Success has been achieved in intergeneric hybridization between two air breathing catfishes by crossing Indian catfish, Heteropneustes fossilis (Bloch) and ...

  9. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  10. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  11. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  12. Collective modes and spin fluctuations for spin-triplet superconducting state in Sr2RuO4

    International Nuclear Information System (INIS)

    Tewordt, L.

    1999-01-01

    First the authors calculate the collective order parameter modes for the most promising candidates of spin-triplet p-wave pairing states in the layered perovskite structure of Sr 2 RuO 4 . The pairing interaction and accordingly the equations for the order parameter fluctuations are decomposed in terms of spin-triplet pairing states corresponding to the irreducible representations of the point group D 4h . Asymmetric pairing interaction and spin-orbit coupling give rise to finite frequencies of the original Goldstone modes corresponding to broken rotational symmetry. These fluctuations of the rvec d-vector within the basal plane can be excited by external fields lying in the plane and coupling to spin density. The fluctuations of the amplitude of the rvec d-vector perpendicular to the basal plane have frequency ω = 2Δ 0 for the state without nodes and ω = √3 Δ 0 for the state with nodes (Δ 0 is the amplitude of the gap). These modes couple to charge density by electron-hole asymmetry at the Fermi surface. In the second part the author develops the self-consistent FLEX (fluctuation exchange) approximation for spin-triplet pairing mediated by exchange of spin fluctuations. At T c the pairing interaction is only one third of that for singlet-pairing. Below T c the feed-back effect stabilizes the spin-triplet state with rvec d-vector perpendicular to the basal plane

  13. Cox’s Chair Revisited: Can Spinning Alter Mood States?

    Science.gov (United States)

    Winter, Lotta; Wollmer, M. Axel; Laurens, Jean; Straumann, Dominik; Kruger, Tillmann H. C.

    2013-01-01

    Although there is clinical and historical evidence for a vivid relation between the vestibular and emotional systems, the neuroscientific underpinnings are poorly understood. The “spin doctors” of the nineteenth century used spinning chairs (e.g., Cox’s chair) to treat conditions of mania or elevated arousal. On the basis of a recent study on a hexapod motion-simulator, in this prototypic investigation we explore the impact of yaw stimulation on a spinning chair on mood states. Using a controlled experimental stimulation paradigm on a unique 3-D-turntable at the University of Zurich we included 11 healthy subjects and assessed parameters of mood states and autonomic nervous system activity. The Multidimensional Mood State Questionnaire and Visual Analog Scales (VAS) were used to assess changes of mood in response to a 100 s yaw stimulation. In addition heart rate was continuously monitored during the experiment. Subjects indicated feeling less “good,” “relaxed,” “comfortable,” and “calm” and reported an increased alertness after vestibular stimulation. However, there were no objective adverse effects of the stimulation. Accordingly, heart rate did not significantly differ in response to the stimulation. This is the first study in a highly controlled setting using the historical approach of stimulating the vestibular system to impact mood states. It demonstrates a specific interaction between the vestibular system and mood states and thereby supports recent experimental findings with a different stimulation technique. These results may inspire future research on the clinical potential of this method. PMID:24133463

  14. A CAMAC-resident microprocessor for the monitoring of polarimeter spin states

    International Nuclear Information System (INIS)

    Reid, D.; DuPlantis, D.; Yoder, N.; Dale, D.

    1992-01-01

    A CAMAC module for the reporting of polarimeter spin states is being developed using a resident microcontroller. The module will allow experimenters at the Indiana University Cyclotron Facility to monitor spin states and correlate spin information with other experimental data. The use of a microprocessor allows for adaptation of the module as new requirements ensue without change to the printed circuit board layout. (author)

  15. Protection of qubit-coherence on a Bloch sphere

    Science.gov (United States)

    Zong, Xiao-Lan; Chu, Wen-Jing; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2017-07-01

    Single qubit pure state is a fundamental resource in quantum information and quantum computation. Therefore, it is of great importance to protect the coherence of single qubits against decoherence. In this letter, we demonstrate that decoherence caused by spontaneous emission can be effectively suppressed by adding a universal static external field. In order to have an intuitive view to the protection effects and its physical mechanisms, we study the coherence evolution of a single qubit on a Bloch sphere. We can clearly see that different external resonant drivings can rotate the Bloch vector around different axes, and the steady-state solution of the master equation (under protection) are visualized on the Bloch sphere. Furthermore, the frequency detuning between the qubit system and the driving is taken into account, and the results show that our protection scheme still works fine in the detuned cases and the smaller the detuning is, the better the protection effect is. In addition, this protocol can protect the coherence of single qubit states with a wide range of driving parameters, and help people to design simple coherence protection schemes for qubit states. The simplicity and the abundance of the current scheme may warrant its experimental realization.

  16. Gate-controlled switching between persistent and inverse persistent spin helix states

    International Nuclear Information System (INIS)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J.

    2016-01-01

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  17. Gate-controlled switching between persistent and inverse persistent spin helix states

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J. [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-28

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  18. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexes

    DEFF Research Database (Denmark)

    Døssing, Anders Rørbæk; Wolf, Matthias M. N.; Gross, Ruth

    2008-01-01

      The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive inf...... absorption cross sections. The simulated infrared difference spectra are dominated by an increase of the absorption cross section upon high-spin state formation in accordance with the experimental infrared spectra.......  The photoinduced low-spin (S = 0) to high-spin (S = 2) transition of the iron(II) spin-crossover systems [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution have been studied for the first time by means of ultrafast transient infrared spectroscopy at room temperature. Negative and positive...... infrared difference bands between 1000 and 1065 cm-1 that appear within the instrumental system response time of 350 fs after excitation at 387 nm display the formation of the vibrationally unrelaxed and hot high-spin 5T2 state. Vibrational relaxation is observed and characterized by the time constants 9...

  19. Approximating the ground state of gapped quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  20. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  1. A New Essential Norm Estimate of Composition Operators from Weighted Bloch Space into -Bloch Spaces

    Directory of Open Access Journals (Sweden)

    René E. Castillo

    2013-01-01

    Full Text Available Let be any weight function defined on the unit disk and let be an analytic self-map of . In the present paper, we show that the essential norm of composition operator mapping from the weighted Bloch space to -Bloch space is comparable to where for ,   is a certain special function in the weighted Bloch space. As a consequence of our estimate, we extend the results about the compactness of composition operators due to Tjani (2003.

  2. Simulation of NMR signals through the Bloch equations; Simulação de sinais de RMN através das equações de Bloch

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Tiago Bueno, E-mail: tiagobuemoraes@gmail.com [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Física; Colnago, Luiz Alberto, E-mail: tiagobuemoraes@gmail.com [Embrapa Instrumentação, São Carlos, SP (Brazil)

    2014-07-01

    The aim of this paper was to present a simple and fast way of simulating Nuclear Magnetic Resonance signals using the Bloch equations. These phenomenological equations describe the classical behavior of macroscopic magnetization and are easily simulated using rotation matrices. Many NMR pulse sequences can be simulated with this formalism, allowing a quantitative description of the influence of many experimental parameters. Finally, the paper presents simulations of conventional sequences such as Single Pulse, Inversion Recovery, Spin Echo and CPMG. (author)

  3. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Science.gov (United States)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  4. Spin-resolved photoemission of surface states of W(110)-(1x1)H

    International Nuclear Information System (INIS)

    Hochstrasser, M.; Tobin, J.G.; Rotenberg, Eli; Kevan, S.D.

    2002-01-01

    The surface electronic states of W(110)-(1x1)H have been measured using spin- and angle-resolved photoemission. We directly demonstrate that the surface bands are both split and spin-polarized by the spin-orbit interaction in association with the loss of inversion symmetry near a surface. We observe 100 percent spin polarization of the surface states, with the spins aligned in the plane of the surface and oriented in a circular fashion relative to the S-bar symmetry point. In contrast, no measurable polarization of nearby bulk states is observed

  5. Claude Bloch scientific works, oeuvre scientifique

    CERN Document Server

    Bloch, Claude; De Dominicis, Cyrano; Gillet, Vincent; Messiah, Albert

    1975-01-01

    Claude Bloch: Scientific Works Oeuvre Scientifique covers the collection of scientific works of Claude Bloch. The book includes topics on field theories with non-localized interaction and notes on the symmetry properties of nuclear wave functions. It also covers theory of nuclear level density; the theory of imperfect fermi gases; the structure of nuclear matter; and the canonical form of an antisymmetric tensor and its application to the theory of superconductivity.

  6. STUDY OF HIGH-SPIN STATES IN THE NUCLEUS EU-149

    NARCIS (Netherlands)

    BACELAR, JC; JONGMAN, [No Value; NOORMAN, RF; DEVOIGT, MJA; NYBERG, J; SLETTEN, G; BERGSTROM, M; RYDE, H

    1994-01-01

    In-beam studies of high-spin states in Eu-149 are reported. The level scheme extends up to an excitation energy of 7.1 MeV and a spin of 55/2HBAR. This nucleus is weakly deformed and most of the high-spin structure is interpreted through its multi-particle-hole nature. Octupole-phonon vibrations

  7. Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry

    International Nuclear Information System (INIS)

    Estienne, Benoit; Bernevig, B. Andrei

    2012-01-01

    We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.

  8. Using arterial spin labeling to examine mood states in youth

    Science.gov (United States)

    Mikita, Nina; Mehta, Mitul A; Zelaya, Fernando O; Stringaris, Argyris

    2015-01-01

    Introduction Little is known about the neural correlates of mood states and the specific physiological changes associated with their valence and duration, especially in young people. Arterial spin labeling (ASL) imaging is particularly well-suited to study sustained cerebral states in young people, due to its robustness to low-frequency drift, excellent interscan reliability, and noninvasiveness. Yet, it has so far been underutilized for understanding the neural mechanisms underlying mood states in youth. Methods In this exploratory study, 21 healthy adolescents aged 16 to 18 took part in a mood induction experiment. Neutral, sad, and happy mood states were induced using film clips and explicit instructions. An ASL scan was obtained following presentation of each film clip. Results Mood induction led to robust changes in self-reported mood ratings. Compared to neutral, sad mood was associated with increased regional cerebral blood flow (rCBF) in the left middle frontal gyrus and anterior prefrontal cortex, and decreased rCBF in the right middle frontal gyrus and the inferior parietal lobule. A decrease in self-reported mood from neutral to sad condition was associated with increased rCBF in the precuneus. Happy mood was associated with increased rCBF in medial frontal and cingulate gyri, the subgenual anterior cingulate cortex, and ventral striatum, and decreased rCBF in the inferior parietal lobule. The level of current self-reported depressive symptoms was negatively associated with rCBF change in the cerebellum and lingual gyrus following both sad and happy mood inductions. Conclusions Arterial spin labeling is sensitive to experimentally induced mood changes in healthy young people. The effects of happy mood on rCBF patterns were generally stronger than the effects of sad mood. PMID:26085964

  9. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  10. High-spin states and level structure in 84Rb

    International Nuclear Information System (INIS)

    Shen Shuifa; Han Guangbing; Wen Shuxian; Gu Jianzhong; Wu Xiaoguang; Zhu Lihua; He Chuangye; Li Guangsheng; Yu Beibei; Pan Feng; Zhu Jianyu; Draayer, J. P.; Wen Tingdun; Yan, Yupeng

    2010-01-01

    High-spin states in 84 Rb have been studied by using the 70 Zn( 18 O,p3n) 84 Rb reaction at beam energy of 75 MeV. The γ-γ coincidence, excitation function, and ratios for directional correlation of oriented states were determined. A new level scheme was established in which the positive- and negative-parity bands have been extended up to 17 + and 17 - with an excitation energy of about 7 MeV. The signature splitting and signature inversion of the positive-parity yrast band were observed. To understand the microscopic origin of the signature inversion in the yrast positive-parity bands of doubly odd Rb nuclei, as an example, we performed calculations using the projected shell model to describe the energy spectra in 84 Rb. It can be seen that the main features are reproduced in the calculations. This analysis shows that the signature splitting, especially its inversion, can be reproduced by varying only the γ deformation with increasing spin. To research the deformation of 84 Rb carefully, we calculate the total Routhian surfaces of positive-parity yrast states by the cranking shell model formalism. In addition, the results of theoretical calculations about the negative-parity yrast band in 84 Rb with configuration π(p 3/2 ,f 5/2 ) x νg 9/2 are compared with experimental data, and a band diagram calculated for this band is also shown to extract physics from the numerical results.

  11. Account of states with indefinite spin in calculations of intercombination collisional transitions

    International Nuclear Information System (INIS)

    Gordeev, S.V.; Chirtsov, A.S.

    1986-01-01

    States with indefinite spin are used in the second order of the perturbation theory as intermediate states for calculating electronic collisional transitions with changing spin between excited states of atoms. The rate coefficient for 4 1 P-4 3 D transition in helium is estimated

  12. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  13. Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst.

    Science.gov (United States)

    Krewald, Vera; Retegan, Marius; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2016-01-19

    In transition-metal complexes, the geometric structure is intimately connected with the spin state arising from magnetic coupling between the paramagnetic ions. The tetramanganese-calcium cofactor that catalyzes biological water oxidation in photosystem II cycles through five catalytic intermediates, each of which adopts a specific geometric and electronic structure and is thus characterized by a specific spin state. Here, we review spin-structure correlations in Nature's water-splitting catalyst. The catalytic cycle of the Mn4O5Ca cofactor can be described in terms of spin-dependent reactivity. The lower "inactive" S states of the catalyst, S0 and S1, are characterized by low-spin ground states, SGS = 1/2 and SGS = 0. This is connected to the "open cubane" topology of the inorganic core in these states. The S2 state exhibits structural and spin heterogeneity in the form of two interconvertible isomers and is identified as the spin-switching point of the catalytic cycle. The first S2 state form is an open cubane structure with a low-spin SGS = 1/2 ground state, whereas the other represents the first appearance of a closed cubane topology in the catalytic cycle that is associated with a higher-spin ground state of SGS = 5/2. It is only this higher-spin form of the S2 state that progresses to the "activated" S3 state of the catalyst. The structure of this final metastable catalytic state was resolved in a recent report, showing that all manganese ions are six-coordinate. The magnetic coupling is dominantly ferromagnetic, leading to a high-spin ground state of SGS = 3. The ability of the Mn4O5Ca cofactor to adopt two distinct structural and spin-state forms in the S2 state is critical for water binding in the S3 state, allowing spin-state crossing from the inactive, low-spin configuration of the catalyst to the activated, high-spin configuration. Here we describe how an understanding of the magnetic properties of the catalyst in all S states has allowed conclusions on

  14. First-principle calculations of anomalous spin-state excitation in LaCoO3

    International Nuclear Information System (INIS)

    Laref, A.; Sekkal, W.

    2010-01-01

    We investigate the different spin states of LaCoO 3 employing the state-of-the-art ab initio band structure calculations within a rotationally invariant formulation of local density approximation (LDA) + U approach. The various magnetically ordered spin states of different supercells have been studied, including the low-spin state (LS), intermediate-spin state (IS), high-spin state (HS) Co 3+ ions, as well as all combinations among these three states. The ground state is correctly predicted to be an insulator nonmagnetic state. Our calculations, together with previous susceptibility measurements for IS excitations in the LS ground state, lead to the conclusion that the nonmagnetic-paramagnetic transition in LaCoO 3 at 90 K is caused by a gradual population of IS Co 3+ ionic states. Our results show that the first thermally excited spin-state occurs from LS to an LS (Co LS 3+ = 87.5%)-IS (Co IS 3+ = 12.5%) ordered state, which can be distinguished from the LS-HS or IS state. We find that the mixture of LS-IS, LS-HS, and HS-IS spin states may develop an orbital ordering.

  15. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-01-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization. PMID:26238042

  16. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  17. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  18. Gibbs states of lattice spin systems with unbounded disorder

    Directory of Open Access Journals (Sweden)

    Yu. Kondratiev

    2010-01-01

    Full Text Available The Gibbs states of a spin system on the lattice Zd with pair interactions Jxyσ(x σ(y are studied. Here ∈ E, i.e. x and y are neighbors in Zd. The intensities Jxy and the spins σ(x, σ(y are arbitrarily real. To control their growth we introduce appropriate sets Jq⊂RE and Sp⊂RZd and show that, for every J = (Jxy∈Jq: (a the set of Gibbs states Gp(J = {μ: solves DLR, μ(Sp = 1} is non-void and weakly compact; (b each μ∈Gp(J obeys an integrability estimate, the same for all μ. Next we study the case where Jq is equipped with a norm, with the Borel σ-field B(Jq, and with a complete probability measure ν. We show that the set-valued map Jq∋J → Gp(J has measurable selections Jq∋J → μ(J ∈Gp(J, which are random Gibbs measures. We demonstrate that the empirical distributions N-1Σn=1NπΔn(·|J,ξ, obtained from the local conditional Gibbs measures πΔn(·|J,ξ and from exhausting sequences of Δn⊂Zd, have ν-a.s. weak limits as N→+∞, which are random Gibbs measures. Similarly, we show the existence of the ν-a.s. weak limits of the empirical metastates N-1Σn=1NδπΔn(·|J,ξ, which are Aizenman-Wehr metastates. Finally, we demonstrate that the limiting thermodynamic pressure exists under some further conditions on ν.

  19. Investigation of non-collinear spin states with scanning tunneling microscopy.

    Science.gov (United States)

    Wulfhekel, W; Gao, C L

    2010-03-05

    Most ferromagnetic and antiferromagnetic substances show a simple collinear arrangement of the local spins. Under certain circumstances, however, the spin configuration is non-collinear. Scanning tunneling microscopy with its potential atomic resolution is an ideal tool for investigating these complex spin structures. Non-collinearity can be due to topological frustration of the exchange interaction, due to relativistic spin-orbit coupling or can be found in excited states. Examples for all three cases are given, illustrating the capabilities of spin-polarized scanning tunneling microscopy.

  20. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    Science.gov (United States)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  1. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    Science.gov (United States)

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.

  2. Optimal state encoding for quantum walks and quantum communication over spin systems

    International Nuclear Information System (INIS)

    Haselgrove, Henry L.

    2005-01-01

    Recent work has shown that a simple chain of interacting spins can be used as a medium for high-fidelity quantum communication. We describe a scheme for quantum communication using a spin system that conserves z spin, but otherwise is arbitrary. The sender and receiver are assumed to directly control several spins each, with the sender encoding the message state onto the larger state space of her control spins. Given that the encoding for the 'zero' message basis state is chosen to be the all-spin-down state, we show how to find the encoding for the 'one' basis state that maximizes the fidelity of communication, using a simple method based on the singular-value decomposition. Also, we show that this solution can be used to increase communication fidelity in a rather different circumstance: where no encoding of initial states is used, but where the sender and receiver control exactly two spins each and vary the interactions on those spins over time. The methods presented are computationally efficient, and numerical examples are given for systems having up to 300 spins

  3. Memory-built-in quantum cloning in a hybrid solid-state spin register.

    Science.gov (United States)

    Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M

    2015-07-16

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  4. Bloch Oscillations in Complex Crystals with PT Symmetry

    International Nuclear Information System (INIS)

    Longhi, S.

    2009-01-01

    Bloch oscillations in complex lattices with PT symmetry are theoretically investigated with specific reference to optical Bloch oscillations in photonic lattices with gain or loss regions. Novel dynamical phenomena with no counterpart in ordinary lattices, such as nonreciprocal Bloch oscillations related to violation of the Friedel's law of Bragg scattering in complex potentials, are highlighted.

  5. Classical and quantum 'EPR'-spin correlations in the triplet state

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1987-01-01

    Quantum correlations and joint probabilities in the triplet state as well as the correlations of components of two correlated classical spin vectors, are evaluated. Correlations in the states with |S tot z |=1 are different from correlations in the state with S tot z =0 which may serve to distinguish different states of the triplet. As in the singlet case, we can reproduce quantum correlations by correlated classical spin vectors which also provide a precision of the notion of ''parallel spins''. Triplet state correlations could in principle be measured, for example, in the decay reaction J/ψ → e + e - for which there is a sufficiently large branching ratio. (author). 12 refs

  6. Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling

    Science.gov (United States)

    Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki

    2017-07-01

    We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.

  7. Bifurcation analysis and phase diagram of a spin-string model with buckled states.

    Science.gov (United States)

    Ruiz-Garcia, M; Bonilla, L L; Prados, A

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  8. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  9. Bipolaron assisted Bloch-like oscillations in organic lattices

    International Nuclear Information System (INIS)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-01-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  10. Bipolaron assisted Bloch-like oscillations in organic lattices

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-06-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  11. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  12. The Bloch equation with terms induced by an electric field

    Science.gov (United States)

    Garbacz, Piotr

    2018-01-01

    The Bloch equation of the nuclear magnetization of spin-1/2 nuclei in molecules, which have permanent electric dipole moments μe that are placed simultaneously in a magnetic field B and an electric field E, is derived. It is shown that if the principal components of the nuclear magnetic shielding tensor σ and the dipole moment μe are known, then the measurement of the transverse component to the magnetic field B of the nuclear magnetization, which is induced by the application of the electric field oscillating at the half of the spin precession frequency, allows determining the orientation of the dipole moment μe with respect to the principal axis system of the symmetric part of the tensor σ. Four-component relativistic density functional theory computations, which have been performed for several molecules containing heavy nuclei, i.e., 207Pb, 205Tl, 199Hg, 195Pt, and 125Te, indicate that coefficients of the relaxation matrix perturbed by the electric field E are in favorable cases of the order of 1000 pm2 V-2 T-2. Therefore, the spin dynamics is perturbed at experimentally observable levels for the strengths of electric and magnetic fields E = 5 kV/mm and B = 10 T, respectively.

  13. Spectroscopy of high-spin states of 206Po

    International Nuclear Information System (INIS)

    Baxter, A.M.; Byrne, A.P.; Dracoulis, G.D.; Bark, R.A.; Riess, F.; Stuchbery, A.E.; Kruse, M.C.; Poletti, A.R.

    1990-05-01

    The yrast and near-yrast energy levels of 206 Po have been investigated to over 9 MeV excitation and up to spins with J=24. The measure-ments consisted of γ-γ coincidence data, internal-conversion-electron spectra, time spectra of γ-rays relative to a pulsed beam, excitation functions and γ-ray angular distributions. Two new isomers, with lifetime in the one-nonasecond range,were found. The observed structure is compared with the predictions of empirical shell-model calculations in which 206 Po is regarded as a 208 Pb core with two valence protons and four valence neutron holes. The agreement is generaly satisfactory for the observed odd-parity levels and for even parity levels with J > 12; those with J = 6 to 12 are better accounted for by weak coupling of two valence protons to a 204 Pb core in its 0 + 1, 2 + 1 and 4 + 1 states. 33 refs., 7 tabs., 12 figs

  14. Reve et action: Bloch, Heidegger et Levinas

    Czech Academy of Sciences Publication Activity Database

    Bierhanzl, Jan

    2016-01-01

    Roč. 12, č. 3 (2016), s. 1-6 ISSN 1336-6556 R&D Projects: GA ČR(CZ) GA16-23046S Institutional support: RVO:67985955 Keywords : possibility * wishing * decision * action * dream * utopia Subject RIV: AA - Philosophy ; Religion http://www.ostium.sk/sk/r%C8%87ve-er-action-bloch-heidegger-et-levinas/

  15. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface

    Science.gov (United States)

    Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya

    2010-01-01

    The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 me at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms. PMID:20975678

  16. Gibbs states of continuum particle systems with unbounded spins: Existence and uniqueness

    Science.gov (United States)

    Conache, Diana; Daletskii, Alexei; Kondratiev, Yuri; Pasurek, Tanja

    2018-01-01

    We study an infinite system of particles chaotically distributed over a Euclidean space Rd. Particles are characterized by their positions x ∈Rd and an internal parameter (spin) σx∈Rm and interact via position-position and (position dependent) spin-spin pair potentials. Equilibrium states of such system are described by Gibbs measures on a marked configuration space. Due to the presence of unbounded spins, the model does not fit the classical (super-) stability theory of Ruelle. The main result of the paper is the derivation of sufficient conditions of the existence and uniqueness of the corresponding Gibbs measures.

  17. Biogeography and comparative cytogenetics between two populations of Hoplias malabaricus (Bloch, 1794 (Ostariophysi: Erythrinidae from coastal basins in the State of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Uedson Pereira Jacobina

    Full Text Available The species Hoplias malabaricus is a predator fish found in nearly all cis-Andean basins. From a cytogenetic point of view, this species comprises, at least, seven differentiated karyomorphs. Several localities have been formerly analyzed in Brazil, however, some regions, such as Bahia State, remain underrepresented. Recently, the Brazilian Environment Ministry classified both Itapicuru and Contas river basins (entirely located within Bahia territory as priority conservation areas, whose biodiversity status lacks enough information. Therefore, the goal of the present work was to characterize, cytogenetically, populations of H. malabaricus from both basins, by using conventional staining, Ag-NOR and C-banding techniques. All specimens presented a diploid number of 2n = 40 with metacentric/submetacentric chromosomes, without differences between sexes, thereby representing the so-called "karyomorph F". The first metacentric pair presented a remarkably larger size in relation to the other pairs. The NORs were multiple, comprising the terminal region on long arms of two chromosomal pairs in both populations. However, the C-banding pattern was somewhat distinguishable between samples. Although sharing heterochromatic blocks at centromeric region of all chromosomes, the population from Itapicuru River basin appeared to have some more conspicuous blocks than those observed in the population from Contas River basin. The similar karyotype observed in both populations suggests a common geological history between them. The present results represent an advance in the knowledge about the cytogenetic pattern of H. malabaricus populations from poorly studied basins.

  18. Symmetry-selected spin-split hybrid states in C-60/ferromagnetic interfaces

    DEFF Research Database (Denmark)

    Li, Dongzhe; Barreteau, Cyrille; Kawahara, Seiji Leo

    2016-01-01

    The understanding of orbital hybridization and spin polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spin-split hybrid states of C60 deposited on various...

  19. Tunneling between edge states in a quantum spin Hall system.

    Science.gov (United States)

    Ström, Anders; Johannesson, Henrik

    2009-03-06

    We analyze a quantum spin Hall device with a point contact connecting two of its edges. The contact supports a net spin tunneling current that can be probed experimentally via a two-terminal resistance measurement. We find that the low-bias tunneling current and the differential conductance exhibit scaling with voltage and temperature that depend nonlinearly on the strength of the electron-electron interaction.

  20. Formation of local spin-state concentration waves during the relaxation from a photoinduced state in a spin-crossover polymer.

    Science.gov (United States)

    Mariette, Céline; Trzop, Elzbieta; Zerdane, Serhane; Fertey, Pierre; Zhang, Daopeng; Valverde-Muñoz, Francisco J; Real, José Antonio; Collet, Eric

    2017-08-01

    The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN) 3 ) 2 ](4,4'-bipy) 2 ] n is reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering, occurring at low temperature and precluding long-range SSCW order.

  1. A quaternionic map for the steady states of the Heisenberg spin-chain

    International Nuclear Information System (INIS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  2. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  3. Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO_{4}.

    Science.gov (United States)

    Li, Yuesheng; Adroja, Devashibhai; Biswas, Pabitra K; Baker, Peter J; Zhang, Qian; Liu, Juanjuan; Tsirlin, Alexander A; Gegenwart, Philipp; Zhang, Qingming

    2016-08-26

    Muon spin relaxation (μSR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO_{4} indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in a zero field. Below 0.4 K, the μ^{+} spin relaxation rates, which are proportional to the dynamic correlation function of the Yb^{3+} spins, exhibit temperature-independent plateaus. All these μSR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO_{4}.

  4. Dynamics of local magnetization in the eigenbasis of the Bloch-Torrey operator

    Science.gov (United States)

    Herberthson, Magnus; Özarslan, Evren; Knutsson, Hans; Westin, Carl-Fredrik

    2017-03-01

    We consider diffusion within pores with general shapes in the presence of spatially linear magnetic field profiles. The evolution of local magnetization of the spin bearing particles can be described by the Bloch-Torrey equation. We study the diffusive process in the eigenbasis of the non-Hermitian Bloch-Torrey operator. It is possible to find expressions for some special temporal gradient waveforms employed to sensitize the nuclear magnetic resonance (NMR) signal to diffusion. For more general gradient waveforms, we derive an efficient numerical solution by introducing a novel matrix formalism. Compared to previous methods, this new approach requires a fewer number of eigenfunctions to achieve the same accuracy. This shows that these basis functions are better suited to the problem studied. The new framework could provide new important insights into the fundamentals of diffusion sensitization, which could further the development of the field of NMR.

  5. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  6. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    Science.gov (United States)

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  7. Rabi resonance in spin systems: theory and experiment.

    Science.gov (United States)

    Layton, Kelvin J; Tahayori, Bahman; Mareels, Iven M Y; Farrell, Peter M; Johnston, Leigh A

    2014-05-01

    The response of a magnetic resonance spin system is predicted and experimentally verified for the particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental results demonstrate phenomena not previously observed in magnetic resonance systems, including a secondary resonance condition when the amplitude of the excitation equals the modulation frequency. This secondary resonance produces a relatively large steady state magnetisation with Fourier components at harmonics of the modulation frequency. Experiments are in excellent agreement with the theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework for future developments in NMR spectroscopy and imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  9. Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.

    Science.gov (United States)

    Mizukami, Wataru; Kurashige, Yuki; Yanai, Takeshi

    2010-09-07

    An investigation into spin structures of poly(m-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

  10. Spin waves treatment of the antiferromagnetic ground state of two Ising-like systems

    Directory of Open Access Journals (Sweden)

    Adegoke Kunle

    2014-01-01

    Full Text Available Using Anderson's spin wave theory, we derive expressions for the ground state energy of two Ising-like systems. Antiferromagnetic long range order is predicted for one of the systems.

  11. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  12. Measurements of lifetimes and feeding times for high spin states in 156Dy

    International Nuclear Information System (INIS)

    Ward, D.; Andrews, H.R.; Haeusser, O.; El Masri, Y.; Aleonard, M.M.; Yang-Lee, I.; Diamond, R.; Stephens, F.S.; Butler, P.A.

    1979-01-01

    The inverse reaction 24 Mg( 136 Xe, 4n) 156 Dy at 595 MeV has been used to populate high spin states in 156 Dy. A recoil distance technique was applied to measure lifetimes and feeding times in both the ground state band, and a band of anomalously high moment of intertia. Values for the intrinsic quadrupole moments, Q 0 , were derived to spin 22 + . The limit of centrifugal stretching appeared to be reached at spin 14 + . The results are discussed in terms of band mixing. (orig.)

  13. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  14. High-spin states in the sup 9 sup 7 Tc nucleus

    CERN Document Server

    Bucurescu, D; Cata-Danil, I; Ivascu, M; Marginean, N; Rusu, C; Stroe, L; Ur, C A; Gadea, A

    2003-01-01

    High-spin states in the sup 9 sup 7 Tc nucleus have been studied by in-beam gamma-ray spectroscopy with the reaction sup 8 sup 2 Se( sup 1 sup 9 F,4n gamma) at 68 MeV incident energy. Excited states have been observed up to about 8 MeV excitation and spin 43/2 Planck constant. The observed level scheme is compared with results of shell model calculations. (orig.)

  15. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    Science.gov (United States)

    2016-09-01

    TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...Osama Nayfeh SSC Pacific Hector Romero Lance Lerum NREIP Mohammed Fahem SDSU Research Foundation Approved for public release. SSC Pacific San...nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the

  16. The Bloch Approximation in Periodically Perforated Media

    International Nuclear Information System (INIS)

    Conca, C.; Gomez, D.; Lobo, M.; Perez, E.

    2005-01-01

    We consider a periodically heterogeneous and perforated medium filling an open domain Ω of R N . Assuming that the size of the periodicity of the structure and of the holes is O(ε),we study the asymptotic behavior, as ε → 0, of the solution of an elliptic boundary value problem with strongly oscillating coefficients posed in Ω ε (Ω ε being Ω minus the holes) with a Neumann condition on the boundary of the holes. We use Bloch wave decomposition to introduce an approximation of the solution in the energy norm which can be computed from the homogenized solution and the first Bloch eigenfunction. We first consider the case where Ωis R N and then localize the problem for abounded domain Ω, considering a homogeneous Dirichlet condition on the boundary of Ω

  17. Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

    Directory of Open Access Journals (Sweden)

    Markus König

    2013-04-01

    Full Text Available The discovery of the quantum spin Hall (QSH state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.

  18. Taking a peek at Bloch oscillations

    Science.gov (United States)

    Morsch, Oliver

    2016-11-01

    Bloch oscillations arise when matter waves inside a periodic potential, such as a crystal lattice, are accelerated by a constant force. Keßler et al (2016 New J. Phys. 18 102001) have now experimentally tested a method that allows one to observe those oscillations continuously, without a destructive measurement on the matter wave. Their approach could help to make cold atom-based accelerometers and gravimeters more precise.

  19. Wave impedance retrieving via Bloch modes analysis

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.

    2011-01-01

    -ciples violation, like antiresonance behaviour with Im(ε) wave impedances by the surface and volume aver-aging of the electromagnetic field...... of the Bloch mode, respectively. Case studies prove that our ap-proach can determine material and wave effective parameters of lossy and lossless metamaterials. In some examples when the passivity is violated we made further analysis and showed that this is due to the failure of concept of impedance retrieving...

  20. Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains

    International Nuclear Information System (INIS)

    Zhu Jing-Min

    2015-01-01

    For our proposed composite parity-conserved matrix product state (MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing. (paper)

  1. Quantum correlation properties in Matrix Product States of finite-number spin rings

    Science.gov (United States)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  2. Spin-state transition and phase separation in multi-orbital Hubbard model

    Science.gov (United States)

    Ishihara, Sumio; Suzuki, Ryo; Watanabe, Tsutomu

    2010-03-01

    Exotic phenomena in correlated electron systems are responsible for competition and cooperation between multi-electronic phases. In particular, in perovskite cobaltites, there is the spin-state degree of freedom, i.e., multiple spin states due to the different electron configurations in a single ion. The multiple spin states occur by changes in the carrier concentration, temperature and other parameters. In the lightly hole doped region between the low-spin band insulator (BI) and the high-spin (HS) ferromagnetic metallic (FM) states, several inhomogeneous features have been reported experimentally. We address the issues of the spin-state transition and the phase separation (PS) associated with this transition by analyzing the multi-orbital Hubbard model [1]. We examine the electronic structures in hole doped and undoped systems by the variational Monte-Carlo (VMC) method. We find that the electronic PS is realized between the nonmagnetic BI and the HS FM metal. We conclude that the different band widths play an essential role in the present electronic PS. [1] R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).

  3. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd.

    Science.gov (United States)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M Mofazzel; Zhu, Jian-Xin; Dimitri, Klauss; Xu, Su-Yang; Dhakal, Nagendra; Sankar, Raman; Belopolski, Ilya; Sanchez, Daniel S; Chang, Tay-Rong; Jeng, Horng-Tay; Miyamoto, Koji; Okuda, Taichi; Lin, Hsin; Bansil, Arun; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.

  4. Quantum antiferromagnetic Heisenberg half-odd-integer spin model as the entanglement Hamiltonian of the integer-spin Affleck-Kennedy-Lieb-Tasaki states

    Science.gov (United States)

    Rao, Wen-Jia; Zhang, Guang-Ming; Yang, Kun

    2016-03-01

    Applying a symmetric bulk bipartition to the one-dimensional Affleck-Kennedy-Lieb-Tasaki valence-bond solid (VBS) states for the integer spin-S Haldane gapped phase, we can create an array of fractionalized spin-S /2 edge states with the super unit cell l in the reduced bulk system, and the topological properties encoded in the VBS wave functions can be revealed. The entanglement Hamiltonian (EH) with even l corresponds to the quantum antiferromagnetic Heisenberg spin-S /2 model. For the even integer spins, the EH still describes the Haldane gapped phase. For the odd integer spins, however, the EH just corresponds to the quantum antiferromagnetic Heisenberg half-odd integer-spin model with spinon excitations, characterizing the critical point separating the topological Haldane phase from the trivial gapped phase. Our results thus demonstrate that the topological bulk property not only determines its fractionalized edge states but also the quantum criticality associated with the topological phase, where the elementary excitations are precisely those fractionalized edge degrees of freedom confined in the bulk of the topological phase.

  5. Quantum-teleportation benchmarks for independent and identically distributed spin states and displaced thermal states

    International Nuclear Information System (INIS)

    Guta, Madalin; Bowles, Peter; Adesso, Gerardo

    2010-01-01

    A successful state-transfer (or teleportation) experiment must perform better than the benchmark set by the 'best' measure and prepare procedure. We consider the benchmark problem for the following families of states: (i) displaced thermal equilibrium states of a given temperature; (ii) independent identically prepared qubits with a completely unknown state. For the first family we show that the optimal procedure is heterodyne measurement followed by the preparation of a coherent state. This procedure was known to be optimal for coherent states and for squeezed states with the 'overlap fidelity' as the figure of merit. Here, we prove its optimality with respect to the trace norm distance and supremum risk. For the second problem we consider n independent and identically distributed (i.i.d.) spin-(1/2) systems in an arbitrary unknown state ρ and look for the measurement-preparation pair (M n ,P n ) for which the reconstructed state ω n :=P n circle M n (ρ xn ) is as close as possible to the input state (i.e., parallel ω n -ρ xn parallel 1 is small). The figure of merit is based on the trace norm distance between the input and output states. We show that asymptotically with n this problem is equivalent to the first one. The proof and construction of (M n ,P n ) uses the theory of local asymptotic normality developed for state estimation which shows that i.i.d. quantum models can be approximated in a strong sense by quantum Gaussian models. The measurement part is identical to 'optimal estimation', showing that 'benchmarking' and estimation are closely related problems in the asymptotic set up.

  6. Diboson Signals via Fermi Scale Spin-One States

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Frandsen, Mads T.; Sannino, Francesco

    2015-01-01

    ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodolo...... can be employed for future searches at run two of the Large Hadron Collider....

  7. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  8. First-principles calculation of monitoring spin states of small magnetic nanostructures with IR spectrum of CO

    International Nuclear Information System (INIS)

    Li, C; Lefkidis, G; Huebner, W

    2010-01-01

    A fully ab initio controlled ultrafast magnetooptical switching mechanism in small magnetic clusters is achieved through exploiting spin-orbit-coupling enabled Λ processes. The idea is that in the magnetic molecules a fast transition between two almost degenerate states with different spins can be triggered by a laser pulse, which leads to an electron excitation from one of the degenerate states to a highly spin-mixed state and a deexcitation to the state of opposite spin. In this paper a CO molecule is attached to one magnetic center of the clusters, which serves as an experimental marker to map the laser-induced spin manipulation to the IR spectrum of CO. The predicted spin-state-dependent CO frequencies can facilitate experimental monitoring of the processes. We show that spin flip in magnetic atoms can be achieved in structurally optimized magnetic clusters in a subpicosecond regime with linearly polarized light.

  9. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF 4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19 F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  10. The magnetic structure on the ground state of the equilateral triangular spin tube

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kazuki, E-mail: k703861@eagle.sophia.ac.jp; Goto, Takayuki [Sophia University, Physics Division (Japan); Manaka, Hirotaka [Kagoshima University, Graduate School of Science and Engineering (Japan); Miura, Yoko [Suzuka National College of Technology (Japan)

    2016-12-15

    The ground state of the frustrated equilateral triangular spin tube CsCrF{sub 4} is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by {sup 19}F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  11. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  12. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state.

    Science.gov (United States)

    Gor'kov, L P; Rashba, E I

    2001-07-16

    Motivated by recent experimental findings, we have developed a theory of the superconducting state for 2D metals without inversion symmetry modeling the geometry of a surface superconducting layer in a field-effect transistor or near the boundary doped by adsorbed ions. In such systems the twofold spin degeneracy is lifted by spin-orbit interaction, and singlet and triplet pairings are mixed in the wave function of the Cooper pairs. As a result, spin magnetic susceptibility becomes anisotropic and Knight shift retains finite and rather high value at T = 0.

  13. Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-Triplet State

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, Lev P.; Rashba, Emmanuel I.

    2001-07-16

    Motivated by recent experimental findings, we have developed a theory of the superconducting state for 2D metals without inversion symmetry modeling the geometry of a surface superconducting layer in a field-effect transistor or near the boundary doped by adsorbed ions. In such systems the twofold spin degeneracy is lifted by spin-orbit interaction, and singlet and triplet pairings are mixed in the wave function of the Cooper pairs. As a result, spin magnetic susceptibility becomes anisotropic and Knight shift retains finite and rather high value at T=0 .

  14. Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A.

    2009-02-09

    Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.

  15. Temperature and pressure effects on the spin state of ferric ions in the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex

    OpenAIRE

    2010-01-01

    Temperature and pressure effects on the spin state of ferric ions in the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex correspondance: Corresponding author. Tel.: +33561333190; fax: +33561553003. (Bousseksou, Azzedine) (Bousseksou, Azzedine) Laboratoire de Chimie de Coordination--> , CNRS UPR8241--> , Toulouse--> - FRANCE (Szilagyi, P.A. Petra A.) Eotvos Lorand University--> ...

  16. Generation of large scale GHZ states with the interactions of photons and quantum-dot spins

    Science.gov (United States)

    Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang

    2018-03-01

    We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.

  17. Spiral spin state in high-temperature copper-oxide superconductors: evidence from neutron scattering measurements.

    Science.gov (United States)

    Lindgård, Per-Anker

    2005-11-18

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45 degrees around the resonance energy . The intensity has a 2D character even in a single twin crystal. The value of is related to the nesting properties of the Fermi surface. The excitations above are shown to be due to in-plane spin fluctuations, a testable difference from the stripe model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state.

  18. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  19. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  20. Investigations of low- and high-spin states of sup 1 sup 3 sup 2 La

    CERN Document Server

    Kumar, V; Singh, R P; Muralithar, S; Bhowmik, R K

    2003-01-01

    The fusion evaporation reaction sup 1 sup 2 sup 2 Sn( sup 1 sup 4 N,4n) sup 1 sup 3 sup 2 La was used to populate the high-spin states of sup 1 sup 3 sup 2 La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2 sup - and the isomeric state 6 sup -. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the pi h sub 1 sub 1 sub / sub 2 x nu h sub 1 sub 1 sub / sub 2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. (orig.)

  1. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  2. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    Science.gov (United States)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  3. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  4. Transfer of d-level quantum states through spin chains by random swapping

    International Nuclear Information System (INIS)

    Bayat, A.; Karimipour, V.

    2007-01-01

    We generalize an already proposed protocol for quantum state transfer to spin chains of arbitrary spin. An arbitrary unknown d-level state is transferred through a chain with rather good fidelity by the natural dynamics of the chain. We compare the performance of this protocol for various values of d. A by-product of our study is a much simpler method for picking up the state at the destination as compared with the one proposed previously. We also discuss entanglement distribution through such chains and show that the quality of entanglement transition increases with the number of levels d

  5. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)

    2015-11-15

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy

  6. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    International Nuclear Information System (INIS)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.

    2013-01-01

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems

  7. Composition operators between Bloch type spaces and Zygmund ...

    Indian Academy of Sciences (India)

    MS received 1 September 2009; revised 31 March 2011. Abstract. The boundedness and compactness of composition operators between. Bloch type spaces and Zygmund spaces of holomorphic functions in the unit ball are characterized in the paper. Keywords. Composition operator; Bloch type space; Zygmund space. 1.

  8. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  9. Non-collective high-spin states in /sup 148/Dy

    Energy Technology Data Exchange (ETDEWEB)

    Dines, E.L.

    1985-04-01

    General physical concepts regarding nuclear high-spin states are given. The high-spin states in /sup 148/Dy(Z = 66, N = 82) were produced via the reaction /sup 112/Cd(Pb-backed)(/sup 40/Ar,4n) at E/sub lab/ = 175, at the 88-inch Cyclotron at Lawrence Berkeley Laboratory. Methods for placing gates on various transitions above and below the 480 nsec isomer at 10/sup +/(known from previous work), as well as for calculating transition intensities and their associated errors, are given. Calculations of angular correlations for multiple ..gamma..-ray cascades, assuming non-zero-width distributions in m-states for some given spin state, were done and compared to experimental values. Analysis of RF - Ge and Ge - Ge TAC spectra for transitions above the 480 nsec isomer implied lifetimes of less than or equal to 5 nsec (except for the 327.2 keV transition). Using such analysis, some 19 new ..gamma..-ray transitions were discovered above the isomer, thereby extending the /sup 148/Dy level scheme up to spin I = 31 h-bar. Assignments of spins and parities for the new levels are made based on information obtained from angular correlations and the lifetime limits. Previous work on the 11 transitions below the 480 nsec isomer is confirmed.

  10. Bounds on the entanglement entropy of droplet states in the XXZ spin chain

    Science.gov (United States)

    Beaud, V.; Warzel, S.

    2018-01-01

    We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.

  11. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2010-01-01

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.

  12. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    Science.gov (United States)

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  13. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  14. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  15. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  16. Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth

    2008-01-01

    We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered and...

  17. 3D Spin-Liquid State in an Organic Hyperkagome Lattice of Mott Dimers

    Science.gov (United States)

    Mizuno, Asato; Shuku, Yoshiaki; Matsushita, Michio M.; Tsuchiizu, Masahisa; Hara, Yuuki; Wada, Nobuo; Shimizu, Yasuhiro; Awaga, Kunio

    2017-08-01

    We report the first 3D spin liquid state of isotropic organic spins. Structural analysis, and magnetic and heat-capacity measurements were carried out for a chiral organic radical salt, (TBA) 1.5[(-)-NDI -Δ ] (TBA denotes tetrabutylammonium and NDI denotes naphthalene diimide), in which (-)-NDI -Δ forms a K4 structure due to its triangular molecular structure and an intermolecular π -π overlap between the NDI moieties. This lattice was identical to the hyperkagome lattice of S =1 /2 Mott dimers, and should exhibit 3D spin frustration. In fact, even though the high-temperature magnetic susceptibility followed the Curie-Weiss law with a negative Weiss constant of θ =-15 K , the low-temperature magnetic measurements revealed no long-range magnetic ordering down to 70 mK, and suggested the presence of a spin liquid state with a large residual paramagnetism χ0 of 8.5 ×10-6 emu g-1 at the absolute zero temperature. This was supported by the N 14 NMR measurements down to 0.38 K. Further, the low-temperature heat capacities cp down to 68 mK clearly indicated the presence of cp for the spin liquid state, which can be fitted to the power law of T0.62 in the wide temperature range 0.07-4.5 K.

  18. The Quantum Mixed-Spin Heme State of Barley Peroxidase: A Paradigm for Class III Peroxidases

    Energy Technology Data Exchange (ETDEWEB)

    Howes, B.D.; Ma, J.; Marzocchi, M.P.; Schiodt, C.B.; Shelnutt, J.A.; Smulevich, G.; Welinder, K.G.; Zhang, J.

    1999-03-23

    Electronic absorption and resonance Raman (RR) spectra of the ferric form of barley grain peroxidase (BP 1) at various pH values both at room temperature and 20 K are . reported, together with EPR spectra at 10 K. The ferrous forms and the ferric complex with fluoride have also been studied. A quantum mechanically mixed-spin (QS) state has been identified. The QS heme species co-exists with 6- and 5-cHS heroes; the relative populations of these three spin states are found to be dependent on pH and temperature. However, the QS species remains in all cases the dominant heme spin species. Barley peroxidase appears to be further characterized by a splitting of the two vinyl stretching modes, indicating that the vinyl groups are differently conjugated with the porphyrin. An analysis of the presently available spectroscopic data for proteins from all three peroxidase classes suggests that the simultaneous occurrence of the QS heme state as well as the splitting of the two vinyl stretching modes is confined to class III enzymes. The former point is discussed in terms of the possible influences of heme deformations on heme spin state. It is found that moderate saddling alone is probably not enough to cause the QS state, although some saddling maybe necessary for the QS state.

  19. Topology and criticality in the resonating Affleck-Kennedy-Lieb-Tasaki loop spin liquid states

    Science.gov (United States)

    Li, Wei; Yang, Shuo; Cheng, Meng; Liu, Zheng-Xin; Tu, Hong-Hao

    2014-05-01

    We exploit a natural projected entangled-pair state (PEPS) representation for the resonating Affleck-Kennedy-Lieb-Tasaki loop (RAL) state. By taking advantage of PEPS-based analytical and numerical methods, we characterize the RAL states on various two-dimensional lattices. On square and honeycomb lattices, these states are critical since the dimer-dimer correlations decay as a power law. On the kagome lattice, the RAL state has exponentially decaying correlation functions, supporting the scenario of a gapped spin liquid. We provide further evidence that the RAL state on the kagome lattice is a Z2 spin liquid, by identifying the four topological sectors and computing the topological entropy. Furthermore, we construct a one-parameter family of PEPS states interpolating between the RAL state and a short-range resonating valence bond state and find a critical point, consistent with the fact that the two states belong to two different phases. We also perform a variational study of the spin-1 kagome Heisenberg model using this one-parameter PEPS.

  20. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  1. Spin glass state in Gd 2CoMnO 6 perovskite manganite

    Science.gov (United States)

    Wang, X. L.; Horvat, J.; Liu, H. K.; Li, A. H.; Dou, S. X.

    2001-03-01

    Dc magnetisation and ac susceptibility were measured on Gd 2CoMnO 6 perovskite manganite synthesised by solid state reaction in dc magnetic fields up to 5 T and an ac magnetic field of 1 Oe at frequencies of 21, 217 and 2000 Hz over a wide temperature range from 300 K down to 4.2 K. A spin glass transition with a very sharp transition width of 1 K at temperatures as high as 112 K was observed after the paramagnetic to ferromagnetic transition. An antiferromagnetic transition occurs at 43 K, far below the spin glass state. The spin glass transition temperature is totally suppressed at a field of 5 T.

  2. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    Science.gov (United States)

    2017-03-09

    UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A...August 2014 4. TITLE AND SUBTITLE TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b...analytical closed-form analysis performed by Michael P. Perry and Thomas B. Jones (ref. 4). Two- dimensional (2D) finite element steady state analyses

  3. High spin exotic states and new method for pairing energy

    International Nuclear Information System (INIS)

    Molique, H.

    1996-01-01

    We present a new method called 'PSY-MB', initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C 4 -polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author)

  4. Quantum state transfer in spin chains with q-deformed interaction terms

    International Nuclear Information System (INIS)

    Jafarov, E I; Van der Jeugt, J

    2010-01-01

    We study the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. Some years ago it was discovered that when the spin chain data (the nearest-neighbour interaction strengths and the magnetic field strengths) are related to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials the so-called perfect state transfer takes place. The extension of these ideas to other types of discrete orthogonal polynomials did not lead to new models with perfect state transfer, but did allow more insight in the general computation of the correlation function. In this paper, we extend the study to discrete orthogonal polynomials of q-hypergeometric type. A remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. The other cases studied here (affine q-Krawtchouk polynomials, quantum q-Krawtchouk polynomials, dual q-Krawtchouk polynomials, q-Hahn polynomials, dual q-Hahn polynomials and q-Racah polynomials) do not give rise to models with perfect state transfer. However, the computation of the correlation function itself is quite interesting, leading to advanced q-series manipulations.

  5. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wang, Hanquan

    2014-01-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method

  6. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  7. Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering

    Science.gov (United States)

    Kim, J.-W.; Choi, Y.; Chun, S. H.; Haskel, D.; Yi, D.; Ramesh, R.; Liu, J.; Ryan, P. J.

    2018-03-01

    The combination of strong electron correlations in 3 d transition-metal oxides and spin-orbit interactions in the 5 d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIr O3 (SIO) and L a2 /3S r1 /3Mn O3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolved x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular orbitals between the Mn and Ir layers modifying the Ir 5 d electronic configuration through the mixture of t2 g and eg states, resulting in a deviation from Jeff=1 /2 . This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5 d states with two-dimensional 3 d spin-polarized electrons through heterostructure design.

  8. Stacked-Bloch-wave electron diffraction simulations using GPU acceleration

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Wang, Feng; Koch, Christoph T.

    2014-01-01

    In this paper, we discuss the advantages for Bloch-wave simulations performed using graphics processing units (GPUs), based on approximating the matrix exponential directly instead of performing a matrix diagonalization. Our direct matrix-exponential algorithm yields a functionally identical electron scattering matrix to that generated with matrix diagonalization. Using the matrix-exponential scaling-and-squaring method with a Padé approximation, direct GPU-based matrix-exponential double-precision calculations are up to 20× faster than CPU-based calculations and up to approximately 70× faster than matrix diagonalization. We compare precision and runtime of scaling and squaring methods with either the Padé approximation or a Taylor expansion. We also discuss the stacked-Bloch-wave method, and show that our stacked-Bloch-wave implementation yields the same electron scattering matrix as traditional Bloch-wave matrix diagonalization. - Highlights: • Bloch-wave and stacked-Bloch-wave calculations can be accelerated with GPUs. • Direct approximation of the matrix exponential can be faster than diagonalization. • GPU-based direct approximation can be ≈70× faster than CPU diagonalization. • Larger matrices benefit more from this approach than smaller ones. • Stacked-Bloch-wave scattering results are functionally identical to diagonalization

  9. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  10. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  11. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  12. Some models of spin coherence and decoherence in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.

    1997-09-01

    I present some simple exactly solvable models of spin diffusion caused by synchrotron radiation noise in storage rings. I am able to use standard stochastic differential equation and Fokker-Planck methods and I thereby introduce, and exploit, the polarization density. This quantity obeys a linear evolution equation of the Bloch type, which is, like the Fokker-Planck equation, universal in the sense that it is independent of the state of the system. I also briefly consider Bloch equations for other local polarization quantities derived from the polarization density. One of the models chosen is of relevance for some existing and proposed low energy electron (positron) storage rings which need polarization. I present numerical results for a ring with parameters typical of HERA and show that, where applicable, the results of my approach are in satisfactory agreement with calculations using SLIM. These calculations provide a numerical check of a basic tenet of the conventional method of calculating depolarization using the n-vector-axis. I also investigate the equilibrium behaviour of the spin ensemble when there is no synchrotron radiation. Finally, I summarize other results which I have obtained using the polarization density and which will be published separately. (orig.)

  13. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies.

    Science.gov (United States)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

  14. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    Following a fully self-consistent cranked Hartree-Fock-Bogoliubov (CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum = 24. Evolution of the shape with spin, and rotation alignment of proton as well ...

  15. Aperiodic spin state ordering of bistable molecules and its photoinducede erasing

    Czech Academy of Sciences Publication Activity Database

    Collet, E.; Watanabe, H.; Bréfuel, N.; Palatinus, Lukáš; Roudaut, L.; Toupet, L.; Tanaka, K.; Tuchagues, J.-P.; Fertey, P.; Ravy, S.; Toudic, B.; Cailleau, H.

    2012-01-01

    Roč. 109, č. 25 (2012), "257206-1"-"257206-5" ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : photocrystallography * aperiodic structure * spin-state ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012

  16. Triple Rashba dots as a spin filter: Bound states in the continuum and Fano effect

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo, M.L.; Ladron de Guevara, M.L. [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Orellana, P.A., E-mail: orellana@ucn.c [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile)

    2010-11-01

    We propose an efficient spin-filter device by exploiting bound states (BICs) in the continuum and Fano effect on a triple Rashba quantum dot molecule embedded in an Aharonov-Bohm interferometer. We find that the coexistence of a BIC and a Fano antiresonance result in polarizations close to 100% in wide regions in the space of parameters.

  17. Excitonic instability at the spin-state transition in the two-band Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 89, č. 11 (2014), "115134-1"-"115134-8" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * spin-state transition * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  18. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum J = 24. Evolution of the shape with spin, and rotation alignment of ...

  19. Effect of anisotropy on the entanglement of quantum states in a spin chain

    NARCIS (Netherlands)

    Kartsev, PF; Kashurnikov, VA

    2004-01-01

    The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a magnetic field increases above the value reached in the absence of the field. The

  20. ν =2 /3 fractional quantum Hall state in an AlAs quantum well probed by electron spin resonance

    Science.gov (United States)

    Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.

    2017-10-01

    The electron spin resonance (ESR) of two-dimensional electrons confined in a high-quality, 16-nm AlAs quantum well was investigated near the filling factor ν =2 /3 of the fractional quantum Hall effect (FQHE). The spin resonance was robust in the vicinity of the fractional filling ν =2 /3 , indicating that the ν =2 /3 state is at least partially spin polarized. The formation of the 2 /3 FQHE state did not result in any modifications of the ESR linewidth and, hence, of the electron spin relaxation rate. Yet the nuclear spin-lattice relaxation rate extracted from the time decay of the ESR Overhauser shift demonstrated a strong nonmonotonic dependence on the electron filling factor with a minimum near ν =2 /3 . This observation suggests the enhancement of the energy gap in the spin excitation spectrum of two-dimensional electrons at the ν =2 /3 state.

  1. Theoretical approaches to control spin dynamics in solid-state ...

    Indian Academy of Sciences (India)

    state nuclear magnetic resonance. We present fundamental theories in the history of NMR, namely, the average Hamiltonian and Floquet theories. We also discuss emerging theories such as the Fer and Floquet-Magnus expansions.

  2. Bloch-mode analysis for effective parameters restoration

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Ha, Sangwoo

    2012-01-01

    We utilize the Bloch-mode analysis of periodic composite structures to introduce an approach for retrieving effective parameters of homogenized metamaterials. In the case of single-mode propagation we can restore a complex effective refractive index with a high accuracy. By further employing...... surface or volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes we are able to determine the Bloch and wave impedances, leading to wave and material effective parameters, respectively. The approach is demonstrated on several examples. We focus our discussion...

  3. Coexistence of spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7} as probed by μSR and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dengre, Shanu; Sarkar, Rajib; Braeuninger, Sascha Albert; Brueckner, Felix; Materne, Philipp; Klauss, Hans-Henning [Institute for Solid State Physics, TU Dresden (Germany); Krizan, Jason W.; Cava, Robert J. [Department of Chemistry, Princeton University, Princeton, NJ (United States); Luetkens, Hubertus; Baines, Chris [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland)

    2016-07-01

    {sup 23}Na -and {sup 19}F NMR, and μSR experiments are performed to explore the microscopic properties of NaSrCo{sub 2}F{sub 7}, which is a newly discovered magnetically frustrated pyrochlore with weak bond disorder and with a frustration index of f = 42. While {sup 23}Na and {sup 19}F NMR experiments clearly suggest the presence of quasi static field distribution below ∝3 K as reflected in the huge NMR line broadening and wipe out effect of NMR signal intensity, μSR experiments on the other hand remains passive to this spin frozen state. Both NMR and μSR results indicate the slowing down of the magnetic (spin) fluctuations upon cooling towards the NMR spin frozen state. μSR relaxation rate increases slightly below ∝ 3 K, and remains not only constant down to 20 mK, but also stands independent in longitudinal magnetic field upto 4000 G implying that the spin fluctuations are dynamic. These observations suggest the coexistence of partial spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7}.

  4. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2010-01-01

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus 94 Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for 94 Ag.

  5. Proton radioactivity at non-collective prolate shape in high spin state of {sup 94}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta, E-mail: mamta.a4@gmail.co [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India)

    2010-10-11

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus {sup 94}Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for {sup 94}Ag.

  6. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    International Nuclear Information System (INIS)

    Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.

    2005-01-01

    Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous

  7. Bloch-Redfield-Wangsness theory engine implementation using symbolic processing software

    Science.gov (United States)

    Kuprov, Ilya; Wagner-Rundell, Nicola; Hore, P. J.

    2007-02-01

    We describe a general method for the automated symbolic processing of Bloch-Redfield-Wangsness relaxation theory equations for liquid-phase spin dynamics in the algebraically challenging case of rotationally modulated interactions. The processing typically takes no more than a few seconds (on a contemporary single-processor workstation) and yields relaxation rate expressions that are completely general with respect to the spectral density functions, relative orientations, and magnitudes of the interaction tensors, with all cross-correlations accounted for. The algorithm easily deals with fully rhombic interaction tensors, and is able, with little if any modification, to treat a large variety of the relaxation mechanisms encountered in NMR, EPR, and spin dynamics in general.

  8. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    Science.gov (United States)

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Multi-terminal spin valve in a strong Rashba channel exhibiting three resistance states.

    Science.gov (United States)

    Lee, Joo-Hyeon; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo

    2018-02-21

    In a strong spin-orbit interaction system, the existence of three resistance states were observed when two ferromagnetic (FM) contacts were used as current terminals while a separate normal metal contact pair was used as voltage terminals. This result is strikingly different from ordinary spin valve or magnetic tunnel junction devices, which have only two resistance states corresponding to parallel (R P ) and antiparallel (R AP ) alignments of the FM contacts. Our experimental results on a quantum well layer with a strong Rashba effect clearly exhibit unequal antiparallel states, i.e., R AP(1) > R P  > R AP(2) , up to room temperature. The three-states are observed without any degradation when the distance between the non-magnetic voltage probe and the ferromagnetic current probe was increased up to 1.6 mm.

  10. Emergence of Dirac and quantum spin Hall states in fluorinated monolayer As and AsSb

    KAUST Repository

    Zhang, Qingyun

    2016-01-21

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer As and AsSb. While the pristine monolayers are semiconductors (direct band gap at the Γ point), fluorination results in Dirac cones at the K points. Fluorinated monolayer As shows a band gap of 0.16 eV due to spin-orbit coupling, and fluorinated monolayer AsSb a larger band gap of 0.37 eV due to inversion symmetry breaking. Spin-orbit coupling induces spin splitting similar to monolayer MoS2. Phonon calculations confirm that both materials are dynamically stable. Calculations of the edge states of nanoribbons by the tight-binding method demonstrate that fluorinated monolayer As is topologically nontrivial in contrast to fluorinated monolayer AsSb.

  11. 2D fractional supersymmetry for rational conformal field theory: application for third-integer spin states

    International Nuclear Information System (INIS)

    Perez, A.; Simon, P.

    1996-01-01

    A 2D fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super-Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 5/3. Finally, we analyze the form that a local invariant action should take. (orig.)

  12. Chiral heat transport in driven quantum Hall and spin Hall edge states

    Science.gov (United States)

    Arrachea, Liliana; Fradkin, Eduardo

    2012-02-01

    We consider a model for an edge state of electronic systems in the quantum Hall regime with filling ν=1 as well as in the quantum spin Hall regime. In both cases the system is in contact with two reservoirs by tunneling at point contacts. Both systems are locally driven by applying an ac voltage in one of the contacts. By weakly coupling them to a third reservoir, the transport of the generated heat is studied in two different ways: i) when the third reservoir acts as a thermometer the local temperature is sensed, and ii) when the third reservoir acts as a voltage probe the time-dependent local voltage is sensed. Our results indicate a chiral propagation of the heat along the edge in the quantum Hall case and in the quantum spin Hall case (if the injected electrons are spin polarized). The temperature profile shows that electrons along the edge thermalize with the closest upstream reservoir.

  13. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    Science.gov (United States)

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  14. Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron

    CERN Document Server

    Fujita, Shigeji

    2007-01-01

    Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...

  15. Spin states of asteroids in the Eos collisional family

    Science.gov (United States)

    Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.

    2018-01-01

    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.

  16. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  17. Bloch-Like Oscillations in Finite Quantum Structures

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten; Lassen, Benny

    of individual quantum wells and changing the coupling strength as a function of position. It is, furthermore, demonstrated that the application of a magnetic field to a structure of quantum wells may lead to the observation of Bloch oscillations (similar to Bloch oscillations stemming from the Stark effect......Inspired by several attempts to generate Bloch-like oscillations in different fields of physics [1,2], we examine a multitude of oscillator systems and interactions that lead to Bloch oscillations in finite quantum structures. A general requirement is the existence of a common period in the time...... dependence of different eigenstates which is guaranteed if eigenenergies are distributed in, e.g., a Stark ladder. We show that one possibility to create a Stark ladder is to vary the individual well widths in a chain of quantum wells. For this system we study the effect of permuting the positions...

  18. Density of states and phase diagram of the antiferromagnetic spin chain with Dzyaloshinsky-Moriya interaction and spin-phonon coupling

    International Nuclear Information System (INIS)

    Wang Qin; Chen Hong; Zheng Hang

    2007-01-01

    The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization

  19. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    Directory of Open Access Journals (Sweden)

    Mehrtash Babadi

    2015-10-01

    Full Text Available We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014PRLTAO0031-900710.1103/PhysRevLett.113.147205].

  20. Low-spin states of odd-mass xenon isotopes

    Indian Academy of Sciences (India)

    The result of an IBFM-1 multilevel calculation with the 2d5/2, 1g7/2, 3s1/2, 2d3/2 and 1h11/2, single particle orbits is reported for the positive parity states of the odd-mass nucleus 125-129Xe. Also, an IBM- 1 calculation is ... Harun R Yazar1. Faculty of Arts and Science, Nev»sehir University, 50300 Nev»sehir, Turkey ...

  1. Mutually unbiased bases: tomography of spin states and the star-product scheme

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, S N; Man' ko, V I, E-mail: sergey.filippov@phystech.edu, E-mail: manko@sci.lebedev.ru [Moscow Institute of Physics and Technology, Moscow (Russian Federation)

    2011-02-15

    Mutually unbiased bases (MUBs) are considered within the framework of a generic star-product scheme. We rederive that a full set of MUBs is adequate for a spin tomography, i.e. knowledge of all probabilities to find a system in each MUB-state is enough for a state reconstruction. Extending the ideas of the tomographic-probability representation and the star-product scheme to MUB tomography, dequantizer and quantizer operators for MUB symbols of spin states and operators are introduced, ordinary and dual star-product kernels are found. Since MUB projectors are to obey specific rules of the star-product scheme, we reveal the Lie algebraic structure of MUB projectors and derive new relations on triple- and four-products of MUB projectors. An example of qubits is considered in detail. MUB tomography by means of the Stern-Gerlach apparatus is discussed.

  2. Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases

    Science.gov (United States)

    Ye, Chong; Fu, Li-Bin

    2017-08-01

    We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020

  3. Mode-locked Bloch oscillations in a ring cavity

    International Nuclear Information System (INIS)

    Samoylova, M; Piovella, N; Hunter, D; Robb, G R M; Bachelard, R; Courteille, Ph W

    2014-01-01

    We present a new technique for stabilizing and monitoring Bloch oscillations of ultracold atoms in an optical lattice under the action of a constant external force. In the proposed scheme, the atoms also interact with a unidirectionally pumped optical ring cavity whose one arm is collinear with the optical lattice. For weak collective coupling, Bloch oscillations dominate over the collective atomic recoil lasing instability and develop a synchronized regime in which the atoms periodically exchange momentum with the cavity field. (letter)

  4. Energetics of the spin-state transition in LaCoO3: Total energy calculations using DFT +DMFT

    Science.gov (United States)

    Nanguneri, Ravindra; Park, Hyowon

    In this talk, we will present the energetics of the spin-state transition in strongly correlated LaCoO3 by adopting total energy calculations within density functional theory plus dynamical mean field theory (DFT +DMFT). We computed total energy curves as a function of volume for different spin states including low spin (LS), high spin (HS), and 1:1 mixed HS-LS states. We will show that as the volume is expanded, the mixed HS-LS state becomes energetically stable with a reasonable energy gap to the ground-state LS state. The nature of the HS-LS state is a paramagnetic insulator consistent with experiment while the homogeneous HS state is energetically much higher compared to the LS state. To analyze the dynamical fluctuation effect on the energetics, we also computed DFT +U energy curves by adopting the maximally localized Wannier function as correlated orbitals, same as used in DFT +DMFT calculations. The static correlation effect treated in DFT +U overestimates the tendency to higher spin states and the mixed spin state is wrongly predicted to be the ground state. The effect of the Coulomb interaction U, the Hund's coupling J, and the double counting potential on the energetics will be also discussed.

  5. Identification of high spin states in ^134I from ^252Cf fission

    Science.gov (United States)

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.

    2009-11-01

    High spin states in ^134I have been identified for the first time based on measurements of prompt gamma rays from the spontaneous fission of ^252Cf at Gammasphere. Five excited levels with five deexciting transitions have been observed. The mass number was assigned based on the intensity of transitions in the complementary Rh fragments. It is likely that the observed yrast cascade of ^134I is built on the 316.3 keV 8^- isomeric state with a configuration of π(1g7/2) ν(1h11/2)-1 based on the systematics of the ground states and isomeric states in ^132I, ^136I, ^ 132Sb and ^136Cs. Angular correlations for the first two transitions in ^134I and for high spin states in ^133, 135, 136I were performed, but were not sufficient to firmly assign the spins and parities in ^134I. A. Covello and his collaborators have prepared a paper on shell model calculations for ^134I. Their results are 0 (8^-), 1022 (10^-), 1674 (11^-), 1905 (12^-), 2439 (13^-), and 3142 keV (14^-) energies, which are in good agreement with all the level energies reported here. Details of this work will be presented. Work supported by the U.S. Department of Energy under Grants and Contract Nos. DE-FG05-88ER40407 and DE-AC03-76SF00098.

  6. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing

    Science.gov (United States)

    Gartside, Jack C.; Arroo, Daan M.; Burn, David M.; Bemmer, Victoria L.; Moskalenko, Andy; Cohen, Lesley F.; Branford, Will R.

    2018-01-01

    Arrays of non-interacting nanomagnets are widespread in data storage and processing. As current technologies approach fundamental limits on size and thermal stability, enhancing functionality through embracing the strong interactions present at high array densities becomes attractive. In this respect, artificial spin ices are geometrically frustrated magnetic metamaterials that offer vast untapped potential due to their unique microstate landscapes, with intriguing prospects in applications from reconfigurable logic to magnonic devices or hardware neural networks. However, progress in such systems is impeded by the inability to access more than a fraction of the total microstate space. Here, we demonstrate that topological defect-driven magnetic writing—a scanning probe technique—provides access to all of the possible microstates in artificial spin ices and related arrays of nanomagnets. We create previously elusive configurations such as the spin-crystal ground state of artificial kagome dipolar spin ices and high-energy, low-entropy `monopole-chain' states that exhibit negative effective temperatures.

  7. Effect of the shape on the spin state and exchange in quantum dots. Feynman path integral analysis

    International Nuclear Information System (INIS)

    Shevkunov, S. V.

    2015-01-01

    The ab initio computer simulation of the mixed quantum states of 1–5-nm model ellipsoid quantum dots with “soft” walls containing two and three quantum-indistinguishable nonrelativistic electrons has been performed by the path integral method. The calculation has been carried out beyond the single-electron and mean-field approximations with the fundamentally exact inclusion of Coulomb and exchange correlations of all orders and the spin variable. Distributions over the eigenfunctions of the spin-squared operator, as well as the equilibrium spin numbers, have been obtained depending on the shape of a quantum dot and the temperature. The complete set of basis functions symmetrized in permutations according to the spin of the system has been obtained by application of the Young symmetry operators. The dependence of the energy on the shape of the quantum dot corresponds to the negative sign of the surface tension at its boundary. The calculation indicates that the spin magnetic susceptibility in the system of two electrons decreases strongly for spherical quantum dots (“pairing” of spins) and the temperature dependences have a pronounced maximum whose position depends on the shape of the quantum dot. For three electrons in an oblate quantum dot, the inversion of the energy levels of spin states is observed and affects the spin magnetic susceptibility. The results indicate a strong dependence of the energy of collective spin states of electrons on the detailed inclusion of exchange and Coulomb spatial correlations

  8. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dan-Wei, E-mail: zdanwei@126.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006 (China); Cao, Shuai, E-mail: shuaicao2004@163.com [Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642 China (China)

    2016-10-14

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured. - Highlights: • The cold-atom optical-lattice scheme for realizing the time-reversal-invariant Hofstadter model is proposed. • The intrinsic spin Chern number related to the hybrid Wannier center in the optical lattice is investigated. • Direct measurement of the spin Chern number in the proposed system is theoretically demonstrated.

  9. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    Science.gov (United States)

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  10. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  11. Spectroscopy of high spin states in sup(211,212,213)Fr

    International Nuclear Information System (INIS)

    Byrne, A.P.; Dracoulis, G.D.; Fahlander, C.; Hubel, H.; Poletti, A.R.; Stuchbery, A.E.; Gerl, J.; Davie, R.F.; Poletti, S.J.

    1985-08-01

    The level structures of 211 Fr, 212 Fr and 213 Fr have been observed to high spins, approx. 28(h/2π) (and excitation energies approx. 8 MeV) using a variety of gamma-ray spectroscopic techniques. The structure of these nuclides is discussed in terms of couplings of single particle states through empirical shell model calculations. Good agreement with experiment is obtained. In 212 Fr and 213 Fr core-excited configurations are required to explain the properties of the highest states. A number of long lived states were observed in each nucleus some of which decay by by enhanced E3 transitions. The E3 transition strengths are discussed

  12. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  13. {gamma} decay of spin-isospin states in {sup 13}N via ({sup 3}He, t{gamma}) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, F.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Inomata, T.; Ishibashi, K.; Yoshida, H. [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Fujita, Y.

    1998-03-01

    Spin-isospin states in {sup 13}N have been studied by means of the {sup 13}C ({sup 3}He,t) reaction at and near zero degree, at E({sup 3}He)=450 MeV. Decayed {gamma}-rays from each state were measured at backward angle in coincidence with the ejectile tritons. The branching ratio of {gamma} decay for some of spin-isospin states were determined and were compared to those from previous data. (author)

  14. Equation-of-state spinning fluids in the Einstein-Cartan theory

    Science.gov (United States)

    Ray, John R.; Smalley, Larry L.

    1987-01-01

    The relativistic fluid equations may be completed in two physically distinct methods. One method assumes the mass, rho, (or particle number) is conserved, while the other method assumes an equation of state of the form P = P(rho). A variational principle for the mass conservation method both with and without an intrinsic spin for the fluid was constructed earlier (Ray and Smalley, 1982 and 1983). A variational principle for the fluid described by an equation of state both with and without spin is formulated. In all cases the variational principle is set in the Einstein-Cartan metric-torsion U4 geometry. The results for general relativity follow as a special case.

  15. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  16. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    Science.gov (United States)

    McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.

    2017-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state

  17. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K.; Hatsukawa, Y. [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  18. Quantum spin Hall states in graphene interacting with WS2 or WSe2

    KAUST Repository

    Kaloni, T. P.

    2014-12-08

    In the framework of first-principles calculations, we investigate the structural and electronic properties of graphene in contact with as well as sandwiched between WS2 and WSe2 monolayers. We report the modification of the band characteristics due to the interaction at the interface and demonstrate that the presence of the dichalcogenide results in quantum spin Hall states in the absence of a magnetic field.

  19. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    Science.gov (United States)

    2016-09-01

    control circuitry for control of electron/ nuclear spin states of qubits/quantum memory applicable to semiconductor , superconductor, ionic, and...rotation and tilted rotational axes respectively. There have been many proposed methods of suppressing these errors. Of these, the BB1 sequence...Modulation of the Silicon Vacancy in 4 H− SiC at Room Temperature,” Physical Review, vol. B92, no. 16, pp. 161–202. Klimov, P, V., A. L. Falk, D. J

  20. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  1. High-Spin States in Odd-Odd N=Z {sup 46}V

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, C.D.; Bentley, M.A.; Appelbe, D.E.; Bark, R.A.; Cullen, D.M.; Erturk, S.; Maj. A.; Sheikh, J.A.; Warner, D.D.

    1999-12-31

    High-spin states up to the F{sub 7/2}-shell band termination at J{pi}=15+ have been observed for the first time in the odd-odd N=Z=23 nucleous {sup 46}V. The new level scheme has two separate structures corresponding to spherical and prolate shapes. A rotational band has very similar energies to the yrast sequence in {sup 46}Ti and is therefore assumed to be a T=1 configuration.

  2. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation.

    Science.gov (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N

    2008-10-23

    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  3. Rayleigh-Bloch waves in CMUT arrays.

    Science.gov (United States)

    Atalar, Abdullah; Köymen, Hayrettin; Oğuz, H Kağan

    2014-12-01

    Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker plates at the expense of reduced bandwidth.

  4. Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system

    Science.gov (United States)

    Guo, Yao-Wu; Chen, Yan

    2018-04-01

    The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.

  5. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    Science.gov (United States)

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  6. Non-equilibrium reversible dynamics of work production in four-spin system in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.A. Ivanchenko

    2011-06-01

    Full Text Available A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for 4 magnetic particles with the exchange interaction that takes place in an arbitrary time-dependent external magnetic field. The analytical and numerical analysis of the quantum thermodynamic variables is carried out depending on separable mixed initial state and the magnetic field modulation. Under unitary evolution, non-equilibrium reversible dynamics of power production in the finite environment is investigated.

  7. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  8. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  9. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Júnior, D. S., E-mail: damiao.vieira@ifsudestemg.edu.br [Departamento Acadêmico de Matemática, Física e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Câmpus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Leonel, S. A., E-mail: sidiney@fisica.ufjf.br; Dias, R. A., E-mail: radias@fisica.ufjf.br; Toscano, D., E-mail: danilotoscano@fisica.ufjf.br; Coura, P. Z., E-mail: pablo@fisica.ufjf.br; Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurations—vortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned states—type C—as a function of the shape of each elliptical nano-islands and constructed a phase diagram vortex—type C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  10. Iron monocyanide (FeCN): Spin-orbit and vibronic interactions in low-lying electronic states

    Science.gov (United States)

    Jerosimić, Stanka V.; Milovanović, Milan Z.

    2018-04-01

    The spin-orbit eigenvalues of low-energy quartet and sextet spatially degenerate electronic states of FeCN are reported, together with the combined effect of vibronic and spin-orbit interaction in the lowest-lying 14Δ and 16Δ states of FeCN, by using perturbational and variational method. Spin-orbit constants (ASO) have been calculated in the basis of: (a) two components of each degenerate state, (b) four components of 14Δ and 14Π (16Δ and 16Π) states, and (c) ten components of 16Δ, 16Π, 16Σ+, 14Δ, 14Π, and 14Σ+ states. The present calculations predict the values of ASO= -77 cm-1 for 16Δ and ASO= -108 cm-1 for 14Δ state in the lowest-energy spin-orbit manifolds of each state. The major perturbing state for the 14Δ state is the 14Π state (16Π for the sextet 16Δ). As expected, based on extremely small splitting and shallowness of the bending potential energy curves for the lowest-lying 4,6Δ states, the present study indicate that the vibronic coupling does not create significant splitting of the bending levels, but the influence of anharmonicity in the bending mode is more pronounced. However, the spin-orbit fine structure dominantly influences the spectra of this species.

  11. High spin states in 181Ir and backbending phenomena in the Os-Pt region

    Science.gov (United States)

    Kaczarowski, R.; Garg, U.; Funk, E. G.; Mihelich, J. W.

    1992-01-01

    The 169Tm(16O,4n)181Ir reaction has been employed to investigate the high spin states of 181Ir using in-beam γ spectroscopy. A well-developed system of levels built on the h9/2 subshell was identified up to a maximum spin of (41/2-). Two rotational bands built on the isomeric states with τ1/2=0.33 μs (Ex=289.2 keV) and 0.13 μs (Ex=366.2 keV), respectively, were observed. The deduced gK values of 1.19+/-0.11 and 1.50+/-0.12 indicate Nilsson assignments of 9/2-[514] and 5/2+[402], respectively, for the bandheads of these bands. A high spin (I>=19/2) isomer with τ1/2=22 ns was found at an excitation energy above 1.96 MeV. The experimental results are discussed in terms of rotational models including Coriolis coupling and providing for a stable triaxial shape of the 181Ir nucleus.

  12. High-spin states in 136La and possible structure change in the N =79 region

    Science.gov (United States)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  13. Physical states and BRST operators for higher-spin W strings

    International Nuclear Information System (INIS)

    Liu, Yu-Xiao; Wei, Shao-Wen; Ren, Ji-Rong; Zhang, Li-Jie

    2009-01-01

    In this paper, we mainly investigate the W 2,s M x W 2,s L system, in which the matter and the Liouville subsystems generate the W 2,s M and W 2,s L algebras, respectively. We first give a brief discussion of the physical states for the corresponding W strings. The lower states are given by freezing the spin-2 and spin-s currents. Then, introducing two pairs of ghost-like fields, we give the realizations of the W 1,2,s algebras. Based on these linear realizations, the BRST operators for the W 2,s algebras are obtained. Finally, we construct new BRST charges of the Liouville system for the W 2,s L strings at the specific values of the central charges c: c=-(22)/(5) for the W 2,3 L algebra, c=-24 for the W 2,4 L algebra and c=-2,-(286)/(3) for the W 2,6 L algebra, at which the corresponding W 2,s L algebras are singular. (orig.)

  14. Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.

    Science.gov (United States)

    Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues

    2015-06-12

    We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.

  15. Vison states and confinement transitions of Z2 spin liquids on the kagome lattice

    Science.gov (United States)

    Huh, Yejin; Punk, Matthias; Sachdev, Subir

    2011-09-01

    We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux (“visons”) are shown to transform under the 48 element group GL(2,Z3). Alternative exchange couplings can also lead to a second case with visons transforming under 288-element group GL(2,Z3)×D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order. The critical field theories and confining states are classified using the vison PSGs.

  16. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    International Nuclear Information System (INIS)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.

    2011-01-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  17. Nonequilibrium current-carrying steady states in the anisotropic X Y spin chain

    Science.gov (United States)

    Lancaster, Jarrett L.

    2016-05-01

    Out-of-equilibrium behavior is explored in the one-dimensional anisotropic X Y model. Initially preparing the system in the isotropic X X model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.

  18. Recent advances in solid-state NMR spectroscopy of spin I=1/2 nuclei.

    Science.gov (United States)

    Lesage, Anne

    2009-08-28

    This perspective contains a brief review of some of the most recent developments in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Over the last few years, methodological advances have concerned both (1)H and lower gamma spin I = 1/2 nuclei (i.e. (13)C) and have led to the introduction of sophisticated high-resolution techniques that allow the structural investigation at an atomic level of wider and wider classes of materials. Significant developments have thus been reported in the characterisation of crystalline organic molecules, notably with the de novo structure determination of powders at natural isotopic abundance essentially by NMR alone. Key advances have been made in parallel in the structural characterisation of inorganic or hybrid frameworks, often in combination with first principle calculation of the NMR observed. Finally, progress has been reported in the structural investigation of proteins, which are not amenable to solution NMR or X-ray crystallography.

  19. High-spin states in the A=39 mirror nuclei 39Ca and 39K

    International Nuclear Information System (INIS)

    Andersson, T.; Rudolph, D.; Fahlander, C.; Eberth, J.; Thomas, H.G.; Haslip, D.; Svensson, C.E.; Waddington, J.C.; LaFosse, D.R.; Sarantites, D.G.; Weintraub, W.; Wilson, J.N.; Brown, B.A.

    1999-01-01

    High-spin states of the mass A=39 mirror pair 39 K and 39 Ca were investigated via the fusion-evaporation reaction 28 Si+ 16 O at 125 MeV beam energy. The gammasphere array in conjunction with the 4π charged-particle detector array microball and neutron detectors was used to detect γ rays in coincidence with evaporated light particles. The results of the first high-spin study of the T z =-1/2 nucleus 39 Ca are discussed in terms of mirror symmetry and compared to spherical shell-model calculations in the 1d 3/2 -1f 7/2 configuration space. (orig.)

  20. Observation of the Distribution of Molecular Spin States by Resonant Quantum Tunneling of the Magnetization

    Science.gov (United States)

    Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.

    1999-05-01

    Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime and we show that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measure as a function of applied field H the statistical distribution P\\(ξH\\) of magnetic energy bias ξH acting on the molecules. Tunneling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P\\(ξH\\) (around the resonant condition ξH = 0). For small initial magnetization values, the hole width shows an intrinsic broadening which may be due to nuclear spins.

  1. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    Science.gov (United States)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  2. Untangling complex networks: Risk minimization in financial markets through accessible spin glass ground states

    Science.gov (United States)

    Lisewski, Andreas Martin; Lichtarge, Olivier

    2010-08-01

    Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network’s Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.

  3. Deformed ground states and double backbending at high spins in light Kr isotopes

    CERN Document Server

    Hamilton, J H; Cleemann, L; Döring, J; Eberth, J; Frauendorf, S; Funke, L; Heck, T; Kim, H J; Lin, J; Maguire, C F; Neumann, W; Nolte, M; Piercey, R B; Ramayya, A V; Rester, A C; Robinson, R L; Roth, J; Soundranayagam, R; Sun, X J; Wells, J C; Winter, G; Zhao, Z Z

    1981-01-01

    The energy levels in /sup 74,76/Kr have been studied with a range of in-beam, gamma -spectroscopy techniques following heavy-ion reactions and in /sup 76/Kr via the radioactive decay of /sup 76/Rb. Breaks in the level energies and moments of inertia in /sup 74,76/Kr are observed at low spins. These data can be understood in terms of the crossing of bands built on near-spherical and deformed shapes with the ground states having very large deformation. In /sup 74/Kr the yrast cascade is observed to a tentative 20/sup +/ level. Double backbending of J is observed at spins of 12/sup +/ and 16/sup +/. These changes are interpreted in terms of rotation-aligned structures. (17 refs).

  4. Confinement effect on spin-polarized edge states in graphene nanostructures

    Science.gov (United States)

    Ramos-Castillo, Carlos; de Coss, Romeo

    2014-03-01

    One of the most intriguing phenomena in condensed matter physics is the existence of edge states on the boundary of a 2D system. In graphene, the edge states have distinct properties from the bulk states and play important roles in the physicochemical properties of the material. In this work, we show ab-initio results of spin-polarized electronic edge states in graphene quantum dots of different sizes and shape. We found a critical size at which the singlet nonmagnetic ground state becomes singlet open-shell with antiferromagnetic order. We found that the critical size is strongly influenced by the shape of the quantum dot. We discuss this behavior based on energetics and electronic structure of the system under study. The calculations are base on the Density functional Theory (DFT). The Linear Combination of Atomic Orbital (LCAO) method for bases functions it was used. For exchange-correlation functional has been used the Generalized Gradient Approximation (GGA).

  5. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    Science.gov (United States)

    Gopinath, T; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both (13)C and (15)N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  7. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap.

    Science.gov (United States)

    Xing, X J; Zhang, D; Li, S W

    2012-12-14

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  8. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    Science.gov (United States)

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  9. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    Science.gov (United States)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  10. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  11. Spins and magnetic moments of 58;60;62;64Mn ground states and isomers

    CERN Document Server

    Heylen, H; Billowes, J; Bissell, M L; Blaum, K; Campbell, P; Cheal, B; Ruiz, R F Garcia; Geppert, Ch; Gins, W; Kowalska, M; Kreim, K; Lenzi, S M; Moore, I D; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Yordanov, D T

    2015-01-01

    The odd-odd 54;56;58;60;62;64Mn isotopes (Z = 25) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to N = 39 were extracted. The previous tentative ground state spin assignments of 58;60;62;64Mn are now firmly determined to be I = 1 along with an I = 4 assignment for the isomeric states in 58;60;62Mn. The I = 1 magnetic moments show a decreasing trend with increasing neutron number while the I = 4 moments remain quite constant between N = 33 and N = 37. The results are compared to large-scale shell-model calculations using the GXPF1A and LNPS effective interactions. The excellent agreement of the ground state moments with the predictions from the LNPS calculations illustrates the need for an increasing amount of proton excitations across Z = 28 and neutron excitations across N = 40 in the ground state wave functions from N = 37 onwards.

  12. Long-lived spin States for low-field hyperpolarized gas MRI.

    Science.gov (United States)

    Kovtunov, Kirill V; Truong, Milton L; Barskiy, Danila A; Koptyug, Igor V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-11-03

    Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS =(4.7±0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Exact steady states for quantum quenches in integrable Heisenberg spin chains

    Science.gov (United States)

    Piroli, Lorenzo; Vernier, Eric; Calabrese, Pasquale

    2016-08-01

    The study of quantum quenches in integrable systems has significantly advanced with the introduction of the quench action method, a versatile analytical approach to nonequilibrium dynamics. However, its application is limited to those cases where the overlaps between the initial state and the eigenstates of the Hamiltonian governing the time evolution are known exactly. Conversely, in this work we consider physically interesting initial states for which such overlaps are still unknown. In particular, we focus on different classes of product states in spin-1 /2 and spin-1 integrable chains, such as tilted ferromagnets and antiferromagnets. We get around the missing overlaps by following a recent approach based on the knowledge of complete sets of quasilocal charges. This allows us to provide a closed-form analytical characterization of the effective stationary state reached at long times after the quench, through the Bethe ansatz distributions of particles and holes. We compute the asymptotic value of local correlations and check our predictions against numerical data.

  14. Spin Ensembles Coupled to Superconducting Resonators: A Scalable Architecture for Solid-State Quantum Computing

    International Nuclear Information System (INIS)

    Chen Chang-Yong; Li Shao-Hua; Hou Qi-Zhe

    2014-01-01

    A design is proposed for scalable solid-state quantum computing, which is based on collectively enhanced magnetic coupling between nitrogen-vacancy center ensembles and superconducting transmission line resonators interconnected by current-biased Josephson junction superconducting phase qubit. In this hybrid system, we realize distant multi-qubit controlled phase gate operations and generate distant multi-qubit entangled W-like states, being indispensable resource to quantum computation. Our proposed architecture consists of solid-state spin ensembles and circuit QED, and could achieve quantum computing in a solid-state environment with high-fidelity and scalable way. The experimental feasibility is discussed, and the implementation efficiency is demonstrated numerically. (general)

  15. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    Science.gov (United States)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  16. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Directory of Open Access Journals (Sweden)

    Niklaus Denier

    Full Text Available Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration. Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL sequence based on a flow-sensitive alternating inversion recovery (FAIR spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8, using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC, the left medial prefrontal cortex (mPFC and in the insula (both hemispheres. Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  17. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Science.gov (United States)

    Denier, Niklaus; Gerber, Hana; Vogel, Marc; Klarhöfer, Markus; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Lang, Undine E; Borgwardt, Stefan; Walter, Marc

    2013-01-01

    Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo) before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo) readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC) and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  18. Chiral heat transport in driven quantum Hall and quantum spin Hall edge states

    Science.gov (United States)

    Arrachea, Liliana; Fradkin, Eduardo

    2011-12-01

    We consider a model for an edge state of electronic systems in the quantum Hall regime with filling ν=1 and in the quantum spin Hall regime. In both cases, the system is in contact with two reservoirs by tunneling at point contacts. Both systems are locally driven by applying an ac voltage in one of the contacts. By weakly coupling them to a third reservoir, the transport of the generated heat is studied in two different ways: (i) when the third reservoir acts as a thermometer, the local temperature is sensed and (ii) when the third reservoir acts as a voltage probe, the time-dependent local voltage is sensed. Our results indicate a chiral propagation of the heat along the edge in the quantum Hall and in the quantum spin Hall cases (if the injected electrons are spin polarized). We also show that a analogous picture is obtained if instead of heating by ac driving the system is put in contact to a stationary reservoir at a higher temperature. In both cases, the temperature profile shows that the electrons along the edge thermalize with the closest “upstream” reservoir.

  19. The Role of Antisymmetric Exchange on the Quantum Interference between States of Different Spin Length in a dimeric Molecular Nanomagnet.

    Science.gov (United States)

    Del Barco, Enrique

    2009-03-01

    We report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel. Magnetization results obtained in two other versions of this compound, in which the ligands have been modified, show that slight variations of the relative distance between the Mn ions determine whether the molecule behaves as a rigid magnetic unit of spin S = 7 or as two exchange-coupled halves of spin S = 7/2. We analyze the effect of the Dzyaloshinskii-Moriya antisymmetric exchange interaction in a molecule with a centre of inversion symmetry and propose a formal model to account for the observed broken degeneracy that preserves the molecular inversion symmetry.

  20. The Excited Spin State of 1I/2017 U1 ‘Oumuamua

    Science.gov (United States)

    Belton, Michael J. S.; Hainaut, Olivier R.; Meech, Karen J.; Mueller, Beatrice E. A.; Kleyna, Jan T.; Weaver, Harold A.; Buie, Marc W.; Drahus, Michał; Guzik, Piotr; Wainscoat, Richard J.; Waniak, Wacław; Handzlik, Barbara; Kurowski, Sebastian; Xu, Siyi; Sheppard, Scott S.; Micheli, Marco; Ebeling, Harald; Keane, Jacqueline V.

    2018-04-01

    We show that ‘Oumuamua’s excited spin could be in a high-energy long axis mode (LAM) state, which implies that its shape could be far from the highly elongated shape found in previous studies. CLEAN and ANOVA algorithms are used to analyze ‘Oumuamua’s lightcurve using 818 observations over 29.3 days. Two fundamental periodicities are found at frequencies (2.77 ± 0.11) and (6.42 ± 0.18) cycles/day, corresponding to (8.67 ± 0.34) hr and (3.74 ± 0.11) hr, respectively. The phased data show that the lightcurve does not repeat in a simple manner, but approximately shows a double minimum at 2.77 cycles/day and a single minimum at 6.42 cycles/day. ‘Oumuamua could be spinning in either the LAM or short axis mode (SAM). For both, the long axis precesses around the total angular momentum vector with an average period of (8.67 ± 0.34) hr. For the three LAMs we have found, the possible rotation periods around the long axis are 6.58, 13.15, or 54.48 hr, with 54.48 hr being the most likely. ‘Oumuamua may also be nutating with respective periods of half of these values. We have also found two possible SAM states where ‘Oumuamua oscillates around the long axis with possible periods at 13.15 and 54.48 hr. In this case any nutation occurs with the same periods. Determination of the spin state, the amplitude of the nutation, the direction of the total angular momentum vector (TAMV), and the average total spin period may be possible with a direct model fit to the lightcurve. We find that ‘Oumuamua is “cigar-shaped,” if close to its lowest rotational energy, and an extremely oblate spheroid if close to its highest energy state.

  1. Single particle radiation between high spin states in /sup 147/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, J.; Sletten, G.; Bjoernholm, S.; Pedersen, J.; Del Zoppo, A.; Radford, D.C.; Janssens, R.V.F.; Chowdhury, P.; Emling, H.; Frekers, D.

    1987-05-04

    Transitions above the T/sub 1/2/=550 ns, 8.59 MeV isomer in /sup 147/Gd have been studied using the (/sup 30/Si, 5n) reaction. Results from ..gamma gamma.. coincidence, angular distribution and recoil distance measurements are combined to establish a level scheme up to 16.9 MeV and I approx. = 79/2. Single particle configurations are assigned on the basis of the deformed independent particle model. The single particle nature of the highest spin states and the apparent lack of collectivity is discussed.

  2. Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization

    Science.gov (United States)

    Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia

    2018-02-01

    We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.

  3. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    Science.gov (United States)

    Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew

    2018-01-01

    Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant

  4. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  5. Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement

    Science.gov (United States)

    Zhang, Tian; Lin, Jia-He; Yu, Yan-Mei; Chen, Xiang-Rong; Liu, Wu-Ming

    2015-01-01

    Bilayer phosphorene attracted considerable interest, giving a potential application in nanoelectronics owing to its natural bandgap and high carrier mobility. However, very little is known regarding the possible usefulness in spintronics as a quantum spin Hall (QSH) state of material characterized by a bulk energy gap and gapless spin-filtered edge states. Here, we report a strain-induced topological phase transition from normal to QSH state in bilayer phosphorene, accompanied by band-inversion that changes number from 0 to 1, which is highly dependent on interlayer stacking. When the bottom layer is shifted by 1/2 unit-cell along zigzag/armchair direction with respect to the top layer, the maximum topological bandgap 92.5 meV is sufficiently large to realize QSH effect even at room-temperature. An optical measurement of QSH effect is therefore suggested in view of the wide optical absorption spectrum extending to far infra-red, making bilayer phosphorene a promising candidate for opto-spintronic devices. PMID:26370771

  6. Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement.

    Science.gov (United States)

    Zhang, Tian; Lin, Jia-He; Yu, Yan-Mei; Chen, Xiang-Rong; Liu, Wu-Ming

    2015-09-15

    Bilayer phosphorene attracted considerable interest, giving a potential application in nanoelectronics owing to its natural bandgap and high carrier mobility. However, very little is known regarding the possible usefulness in spintronics as a quantum spin Hall (QSH) state of material characterized by a bulk energy gap and gapless spin-filtered edge states. Here, we report a strain-induced topological phase transition from normal to QSH state in bilayer phosphorene, accompanied by band-inversion that changes number from 0 to 1, which is highly dependent on interlayer stacking. When the bottom layer is shifted by 1/2 unit-cell along zigzag/armchair direction with respect to the top layer, the maximum topological bandgap 92.5 meV is sufficiently large to realize QSH effect even at room-temperature. An optical measurement of QSH effect is therefore suggested in view of the wide optical absorption spectrum extending to far infra-red, making bilayer phosphorene a promising candidate for opto-spintronic devices.

  7. Quantum spin Hall state in monolayer 1T'-WTe2

    Science.gov (United States)

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; Pedramrazi, Zahra; Tsai, Hsin-Zon; Jia, Chunjing; Moritz, Brian; Claassen, Martin; Ryu, Hyejin; Kahn, Salman; Jiang, Juan; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Moore, Robert G.; Hwang, Chan-Cuk; Hwang, Choongyu; Hussain, Zahid; Chen, Yulin; Ugeda, Miguel M.; Liu, Zhi; Xie, Xiaoming; Devereaux, Thomas P.; Crommie, Michael F.; Mo, Sung-Kwan; Shen, Zhi-Xun

    2017-07-01

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T'-WTe2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T'-WTe2 as a new class of QSH insulator with large bandgap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).

  8. Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4

    Science.gov (United States)

    Ma, Zhen; Wang, Jinghui; Dong, Zhao-Yang; Zhang, Jun; Li, Shichao; Zheng, Shu-Han; Yu, Yunjie; Wang, Wei; Che, Liqiang; Ran, Kejing; Bao, Song; Cai, Zhengwei; Čermák, P.; Schneidewind, A.; Yano, S.; Gardner, J. S.; Lu, Xin; Yu, Shun-Li; Liu, Jun-Ming; Li, Shiyan; Li, Jian-Xin; Wen, Jinsheng

    2018-02-01

    We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO4 as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO4 , which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.

  9. The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: ligand binding and spin state equilibria.

    Science.gov (United States)

    Roberts, Arthur G; Campbell, A Patricia; Atkins, William M

    2005-02-01

    Human cytochrome P450 (CYP) 3A4 catalyzes the oxygen-dependent metabolism of greater than 60% of known drugs. CYP3A4 binds multiple ligands simultaneously, and this contributes to complex allosteric kinetic behavior. Substrates that bind to this enzyme change the ferric spin state equilibrium of the heme, which can be observed by optical absorbance and electron paramagnetic resonance (EPR) spectroscopy. The ligand-dependent spin state equilibrium has not been quantitatively understood for any ligands that exhibit multiple binding. The CYP3A4 substrate testosterone (TST) has been shown previously by absorbance spectroscopy to induce spin state changes that are characteristic of a low spin to high spin conversion. Here, EPR was used to examine the equilibrium binding of TST to CYP3A4 at [CYP3A4] > K(D), which allows for characterization of the singly occupied state (i.e., CYP3A4.TST). We also have used absorbance spectroscopy to examine equilibrium binding, where [CYP3A4] equations, and modifications of it, reveals that the first equivalent of TST binds with higher affinity than the second equivalent of TST and its binding is positively cooperative with respect to ligand-dependent spin state conversion. Careful analysis of the EPR and absorbance spectral results suggests that the binding of the second TST induces a shift to the high spin state and thus that the second TST binding causes displacement of the bound water. A model involving six thermodynamic states is presented and this model is related to the turnover of the enzyme.

  10. Motives and algebraic cycles a celebration in honour of Spencer J. Bloch

    CERN Document Server

    Jeu, Rob de; Lewis, James D

    2009-01-01

    Spencer J. Bloch has, and continues to have, a profound influence on the subject of Algebraic K-Theory, Cycles and Motives. This book, which is comprised of a number of independent research articles written by leading experts in the field, is dedicated in his honour, and gives a snapshot of the current and evolving nature of the subject. Some of the articles are written in an expository style, providing a perspective on the current state of the subject to those wishing to learn more about it. Others are more technical, representing new developments and making them especially interesting to res

  11. Intermediate-spin states of 92Zr and a large B (E 2 ) value between the 101+ and 81+ states

    Science.gov (United States)

    Sugawara, M.; Toh, Y.; Koizumi, M.; Oshima, M.; Kimura, A.; Kin, T.; Hatsukawa, Y.; Kusakari, H.

    2017-08-01

    This study investigated intermediate-spin states of 92Zr via the inverse reaction 9Be(3 n 76Kr)92Zr . Seven transitions were newly observed, and a lifetime was extracted for the 101+ state by analysis of Doppler-broadened line shapes of decay γ rays. A large B (E 2 ) value was obtained for the transition from 101+ to 81+, and the magnitude was comparable to that for the deformed excited configurations in 94Zr that have recently been established. A possible origin for such collectivity is discussed qualitatively based on a phenomenological deformed rotor model. Moreover, a multipletlike structure that fits into the systematics for N =52 even-A isotones is revealed for the negative-parity yrast states.

  12. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  13. Respiratory responses in freshwater fish Channa punctatus (Bloch ...

    African Journals Online (AJOL)

    Oxygen consumption plays an imperative role in the life of all organisms. The air we breathe, the food we eat, and the water we drink, are contaminated by toxic substances. In the present study, Channa punctatus (BLOCH) was used as an animal model to determine the sublethal toxicity of deltamethrin. Males weighing 10 + ...

  14. Feeding habits of the catfish Synodontis schall (Bloch & Schneider ...

    African Journals Online (AJOL)

    Synodontis schall (Bloch & Schneider) is an abundant fish in Lake Chamo, but its feeding ecology is not well-known to guide its management. Diet composition and ontogenetic diet shift were investigated from stomach contents of 545 fish from August 1998 to February 2000. Volumetrically, the dominant food items were ...

  15. Improved Reading Gate For Vertical-Bloch-Line Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  16. Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface

    Science.gov (United States)

    Kishi, J.; Ohtsubo, Y.; Nakamura, T.; Yaji, K.; Harasawa, A.; Komori, F.; Shin, S.; Rault, J. E.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Nurmamat, M.; Yamane, H.; Ideta, S.; Tanaka, K.; Kimura, S.

    2017-11-01

    One-dimensional (1D) electronic states were discovered on the 1D surface atomic structure of Bi fabricated on semiconductor InSb(001) substrates by angle-resolved photoelectron spectroscopy (ARPES). The 1D state showed steep, Dirac-cone-like dispersion along the 1D atomic structure with a finite direct band gap opening as large as 150 meV. Moreover, spin-resolved ARPES revealed the spin polarization of the 1D unoccupied states as well as that of the occupied states, the orientation of which inverted depending on the wave-vector direction parallel to the 1D array on the surface. These results reveal that a spin-polarized quasi-1D carrier was realized on the surface of 1D Bi with highly efficient backscattering suppression, showing promise for use in future spintronics and energy-saving devices.

  17. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  18. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  19. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  20. High-spin states in 133Cs and the shell model description

    Science.gov (United States)

    Biswas, S.; Palit, R.; Sethi, J.; Saha, S.; Raghav, A.; Garg, U.; Laskar, Md. S. R.; Babra, F. S.; Naik, Z.; Sharma, S.; Deo, A. Y.; Parkar, V. V.; Naidu, B. S.; Donthi, R.; Jadhav, S.; Jain, H. C.; Joshi, P. K.; Sihotra, S.; Kumar, S.; Mehta, D.; Mukherjee, G.; Goswami, A.; Srivastava, P. C.

    2017-06-01

    The high-spin states in 133Cs, populated using the reaction 130Te(7Li,4 n ) with 45-MeV beam energy, have been extended up to an excitation energy of 5.265 MeV using the Indian National Gamma Array. The observed one- and three-quasiparticle bands in 133Cs, built on the π h11 /2,π g7 /2 , π d5 /2 ; and (πg7 /2π d5 /2) 1⊗ν h11/2 -2 configurations, respectively, have similar structure as seen in the lighter odd-A Cs isotopes. The experimental level scheme has been compared with the large-scale shell model calculation without truncation using the j j 55 p n a interaction, showing a good agreement for both positive- and negative-parity states.

  1. Quantum spin Hall and Z2 metallic states in an organic material

    Science.gov (United States)

    Zhao, Bao; Zhang, Jiayong; Feng, Wanxiang; Yao, Yugui; Yang, Zhongqin

    2014-11-01

    Motivated by recently searching for topological states in organic materials as well as successful experimental synthesis of a graphitelike metal-organic framework Ni3(C18H12N6 )2 [Sheberla et al., J. Am. Chem. Soc. 136, 8859 (2014), 10.1021/ja502765n], we systematically investigated the electronic and topological properties of the Ni3(C18H12N6 )2 monolayer using an ab initio method combined with a tight-binding model. Our calculations demonstrate that the material can be in a quantum spin Hall or Z2 metallic state in different electron-doped concentrations, which are experimentally accessible with currently electrostatic gating technologies. The tight-binding model also shows that the real next-nearest-neighbor interaction is essential to drive the Z2 metallic phase in Ni3(C18H12N6 )2-type lattices.

  2. Solving the Bloch equation with periodic excitation using harmonic balancing: application to Rabi modulated excitation.

    Science.gov (United States)

    Tahayori, Bahman; Johnston, Leigh A; Layton, Kelvin J; Farrell, Peter M; Mareels, Iven M Y

    2015-10-01

    In waveform design for magnetic resonance applications, periodic continuous-wave excitation offers potential advantages that remain largely unexplored because of a lack of understanding of the Bloch equation with periodic continuous-wave excitations. Using harmonic balancing techniques the steady state solutions of the Bloch equation with periodic excitation can be effectively solved. Moreover, the convergence speed of the proposed series approximation is such that a few terms in the series expansion suffice to obtain a very accurate description of the steady state solution. The accuracy of the proposed analytic approximate series solution is verified using both a simulation study as well as experimental data derived from a spherical phantom with doped water under continuous-wave excitation. Typically a five term series suffices to achieve a relative error of less than one percent, allowing for a very effective and efficient analytical design process. The opportunities for Rabi frequency modulated continuous-wave form excitation are then explored, based on a comparison with steady state free precession pulse sequences.

  3. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  4. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    Science.gov (United States)

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-03-24

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  5. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  6. Calculation of the electron spin relaxation time in a quantum limit using a state-independent projection reduction method

    Science.gov (United States)

    Kang, Nam Lyong

    2018-02-01

    A new formula for determining the electron spin relaxation time in a system of electrons interacting with acoustic deformation phonons through phonon-modulated spin–orbit coupling is derived using the state-independent projection reduction method. The spin flip and conserving processes are explained in an organized manner because the obtained results properly contain the distribution functions for electrons and phonons. The electron spin relaxation time is calculated directly from the lineshape function without calculating the magnetic susceptibility. The temperature (T) and magnetic field (B) dependences of the electron spin relaxation time (T 1) in Si are shown by T 1 ≈ T ‑1.55 and T 1 ≈ B ‑1.96 in the quantum limit, respectively.

  7. Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.

    Science.gov (United States)

    Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir

    2017-08-01

    Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.

  8. Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State

    Directory of Open Access Journals (Sweden)

    Alex Thomson

    2018-01-01

    Full Text Available Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP^{1} theory of bosonic spinons coupled to a U(1 gauge field, and with a global SU(2 spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z_{2} topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π-flux state are described by (2+1-dimensional quantum chromodynamics (QCD_{3} with a SU(2 gauge group and N_{f}=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017.PRXHAE2160-330810.1103/PhysRevX.7.031051] that this QCD_{3} theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD_{3} and obtain fermionic dual descriptions of the phases with Z_{2} topological order obtained earlier using the bosonic CP^{1} theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1 gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.

  9. The open XXX spin chain in the SoV framework: scalar product of separate states

    Science.gov (United States)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.

    2017-06-01

    We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T-Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain.

  10. Controlling geometric phase optically in a single spin in diamond

    Science.gov (United States)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  11. Transport of Photonic Bloch Wave in Arrayed Two-Level Atoms.

    Science.gov (United States)

    Chang, Chih-Chun; Lin, Lee; Chen, Guang-Yin

    2018-01-24

    In a quantum system of arrayed two-level atoms interacting with light, the interacted (dressed) photon is propagating in a periodic medium and its eigenstate ought to be of Bloch type with lattice symmetry. As the energy of photon is around the spacing between the two atomic energy levels, the photon will be absorbed and is not in the propagating mode but the attenuated mode. Therefore an energy gap exists in the dispersion relation of the photonic Bloch wave of dressed photon in addition to the nonlinear behaviors due to atom-light interactions. There follows several interesting results which are distinct from those obtained through a linear dispersion relation of free photon. For example, slow light can exist, the density of state of dressed photon is non-Lorentzian and is very large around the energy gap; the Rabi oscillations become monotonically decreasing in some cases; and besides the superradiance occurs at long wavelengths, the spontaneous emission is also very strong near the energy gap because of the high density of state.

  12. Zero-momentum coupling induced transitions of ground states in Rashba spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Jin, Jingjing; Zhang, Suying; Han, Wei

    2014-06-01

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.

  13. Mixed-state effect on the low-energy spin dynamics in optimally-doped iron pnictide superconductors

    Science.gov (United States)

    Gao, Y.; Zhou, T.; Huang, H. X.; Ting, C. S.; Tong, P. Q.

    2014-06-01

    Based on a phenomenological model with s± pairing symmetry, the mixed-state effect on the low-energy spin dynamics in optimally-doped iron pnictide superconductors is studied by solving Bogoliubov-de Gennes equations. Our results of the spin susceptibility at q=Q in the normal, superconducting and mixed states agree qualitatively with recent neutron scattering experiments. We also propose that the field-induced intensity change in both momentum and real space can be used to further verify the s± pairing symmetry in the iron pnictides.

  14. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  15. Intrinsic spin-orbit interaction in diffusive normal wire Josephson weak links: Supercurrent and density of states

    Science.gov (United States)

    Arjoranta, Juho; Heikkilä, Tero T.

    2016-01-01

    We study the effect of the intrinsic (Rashba or Dresselhaus) spin-orbit interaction in superconductor-nanowire-superconductor (SNS) weak links in the presence of a spin-splitting field that can result either from an intrinsic exchange field or the Zeeman effect of an applied field. We solve the full nonlinear Usadel equations numerically [The code used for calculating the results in this paper is available in https://github.com/wompo/Usadel-for-nanowires] and analyze the resulting supercurrent through the weak link and the behavior of the density of states in the center of the wire. We point out how the presence of the spin-orbit interaction gives rise to a long-range spin triplet supercurrent, which remains finite even in the limit of very large exchange fields. In particular, we show how rotating the field leads to a sequence of transitions between the 0 and π states as a function of the angle between the exchange field and the spin-orbit field. Simultaneously, the triplet pairing leads to a zero-energy peak in the density of states. We proceed by solving the linearized Usadel equations, showing the correspondence to the solutions of the full equations and detail the emergence of the long-range supercurrent components. Our studies are relevant for ongoing investigations of supercurrent in semiconductor nanowires in the limit of several channels and in the presence of disorder.

  16. Spin-State-Selective Excitation. Application for E.COSY-Type Measurement of JHHCoupling Constants

    Science.gov (United States)

    Meissner, Axel; Duus, Jens ø.; Sørensen, Ole Winneche

    1997-09-01

    A new pulse sequence element, spin-state-selective excitation (S3E), is introduced and combined with E.COSY-type techniques for measurement of1H-1HJcoupling constants. S3E edits the two resonances of a doublet prior to an evolution period of a multidimensional experiment and results in a subspectrum for each resonance. Due to this editing the large heteronuclear one-bond coupling constants normally exploited for separation of submultiplets in E.COSY-type experiments can be suppressed in experiments employing S3E. Hence there is a concomitant effective increase in resolution. Apart from pulse imperfections and relaxation during a delay (4J)-1S3E causes no loss of sensitivity in comparison to conventional experiments. Experimental confirmation is done using the protein RAP 17-97 (N-terminal domain of α2-macroglobulin receptor associated protein).

  17. Effective stability around the Cassini state in the spin-orbit problem

    Science.gov (United States)

    Sansottera, Marco; Lhotka, Christoph; Lemaître, Anne

    2014-05-01

    We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan's latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, , the mean precession of the ascending node of Titan orbit, , and the polar moment of inertia,.

  18. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  19. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    International Nuclear Information System (INIS)

    Jiang, Chang; Lu, Jing; Zhou, Lan

    2012-01-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  20. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chang [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Lu, Jing, E-mail: lujing@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhou, Lan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2012-10-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  1. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  2. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  3. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  4. Microscopic approach of the spectral property of 1+ and high-spin states in 124Te nucleus

    International Nuclear Information System (INIS)

    Shi Zhuyi; Ni Shaoyong; Tong Hong; Zhao Xingzhi

    2004-01-01

    Using a microscopic sdIBM-2+2q·p· approach, the spectra of the low-spin and partial high-spin states in 124 Te nucleus are relatively successfully calculated. In particular, the 1 1 + , 1 2 + , 3 1 + , 3 2 + and 5 1 + states are successfully reproduced, the energy relationship resulting from this approach identifies that the 6 1 + , 8 1 + and 10 1 + states belong to the aligned states of the two protons. This can explain the recent experimental results that the collective structures may coexist with the single-particle states. So this approach becomes a powerful tool for successfully describing the spectra of general nuclei without clear symmetry and of isotopes located at transitional regions. Finally, the aligned-state structure and the broken-pair energy of the two-quasi-particle are discussed

  5. Final-state interaction in spin asymmetry and GDH sum rule for incoherent pion production on the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, E.M.; Arenhoevel, H.; Schwamb, M. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099, Mainz (Germany)

    2003-07-01

    The contribution of incoherent single-pion photoproduction to the spin response of the deuteron, i.e., the asymmetry of the total photoabsorption cross-section with respect to parallel and antiparallel spins of photon and deuteron, is calculated over the region of the {delta}-resonance with inclusion of final-state NN and {pi}N rescattering. Sizeable effects, mainly from NN rescattering, are found leading to an appreciable reduction of the spin asymmetry. Furthermore, the contribution to the Gerasimov-Drell-Hearn integral is explicitly evaluated by integration up to a photon energy of 550 MeV. Final-state interaction reduces the value of the integral to about half of the value obtained for the pure impulse approximation. (orig.)

  6. The Complex Spin State of 103P-Hartley 2: Kinematics and Orientation in Space

    Science.gov (United States)

    Belton, Michael J. S.; Thomas, Peter; Li, Jian-Yang; Williams, Jade; Carcich, Brian; A'Hearn, Michael F.; McLaughlin, Stephanie; Farnham, Tony; McFadden, Lucy; Lisse, Carey M.; hide

    2013-01-01

    We derive the spin state of the nucleus of Comet 103P/Hartley 2, its orientation in space, and its short-term temporal evolution from a mixture of observations taken from the DIXI (Deep Impact Extended Investigation) spacecraft and radar observations. The nucleus is found to spin in an excited long-axis mode (LAM) with its rotational angular momentum per unit mass, M, and rotational energy per unit mass, E, slowly decreasing while the degree of excitation in the spin increases through perihelion passage. M is directed toward (RA, Dec; J2000) = 8+/-+/- 4 deg., 54 +/- 1 deg. (obliquity = 48 +/- 1 deg.). This direction is likely changing, but the change is probably <6 deg. on the sky over the approx. 81.6 days of the DIXI encounter. The magnitudes of M and E at closest approach (JD 2455505.0831866 2011-11-04 13:59:47.310) are 30.0 +/- 0.2 sq. m/s and (1.56 +/- 0.02) X 10(exp -3) sq. m /sq. s respectively. The period of rotation about the instantaneous spin vector, which points in the direction (RA, Dec; J2000) = 300 +/- 3.2deg., 67 +/- 1.3 deg. at the time of closest approach, was 14.1 +/- 0.3 h. The instantaneous spin vector circulates around M, inclined at an average angle of 33.2 +/- 1.3 deg. with an average period of 18.40 +/- 0.13 h at the time of closest approach. The period of roll around the principal axis of minimum inertia (''long'' axis) at that time is 26.72 +/- 0.06 h. The long axis is inclined to M by approx. 81.2 +/- 0.6 deg. on average, slowly decreasing through encounter. We infer that there is a periodic nodding motion of the long axis with half the roll period, i.e., 13.36+/- 0.03 h, with amplitude of 1 again decreasing through encounter. The periodic variability in the circulation and roll rates during a cycle was at the 2% and 10-14% level respectively. During the encounter there was a secular lengthening of the circulation period of the long axis by 1.3 +/- 0.2 min/d, in agreement with ground-based estimates, while the period of roll around the

  7. Electronic structure and spin coupling of the manganese dimer: The state of the art of ab initio approach.

    Science.gov (United States)

    Buchachenko, Alexei A; Chałasiński, Grzegorz; Szcześniak, Małgorzata M

    2010-01-14

    A thorough ab initio study of the Mn(2) dimer in its lowest electronic states that correlate to the ground Mn((6)S)+Mn((6)S) dissociation limit is reported. Performance of multireference methods is examined in calculations of the fully spin-polarized S=5((11) summation operator(+) (u)) state against the recent accurate single-reference coupled cluster CCSD(T) results [A. A. Buchachenko, Chem. Phys. Lett. 459, 73 (2008)]. The detailed comparison reveals a serious disagreement between the multireference configuration interaction (MRCI) and related nonperturbative results on the one hand and the complete active space perturbation theory (CASPT) calculations on the other. A striking difference found in the CASPT results of the second and third orders indicates poor perturbation expansion convergence. It is shown that a similar problem has affected most of the previous calculations performed using CASPT2 and similar perturbative approximations. The composition of the active space in the reference multiconfigurational self-consistent field calculations, the core correlation contribution, and basis set saturation effects are also analyzed. The lower spin states, S=0-4, are investigated using the MRCI method. The results indicate a similar dispersion binding for all the spin states within the manifold related to the closed 4s shells, which appears to screen and suppress the spin coupling between the half-filled 3d atomic shells. On this premise, the full set of model potentials is built by combining the accurate reference CCSD(T) interaction potential for S=5 and the MRCI spin-exchange energies for the SHeisenberg model. The effective spin-coupling parameter J is estimated as -3.9 cm(-1), a value roughly 2.5 times smaller in magnitude than those measured in the inert gas cryogenic matrices. Compressing of the Mn(2) dimer in the matrix cage is suggested as the prime cause of this disagreement.

  8. Spin-wave excitations in the SDW state of iron pnictides: A comparison between the roles of interaction parameters

    Science.gov (United States)

    Singh, Dheeraj Kumar

    2017-08-01

    We investigate the roles of interaction parameters in the spin-wave excitations of the ( π,0 ) ordered magnetic state within a five-orbital tight-binding model for iron pnictides. To differentiate between the roles of intraorbital Coulomb interaction (U) and Hund's coupling (J), we focus on the self-consistently obtained mean-field spin-density wave state with a fixed magnetic moment obtained by using different combinations of interaction parameters. We find that J is crucial for the description of various experimentally observed characteristics of the spin-wave excitations including energy-dependent behavior, spin-wave spectral weight distribution, and anisotropy. In particular, J at the higher end of the range of various theoretical and experimental estimates ( J ˜U /4 ) is required to explain the sharp and well-defined spin-wave dispersion in most part of the high-symmetry directions. Moreover, a similar value is also needed for the spectral weight to be concentrated near energy ≳ 200 meV.

  9. Bloch-mode analysis for retrieving effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2012-01-01

    We introduce an approach for retrieving effective parameters of metamaterials based on the Bloch-mode analysis of quasiperiodic composite structures. We demonstrate that, in the case of single-mode propagation, a complex effective refractive index can be assigned to the structure, being restored...... that this approach can be useful for retrieval of both material and wave effective parameters of a broad range of metamaterials....

  10. Acoustic Bloch Wave Propagation in a Periodic Waveguide

    Science.gov (United States)

    1991-07-24

    matrix (Ramo, Whinnery, and Van Duzer , 1965). Given the amplitudes of the two travelling waves in a single cell, then, we can find the amplitudes of...harmonics (Ramo, Whinnery, and Van Duzer , 1965). ; is interesting to note that because the range of the sum index n in Eq. 2.53 includ negative integers...34backwar. wave structures" (Ramo, Whinnery, and Van Duzer , 1965). 2.4.3 The Convolution Representation The apparent simplicity of the Bloch wave function

  11. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    International Nuclear Information System (INIS)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-01

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T 1 . Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13 CH 3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states

  12. Spin-split Surface States and Superconductivity at Twin Boundaries of Non-centrosymmetric BiPd

    Science.gov (United States)

    Yim, Chi Ming; Trainer, Christopher; Maldonado, Ana; Peets, Darren C.; Wahl, Peter

    In non-magnetic bulk materials lacking a center of inversion symmetry, spin-orbit interactions can lift the spin degeneracy, resulting in Rashba metals whose Fermi surfaces exhibit an intricate spin texture. Combined with superconductivity, this can lead to an admixture of both singlet and triplet components of the superconducting pairing. Using scanning tunneling spectroscopy we study the surface electronic structure in the superconducting state of BiPd, which has previously been reported to exhibit a Dirac-like surface state with a non-trivial spin texture. Topographic images reveal domains of [0 1 0] and [010] terminations corresponding to opposing faces of the crystal structure, separated by twin boundaries. From differential conductance spectra obtained on the two terminations we can characterize the surface electronic structure of the two non-equivalent surfaces. The signature of the surface state within domains of the two terminations are located at 0.4 eV above the Fermi level with only small differences. Intriguingly, we find an additional bound state localized at the twin boundary, the precise energy of which depends on the orientation of the twin boundary. Superconductivity between the two surface terminations and at the twin boundaries is discussed.

  13. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  14. On the spin- 1/2 Aharonov–Bohm problem in conical space: Bound states, scattering and helicity nonconservation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, E.O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil); Pereira, M., E-mail: marciano@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil)

    2013-12-15

    In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.

  15. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    DEFF Research Database (Denmark)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper

    2016-01-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants ...... are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured....

  16. Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures

    DEFF Research Database (Denmark)

    Breinbjerg, O.

    2012-01-01

    Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....

  17. Substituent effects on spin state in a series of mononuclear manganese(III) complexes with hexadentate Schiff-Base ligands.

    Science.gov (United States)

    Gildea, Brendan; Harris, Michelle M; Gavin, Laurence C; Murray, Caroline A; Ortin, Yannick; Müller-Bunz, Helge; Harding, Charles J; Lan, Yanhua; Powell, Annie K; Morgan, Grace G

    2014-06-16

    Eleven new mononuclear manganese(III) complexes prepared from two hexadentate ligands, L1 and L2, with different degrees of steric bulk in the substituents are reported. L1 and L2 are Schiff bases resulting from condensation of N,N'-bis(3-aminopropyl)ethylenediamine with 3-methoxy-2-hydroxybenzaldehyde and 3-ethoxy-2-hydroxybenzaldehyde respectively, and are members of a ligand series we have abbreviated as R-Sal2323 to indicate the 323 alkyl connectivity in the starting tetraamine and the substitution (R) on the phenolate ring. L1 hosts a methoxy substituent on both phenolate rings, while L2 bears a larger ethoxy group in the same position. Structural and magnetic properties are reported in comparison with those of a previously reported analogue with L1, namely, [MnL1]NO3, (1e). The BPh4(-) and PF6(-) complexes [MnL1]BPh4, (1a), [MnL2]BPh4, (2a), [MnL1]PF6, (1b'), and [MnL2]PF6, (2b), with both ligands L1 and L2, remain high-spin (HS) over the measured temperature range. However, the monohydrate of (1b') [MnL1]PF6·H2O, (1b), shows gradual spin-crossover (SCO), as do the ClO4(-), BF4(-), and NO3(-) complexes [MnL1]ClO4·H2O, (1c), [MnL2]ClO4, (2c), [MnL1]BF4·H2O, (1d), [MnL2]BF4·0.4H2O, (2d), [MnL1]NO3, (1e), and [MnL2]NO3·EtOH, (2e). The three complexes formed with ethoxy-substituted ligand L2 all show a higher T1/2 than the analogous complexes with methoxy-substituted ligand L1. Analysis of distortion parameters shows that complexes formed with the bulkier ligand L2 exhibit more deformation from perfect octahedral geometry, leading to a higher T1/2 in the SCO examples, where T1/2 is the temperature where the spin state is 50% high spin and 50% low spin. Spin state assignment in the solid state is shown to be solvate-dependent for complexes (1b) and (2e), and room temperature UV-visible and NMR spectra indicate a solution-state spin assignment intermediate between fully HS and fully low spin in 10 complexes, (1a)-(1e) and (2a)-(2e).

  18. Spin State of Returning Fly-by Near Earth Asteroid 2012 TC4

    Science.gov (United States)

    Ryan, William; Ryan, Eileen V.

    2017-10-01

    The ten-meter class near-Earth asteroid 2012 TC4 will make a close approach to the Earth on October 12, 2017. As of July 2017, the close approach distance ranges from 0.003 to 0.64 lunar distances (LD) with a nominal value of 0.23 LD. However this is the second observable close approach that this object has made since its discovery. In particular, broadband photometry was obtained for 2012 TC4 on 10 and 11 October 2012 using the Magdalena Ridge Observatory (MRO) 2.4-meter telescope. A periodicity of ~12.2 minutes was immediately evident in the time-series data, which was in agreement with the reported values of Polishook (2013), Odden et al. (2012), Warner (2013), and Carbognani (2014). The lightcurve displays an amplitude of ~0.9 magnitude, which implies that it is highly elongated with an axial ratio of a/b>2.3. However, a second period is also clearly evident in the MRO data, indicating that the asteroid is in a state of non-principle axis rotation.The nature of its orbit has made 2012 TC4 an attractive Earth-impacting asteroid surrogate for an exercise testing the capabilities of the scientific and emergency response communities (Reddy, 2017). For this reason, it is anticipated that considerable resources, including MRO, will be utilized to take advantage of the 2017 flyby to study this asteroid. Here, we present the details of the tumbling nature of this fast-spinning object observed during the October 2012 discovery apparition. These data were acquired before closest approach in 2012 where the asteroid came within 0.25 lunar distances of Earth. Therefore, this analysis will be discussed in the context of the spin state observations planned for early October 2017 at MRO, for which preliminary results will also be reported. In particular, comparison of the observed rotation state from the two apparitions can be indicative of any effects of Earth’s gravity during the 2012 flyby.References:Odden, C.E., Verhaegh, J.C., McCullough, D.G., and Briggs, J.W. (2013

  19. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  20. A low-E magic angle spinning probe for biological solid state NMR at 750 MHz

    Science.gov (United States)

    McNeill, Seth A.; Gor'kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-04-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as "low-E," was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane-embedded peptides.

  1. Highly anisotropic quasiparticle interference patterns in the spin-density wave state of the iron pnictides

    Science.gov (United States)

    Singh, Dheeraj Kumar; Majumdar, Pinaki

    2017-12-01

    We investigate the impurity-scattering-induced quasiparticle interference in the (π ,0 ) spin-density wave phase of the iron pnictides. We use a five-orbital tight-binding model and our mean-field theory in the clean limit captures key features of the Fermi surface observed in angle-resolved photoemission. We use a t -matrix formalism to incorporate the effect of doping-induced impurities on this state. The impurities lead to a spatial modulation of the local density of states about the impurity site, with a periodicity of ˜8 aFe -Fe along the antiferromagnetic direction. The associated momentum space quasiparticle interference pattern is anisotropic, with major peaks located at ˜(±π /4 ,0 ) , consistent with spectroscopic imaging scanning tunneling microscopy. We trace the origin of this pattern to an elliptical contour of constant energy around momentum (0,0), with major axis oriented along the (0,1) direction, in the mean-field electronic structure.

  2. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  3. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  4. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  5. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  6. Final-state NN-rescattering in spin asymmetries of d({gamma},{pi}{sup -})pp reaction

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Eed M. [Physics Department, Faculty of Science, South Valley University, Sohag 82524 (Egypt)]. E-mail: eeddarwish@yahoo.com; Salam, Agus [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

    2005-09-05

    The role of the final-state NN-rescattering (NN-FSI) in the polarization observables of the inclusive reaction d({gamma},{pi}{sup -})pp, involving polarization of the photon beam and/or the deuteron target, is investigated. Various single- and double-spin asymmetries are studied with respect to the influence of such interaction effect and numerical predictions are given for forthcoming experiments. It has been found that the effect of NN-FSI is quite important for the single-spin asymmetries {sigma}, T{sub 20}, T{sub 21} and T{sub 22} and the double-spin asymmetry T{sub 20}{sup l}, whereas it is much less important for the vector target asymmetry T{sub 11} and other beam-target double-polarization asymmetries. Furthermore, we found that the inclusion of the NN-FSI improves the description of the LEGS data for the linear photon asymmetry.

  7. Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury

    Science.gov (United States)

    Lhotka, Christoph

    2017-12-01

    We investigate the stable Cassini state 1 in the p : q spin-orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin-orbit resonances with p,q≤ 8 and p≥ q. We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.

  8. Switching and sensing spin states of co-porphyrin in bimolecular reactions on Au111 using scanning tunneling microscopy.

    Science.gov (United States)

    Kim, Howon; Chang, Yun Hee; Lee, Soon-Hyeong; Kim, Yong-Hyun; Kahng, Se-Jong

    2013-10-22

    Controlling and sensing spin states of magnetic molecules at the single-molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of Co-porphyrin on Au(111) can be reversibly switched over by binding and unbinding of the NO molecule and can be sensed using scanning tunneling microscopy and spectroscopy (STM and STS). Before NO exposure, Co-porphryin showed a clear zero-bias peak, a signature of Kondo effect in STS, whereas after NO exposures, it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature, implying that the Kondo effect was switched off by binding of NO. The Kondo effect could be switched back on by unbinding of NO through single-molecule manipulation or thermal desorption. Our density functional theory calculation results explain the observations with pairing of unpaired spins in dz(2) and ppπ* orbitals of Co-porphyrin and NO, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of enormous variety of bimolecular binding and unbinding reactions on metallic surfaces.

  9. Simultaneous spin-state-insulator-metal transition in Pr0.5Ca0.5CoO3

    International Nuclear Information System (INIS)

    Saitoh, T.; Yamashita, Y.; Todoroki, N.; Kyomen, T.; Itoh, M.; Higashiguchi, M.; Shimada, K.

    2004-01-01

    The temperature-induced paramagnetism in LaCoO 3 around 100 K has long been known as a characteristic phenomenon of this compound, but its interpretation is not settled yet. One reason is that the low-spin (LS) ground state and other intermediate-spin (IS) or high-spin (HS) states cannot be resolved completely because such states are populated by thermal excitation. Here we present a first observation of a distinct change in the electronic structure due to a pure LS-IS transition of a Co oxide; Pr 0.5 Ca 0.5 CoO 3 exhibits a simultaneous LS-IS and insulator-metal first-order phase transition around 90 K with increasing temperature. Because of the first- order nature of the transition, the IS phase is not populated by thermal excitation, which enables us to investigate the electronic structure of the LS- and IS-Co 3d states, independently. Figure 1 shows temperature-dependent photoemission spec- tra of Pr 0.5 Ca 0.5 CoO 3 . The leading peak A, which is Co 3d t 2g states, is rapidly suppressed from 70 K to 100 K. Compared with a theoretical calculation, this change should be representing the LS to IS spin-state transition. The observed change between the 'pure' LS and IS spectra will exclude the simple LS-HS scenario in LaCoO 3 and hence demonstrates the importance of the IS state in both excited states and the carrier-doped region

  10. Atomistic simulation of charge effects: From tunable thin film growth to isolation of surface states with spin-orbit coupling

    Science.gov (United States)

    Ming, Wenmei

    This dissertation revitalizes the importance of surface charge effects in semiconductor nanostructures, in particular in the context of thin film growth and exotic electronic structures under delicate spin-orbit coupling. A combination of simulation techniques, including density functional theory calculation, kinetic Monte Carlo method, nonequilibrium Green's function method, and tight binding method, were employed to reveal the underlying physical mechanisms of four topics: (1) Effects of Li doping on H-diffusion in MgH 2 for hydrogen storage. It addresses both the effect of Fermi level tuning by charged dopant and the effect of dopant-defect interaction, and the latter was largely neglected in previous works; (2) Tuning nucleation density of the metal island with charge doping of the graphene substrate. It is the first time that the surface charge doping effect is proposed and studied as an effective approach to tune the kinetics of island nucleation at the early stage of thin film growth; (3) Complete isolation of Rashba surface states on the saturated semiconductor surface. It shows that the naturally saturated semiconductor surface of InSe(0001) with Au single layer film provides a mechanism for the formation of Rashba states with large spin splitting; it opens up an innovative route to obtaining ideal Rashba states without the overwhelming bulk spin-degenerate carriers in spin-dependent transport; (4) Formation of large band gap quantum spin Hall state on Si surface. This study reveals the importance of atomic orbital composition in the formation of a topological insulator, and shows promisingly the possible integration of topological insulator technology into Si-based modern electronic devices.

  11. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J

    2010-01-01

    We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand......-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  12. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    Science.gov (United States)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  13. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  14. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  15. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  16. High-spin yrast states in the 206Po, 208Po, 209At and 210At nuclei

    International Nuclear Information System (INIS)

    Rahkonen, Vesa.

    1980-08-01

    High-spin yrast states in the 206 , 208 Po and 209 , 210 At nuclei have been studied with methods of in-beam γ-ray and conversion-electron spectroscopy and with the (α,3n), (α,4n), (p,2n) and ( 3 He,3n) reactions. Several new high-spin states have been identified up to angular momenta of 18-19 h/2π in these nuclei except in 206 Po where the highest spin was (13 - ). In the course of this work two new isomers with half-lives of 15+-3 ns and 4+-2 μs have been observed at 1689 and 4028 keV in 210 At, which have been interpreted as (10 - ) and 19 + states. The previously-known half-lives of 29+-2 and 680+-75 ns have been established for the three-proton states of Jsup(π)=21/2 - and 29/2 + at 1428 and 2429 keV in 209 At, respectively. A half-life of 1.0+-0.2 μs was measured for the 9 - isomer in 206 Po. Shell-model calculations based on the use of the empirical single- and two-particle interaction energies or of the experimental excitation energies belonging to the relevant one-, two- and three-particle states, have been carried out for these 4-6 particle nuclei. Most of the medium-spin yrast states in 206 Po, 208 Po and 209 At have been successfully described assuming the core for these nuclei being 204 Pb or 206 Pb rather than 208 Pb, and including an extra core polarization interaction described by the P 2 force. (author)

  17. Magnetic states of MnP: muon-spin rotation studies.

    Science.gov (United States)

    Khasanov, R; Amato, A; Bonfà, P; Guguchia, Z; Luetkens, H; Morenzoni, E; De Renzi, R; Zhigadlo, N D

    2017-04-26

    Muon-spin rotation data collected at ambient pressure (p) and at p  =  2.42 GPa in MnP were analyzed to check their consistency with various low- and high-pressure magnetic structures reported in the literature. Our analysis confirms that in MnP the low-temperature and low-pressure helimagnetic phase is characterised by an increased value of the average magnetic moment compared to the high-temperature ferromagnetic phase. An elliptical double-helical structure with a propagation vector [Formula: see text], an a-axis moment elongated by approximately 18% and an additional tilt of the rotation plane towards c-direction by [Formula: see text]-8° leads to a good agreement between the theory and the experiment. The analysis of the high-pressure μSR data reveals that the new magnetic order appearing for pressures exceeding 1.5 GPa can not be described by keeping the propagation vector [Formula: see text]. Even the extreme case-decoupling the double-helical structure into four individual helices-remains inconsistent with the experiment. It is shown that the high-pressure magnetic phase which is a precursor of superconductivity is an incommensurate helical state with [Formula: see text].

  18. Core breaking and octupole low-spin states in $^{207}$ Tl

    CERN Multimedia

    We propose to study the low-spin level structure of the $^{207}$Tl nucleus populated by the $\\beta$- decay of $^{207}$Hg. While $^{207}$Tl is a single-proton hole nucleus, the majority of the observed states will have a three-particle structure thus requiring the breaking of the neutron or proton core, or a collective octupole phonon coupled to the single proton hole. Thus information will be obtained on the single particle orbitals in the vicinity of the N=126 and Z=82 magic numbers, and on the size of the shell gap. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei.The experiment will use the ISOLDE Decay station, and will take advantage of the $^{207}$Hg beam from the molten lead target. A test on the feasibility to produce an $^{208}$Hg beam from the same target, with the aim to study the $\\beta$-decay into $^{208}$Tl, could be performed at the same time.

  19. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano (Italy)

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  20. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  1. The effect of the single-spin defect on the stability of the in-plane vortex state in 2D magnetic nanodots

    International Nuclear Information System (INIS)

    Mamica, S.; Lévy, J.-C. S.; Depondt, Ph.; Krawczyk, M.

    2011-01-01

    The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.

  2. Nuclear inelastic scattering of 1D polymeric Fe(II) complexes of 1,2,4-aminotriazole in their high-spin and low-spin state

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Juliusz A., E-mail: wolny@physik.uni-kl.de; Rackwitz, Sergej [University of Kaiserslautern, Department of Physics (Germany); Achterhold, Klaus [Technische Universitaet Muenchen, Department of Physics (Germany); Muffler, Kai; Schuenemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2012-03-15

    The vibrational properties of Fe(II) 1D spin crossover polymers have been characterized by nuclear inelastic scattering (NIS). The complexes under study were the tosylate and perchlorate salts of ([Fe(4-amino-1,2,4-triazole){sub 3}] <{sup +2}){sub n} complexes. The complexes have LS (S = 0) marker bands in the range of 300-500 cm{sup - 1}, while the marker bands corresponding to the HS (S = 2) state are detected between 200 cm{sup - 1} and 300 cm{sup - 1}, in line with the decreasing Fe-N bond strengths during the transition from LS to HS. Accompanying DFT calculations using the functional B3LYP and the basis set CEP-31G confirm these assignments.

  3. Traffic restrictions on Routes Bloch, Maxwell and Bohr

    CERN Multimedia

    IT Department

    2008-01-01

    Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314

  4. From Bloch to random lasing in ZnO self-assembled nanostructures

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Cefe, López

    2013-01-01

    In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. W...

  5. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    Science.gov (United States)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  6. Manipulation of spin states in single II-VI-semiconductor quantum dots; Manipulation von Spinzustaenden in einzelnen II-VI-Halbleiter-Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Andreas

    2007-10-09

    Semiconductor quantum dots (QD) are objects on the nanometer scale, where charge carriers are confined in all three dimensions. This leads to a reduced interaction with the semiconductor lattice and to a discrete density of states. The spin state of a particle defines the polarisation of the emitted light when relaxating to an energetically lower state. Spin exchange and optical transition selection rules (conservation law for spin) define the optical control of spin states. In the examined QD in II-VI seminconductor systems the large polar character of the bindings enables to observe particle interactions by spectroscopy of the photo-luminescence (PL), making QD attractive for basic research. This work subjects in its first part single negatively charged non-magnetic QD. The odd number of carriers allows to study the latter in an unpaired state. By using polarization-resolved micro-PL spectroscopy, the spin-states of single, isolated QD can be studied reproducibly. Of special interest are exchange interactions in this few-particle system named trion. By excitation spectroscopy energetically higher states can be identified and characterized. The exchange interactions appearing here lead to state mixing and fine structure patterns in the spectra. Couplings in excited hole states show the way to the optical orientation of the resident electron spin. The spin configuration of the trion triplet state can be used to optically control the resident electron spin. Semimagnetic QD are focused in the second part of this work. The interaction with a paramagnetic environment of manganese spins leads to new magneto-optical properties of the QD. They reveal on a single dot level by line broadening due to spin fluctuations and by the giant Zeeman effect of the dot ensemble. Of special interest in this context is the influence of the reduced system dimension and the relatively larger surface of the system on the exchange mechanisms. The strong temperature dependence of the spin

  7. Tripartite states' Bell-nonlocality sudden death in an environmental spin chain

    International Nuclear Information System (INIS)

    Liu Benqiong; Shao Bin; Zou Jian

    2010-01-01

    The tripartite nonlocality is investigated by the extent of violation of the Bell inequality in a three-qubit system coupled to an environmental Ising spin chain. In the weak-coupling region, we show that the tripartite Bell-inequality violations can be fully destroyed in a finite time under decoherence induced by the coupling with the spin environment. In addition, how the environment affects the Bell-nonlocality sudden death is demonstrated.

  8. Single excitation transfer in the quantum regime. A spin-based solid-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Zollitsch, Christoph Wilhelm

    2016-12-02

    Realisation of strong coupling between a superconducting microwave resonator and an ensemble of phosphorus donor spins, contained in an isotopically purified silicon host crystal. Investigation of the dynamical properties of the coupled system at mK temperatures and ultra-low microwave powers. The relaxation and coherence times of the coupled system were extracted by pulsed microwave spectroscopy, with the result that the hybrid system's coherence time is enhanced compared to the uncoupled spin system.

  9. A discrete phase-space calculus for quantum spins based on a reconstruction method using coherent states

    International Nuclear Information System (INIS)

    Weigert, S.

    1999-01-01

    To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)

  10. Spin-glass state in Y 0.7Ca 0.3MnO 3

    Science.gov (United States)

    Wang, X. L.; Horvat, J.; Liu, H. K.; Dou, S. X.

    1998-02-01

    Magnetisation and AC susceptibility were measured on perovskite Y 0.7Ca 0.3MnO 3 at DC fields up to 5 T and AC field of 1 Oe with frequencies of 21, 217 and 2000 Hz. A large irreversibility was observed in the zero-field cooled and field-cooled magnetisation with a cusp at Tcusp in ZFC magnetisation. AC susceptibility also showed a cusp at the Tcusp which shifts to high temperature with increasing frequencies. This suggests a spin-glass state in Y 0.7Ca 0.3MnO 3. The spin-glass state was totally suppressed at a high field of 5 T.

  11. Spin-glass state in Y0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Wang, X.L.; Horvat, J.; Liu, H.K.; Dou, S.X.

    1998-01-01

    Magnetisation and AC susceptibility were measured on perovskite Y 0.7 Ca 0.3 MnO 3 at DC fields up to 5 T and AC field of 1 Oe with frequencies of 21, 217 and 2000 Hz. A large irreversibility was observed in the zero-field cooled and field-cooled magnetisation with a cusp at T cusp in ZFC magnetisation. AC susceptibility also showed a cusp at the T cusp which shifts to high temperature with increasing frequencies. This suggests a spin-glass state in Y 0.7 Ca 0.3 MnO 3 . The spin-glass state was totally suppressed at a high field of 5 T. (orig.)

  12. Exact solutions to the fractional time-space Bloch-Torrey equation for magnetic resonance imaging

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Burrage, Kevin

    2017-11-01

    The quantification of anomalous diffusion is increasingly being recognised as an advanced modality of analysis for the evaluation of tissue microstructure in magnetic resonance imaging (MRI). One powerful framework to account for anomalous diffusion in biological and structurally heterogeneous tissues is the use of diffusion operators based on fractional calculus theory, which generalises the physical principles of standard diffusion in homogeneous media. However, their non-locality makes analytical solutions often unavailable, limiting the applicability of these modelling and analysis techniques. In this paper, we derive compact analytical signal decays for practical MRI sequences in the anisotropic fractional Bloch-Torrey setting, as described by the space fractional Laplacian and importantly the time Caputo derivative. The attained solutions convey relevant characteristics of MRI in biological tissues not replicated by standard diffusion, including super-diffusive and sub-diffusive regimes in signal decay and the diffusion-driven incomplete refocusing of spins at the end of the sequence. These results may therefore have significant implications for advancing the current interpretation of MRI, and for the estimation of tissue properties based on exact solutions to underlying diffusive processes.

  13. Asymmetric Andreev resonant state with a magnetic exchange field in spin-triplet superconducting monolayer MoS2

    Science.gov (United States)

    Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.

    2018-03-01

    We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.

  14. An application of vector coherent state theory to the SO95) proton-neutron quasi-spin algebra

    International Nuclear Information System (INIS)

    Berej, W.

    2002-01-01

    Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra representations and coupling coefficients, has been used for many groups of interest an actual physics applications. It is shown that VCS construction of a rotor type can be performed for the SO(5) ∼ Sp(4) quasi-spin group where the relevant physical subgroup SU(2) x U(1) is generalized by the isospin operators and the number of particle operators [ru

  15. Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds

    International Nuclear Information System (INIS)

    Alam, Todd M.

    2004-01-01

    Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials

  16. Resolving discrete pulsar spin-down states with current and future instrumentation

    Science.gov (United States)

    Shaw, B.; Stappers, B. W.; Weltevrede, P.

    2018-04-01

    An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (\\dot{ν }). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of \\dot{ν }-variable pulsars to investigate the likelihood of resolving individual \\dot{ν } transitions. We inject step changes in the value of \\dot{ν } with a wide range of amplitudes and switching time-scales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on \\dot{ν } detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programmes, we find that we are insensitive to a large region of Δ \\dot{ν } parameter space that encompasses small, short time-scale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate \\dot{ν } transition epochs can improve detectability in certain scenarios. The effects of cadence on Δ \\dot{ν } detectability are discussed, and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short time-scale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.

  17. The Quantum Noise of Ferromagnetic π-Bloch Domain Walls

    Directory of Open Access Journals (Sweden)

    Peter R. Crompton

    2009-09-01

    Full Text Available We quantify the probability per unit Euclidean-time of reversing the magnetization of a π-Bloch vector, which describes the Ferromagnetic Domain Walls of a Ferromagnetic Nanowire at finite-temperatures. Our approach, based on Langer’s Theory, treats the double sine-Gordon model that defines the π-Bloch vectors via a procedure of nonperturbative renormalization, and uses importance sampling methods to minimise the free energy of the system and identify the saddlepoint solution corresponding to the reversal probability. We identify that whilst the general solution for the free energy minima cannot be expressed in closed form, we can obtain a closed expression for the saddlepoint by maximizing the entanglement entropy of the system as a polynomial ring. We use this approach to quantify the geometric and non-geometric contributions to the entanglement entropy of the Ferromagnetic Nanowire, defined between entangled Ferromagnetic Domain Walls, and evaluate the Euclidean-time dependence of the domain wall width and angular momentum transfer at the domain walls, which has been recently proposed as a mechanism for Quantum Memory Storage.

  18. Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

    Science.gov (United States)

    Hogan, Thomas C.

    Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.

  19. Theoretical study of the low-lying electronic states of magnesium sulfide cation including spin-orbit interaction

    Science.gov (United States)

    Chen, Peng; Wang, Ning; Li, Song; Chen, Shan-Jun

    2017-11-01

    Highly correlated ab initio calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the low-lying electronic states of the MgS+ cation. The potential energy curves for the four Λ-S states correlating to the lowest dissociation asymptote are studied for the first time. Four Λ-S states split into nine Ω states through the spin-orbit coupling effect. Accurate spectroscopic constants are deduced for all bound states. The spin-orbit couplings and the transition dipole moments, as well as the PECs, are utilized to calculate Franck-Condon factors and radiative lifetimes of the vibrational levels. To verify our computational accuracy, analogous calculations for the ground state of MgS are also carried out, and our derived results are in reasonable agreement with available experimental data. In addition, photoelectron spectrum of MgS has been simulated. The predictive results are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum.

  20. Unidirectional spin density wave state in metallic (Sr1−xLax)2IrO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul; Porter, Zach; Zoghlin, Eli; Finkelstein, Kenneth; Ruff, Jacob P. C.; Wilson, Stephen D.

    2018-01-09

    Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1−xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.

  1. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  2. Uncovering nonperturbative dynamics of the biased sub-Ohmic spin-boson model with variational matrix product states

    Science.gov (United States)

    Gonzalez-Ballestero, C.; Schröder, Florian A. Y. N.; Chin, Alex W.

    2017-09-01

    We study the dynamics of the biased sub-Ohmic spin-boson model by means of a time-dependent variational matrix product state (TDVMPS) algorithm. The evolution of both the system and the environment is obtained in the weak- and the strong-coupling regimes, respectively characterized by damped spin oscillations and by a nonequilibrium process where the spin freezes near its initial state, which are explicitly shown to arise from a variety of reactive environmental quantum dynamics. We also explore the rich phenomenology of the intermediate-coupling case, a nonperturbative regime where the system shows a complex dynamical behavior, combining features of both the weakly and the strongly coupled case in a sequential, time-retarded fashion. Our work demonstrates the potential of TDVMPS methods for exploring otherwise elusive, nonperturbative regimes of complex open quantum systems, and points to the possibilities of exploiting the qualitative, real-time modification of quantum properties induced by nonequilibrium bath dynamics in ultrafast transient processes.

  3. Effects of Rashba and Dresselhaus spin–orbit interactions on the ground state of two-dimensional localized spins

    International Nuclear Information System (INIS)

    Oh, J H; Shin, M; Lee, K-J; Lee, Hyun-Woo

    2014-01-01

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin–orbit interactions, we derive the Dzyaloshinskii–Moriya interaction of localized spins. The strength of the Dzyaloshinskii–Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field–temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system. (paper)

  4. Manipulating the spin states in a double molecular magnets tunneling junction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liang; Liu, Xi [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Zhengzhong, E-mail: zeikeezhang@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123 (China); Wang, Ruiqiang [Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China)

    2014-01-17

    We theoretically explore the spin transport through nano-structures consisting of two serially coupled single-molecular magnets (SMM) sandwiched between two nonmagnetic electrodes. We find that the magnetization of SMM can be controlled by the spin transfer torque with respect to the bias voltage direction, and the electron current can be switched on/off in different magnetic structures. Such a manipulation is performed by full electrical manner, and needs neither external magnetic field nor ferromagnetic electrodes in the tunneling junction. The proposal device scheme can be realized with the use of the present technology and has potential applications in molecular spintronics or quantum information processing.

  5. Manipulating the spin states in a double molecular magnets tunneling junction

    Science.gov (United States)

    Jiang, Liang; Liu, Xi; Zhang, Zhengzhong; Wang, Ruiqiang

    2014-01-01

    We theoretically explore the spin transport through nano-structures consisting of two serially coupled single-molecular magnets (SMM) sandwiched between two nonmagnetic electrodes. We find that the magnetization of SMM can be controlled by the spin transfer torque with respect to the bias voltage direction, and the electron current can be switched on/off in different magnetic structures. Such a manipulation is performed by full electrical manner, and needs neither external magnetic field nor ferromagnetic electrodes in the tunneling junction. The proposal device scheme can be realized with the use of the present technology [6] and has potential applications in molecular spintronics or quantum information processing.

  6. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  7. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  8. Coordination and electronic spin state of iron in Fe-doped Y2BaCuO5

    International Nuclear Information System (INIS)

    Goya, G.F.; Stewart, S.J.; Goeta, A.E.; Grunfeld, A.G.; Punte, G.; Mercader, R.C.

    1994-01-01

    Magnetic susceptibility, electron paramagnetic resonance (EPR), Moessbauer spectroscopy, and X-ray diffractometry have been used to study Y 2 BaCu 1-x Fe x O 5 (x=0.05, 0.10 and 0.15). Susceptibility data show antiferromagnetic Cu-Cu interactions that are affected by Fe doping. Moessbauer and EPR parameters indicate that Fe 3+ ions replace Cu at the square-pyramidal oxygen coordination sites of the structure. An electronic spin state S=3/2 for Fe 3+ is inferred. These results are compared with the electronic and spin configurations of Fe in the YBa 2 (Cu 1-x Fe x ) 3 O 7-δ (1-2-3) superconductor. ((orig.))

  9. Spectroscopy and shell model interpretation of high-spin states in the N = 126 nucleus 214Ra

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Kibedi, T.; Byrne, A.P.; Fabricius, B.; Poletti, A.R.; Lane, G.J.; Baxter, A.M.

    1992-01-01

    Excited states in the N = 126 nucleus 214 Ra have been studied using γ-ray and electron spectroscopy following reactions of 12 C and 13 C on 206 Pb targets. Levels were identified to spins of ≅ 25 ℎ and excitation energies of ≅ 7.8 MeV. Lifetimes and magnetic moments were measured for several levels, including a spin (25 - ) core-excited isomer at 6577.0 keV with τ = 184 ± 5 ns and g = 0.66 ± 0.01 The level scheme, lifetime and magnetic moment data are compared with, and discussed in terms of, empirical shell-model calculations and multiparticle octupole- coupled shell-model calculations. In general, the experimental data are well described by the empirical shell model. (orig.)

  10. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac state with no discernible long-range magnetic order.

  11. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    Science.gov (United States)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  12. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    degrees around the resonance energy E-res. The intensity has a 2D character even in a single twin crystal. The value of E-res is related to the nesting properties of the Fermi surface. The excitations above E-res are shown to be due to in-plane spin fluctuations, a testable difference from the stripe...

  13. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.

    Science.gov (United States)

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung

    2012-07-01

    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.

  14. New level schemes with high-spin states of 105,107,109Tc

    International Nuclear Information System (INIS)

    Luo, Y.X.; Rasmussen, J.O.; Lee, I.Y.; Fallon, P.; Hamilton, J.H.; Ramayya, A.V.; Hwang, J.K.; Gore, P.M.; Zhu, S.J.; Wu, S.C.; Ginter, T.N.; Ter-Akopian, G.M.; Daniel, A.V.; Stoyer, M.A.; Donangelo, R.; Gelberg, A.

    2004-01-01

    New level schemes of odd-Z 105,107,109 Tc are proposed based on the 252 Cf spontaneous-fission-gamma data taken with Gammasphere in 2000. Bands of levels are considerably extended and expanded to show rich spectroscopic information. Spin/parity and configuration assignments are made based on determinations of multipolarities of low-lying transitions and the level analogies to the previously reported levels, and to those of the neighboring Rh isotopes. A non-yrast negative-parity band built on the 3/2 - [301] orbital is observed for the first time in 105 Tc. A positive-parity band built on the 1/2 + [431] intruder orbital originating from the π(g 7/2 /d 5/2 ) subshells and having a strong deformation-driving effect is observed for the first time in 105 Tc, and assigned in 107 Tc. A positive-parity band built on the excited 11/2 + level, which has rather low excitation energy and predominantly decays into the 9/2 + level of the ground state band, provides evidence of triaxiality in 107,109 Tc, and probably also in 105 Tc. Rotational constants are calculated and discussed for the K=1/2 intruder bands using the Bohr-Mottelson formula. Level systematics are discussed in terms of the locations of proton Fermi levels and deformations. The band crossings of yrast positive-parity bands are observed, most likely related to h 11/2 neutron alignment. Triaxial-rotor-plus-particle model calculations performed with ε=0.32 and γ=-22.5 deg. on the prolate side of maximum triaxiality yielded the best reproduction of the excitation energies, signature splittings, and branching ratios of the positive-parity bands (except for the intruder bands) of these Tc isotopes. The significant discrepancies between the triaxial-rotor-plus-particle model calculations and experiment for the K=1/2 intruder bands in 105,107 Tc need further theoretical studies

  15. Evolution of the phonon density of states of LaCoO.sub.3./sub. over the spin state transition

    Czech Academy of Sciences Publication Activity Database

    Golosova, N.O.; Kozlenko, D. P.; Kolesnikov, A.I.; Kazimirov, V.Y.; Smirnov, M. B.; Jirák, Zdeněk; Savenko, B. N.

    2011-01-01

    Roč. 83, č. 21 (2011), "214305-1"-"214305-6" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : first-principles theory * spin crossover Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  16. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    Directory of Open Access Journals (Sweden)

    A. Marino

    2016-03-01

    Full Text Available We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA2(NCS2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS states on the sub-picosecond timescale. The change of the electronic state (<50 fs induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules.

  17. An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide.

    Science.gov (United States)

    Istomin, S Ya; Tyablikov, O A; Kazakov, S M; Antipov, E V; Kurbakov, A I; Tsirlin, A A; Hollmann, N; Chin, Y Y; Lin, H-J; Chen, C T; Tanaka, A; Tjeng, L H; Hu, Z

    2015-06-21

    The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)μ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.

  18. Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure

    Science.gov (United States)

    Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen

    2017-07-01

    Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T Hund's coupling effect in a metal.

  19. EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states

    DEFF Research Database (Denmark)

    Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard

    2009-01-01

    Spinning wheels: The presented highly resolved multifrequency continuous wave EPR spectra (e.g., see figure) of the heterooctametalic "wheels" Cr(7)M provide rare examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited...... spin states is observed.We present highly resolved multifrequency (X-, K-, Q- and W-band) continous wave EPR spectra of the heterooctametalic "wheels", [(CH(3))(2)NH(2)][Cr(III) (7)M(II)F(8)((CH(3))(3)CCOO)(16)], hereafter Cr(7)M, where M=Cd, Zn, Mn, and Ni. These experimental spectra provide rare...... to 10(5) by use of the Davidson algorithm. We show that transferability of spin-Hamiltonian parameters across complexes of the Cr(7)M family is possible and that the spin-Hamiltonian parameters of Cr(7)M do not have sharply defined values, but are rather distributed around a mean value....

  20. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  1. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  2. Triviality of the ground-state metastate in long-range Ising spin glasses in one dimension

    Science.gov (United States)

    Read, N.

    2018-01-01

    We consider the one-dimensional model of a spin glass with independent Gaussian-distributed random interactions, which have mean zero and variance 1/|i -j | 2 σ, between the spins at sites i and j for all i ≠j . It is known that, for σ >1 , there is no phase transition at any nonzero temperature in this model. We prove rigorously that, for σ >3 /2 , any translation-covariant Newman-Stein metastate for the ground states (i.e., the frequencies with which distinct ground states are observed in finite-size samples in the limit of infinite size, for given disorder) is trivial and unique. In other words, for given disorder and asymptotically at large sizes, the same ground state, or its global spin flip, is obtained (almost) always. The proof consists of two parts: One is a theorem (based on one by Newman and Stein for short-range two-dimensional models), valid for all σ >1 , that establishes triviality under a convergence hypothesis on something similar to the energies of domain walls and the other (based on older results for the one-dimensional model) establishes that the hypothesis is true for σ >3 /2 . In addition, we derive heuristic scaling arguments and rigorous exponent inequalities which tend to support the validity of the hypothesis under broader conditions. The constructions of various metastates are extended to all values σ >1 /2 . Triviality of the metastate in bond-diluted power-law models for σ >1 is proved directly.

  3. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  4. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  5. Top Quark Pair Properties - Spin Correlation, Charge Asymmetry, and Complex Final States - at ATLAS

    Directory of Open Access Journals (Sweden)

    Brost Elizabeth

    2014-04-01

    Full Text Available We present measurements of top quark pair properties performed with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s = 7 TeV. The latest measurements of spin correlation and charge asymmetry in tt¯$t\\overline t $ events, as well as measurements of the cross section for tt¯$t\\overline t $ production in association with vector bosons, are presented.

  6. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  7. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  8. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  9. Spin State Control using Oxide Interfaces in LaCoO3-based Heterostructures

    Science.gov (United States)

    Lee, Sangjae; Disa, Ankit; Walker, Frederick; Ahn, Charles

    The flexibility of the spin degree of freedom of the Co 3d orbitals in LaCoO3 suggests that they can be changed through careful design of oxide heterostructures. Interfacial coupling and dimensional confinement can be used to control the magnetic exchange, crystal fields, and Hund's coupling, through orbital and charge reconstructions. These parameters control the balance between multiple spin configurations, thereby modifying the magnetic ordering of LaCoO3. We study (LaCoO3)m /(LaTiO3)2 heterostructures grown by molecular beam epitaxy, which allow interfacial charge transfer from Ti to Co, in addition to structural and dimensional constraints. The electronic polarization at the interface and consequent structural distortions suppress the ferromagnetism in the LaCoO3 layers. This effect extends well beyond the interface, with ferromagnetic order absent up to LaCoO3 layer thickness of m =10. We compare the properties of the LaCoO3/LaTiO3heterostructureswithLaCoO3/SrTiO3, to untangle how charge transfer and structural modifications control the spin and magnetic configuration in cobaltates.

  10. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes

    Science.gov (United States)

    Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria

    2018-01-01

    The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.

  11. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  12. Control over the magnetism and transition between high- and low-spin states of an adatom on trilayer graphene.

    Science.gov (United States)

    Zheng, Anmin; Gao, Guoying; Huang, Hai; Gao, Jinhua; Yao, Kailun

    2017-05-31

    Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

  13. Communication: Spin-boson model with diagonal and off-diagonal coupling to two independent baths: Ground-state phase transition in the deep sub-Ohmic regime

    International Nuclear Information System (INIS)

    Zhao, Yang; Zhao, Yang; Yao, Yao; Chernyak, Vladimir

    2014-01-01

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling

  14. Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi

    The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.

  15. Effect of Rashba spin-orbit interaction on the ground state energy of a D0 centre in a GaAs quantum dot with Gaussian confinement

    Science.gov (United States)

    Kumar, D. Sanjeev; Boda, Aalu; Mukhopadhyay, Soma; Chatterjee, Ashok

    2015-12-01

    The ground state energy of a neutral hydrogenic donor impurity (D0) trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated in the presence of Rashba spin-orbit interaction. The effect of the spin-orbit interaction is incorporated by performing a unitary transformation and retaining terms up to quadratic in the spin-orbit interaction coefficient. For the resulting Hamiltonian, the Rayleigh-Ritz variational method is employed with a simple wave function within the framework of effective-mass envelope function theory to determine the ground state energy and the binding energy of the donor complex. The results show that the Rashba spin-orbit interaction reduces the total GS energy of the donor impurity.

  16. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  17. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  18. On the equilibrium configuration of the Kittel type domain structure with Bloch walls, l80deg

    International Nuclear Information System (INIS)

    Gavrila, H.

    1975-01-01

    Using a phenomenologic method for appreciating different components of the free energy, the equilibrium configuration of the Kittel-type domain structure with Bloch walls is obtained. By improving the known methods, more accurate magnetostatic energy calculations are reported. In order to determine the equilibrium structure, the total free energy is minimized with respect to two system parameters: the Bloch wall width and the structure half-period. (author)

  19. Doubly magic 208Pb: High-spin states, isomers, and E 3 collectivity in the yrast decay

    Science.gov (United States)

    Broda, R.; Janssens, R. V. F.; Iskra, Ł. W.; Wrzesinski, J.; Fornal, B.; Carpenter, M. P.; Chiara, C. J.; Cieplicka-Oryńczak, N.; Hoffman, C. R.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Podolyak, Zs.; Seweryniak, D.; Shand, C. M.; Szpak, B.; Walters, W. B.; Zhu, S.; Brown, B. A.

    2017-06-01

    Yrast and near-yrast levels up to spin values in excess of I =30 ℏ have been delineated in the doubly magic 208Pb nucleus following deep-inelastic reactions involving 208Pb targets and, mostly, 430-MeV 48Ca and 1440-MeV 208Pb beams. The level scheme was established up to an excitation energy of 16.4 MeV, based on multifold γ-ray coincidence relationships measured with the Gammasphere array. Below the well-known, 0.5-μs 10+ isomer, ten new transitions were added to earlier work. The delineation of the higher parts of the level sequence benefited from analyses involving a number of prompt- and delayed-coincidence conditions. Three new isomeric states were established along the yrast line with Iπ=20- (10 342 keV), 23+ (11 361 keV), and 28- (13 675 keV), and respective half-lives of 22(3), 12.7(2), and 60(6) ns. Gamma transitions were also identified preceding in time the 28- isomer; however, only a few could be placed in the level scheme and no firm spin-parity quantum numbers could be proposed. In contrast, for most states below this 28- isomer, firm spin-parity values were assigned, based on total electron-conversion coefficients, deduced for low-energy (energies, however, the correspondence between theory and experiment is less satisfactory and the experimental yrast line appears to be more regular than the calculated one. This regularity is notable when the level energies are plotted versus the I (I +1 ) product and the observed, nearly linear, behavior was considered within a simple "rotational" interpretation. Within this approximate picture, the extracted moment of inertia suggests that only the 76 valence nucleons participate in the "rotation" and that the 132Sn spherical core remains inert.

  20. Resonant spin-wave modes in trilayered magnetic nanowires studied in the parallel and antiparallel ground state

    International Nuclear Information System (INIS)

    Gubbiotti, G.; Nguyen, H.T.; Hiramatsu, R.; Tacchi, S.; Cottam, M.G.; Ono, T.

    2015-01-01

    Brillouin light scattering has been utilized to study the field dependence of resonant spin-wave modes in layered NiFe(30 nm)/Cu(10 nm)/NiFe(15 nm)/Cu(10 nm)/NiFe(30 nm) nanowires of rectangular cross section, 150 nm wide and formed in arrays that are spaced laterally by 400 nm. The major and minor longitudinal hysteresis curves have been measured by the magneto-optical Kerr effect technique, with applied field parallel to the length of the nanowires. The light-scattering spectra were recorded as a function of the magnetic field strength, encompassing both the parallel and antiparallel alignments of the middle stripe with respect to the magnetization direction of the outermost ones. The field ranges for the antiparallel state are different from those for the parallel case, while the mode frequencies change abruptly at the parallel-to-antiparallel transition field (and vice versa). The modes detected in the antiparallel state are found to have only a weak dependence on the applied magnetic field, whether along the major or minor hysteresis curves, while in the parallel state the mode frequencies monotonically increase with the applied magnetic field. The experimental results have been successfully interpreted, across the whole range of the magnetic fields investigated, in terms of the mode localizations across the width and in the layered structure. This was accomplished by means of a microscopic (Hamiltonian-based) theory, which has been extended here to the case of non-parallel magnetic ground states. - Highlights: • We study the resonant spin waves in layered nanowires of rectangular cross section. • Both the parallel and antiparallel magnetization alignments have been explored. • Frequency of modes in the antiparallel state are independent on the magnetic field. • Experimental results we interpreted by means of an Hamiltonian-based theory

  1. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1983-01-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C, α 3n #betta#) 214 Rn and 208 Pb( 13 C, 5n #betta#) 216 Ra at beam energies in the range 75--95 MeV. In-beam spectroscopy techniques, including #betta#-decay excitation functions, α-#betta# coincidences, #betta#-#betta# coincidences, #betta#-ray angular distributions, and pulsed-beam-#betta# timing, were utilized to establish level energies, #betta#-ray multipolarities, J/sup π/ assignments, and isomeric lifetimes. Excited states with spins up to 23h in 214 Rn and roughly-equal30h in 216 Ra were observed. Isomers were found in 214 Rn at 1625 keV (T/sub 1/2/ = 9 ns, J/sup π/ = 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216 Ra at 1708 keV (8 ns, 8 + ) and 5868 keV (10 ns, approx.24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N = 128 even-even nuclei is discussed

  2. Ground states of 2D ± J Ising spin glasses obtained via stationary Fokker–Planck sampling

    International Nuclear Information System (INIS)

    Melchert, O; Hartmann, A K

    2008-01-01

    We investigate the performance of the recently proposed stationary Fokker–Planck sampling method, considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear second-order differential equation that depends on a diffusion-like parameter D. We apply it to the problem of finding ground states of 2D Ising spin glasses for the ± J model. We consider square lattices with side length up to L = 24 with boundary conditions of two different types and compare the results to those obtained by exact methods. A particular value of D is found that yields an optimal performance of the algorithm. We compare the situation with this optimal value of D to the case of a percolation transition, which is found when studying the connected clusters of spins flipped by the algorithm. However, even for moderate lattice sizes, it becomes more and more difficult to find the exact ground states with the algorithm. This means that the approach, at least in its standard form, seems to be inferior to other approaches like parallel tempering

  3. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    Science.gov (United States)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  4. Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney superlattice model with spin-orbit coupling

    Science.gov (United States)

    Li, Rui

    2018-02-01

    The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.

  5. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    Science.gov (United States)

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  6. Ground-state phase diagram, fermionic entanglement and kinetically-induced frustration in a hybrid ladder with localized spins and mobile electrons

    Science.gov (United States)

    Carvalho, R. C. P.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2017-09-01

    We introduce an exactly solvable hybrid spin-ladder model containing localized nodal Ising spins and interstitial mobile electrons, which are allowed to perform a quantum-mechanical hopping between the ladder’s legs. The quantum-mechanical hopping process induces an antiferromagnetic coupling between the ladder’s legs that competes with a direct exchange coupling of the nodal spins. The model is exactly mapped onto the Ising spin ladder with temperature-dependent two- and four-spin interactions, which is subsequently solved using the transfer-matrix technique. We report the ground-state phase diagram and compute the fermionic concurrence to characterize the quantum entanglement between the pair of interstitial mobile electrons. We further provide a detailed analysis of the local spin ordering including the pair and four-spin correlation functions around an elementary plaquette, as well as, the local ordering diagrams. It is shown that a complex sequence of distinct local orderings and frustrated correlations takes place when the model parameters drive the investigated system close to a zero-temperature triple coexistence point.

  7. Unusual spin frozen state in a frustrated pyrochlore system NaCaCo{sub 2}F{sub 7} as observed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R.; Brueckner, F.; Klauss, H.H. [IFP, TU Dresden (Germany); Krizan, J.W.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-07-01

    We present {sup 23}Na -and {sup 19}F NMR results on the magnetically frustrated pyrochlore NaCaCo{sub 2}F{sub 7} with a frustration index of f = θ{sub CW}/T{sub f} ∝ 56. Recent neutron scattering experiments proposed XY like antiferromagnetic spin clusters at low energies in NaCaCo{sub 2}F{sub 7}. {sup 23}Na NMR -spectra reveal the presence of two magnetically non equivalent Na sites in conjunction with the local Co{sup 2+} spin structure. Below 3.6 K both the {sup 23}Na -and {sup 19}F spectra broaden due to the formation of static spin correlations. A huge reduction of the {sup 19}F -and {sup 23}Na NMR signal intensity hints at a quasi-static field distribution in NaCaCo{sub 2}F{sub 7} in this regime. The {sup 19}F spin-lattice relaxation rate {sup 19}(1/T{sub 1}) exhibits a peak at around 2.9 K, at the same temperature range where ac and dc susceptibility data show a broad maximum. The character of the spin fluctuation appears to be isotropic. The overall temperature dependence of {sup 19}(1/T{sub 1}) can be described by the BPP theory considering a fluctuating hyperfine field with an autocorrelation function. The correlation time of the autocorrelation function exhibits an activation behavior further indicating the spin-frozen state. While the present NMR studies suggest the spin frozen state at low temperatures, μSR investigations however reveal the presence of so called persistent spin dynamics down to 20 mK implying an exotic ground state in NaCaCo{sub 2}F{sub 7}.

  8. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements

    Science.gov (United States)

    Behzadi, Naghi; Ahansaz, Bahram

    2018-04-01

    We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.

  10. Separable decompositions of bipartite mixed states

    Science.gov (United States)

    Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.

  11. Neutron-scattering study of the spin-state transition and magnetic correlations in La1-xSrxCoO3 (x=0 and 0.08)

    International Nuclear Information System (INIS)

    Asai, K.; Yokokura, O.; Nishimori, N.; Chou, H.; Tranquada, J.M.; Shirane, G.; Higuchi, S.; Okajima, Y.; Kohn, K.

    1994-01-01

    LaCoO 3 exhibits two magnetic-electronic transitions, one near 90 K and a second near 500 K. A previous study of the paramagnetic scattering using polarized neutrons demonstrated that the low-temperature transition is associated with the thermal excitation of Co 3+ ions from the low-spin to the high-spin state. In the present work, we extend the paramagnetic-scattering measurements up to a temperature of 700 K. We find that the magnetic-scattering intensity decreases monotonically for temperatures above 300 K, indicating that the high-temperature transition is not dominantly magnetic in origin. Furthermore, the anomalous thermal expansion associated with the low-temperature transition is measured and shown to be consistent with a simple theoretical model for the spin-state transition. For comparison, paramagnetic-scattering measurements for La 0.92 Sr 0.08 CoO 3 are also presented. In this material the ferromagnetic correlations are substantially stronger than in the undoped compound, and no transition to the low-spin state is observed. Instead, the paramagnetic scattering increases steadily with decreasing temperature until saturating below 24 K, the same temperature at which the magnetization of the zero-field-cooled specimen shows a sharp cusp. These results suggest that the magnetic moments in the doped compound freeze into a spin-glass state at low temperature

  12. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  13. Spin-exchange interactions in the S 2-state manganese tetramer in photosynthetic oxygen-evolving complex deduced from g=2 multiline EPR signal

    Science.gov (United States)

    Hasegawa, Koji; Ono, Taka-aki; Inoue, Yorinao; Kusunoki, Masami

    1999-01-01

    Possible spin-exchange structures of the Mn(III,IV,IV,IV) cluster in an S 2 state of plant photosystem II were computer-searched, within the range compatible with X-ray absorption data, by diagonalizing each Heisenberg spin-exchange Hamiltonian and then by checking whether it can take the S=1/2 ground state capable of explaining the effective 55Mn hyperfine constants determined from oriented multiline spectra and the first excited state with excitation energy around 20-50 cm -1, or not. The possible spin-exchange structures were found to be distributed in those that contain only one strong-antiferromagnetic coupling and at most two intermediate coupling(s). The most probable structures are discussed in detail.

  14. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  15. Philippe Bloch: Reducing distance between experiments and CERN

    CERN Multimedia

    2009-01-01

    With its unique combination of several hundred staff members and thousands of users from around the world sharing offices and physics data and profiting from mutually beneficial exchanges of know-how and expertise, the PH Department is a good example of a successful worldwide collaboration, set up as it was to construct and run the Laboratory’s physics experiments. The PH Depart-ment has always played host to thousands of users that contribute to CERN experiments and work on them, and whose numbers are set to grow in the years to come. With his long-standing experience as a user and then as the head of the CERN group within the CMS collaboration, Philippe Bloch, the new PH Department Head, is in favour of closer links between the Department and the experiments. "I think that the PH management should have a direct link to the experiments, and to do so we are holding regular management team meetings comprising members of the Department’s management and the e...

  16. Floquet-Bloch theory for polymers in a periodic

    Science.gov (United States)

    Pablo Pedro, Ricardo; Tempel, David; Alexander-Katz, Alfredo

    2014-03-01

    Anderson localization in disordered systems predicts the localization of electronic wave functions and the resulting absence of diffusion. The phenomenon is much more general and has been observed in a variety of systems. In the case of the polymer, the behavior of it in a periodic potential is equivalent to the behavior of a quantum-machanicial particle in a periodic potential. According to this mapping our results for polymers in a periodic potential ara valid for localization of a quantum-mechanical particle in a periodic potential. Besides, one of our motivations for studying polymers in a periodic potential is because it reveals interesting aspects of a self-organization of the adsorbed polymers onto a surface with periodic potential. In order to describe the properties of time-periodic polymer system, we consider the potential time dependent which is periodic in time and space and we evaluate the solutions using the powerful nonperturbative Floquet-Bloch theory which is formulated for linear systems. Finally, we also consider a more interesting problem of when disorder is included in the time-periodic system, where localization of the wave function can occur.

  17. Bloch-Nordsieck estimates of high-temperature QED

    International Nuclear Information System (INIS)

    Fried, H. M.; Sheu, Y.-M.; Grandou, T.

    2008-01-01

    In anticipation of a subsequent application to QCD, we consider the case of QED at high temperature. We introduce a Fradkin representation into the exact, Schwingerian, functional expression of a fermion propagator, as well as a new and relevant version of the Bloch-Nordsieck model, which extracts the soft contributions of every perturbative graph, in contradistinction to the assumed separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. An exponentially decreasing time dependence of the incident particle's initial momentum combines with a stronger decrease in the particle's energy, estimated by a sum over all Matsubara frequencies, to model an initial 'fireball', which subsequently decays in a Gaussian fashion. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands, and is damped away

  18. An Interesting Spin-State Transition for [Fe(PPIX)OH] Induced by High Pressure in a Diamond Anvil Cell

    International Nuclear Information System (INIS)

    Cornelius, V. J.; Titler, P. J.; Fern, G. R.; Miller, J. R.; Silver, J.; Snowden, M. J.; McCammon, C. A.

    2002-01-01

    A high-pressure Moessbauer spectroscopic study of [ 57 Fe(PPIX)OH] is reported under conditions where the pressure is increased and then released. Data were recorded over the pressure range from room pressure to 7.1 GPa using a modified Merril-Bassett Diamond Anvil cell. [ 57 Fe(PPIX)OH] exhibits an asymmetric quadrupole doublet at room temperature and pressure, caused by population of higher energy levels known as Kramer's doublets. Under the application of pressure a S=5/2 high spin to S=5/2,3/2 admixed spin state transition of the Fe(III) site is seen to occur above pressures of 2.2 GPa. This follows a general trend observed with other porphyrin compounds. This is thought to be evidence of movement of the ligand towards the iron atom and movement of the iron atom towards the porphyrin plane. Further evidence for this motion is found in the decrease in the asymmetry of the original site, which is caused by changes in population of the energy levels of the Kramer's doublets. At the highest reported pressures a reversal in asymmetry is observed for the inner S=5/2 quadrupole doublet.

  19. Isovector spin states observed in radiative pion capture in flight and at rest: recent results from SIN

    International Nuclear Information System (INIS)

    Lebrun, M.; Joseph, C.; Martoff, C.J.; Perroud, J.P.; Straumann, U.; Truol, P.

    1984-01-01

    At first glance, the difficulties inherent in using photopion reactions as compared to other charge exchange probes, make the use of such reactions a poor choice. But photopion reactions have contributed to the study of spin-isospin states since the late sixties. Photopion reactions single out isovector transitions with large spin-density matrix-elements, and the experimental photon spectra feature prominent peaks corresponding to analogs of magnetic dipole to octupole transitions in the target nucleus. The recent interest in magnetic quadrupole transitions stimulated the authors to extend the previous measurements on 12 C 7 , 16 C 8 and 18 O 8 to other nuclei near the end of the 1p shell, namely 14 C and 15 N. The 14 C data, along with the recent data on 13 C 9 , 19 F 9 and 20 Ne 10 allow a rather complete interpretation of the isovector transitions. Also presented are the first results from an experiment searching for precursor phenomena in photopion reactions. The case selected is 13 C(π + ,r) 13 N

  20. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  1. Towards 100Sn with GASP + Si-ball + Recoil Mass Spectrometer: High-spin states of 105Sn and 103In

    International Nuclear Information System (INIS)

    De Angelis, G.; Farnea, E.; Gadea, A.; Sferrazza, M.; Ackermann, D.; Bazzacco, D.; Bednarczyk, P.; Bizzeti, P.G.; Bizzeti Sona, A.M.; Brandolini, F.; Burch, R.; Buscemi, A.; De Acuna, D.; De Poli, M.; Fahlander, C.; Li, Y.; Lipoglavsek, M.; Lunardi, S.; Makishima, A.; Menegazzo, R.; Mueller, L.; Napoli, D.; Ogawa, M.; Pavan, P.; Rossi-Alvarez, C.; Scarlassara, F.; Segato, G.F.; Seweryniak, D.; Soramel, F.; Spolaore, P.; Zanon, R.

    1995-01-01

    Very proton rich nuclei in the A∼100 region have been investigated using the GASP array coupled with the Recoil Mass Spectrometer (RMS) and the GASP Si-ball. High-spin states of 105 Sn and 103 In nuclei formed with the reaction 58 Ni+ 50 Cr at 210MeV have been investigated up to similar 10 and 7MeV of excitation energy respectively. We have confirmed the known excited states for both nuclei and extended to higher spin the level scheme. The experimental level schemes are compared with shell model calculations. ((orig.))

  2. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Isomeric and high-spin states of 94Tc and the search for yrast isomers near N~50

    Science.gov (United States)

    Lee, I. Y.; Johnson, N. R.; McGowan, F. K.; Young, G. R.; Guidry, M. W.; Yates, S. W.

    1981-07-01

    A search for isomers in the N~50 region has produced no evidence of high-spin yrast isomerism. A new 4.5-ns low-multiplicity isomer has been identified and assigned to 94Tc, while the yrast sequence of 94Tc has been established to more than 5 MeV in excitation energy. [NUCLEAR REACTIONS 76Ge, 78Se(20Ne,xnypγ), E=80.9 MeV, 89Y, 93Nb(10B,xnypγ), E=52.0,58.4,62.8 MeV; measured Eγ, Iγ, γ-γ prompt and delayed coin, γ-X coin; deduced levels, t12 of 94Tc isomer, yrast states.

  4. Abner Doubleday, Marc Bloch, and the cultural significance of baseball in rural America.

    Science.gov (United States)

    Vaught, David

    2011-01-01

    In 1907 baseball's promoters decreed that Civil War hero Abner Doubleday created the game in the village of Cooperstown, New York, in 1839. Baseball thus acquired a distinctly rural American origin and a romantic pastoral appeal. Skeptics have since presented irrefutable evidence that America's pastime was neither born in the United States nor was a product of rural life. But in their zeal to debunk the myth of baseball's rural beginnings, historians have fallen prey to what Annales School founder Marc Bloch famously called the "idol of origins," and all but neglected the very real phenomenon of rural baseball itself. The claim that baseball has always been "a city game for city men" does not stand up to empirical scrutiny anymore than the Doubleday myth itself, as this address demonstrates with three case studies -- Cooperstown in the 1830s, Davisville, California, in the 1880s, and Milroy, Minnesota, in the 1950s. Baseball may have been a source of rural nostalgia for city people, but it was the sport of choice for farmers and a powerful cultural agent.

  5. Vector solitons for the reduced Maxwell-Bloch equations with variable coefficients in nonlinear optics

    Science.gov (United States)

    Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin

    2018-01-01

    Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.

  6. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  7. The effect of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional dimerized nano wire

    Directory of Open Access Journals (Sweden)

    M Bahari

    2018-02-01

    Full Text Available We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the hopping amplitudes and spin-orbit coupling strength. Topological phases of this system can be determined by integers  which are related to the Zak phase of occupied Bloch bands. In the phase diagram, there are three different regions with topologically distinct phases. The system is non-trivial insulator in two of them whereas one of the regions is related to the topologically trivial insulator. We find that the topologically trivial phase in the presence of both uniform spin-orbit coupling and uniform Zeeman magnetic field changes to a topologically non-trivial phase. The number of symmetry protected zero-energy edge states under open boundary conditions are also calculated, which suggest that the topological number  reduces to the  when applying Zeeman field. Furthermore, the symmetries of the Hamiltonian are investigated, implying that the system has time-reversal, particle-hole, chiral and inversion symmetries and belongs to the BDI class either in the presence or absence of uniform Zeeman magnetic field.

  8. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  9. Electromagnetic properties of low-spin states in 102,104Pd

    International Nuclear Information System (INIS)

    Luontama, M.; Julin, R.; Kantele, J.; Passoja, A.; Trzaska, W.; Baecklin, A.; Jonsson, N.G.; Westerberg, L.

    1985-12-01

    Electromagnetic transitions from low-lying 0 + , 2 + , 4 + and 3 - states in 102 , 104 Pd have been studied with (p,2n) and (p,p) reactions and with Coulomb excitation. The E2 transition probabilities from the 0 3 + state in 102 Pd (13 W.u.) and from the 0 2 + state in 104 Pd (14 W.u.) are somewhat low for two-phonon states. Generally, the E2 transition rates are reasonably well reproduced by the IBA-2 and by the boson-expansion description. The intruding 0 2 + state (tsub(1/2) = 14.3 ns) in 102 Pd is connected to the 2 2 + and 2 3 + states via strong E2 transitions: B(E2;0 2 + →2 2 + )=96+-40 W.u.; B(E2;2 3 + →0 2 + )=17+-8 W.u

  10. Effects of high magnetic fields on the spin-glass states in disordered manganites

    Science.gov (United States)

    Miura, Noboru; Kerschl, Peter; Kozlova, Nadja V.; Nenkov, Konstantin; Doerr, Kathrin; Kirste, Alexander; von Ortenberg, Michael; Akaboshi, Daisuke; Tomioka, Yasuhide; Tokura, Yoshinori

    2006-03-01

    Magnetization and magnetoresistance were measured in single crystals of random alloys RE1-xAExMnO3 (RE and AE denote the rare-earth and alkaline-earth ions at the perovskite A-site) in pulsed high magnetic fields up to 50 T with a long time duration (˜10 ms) and up to 140 T with a short time duration (˜μs). The crystals exhibit the spin glass behaviors at low temperatures in zero field. In high magnetic fields, Sm1-x(Ba1-ySry)xMnO3 showed prominent metamagnetic transitions, whereas RE1-xBaxMnO3 (RE=Sm, Eu, Gd) showed a smooth magnetization saturation with just kinks in the derivative of the magnetization. Moreover, in the metamagnetic phase transitions, peculiar time dependence and the pre-history dependence were found in the hysteresis of the magnetization. It was also found that the magnetization is accompanied with a colossal magnetoresistance. These behaviors were interpreted in terms of the developments of the clusters and the orbital orders by magnetic fields, which are dependent on the average A-site ionic radius and the randomness.

  11. Crystal structure and spin state of mixed-crystals of Fe(NCS)x(NCBH3)2-x(bpp)2 (bpp = 1,3-BIS(4-pyridyl)propane)

    International Nuclear Information System (INIS)

    Dote, Haruka; Yasuhara, Hiroki; Nakashima, Satoru

    2013-01-01

    New mixed crystals, Fe(NCS) x (NCBH 3 ) (2-x) (bpp) 2 were synthesized. 57 Fe Mössbauer spectroscopy showed that the ratio of low-spin state in the Fe(NCBH 3 ) 2 unit changed with the change of x. The results revealed that the high spin site of Fe(NCS) 2 unit affects the spin state of Fe(NCBH 3 ) 2 unit. (author)

  12. A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state

    Directory of Open Access Journals (Sweden)

    J. Y. Xia

    2012-10-01

    Full Text Available The spin-up of land models to steady state of coupled carbon–nitrogen processes is computationally so costly that it becomes a bottleneck issue for global analysis. In this study, we introduced a semi-analytical solution (SAS for the spin-up issue. SAS is fundamentally based on the analytic solution to a set of equations that describe carbon transfers within ecosystems over time. SAS is implemented by three steps: (1 having an initial spin-up with prior pool-size values until net primary productivity (NPP reaches stabilization, (2 calculating quasi-steady-state pool sizes by letting fluxes of the equations equal zero, and (3 having a final spin-up to meet the criterion of steady state. Step 2 is enabled by averaged time-varying variables over one period of repeated driving forcings. SAS was applied to both site-level and global scale spin-up of the Australian Community Atmosphere Biosphere Land Exchange (CABLE model. For the carbon-cycle-only simulations, SAS saved 95.7% and 92.4% of computational time for site-level and global spin-up, respectively, in comparison with the traditional method (a long-term iterative simulation to achieve the steady states of variables. For the carbon–nitrogen coupled simulations, SAS reduced computational cost by 84.5% and 86.6% for site-level and global spin-up, respectively. The estimated steady-state pool sizes represent the ecosystem carbon storage capacity, which was 12.1 kg C m−2 with the coupled carbon–nitrogen global model, 14.6% lower than that with the carbon-only model. The nitrogen down-regulation in modeled carbon storage is partly due to the 4.6% decrease in carbon influx (i.e., net primary productivity and partly due to the 10.5% reduction in residence times. This steady-state analysis accelerated by the SAS method can facilitate comparative studies of structural differences in determining the ecosystem carbon storage capacity among biogeochemical models. Overall, the

  13. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.

    Science.gov (United States)

    Valero, Rosendo; Truhlar, Donald G; Jasper, Ahren W

    2008-06-26

    The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr(+) as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr.

  14. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  15. Tunable hybridization of Majorana bound states at the quantum spin Hall edge

    Science.gov (United States)

    Keidel, Felix; Burset, Pablo; Trauzettel, Björn

    2018-02-01

    Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.

  16. Topological superradiant state in Fermi gases with cavity induced spin-orbit coupling

    Science.gov (United States)

    Yu, Dongyang; Pan, Jian-Song; Liu, Xiong-Jun; Zhang, Wei; Yi, Wei

    2018-02-01

    Coherently driven atomic gases inside optical cavities hold great promise for generating rich dynamics and exotic states of matter. It was shown recently that an exotic topological superradiant state exists in a two-component degenerate Fermi gas coupled to a cavity, where local order parameters coexist with global topological invariants. In this work, we characterize in detail various properties of this exotic state, focusing on the feedback interactions between the atoms and the cavity field. In particular, we demonstrate that cavity-induced interband coupling plays a crucial role in inducing the topological phase transition between the conventional and topological superradiant states. We analyze the interesting signatures in the cavity field left by the closing and reopening of the atomic bulk gap across the topological phase boundary and discuss the robustness of the topological superradiant state by investigating the steady-state phase diagram under various conditions. Furthermore, we consider the interaction effect and discuss the interplay between the pairing order in atomic ensembles and the superradiance of the cavity mode. Our work provides many valuable insights into the unique cavity-atom hybrid system under study and is helpful for future experimental exploration of the topological superradiant state.

  17. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  18. Bloch wave deafness and modal conversion at a phononic crystal boundary

    Directory of Open Access Journals (Sweden)

    Vincent Laude

    2011-12-01

    Full Text Available We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  19. Bloch wave deafness and modal conversion at a phononic crystal boundary

    Science.gov (United States)

    Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.

    2011-12-01

    We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  20. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  1. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  2. On averaging the Kubo-Hall conductivity of magnetic Bloch bands leading to Chern numbers

    International Nuclear Information System (INIS)

    Riess, J.

    1997-01-01

    The authors re-examine the topological approach to the integer quantum Hall effect in its original form where an average of the Kubo-Hall conductivity of a magnetic Bloch band has been considered. For the precise definition of this average it is crucial to make a sharp distinction between the discrete Bloch wave numbers k 1 , k 2 and the two continuous integration parameters α 1 , α 2 . The average over the parameter domain 0 ≤ α j 1 , k 2 . They show how this can be transformed into a single integral over the continuous magnetic Brillouin zone 0 ≤ α j j , j = 1, 2, n j = number of unit cells in j-direction, keeping k 1 , k 2 fixed. This average prescription for the Hall conductivity of a magnetic Bloch band is exactly the same as the one used for a many-body system in the presence of disorder

  3. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  4. Simplex Z2 spin liquids on the kagome lattice with projected entangled pair states: Spinon and vison coherence lengths, topological entropy, and gapless edge modes

    Science.gov (United States)

    Poilblanc, Didier; Schuch, Norbert

    2013-04-01

    Gapped Z2 spin liquids have been proposed as candidates for the ground state of the S=1/2 quantum antiferromagnet on the kagome lattice. We extend the use of projected entangled pair states to construct (on the cylinder) resonating valence bond (RVB) states including both nearest-neighbor and next-nearest-neighbor singlet bonds. Our ansatz—dubbed “simplex spin liquid”—allows for an asymmetry between the two types of triangles (of order 2%-3% in the energy density after optimization) leading to the breaking of inversion symmetry. We show that the topological Z2 structure is still preserved and, by considering the presence or the absence of spinon and vison lines along an infinite cylinder, we explicitly construct four orthogonal RVB minimally entangled states. The spinon and vison coherence lengths are extracted from a finite size scaling with regard to the cylinder perimeter of the energy splittings of the four sectors and are found to be of the order of the lattice spacing. The entanglement spectrum of a partitioned (infinite) cylinder is found to be gapless, suggesting the occurrence, on a cylinder with real open boundaries, of gapless edge modes formally similar to Luttinger liquid (nonchiral) spin and charge modes. When inversion symmetry is spontaneously broken, the RVB spin liquid exhibits an extra Ising degeneracy, which might have been observed in recent exact diagonalization studies.

  5. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    Science.gov (United States)

    Matsuda, M.; Yoshida, H.; Isobe, M.; de La Cruz, C.; Fishman, R. S.

    2012-02-01

    Ag2CrO2 consists of triangular lattice planes of CrO2, which are well separated by the metallic Ag2 layers. [1] This compound is an S=3/2 frustrated triangular lattice antiferromagnet without orbital degree of freedom. We performed neutron diffraction experiments on a powder sample of Ag2CrO2 on a neutron powder diffractometer HB-2A and a triple-axis neutron spectrometer HB-1, installed at HFIR in Oak Ridge National Laboratory. With decreasing temperature, a short-range 4-sublatice spin state develops. However, a long-range partially disordered state with 5 sublattices abruptly appears at TN=24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic. [4pt] [1] H. Yoshida et al., to appear in J. Phys. Soc. Jpn.

  6. Bilinear Forms and Soliton Solutions for the Reduced Maxwell-Bloch Equations with Variable Coefficients in Nonlinear Optics

    Science.gov (United States)

    Chai, Jun; Tian, Bo; Chai, Han-Peng

    2018-02-01

    Investigation in this paper is given to the reduced Maxwell-Bloch equations with variable coefficients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coefficient-dependent bilinear forms. Then, we construct the one-, two- and N-soliton solutions in analytic forms for them. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050, the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02

  7. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  8. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  9. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  10. Generalized Floquet theory: application to dynamical systems with memory and Bloch's theorem for nonlocal potentials.

    Science.gov (United States)

    Traversa, Fabio L; Di Ventra, Massimiliano; Bonani, Fabrizio

    2013-04-26

    Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to spatial coordinates provides the basis for Bloch's theorem. However, in its original formulation it is limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem for the general class of systems including linear operators commuting with the period-shift operator. The present theorem greatly expands the range of applicability of Floquet theory to a multitude of phenomena that were previously inaccessible with this type of analysis, such as dynamical systems with memory. As an important extension, we also prove Bloch's theorem for nonlocal potentials.

  11. Reduction of collectivity at very high spins in 134Nd: Expanding the projected-shell-model basis up to 10-quasiparticle states

    Science.gov (United States)

    Wang, Long-Jun; Sun, Yang; Mizusaki, Takahiro; Oi, Makito; Ghorui, Surja K.

    2016-03-01

    Background: The recently started physics campaign with the new generation of γ -ray spectrometers, "GRETINA" and "AGATA," will possibly produce many high-quality γ rays from very fast-rotating nuclei. Microscopic models are needed to understand these states. Purpose: It is a theoretical challenge to describe high-spin states in a shell-model framework by the concept of configuration mixing. To meet the current needs, one should overcome the present limitations and vigorously extend the quasiparticle (qp) basis of the projected shell model (PSM). Method: With the help of the recently proposed Pfaffian formulas, we apply the new algorithm and develop a new PSM code that extends the configuration space to include up to 10-qp states. The much-enlarged multi-qp space enables us to investigate the evolutional properties at very high spins in fast-rotating nuclei. Results: We take 134Nd as an example to demonstrate that the known experimental yrast and the several negative-parity side bands in this nucleus could be well described by the calculation. The variations in moment of inertia with spin are reproduced and explained in terms of successive band crossings among the 2-qp, 4-qp, 6-qp, 8-qp, and 10-qp states. Moreover, the electric quadrupole transitions in these bands are studied. Conclusions: A pronounced decrease in the high-spin B (E 2 ) of 134Nd is predicted, which suggests reduction of collectivity at very high spins because of increased level density and complex band mixing. The possibility for a potential application of the present development in the study of highly excited states in warm nuclei is mentioned.

  12. Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction

    Science.gov (United States)

    Calvo, M. R.; de Juan, F.; Ilan, R.; Fox, E. J.; Bestwick, A. J.; Mühlbauer, M.; Wang, J.; Ames, C.; Leubner, P.; Brüne, C.; Zhang, S. C.; Buhmann, H.; Molenkamp, L. W.; Goldhaber-Gordon, D.

    2017-12-01

    We study the electronic transport across an electrostatically gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without an applied magnetic field. We control the carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the bulk gap, the magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus that reflect the equilibration between 1D chiral modes across the junction. As the carrier density approaches zero in the central region and at moderate fields, we observe oscillations in the resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.

  13. Fragmentation of high-spin particle-hole states in sup 26 Mg

    Energy Technology Data Exchange (ETDEWEB)

    Segel, R.E.; Amusa, A.; Geesaman, D.F.; Lawson, R.D.; Zeidman, B.; Olmer, C.; Bacher, A.D.; Emery, G.T.; Glover, C.W.; Nann, H. (Argonne National Lab., IL (USA); Indiana Univ. Cyclotron Facility, Bloomington, IN (USA))

    1989-01-01

    The inelastic scattering of 134 MeV protons to seven 6{sup -} states in {sup 26}Mg has been studied. By combining the results with those of a companion electron scattering study, and utilizing DWIA calculations, it has been possible to extract isoscalar and isovector excitation amplitudes. Shell model calculations using (1d{sub 5/2}){sup 10-n-p} (2s{sub 1/2}){sup n} (1f{sub 7/2}){sup p}, with p = 0 and 1, model spaces can reproduce the general features of the fragmentation, but not the structure of the yrast 6{sup -} state. 28 refs., 10 figs., 2 tabs.

  14. Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling

    Science.gov (United States)

    Sepehrinia, Reza; Chalangari, Fartash

    2018-03-01

    The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.

  15. High pressure induced spin state crossover in Sr2CaYCo4O10.5.

    Science.gov (United States)

    Sikolenko, V; Troyanchuk, I; Bushinsky, M; Efimov, V; Keller, L; White, J S; Schilling, F R; Schorr, S

    2015-02-04

    The layered cobaltite Sr(2)CaYCo(4)O(10.5) with formal average cobalt oxidation state close to 3+ has been studied as functions of both temperature and pressure up to 4 GPa by neutron powder diffraction (NPD). The crystal structure is shown to have tetragonal symmetry (space group I4/mmm; 2a(p) × 2a(p) × 4a(p) superstructure), and the magnetic structure at ambient pressure is found to be G-type antiferromagnetic with TN close to 310 K. The magnetic moments within the CoO(6) octahedral layers and anion-deficient CoO(4.5) layers are 1.2μ(B) and 2.8μ(B), respectively. At 25 K, and applied pressure of 3.5 GPa is sufficient to completely suppress a long-range magnetic order. This result is interpreted in terms of a pressure-induced high-to-low spin state crossover of the Co(3+) ions.

  16. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR

    Science.gov (United States)

    Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun

    2017-12-01

    In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.

  17. Josephson spin current in triplet superconductor junctions

    OpenAIRE

    Asano, Yasuhiro

    2006-01-01

    This paper theoretically discusses the spin current in spin-triplet superconductor / insulator / spin-triplet superconductor junctions. At low temperatures, a midgap Andreev resonant state anomalously enhances not only the charge current but also the spin current. The coupling between the Cooper pairs and the electromagnetic fields leads to the Frounhofer pattern in the direct current spin flow in magnetic fields and the alternative spin current under applied bias-voltages.

  18. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    Science.gov (United States)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2016-02-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants between detected spins and homonuclear coupling partners along with relative signs. In the presented S3 HMBC experiment, spin-state selection occurs via large one-bond coupling constants ensuring high editing accuracy and unequivocal sign determination of the homonuclear long-range relative to the associated one-bond coupling constant. The sensitivity of the new experiment is comparable to that of regular edited HMBC and the accuracy of the J/RDC measurement is as usual for E.COSY and S3-type experiments independent of the size of the homonuclear coupling constant of interest. The merits of the method are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured.

  19. Magic-Angle-Spinning Solid-State NMR of Membrane Proteins

    NARCIS (Netherlands)

    Baker, Lindsay A.; Folkers, Gert E.; Sinnige, Tessa; Houben, Klaartje; Kaplan, M.; van der Cruijsen, Elwin A W; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this

  20. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.