Magnetic excitations and exchange interactions in the spin-gap system TlCuCl sub 3
Oosawa, A; Kato, T; Kakurai, K; Müller, M; Mikeska, H J
2002-01-01
The magnetic excitations from the gapped ground state in TlCuCl sub 3 have been investigated by means of inelastic neutron scattering experiments. The excitation data were collected along four different directions in the a sup * -c sup * plane. A well-defined single magnetic excitation mode was observed. The lowest excitation occurs at Q=(h,0,l) with integer h and odd l, as observed in KCuCl sub 3. The dispersion relations were analyzed by the cluster-series expansion up to the sixth order, so that the individual exchange interactions were evaluated. It was demonstrated that TlCuCl sub 3 is a strongly coupled spin-dimer system. (orig.)
Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3
International Nuclear Information System (INIS)
Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa; Tanaka, Hidekazu
2003-01-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl 3 . Below the ordering temperature T N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H
2003-01-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Spin dynamics in the high-field phase of quantum-critical S =1/2 TlCuCl sub 3
Rueegg, C; Furrer, A; Krämer, K; Güdel, H U; Vorderwisch, P; Mutka, H
2002-01-01
An external magnetic field suppresses the spin-energy gap in singlet ground state S=1/2 TlCuCl sub 3. The system becomes quantum-critical at H sub c approx 5.7 T, where the energy of the lowest Zeeman-split triplet excitation crosses the nonmagnetic ground state. Antiferromagnetic ordering is reported above H sub c , which underlines the three-dimensional nature of the observed quantum phase transition. The intrinsic parameters of S=1/2 TlCuCl sub 3 allow us to access the critical region microscopically by neutron scattering. A substantial study of the spin dynamics in the high-field phase of TlCuCl sub 3 at T=1.5 K up to H=12 T was performed for the first time. The results possibly indicate two dynamical regimes, which can be understood within characteristically renormalized triplet modes and a low-lying dynamics of potentially collective origin. (orig.)
International Nuclear Information System (INIS)
Yamada, F.; Ono, T.; Tanaka, H.; Misguich, G.; Oshikawa, M.; Sakakibara, T.
2008-01-01
Magnetization measurements were performed to investigate the critical behavior of the field-induced magnetic ordering in gapped spin system TlCuCl 3 . The critical density of the magnons was obtained as a function of temperature and the magnon-magnon interaction constant was evaluated. The experimental phase boundary for T ≤ 5 K agrees almost perfectly with the magnon Bose-Einstein condensation (BEC) theory based on the Hartree-Fock approximation with realistic dispersion relations. The phase boundary can be described by the power law [H N (T)-H c ] ∝ T φ . With decreasing fitting temperature range, the critical exponent φ decreases and converges at φ(BEC) = 3/2 predicted by the magnon BEC theory. (authors)
Heat Transport in Gapped Spin-Chain Systems
International Nuclear Information System (INIS)
Shimshoni, E.
2006-01-01
Full Text: We study the contribution of magnetic excitations to the heat transport in gapped spin-chain systems. These systems are characterized by a substantially enhanced heat conductivity, which can be traced back to the existence of weakly violated conservation laws. We focus particularly on the behavior of clean two-leg spin ladder compounds, where one-dimensional exotic spin excitations are coupled to three-dimensional phonons. We show that the contributions of the two types of heat carriers can not be easily disentangled. Depending on the ratios of spin gaps and the Debye energy, the heat conductivity can be either exponentially increasing or exponentially decreasing as a function of temperature (T). In addition, the magnetic contribution to the total heat conductivity may be either positive or negative. We discuss its T-dependence in various possible regimes, and note that in most regimes it is dominated by spin-phonon drag: the two types of heat carriers have almost the
International Nuclear Information System (INIS)
Tsui, Y.; Bruehl, A.; Removic-Langer, K.; Pashchenko, V.; Wolf, B.; Donath, G.; Pikul, A.; Kretz, T.; Lerner, H.-W.; Wagner, M.; Salguero, A.; Saha-Dasgupta, T.; Rahaman, B.; Valenti, R.; Lang, M.
2007-01-01
We report on the results obtained from studying electron spin resonance, magnetic susceptibility, specific heat and thermal expansion experiments on a metalorganic spin-dimer system, C 36 H 48 Cu 2 F 6 N 8 O 12 S 2 (TK91). According to the first principle Density Functional Theory calculations, the compound represents a 3D-coupled dimer system with intradimer coupling J 1 /k B ∼ 10K and interdimer couplings J 2 /k B ∼J 3 /k B ∼ 1K. The measurements have been performed on both pressed powder and single-crystal samples in external magnetic fields up to 12T and at low temperatures down to ∼ 0.2K. Susceptibility measurements reveal a spin-gap behavior consistent with the theoretical results. Furthermore, clear indications of a field-induced phase transition have been observed. A similar field-induced phase transition was also detected in an inorganic compound TlCuCl 3 and was interpreted as Bose-Einstein condensation (BEC) of magnons. The possibility of changing both the intradimer and interdimer couplings in TK91 by chemical substitutions makes the system a potentially good system to study BEC of magnons
Suppression of spin and optical gaps in phosphorene quantum dots
Zhang, Yingjie; Sheng, Weidong
2018-05-01
Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.
Does a spin-Peierls system have one gap or two?
International Nuclear Information System (INIS)
Aien, Michel; Petitgrand, Daniel; Dhalenne, Guy; Revcolevschi, Alexandre
2001-01-01
We investigated the collective excitations of the spin-Peierls phase of CuGeO 3 by inelastic neutron scattering. We measured the dispersion curve of these excitations, with and without magnetic field. The main result is to show that there exists a second gap feature which separate the spin singlet-triplet excitation from a 'continuum' of excitation extending to relatively high energies. Moreover magnetic field produces a loss of intensity in the energy scan. (author)
Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Paul, Susobhan, E-mail: suso.phy.paul@gmail.com [Department of Physics, Scottish Church College, 1 & 3 Urquhart Square, Kolkata-700006 (India); Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com [Department of Physics, Jadavpur University, 188 Raja S C Mallik Road, Kolkata-700032 (India)
2016-05-06
Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.
Energy Technology Data Exchange (ETDEWEB)
Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujisawa, Masashi [Tokyo Inst. of Technology, Dept. of Physics, Tokyo (Japan); Tanaka, Hidekazu [Tokyo Inst. of Technolgy, Research Center for Low Temperature Physics, Tokyo (Japan)
2003-05-01
Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}. Below the ordering temperature T{sub N} = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)
Approximating the ground state of gapped quantum spin systems
Energy Technology Data Exchange (ETDEWEB)
Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL
2009-01-01
We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.
Spin-polarized gapped Dirac spectrum of unsupported silicene
Energy Technology Data Exchange (ETDEWEB)
Podsiadły-Paszkowska, A., E-mail: agata.podsiadly@gmail.com; Krawiec, M., E-mail: mariusz.krawiec@umcs.pl
2016-06-15
Highlights: • Effects of spin–orbit interaction and atomic reconstruction of silicene on its electronic properties have been studied. • Spin-polarized gapped Dirac spectrum has been revealed. • Two different AFM phases have been obtained. - Abstract: We study effects of the spin–orbit interaction and the atomic reconstruction of silicene on its electronic spectrum. As an example we consider unsupported silicene pulled off from Pb(111) substrate. Using first principles density functional theory we show that the inversion symmetry broken arrangement of atoms and the spin–orbit interaction generate a spin-polarized electronic spectrum with an energy gap in the Dirac cone. These findings are particularly interesting in view of the quantum anomalous and quantum valley Hall effects and should be observable in weakly interacting silicene-substrate systems.
International Nuclear Information System (INIS)
Belinsky, Moisey I.
2009-01-01
The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.
Charge ordering and opening of spin gap in NaV2O5
Mostovoy, M.V.; Khomskii, D.I.
1999-01-01
We argue that the origin of the phase transition in quasi-one-dimensional antiferromagnet NaV2O5 is not the spin-Peierls (SP) instability, but a charge ordering. The opening of the spin gap and the lattice dimerization, characteristic for the spin-Peierls systems, in NaV2O5 result from the interplay
Spin Orbit Coupling Gap and Indirect Gap in Strain-Tuned Topological Insulator-Antimonene
Cheung, Chi-Ho; Fuh, Huei-Ru; Hsu, Ming-Chien; Lin, Yeu-Chung; Chang, Ching-Ray
2016-01-01
Recently, searching large-bulk band gap topological insulator (TI) is under intensive study. Through k?P theory and first-principles calculations analysis on antimonene, we find that ?-phase antimonene can be tuned to a 2D TI under an in-plane anisotropic strain and the magnitude of direct bulk band gap (SOC gap) depends on the strength of spin-orbit coupling (SOC) which is strain-dependent. As the band inversion of this TI accompanies with an indirect band gap, the TI bulk band gap is the in...
Transmission through a potential barrier in Luttinger liquids with a topological spin gap
Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.
2018-03-01
We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.
Magnon spin Hall magnetoresistance of a gapped quantum paramagnet
Ulloa, Camilo; Duine, R.A.
2018-01-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions
Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang
2018-01-01
We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.
Electronic structure of spin systems
Energy Technology Data Exchange (ETDEWEB)
Saha-Dasgupta, Tanusri
2016-04-15
Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.
Spectral Gap Estimates in Mean Field Spin Glasses
Ben Arous, Gérard; Jagannath, Aukosh
2018-05-01
We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet
Ulloa, Camilo; Duine, R. A.
2018-04-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Non-Dirac Chern insulators with large band gaps and spin-polarized edge states.
Xue, Y; Zhang, J Y; Zhao, B; Wei, X Y; Yang, Z Q
2018-05-10
Based on first-principles calculations and k·p models, we demonstrate that PbC/MnSe heterostructures are a non-Dirac type of Chern insulator with very large band gaps (244 meV) and exotically half-metallic edge states, providing the possibilities of realizing very robust, completely spin polarized, and dissipationless spintronic devices from the heterostructures. The achieved extraordinarily large nontrivial band gap can be ascribed to the contribution of the non-Dirac type electrons (composed of px and py) and the very strong atomic spin-orbit coupling (SOC) interaction of the heavy Pb element in the system. Surprisingly, the band structures are found to be sensitive to the different exchange and correlation functionals adopted in the first-principles calculations. Chern insulators with various mechanisms are acquired from them. These discoveries show that the predicted nontrivial topology in PbC/MnSe heterostructures is robust and can be observed in experiments at high temperatures. The system has great potential to have attractive applications in future spintronics.
Prediction of a Large-Gap and Switchable Kane-Mele Quantum Spin Hall Insulator
Marrazzo, Antimo; Gibertini, Marco; Campi, Davide; Mounet, Nicolas; Marzari, Nicola
2018-03-01
Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of ˜0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.
Quantum entanglement and thermal reduced density matrices in fermion and spin systems on ladders
International Nuclear Information System (INIS)
Chen, Xiao; Fradkin, Eduardo
2013-01-01
Numerical studies of the reduced density matrix of a gapped spin-1/2 Heisenberg antiferromagnet on a two-leg ladder find that it has the same form as the Gibbs density matrix of a gapless spin-1/2 Heisenberg antiferromagnetic chain at a finite temperature determined by the spin gap of the ladder. We investigate this interesting result by considering a model of free fermions on a two-leg ladder (gapped by the inter-chain tunneling operator) and in spin systems on a ladder with a gapped ground state using exact solutions and several controlled approximations. We calculate the reduced density matrix and the entanglement entropy for a leg of the ladder (i.e. a cut made between the chains). In the fermionic system we find the exact form of the reduced density matrix for one of the chains and determine the entanglement spectrum explicitly. Here we find that in the weak tunneling limit of the ladder the entanglement entropy of one chain of the gapped ladder has a simple and universal form dictated by conformal invariance. In the case of the spin system, we consider the strong coupling limit by using perturbation theory and get the reduced density matrix by the Schmidt decomposition. The entanglement entropies of a general gapped system of two coupled conformal field theories (in 1 + 1 dimensions) are discussed using the replica trick and scaling arguments. We show that (1) for a system with a bulk gap the reduced density matrix has the form of a thermal density matrix, (2) the long-wavelength modes of one subsystem (a chain) of a gapped coupled system are always thermal, (3) the von Neumann entropy equals the thermodynamic entropy of one chain, and (4) the bulk gap plays the role of effective temperature. (paper)
Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps
DEFF Research Database (Denmark)
V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.
2013-01-01
the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....
Spin gap in heavy fermion compound UBe13
Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.; Dosanjh, P.; Fisk, Z.; Smith, J. L.
2016-08-01
Heavy fermion (HF) compounds are well known for their unique properties, such as narrow bandwidths, loss of coherence in a metal, non-Fermi-liquid behaviour, unconventional superconductivity, huge magnetoresistance etc. While these materials have been known since the 1970s, there is still considerable uncertainty regarding the fundamental mechanisms responsible for some of these features. Here we report transverse-field muon spin rotation (μ +SR) experiments on the canonical HF compound UBe13 in the temperature range from 0.025 to 300 K and in magnetic fields up to 7 T. The μ +SR spectra exhibit a sharp anomaly at 180 K. We present a simple explanation of the experimental findings identifying this anomaly with a gap in the spin excitation spectrum of f-electrons opening near 180 K. It is consistent with anomalies discovered in heat capacity, NMR and optical conductivity measurements of UBe13, as well as with the new resistivity data presented here. The proposed physical picture may explain several long-standing mysteries of UBe13 (as well as other HF systems).
Spin-triplet excitons and anisotropy effects in the S=12 gapped antiferromagnet BaCuSi2O6
International Nuclear Information System (INIS)
Zvyagin, S.A.; Wosnitza, J.; Krzystek, J.; Stern, R.; Jaime, M.; Sasago, Y.; Uchinokura, K.
2007-01-01
BaCuSi 2 O 6 can be regarded as an almost ideal realization of an S=12 system of weakly interacting spin dimers with spin-singlet ground state and gapped excitation spectrum. We argue that the fine structure observed in low-temperature EPR spectra of BaCuSi 2 O 6 is a fingerprint of triplet excitations (excitons). Analyzing the angular dependence of the exciton modes allows us to precisely calculate the zero-field splitting within the triplet states and, correspondingly, the anisotropy parameter, D=0.07cm -1 . The proposed procedure can be applied for studying anisotropy effects in a large number of S=12 gapped quantum antiferromagnets with dimerized or alternating spin structure
Xing, X J; Zhang, D; Li, S W
2012-12-14
We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.
The gap of the area-weighted Motzkin spin chain is exponentially small
Levine, Lionel; Movassagh, Ramis
2017-06-01
We prove that the energy gap of the model proposed by Zhang et al (2016 arXiv:1606.07795) is exponentially small in the square of the system size. In Movassagh and Shor (2016 Proc. Natl Acad. Sci. USA) a class of exactly solvable quantum spin chain models was proposed that have integer spins (s), with a nearest neighbors Hamiltonian, and a unique ground state. The ground state can be seen as a uniform superposition of all s-colored Motzkin walks. The half-chain entanglement entropy provably violates the area law by a square root factor in the system’s size (˜\\sqrt{n} ) for s > 1. For s = 1, the violation is logarithmic (Bravyi et al 2012 Phys. Rev. Lett. 109 207202). Moreover in Movassagh and Shor (2016 Proc. Natl Acad. Sci. USA) it was proved that the gap vanishes polynomially and is O(n -c ) with c≥slant2 . Recently, a deformation of Movassagh and Shor (2016 Proc. Natl Acad. Sci. USA), which we call ‘weighted Motzkin quantum spin chain’ was proposed Zhang et al (2016 arXiv:1606.07795). This model has a unique ground state that is a superposition of the s-colored Motzkin walks weighted by tarea\\{Motzkin walk\\} with t > 1. The most surprising feature of this model is that it violates the area law by a factor of n. Here we prove that the gap of this model is upper bounded by 8ns t-n2/3 for t > 1 and s > 1.
A spin-transport system for a longitudinally polarized epithermal neutron beam
International Nuclear Information System (INIS)
Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.
2001-01-01
The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed
Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure
International Nuclear Information System (INIS)
Peter, A. John; Lee, Chang Woo
2012-01-01
Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration
Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong
2016-02-01
The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.
Spin valley and giant quantum spin Hall gap of hydrofluorinated bismuth nanosheet.
Gao, Heng; Wu, Wei; Hu, Tao; Stroppa, Alessandro; Wang, Xinran; Wang, Baigeng; Miao, Feng; Ren, Wei
2018-05-09
Spin-valley and electronic band topological properties have been extensively explored in quantum material science, yet their coexistence has rarely been realized in stoichiometric two-dimensional (2D) materials. We theoretically predict the quantum spin Hall effect (QSHE) in the hydrofluorinated bismuth (Bi 2 HF) nanosheet where the hydrogen (H) and fluorine (F) atoms are functionalized on opposite sides of bismuth (Bi) atomic monolayer. Such Bi 2 HF nanosheet is found to be a 2D topological insulator with a giant band gap of 0.97 eV which might host room temperature QSHE. The atomistic structure of Bi 2 HF nanosheet is noncentrosymmetric and the spontaneous polarization arises from the hydrofluorinated morphology. The phonon spectrum and ab initio molecular dynamic (AIMD) calculations reveal that the proposed Bi 2 HF nanosheet is dynamically and thermally stable. The inversion symmetry breaking together with spin-orbit coupling (SOC) leads to the coupling between spin and valley in Bi 2 HF nanosheet. The emerging valley-dependent properties and the interplay between intrinsic dipole and SOC are investigated using first-principles calculations combined with an effective Hamiltonian model. The topological invariant of the Bi 2 HF nanosheet is confirmed by using Wilson loop method and the calculated helical metallic edge states are shown to host QSHE. The Bi 2 HF nanosheet is therefore a promising platform to realize room temperature QSHE and valley spintronics.
Effect of ferromagnetic exchange field on band gap and spin ...
Indian Academy of Sciences (India)
Partha Goswami
2018-02-19
Feb 19, 2018 ... of an electric-field tunable band gap, but like graphene it is a better .... ate energy dispersion of the pristine, pure graphene. ...... The rotation is known as the Faraday .... pave the way to the efficient control of spin generation.
International Nuclear Information System (INIS)
Akazaki, T.; Munekata, H.; Yokoyama, T.; Tanaka, Y.; Takayanagi, H.
2011-01-01
Spin-polarized carrier transport across Nb/p-(In,Mn)As junctions has been studied. Suppressions of conductance in the superconductor sub-gap region and conductance peaks at the bias voltage around the edge of the sub-gap are observed. These features are well reproduced by a newly modified BTK model including both spin polarization and the inverse proximity effect. The value of spin polarization in p-(In,Mn)As extracted by the calculation is P = 0.725 at 0.5 K with Z = 0.25
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Spin-dependent recombination processes in wide band gap II-Mn-VI compounds
International Nuclear Information System (INIS)
Godlewski, M.; Yatsunenko, S.; Khachapuridze, A.; Ivanov, V.Yu.
2004-01-01
Mechanisms of optical detection of magnetic resonance in wide band gap II-Mn-VI diluted magnetic semiconductor (DMS) are discussed based on the results of photoluminescence (PL), PL kinetics, electron spin resonance (ESR) and optically detected magnetic resonance (ODMR) and optically detected cyclotron resonance (ODCR) investigations. Spin-dependent interactions between localized spins of Mn 2+ ions and spins/magnetic moments of free, localized or bound carriers are responsible for the observed ODMR signals. We conclude that these interactions are responsible for the observed rapid shortening of the PL decay time of 4 T 1 → 6 A 1 intra-shell emission of Mn 2+ ions and also for the observed delocalization of excitons in low dimensional structures
Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap
International Nuclear Information System (INIS)
Schlottmann, P.
2000-01-01
We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point
Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap
International Nuclear Information System (INIS)
Greiter, Martin; Rachel, Stephan
2007-01-01
To begin with, we introduce several exact models for SU(3) spin chains: First is a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3 of SU(3) if the original spins of the model transform under representation 3. Second is a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin representations 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a Haldane gap in the excitation spectrum. We generalize some of our models to SU(n). Finally, we use the emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic chains of SU(n) spins, in general, possess a Haldane gap if the spins transform under a representation corresponding to a Young tableau consisting of a number of boxes λ which is divisible by n. If λ and n have no common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If λ and n have a common divisor different from n, it will depend on the specifics of the model including the range of the interaction
Majorana spin in magnetic atomic chain systems
Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei
2018-03-01
In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.
Hybridization Gap and Dresselhaus Spin Splitting in EuIr4In2Ge4.
Calta, Nicholas P; Im, Jino; Rodriguez, Alexandra P; Fang, Lei; Bugaris, Daniel E; Chasapis, Thomas C; Freeman, Arthur J; Kanatzidis, Mercouri G
2015-08-03
EuIr4In2Ge4 is a new intermetallic semiconductor that adopts a non-centrosymmetric structure in the tetragonal I4̄2m space group with unit cell parameters a=6.9016(5) Å and c=8.7153(9) Å. The compound features an indirect optical band gap E(g)=0.26(2) eV, and electronic-structure calculations show that the energy gap originates primarily from hybridization of the Ir 5d orbitals, with small contributions from the Ge 4p and In 5p orbitals. The strong spin-orbit coupling arising from the Ir atoms, and the lack of inversion symmetry leads to significant spin splitting, which is described by the Dresselhaus term, at both the conduction- and valence-band edges. The magnetic Eu(2+) ions present in the structure, which do not play a role in gap formation, order antiferromagnetically at 2.5 K. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koh, Yang Wei
2018-03-01
In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2009-01-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
Energy Technology Data Exchange (ETDEWEB)
Lamarcq, J. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-10
Numerical simulation allows the theorists to convince themselves about the validity of the models they use. Particularly by simulating the spin lattices one can judge about the validity of a conjecture. Simulating a system defined by a large number of degrees of freedom requires highly sophisticated machines. This study deals with modelling the magnetic interactions between the ions of a crystal. Many exact results have been found for spin 1/2 systems but not for systems of other spins for which many simulation have been carried out. The interest for simulations has been renewed by the Haldane`s conjecture stipulating the existence of a energy gap between the ground state and the first excited states of a spin 1 lattice. The existence of this gap has been experimentally demonstrated. This report contains the following four chapters: 1. Spin systems; 2. Calculation of eigenvalues; 3. Programming; 4. Parallel calculation 14 refs., 6 figs.
Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy
International Nuclear Information System (INIS)
Jankowska-Kisielinska, J.; Mikke, K.
1999-01-01
The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)
International Nuclear Information System (INIS)
Sano, Kazuhiro; Ono, Yoshiaki
2007-01-01
Using the numerical diagonalization method, we examine the one-dimensional t 1 -t 2 -J 1 -J 2 model (zigzag-chain t-J model) which is an effective model for metallic CuO double chains in the super-conductor Pr 2 Ba 4 Cu 7 O 15-δ . Based on the Tomonaga-Luttinger liquid theory, we calculate the Luttinger liquid parameter K ρ as a function of the electron density n. It is found that superconductivity is realized in the parameter region, which is in accordance with experimental results. We show the phase diagram of a spin gap in the t 2 /|t 1 |-n plane by analyzing the expectation value of the twist operator Z σ in the spin sector. The spin gap appears in the region with a large t 2 /|t 1 |, where the phase boundary at half filling is consistent with that of the known frustrated quantum spin system. The analysis also suggests that the estimated value of the spin gap reaches ∼100 K in the realistic parameter region of Pr 2 Ba 4 Cu 7 O 15-δ . (author)
High spin structure of 35Cl and the sd-fp shell gap
International Nuclear Information System (INIS)
Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.
2007-01-01
The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states
Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc
2016-04-15
Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100 meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.
High-field study of the spin-Peierls system CuGeO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Regnault, L P [CEA Centre d` Etudes de Grenoble, 38 (France)
1997-04-01
The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.
Caspers, W J
1989-01-01
This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy
Zhu, Zhiyong
2011-10-14
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo
2011-01-01
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Parallel computer calculation of quantum spin lattices
International Nuclear Information System (INIS)
Lamarcq, J.
1998-01-01
Numerical simulation allows the theorists to convince themselves about the validity of the models they use. Particularly by simulating the spin lattices one can judge about the validity of a conjecture. Simulating a system defined by a large number of degrees of freedom requires highly sophisticated machines. This study deals with modelling the magnetic interactions between the ions of a crystal. Many exact results have been found for spin 1/2 systems but not for systems of other spins for which many simulation have been carried out. The interest for simulations has been renewed by the Haldane's conjecture stipulating the existence of a energy gap between the ground state and the first excited states of a spin 1 lattice. The existence of this gap has been experimentally demonstrated. This report contains the following four chapters: 1. Spin systems; 2. Calculation of eigenvalues; 3. Programming; 4. Parallel calculation
Spin dynamics in the pseudo-gap state of a high-temperature superconductor
Energy Technology Data Exchange (ETDEWEB)
Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)
2007-07-01
The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)
Goswami, Partha
2018-03-01
We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.
2013-01-01
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated
Energy Technology Data Exchange (ETDEWEB)
Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.
1996-08-01
The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
International Nuclear Information System (INIS)
Watanabe, T.; Matsuda, A.; Fujii, T.; Matsuda, A.
1997-01-01
The in-plane resistivity ρ a (T) and the out-of-plane resistivity ρ c (T) have been systematically measured for Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with their oxygen contents precisely controlled. In the underdoped region, deviation from T -linear in-plane resistivity, which evidences the opening of the spin gap, is clearly observed, while the out-of-plane resistivity is well reproduced by the activation-type phenomenological formula ρ c (T)=(a/T)exp (Δ/T)+c . In contrast to the YBa 2 Cu 3 O 7-δ system, we find that the onset of the semiconducting ρ c (T) does not coincide with the opening of the spin gap seen in the ρ a (T) in this Bi 2 Sr 2 CaCu 2 O 8+δ system. copyright 1997 The American Physical Society
Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction
Alcalde, A. M.; Romano, C. L.; Marques, G. E.
2008-11-01
We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.
Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.
Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping
2018-05-16
A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.
Effect of the magnetic dipole interaction on a spin-1 system
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
Strongly gapped spin-wave excitation in the insulating phase of NaOsO3
International Nuclear Information System (INIS)
Calder, S.; Vale, J. G.; Bogdanov, N.; Donnerer, C.
2017-01-01
NaOsO_3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d"3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J_1 = J_2 = 13.9 meV). As a result, the observed behavior places NaOsO_3 on the boundary between localized and itinerant magnetism.
Universal spin dynamics in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Fajardo, E. A.; Zülicke, U.; Winkler, R.
2017-10-01
We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)
2009-07-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
Vortices in the SU(N) x SU(N) spin systems in two dimensions
International Nuclear Information System (INIS)
Kares, R.J.D.
1982-01-01
The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0
High spin structure of {sup 35}Cl and the sd-fp shell gap
Energy Technology Data Exchange (ETDEWEB)
Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)
2007-01-15
The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)
2012-09-20
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.
Energy Technology Data Exchange (ETDEWEB)
Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)
2016-10-07
Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
International Nuclear Information System (INIS)
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-01-01
Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Spin-chirality decoupling in Heisenberg spin glasses and related systems
Kawamura, Hikaru
2006-01-01
Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.
Spin thermoelectric effects in organic single-molecule devices
Energy Technology Data Exchange (ETDEWEB)
Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn
2017-05-25
Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.
Mapping of spin wave propagation in a one-dimensional magnonic crystal
Energy Technology Data Exchange (ETDEWEB)
Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)
2016-07-28
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-10-31
In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are
Spin helical states and spin transport of the line defect in silicene lattice
Energy Technology Data Exchange (ETDEWEB)
Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)
2015-02-06
We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.
Gap states and edge properties of rectangular graphene quantum dot in staggered potential
Jeong, Y. H.; Eric Yang, S.-R.
2017-09-01
We investigate edge properties of a gapful rectangular graphene quantum dot in a staggered potential. In such a system gap states with discrete and closely spaced energy levels exist that are spatially located on the left or right zigzag edge. We find that, although the bulk states outside the energy gap are nearly unaffected, spin degeneracy of each gap state is lifted by the staggered potential. We have computed the occupation numbers of spin-up and -down gap states at various values of the strength of the staggered potential. The electronic and magnetic properties of the zigzag edges depend sensitively on these numbers. We discuss the possibility of applying this system as a single electron spintronic device.
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
International Nuclear Information System (INIS)
Tuğluoğlu, Nihat; Barış, Behzad; Gürel, Hatice; Karadeniz, Serdar; Yüksel, Ömer Faruk
2014-01-01
Highlights: • Thin film of rubrene has been deposited by spin coating technique. • The band gap properties of the film were investigated in the range 200–700 nm. • The analysis of the absorption coefficient revealed indirect allowed transition. • The parameters such as barrier height and ideality factor were determined. -- Abstract: Rubrene thin film has been deposited by spin coating technique. The optical band gap properties of rubrene thin film have been investigated in the spectral range 200–700 nm. The results of the absorption coefficient (α) were analyzed in order to determine the optical band gap and Urbach energy of the film. The absorption spectra recorded in the UV–vis region shows two peaks at 250 nm and 300 nm. The analysis of the spectral behavior of the absorption coefficient (α) in the absorption region revealed indirect allowed transition with corresponding energy 2.31 eV. The value of Urbach energy (E U ) was determined to be 1.169 eV. The current–voltage (I–V) characteristics and electrical conduction properties of rubrene/n-Si device fabricated by spin coating method have also been investigated. The I–V characteristic in dark was showed the rectification effect due to the formation of Schottky barrier at rubrene/silicon interface. From analyzing the I-V measurement for the device, the basic device parameters such as barrier height, ideality factor and series resistance were determined. At the low-voltage region, the current conduction in Au/rubrene/n-Si device is ohmic type. The charge transport phenomenon appears to be space charge limited current (SCLC) at higher-voltage regions
Energy Technology Data Exchange (ETDEWEB)
Tuğluoğlu, Nihat, E-mail: tugluo@gmail.com [Department of Technology, Sarayköy Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Barış, Behzad; Gürel, Hatice [Department of Physics, Faculty of Arts and Sciences, Giresun University, Gazipaşa Campus, Giresun 28100 (Turkey); Karadeniz, Serdar [Department of Technology, Sarayköy Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Yüksel, Ömer Faruk [Department of Physics, Faculty of Science, Selçuk University, Campus Konya 42075 (Turkey)
2014-01-05
Highlights: • Thin film of rubrene has been deposited by spin coating technique. • The band gap properties of the film were investigated in the range 200–700 nm. • The analysis of the absorption coefficient revealed indirect allowed transition. • The parameters such as barrier height and ideality factor were determined. -- Abstract: Rubrene thin film has been deposited by spin coating technique. The optical band gap properties of rubrene thin film have been investigated in the spectral range 200–700 nm. The results of the absorption coefficient (α) were analyzed in order to determine the optical band gap and Urbach energy of the film. The absorption spectra recorded in the UV–vis region shows two peaks at 250 nm and 300 nm. The analysis of the spectral behavior of the absorption coefficient (α) in the absorption region revealed indirect allowed transition with corresponding energy 2.31 eV. The value of Urbach energy (E{sub U}) was determined to be 1.169 eV. The current–voltage (I–V) characteristics and electrical conduction properties of rubrene/n-Si device fabricated by spin coating method have also been investigated. The I–V characteristic in dark was showed the rectification effect due to the formation of Schottky barrier at rubrene/silicon interface. From analyzing the I-V measurement for the device, the basic device parameters such as barrier height, ideality factor and series resistance were determined. At the low-voltage region, the current conduction in Au/rubrene/n-Si device is ohmic type. The charge transport phenomenon appears to be space charge limited current (SCLC) at higher-voltage regions.
Robust band gap and half-metallicity in graphene with triangular perforations
Gregersen, Søren Schou; Power, Stephen R.; Jauho, Antti-Pekka
2016-06-01
Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG≃500 meV) under carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots, irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications.
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-01-01
for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic
Spin-flip and spin orbit interactions in heavy ion systems
International Nuclear Information System (INIS)
Bybell, D.P.
1983-01-01
The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included
Magnetocaloric effect in quantum spin-s chains
Directory of Open Access Journals (Sweden)
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
Spin-lattice effects in selected antiferromagnetic materials
Czech Academy of Sciences Publication Activity Database
Zherlitsyn, S.; Yasin, S.; Wosnitza, J.; Zvyagin, A.A.; Andreev, Alexander V.; Tsurkan, V.
2014-01-01
Roč. 40, č. 2 (2014), s. 123-133 ISSN 1063-777X R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Keywords : low-dimensional spin systems * frustrated chromium spinels * spin-strain interaction * uranium -based compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 2014
Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems
Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto
2017-06-01
Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.
Development of new neutron spin echo spectrometer using multi-layer film spin splitter
International Nuclear Information System (INIS)
Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio
2001-01-01
Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)
International Nuclear Information System (INIS)
Tao, Ruibao.
1991-09-01
A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs
Excitation spectrum of Heisenberg spin ladders
International Nuclear Information System (INIS)
Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.
1993-01-01
Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed
Entanglement property in matrix product spin systems
International Nuclear Information System (INIS)
Zhu Jingmin
2012-01-01
We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy S n of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system. (author)
Dynamical spin susceptibility of electron-doped high-Tc cuprates. Comparison with hole-doped systems
International Nuclear Information System (INIS)
Suzuki, Atsuo; Mutou, Tetsuya; Tanaka, Syunsuke; Hirashima, Dai S.
2010-01-01
The magnetic excitation spectrum of electron-doped copper oxide superconductors is studied by calculating the dynamical spin susceptibility of the two-dimensional Hubbard model in which a d x2-y2 -wave superconducting order parameter is assumed. The spectrum of electron-doped systems is compared with that of hole-doped systems, and the relationship between the frequency at which a peak grows in the spectrum and the superconducting energy gap at a hot spot is investigated. A peak may be observed even when the magnetic resonance condition is not exactly satisfied. We find that, in the electron-doped systems, the resonance condition is less likely to be satisfied than in the hole-doped systems because of the small density of states around the hot spots, and the peak frequency is close to twice the gap magnitude at the hot spots. (author)
Large-amplitude superexchange of high-spin fermions in optical lattices
International Nuclear Information System (INIS)
Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören
2013-01-01
We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)
Hysteretic behavior of spin-crossover noise driven system
Energy Technology Data Exchange (ETDEWEB)
Gudyma, Iurii [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, Artur, E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC, 20059 (United States); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania)
2016-04-01
The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker–Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.
Effect of anisotropy on the magnon energy gap in a two-layer ferromagnetic superlattice
International Nuclear Information System (INIS)
Qiu Rongke; Liang Jing; Li Qingfeng; Zhang Zhidong; Song Panpan; Hong Xiaomin
2009-01-01
The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found that a modulated energy gap exists in the magnon energy band along K x direction perpendicular to the superlattice plane, which is different from the optical magnon gap at K x =0. The anisotropy, the spin quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra of the two-layer ferromagnetic superlattice are lowered with increasing temperature.
Bamber, M J
1935-01-01
General methods of theoretical analysis of airplane spinning characteristics have been available for some time. Some of these methods of analysis might be used by designers to predict the spinning characteristics of proposed airplane designs if the necessary aerodynamic data were known. The present investigation, to determine the spinning characteristics of wings, is planned to include variations in airfoil sections, plan forms, and tip shapes of monoplane wings and variations in stagger, gap, and decalage for biplane cellules. The first series of tests, made on a rectangular Clark Y monoplane wing, are reported in reference 1. That report also gives an analysis of the data for predicting the probable effects of various important parameters on the spin for normal airplanes using such a wing. The present report is the second of the series. It gives the aerodynamic characteristics of a rectangular Clark Y biplane cellule in spinning attitudes and includes a discussion of the data, using the method of analysis given in reference 1.
International Nuclear Information System (INIS)
Rozhkov, A.V.
2007-01-01
A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap
SPINning parallel systems software
International Nuclear Information System (INIS)
Matlin, O.S.; Lusk, E.; McCune, W.
2002-01-01
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin
Spin-phonon induced magnetic order in magnetized Spin Ice systems
International Nuclear Information System (INIS)
Albarracín, F A Gómez; Cabra, D C; Rosales, H D; Rossini, G L
2014-01-01
We study the behavior of spin ice pyrochlore systems above the well known [111] 1/3 plateau, under slight deviations of the direction of the external field. We model the relevant degrees of freedom by Ising spins on the kagome lattice. We propose the inclusion of lattice deformations, which imply phononic degrees of freedom in the adiabatic limit. We use analytical calculations to estimate how these new degrees of freedom affect the short and long range spin interactions in the presence of an external magnetic field. We then obtain the magnetization curves, explore the phases and the ground states of this system in the presence of magnetic field by Monte Carlo simulations. We discuss comparisons with experimental results
International Nuclear Information System (INIS)
Goepfert, A.
1994-01-01
This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat
Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite
Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek
2013-12-01
It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of
Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet
Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico
2018-03-01
The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .
Directory of Open Access Journals (Sweden)
G. C. Fouokeng
2014-01-01
Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.
Field dependent spin transport of anisotropic Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.
Li, P. H. Y.; Bishop, R. F.
2018-03-01
We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.
First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions
Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano
2017-02-01
We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.
International Nuclear Information System (INIS)
Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.
2014-01-01
The generation of spin current and spin polarization in a two-dimensional electron gas structure is studied in the presence of Dresselhaus and Rashba spin-orbit couplings (SOC), the strength of the latter being modulated in time by an ac gate voltage. By means of the non-Abelian gauge field approach, we established the relation between the Lorentz spin force and the spin current in the SOC system, and showed that the longitudinal component of the spin force induces a transverse spin current. For a constant (time-invariant) Rashba system, we recover the universal spin Hall conductivity of e/(8π) , derived previously via the Berry phase and semi-classical methods. In the case of a time-dependent SOC system, the spin current is sustained even under strong impurity scattering. We evaluated the ac spin current generated by a time-modulated Rashba SOC in the absence of any dc electric field. The magnitude of the spin current reaches a maximum when the modulation frequency matches the Larmor frequency of the electrons
Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Yigit, Ali
2006-01-01
In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior
International Nuclear Information System (INIS)
Mi Yilin; Zhang Ming; Yan Hui
2008-01-01
Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-06-19
In the present thesis we introduce the reader to the ﬁeld of spintronics and explore new phenomena, such as spin transfer torques, spin ﬁltering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.
Persistent spin helices in 2D electron systems
Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.
2017-03-01
We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.
Bulk and edge spin transport in topological magnon insulators
Rückriegel, Andreas; Brataas, Arne; Duine, Rembert A.
2018-02-01
We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal |topological magnon insulator |normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk dominated for small systems to edge dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.
International Nuclear Information System (INIS)
Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien
2014-01-01
We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern
Luengo-Kovac, M.; Moraes, F. C. D.; Ferreira, G. J.; Ribeiro, A. S. L.; Gusev, G. M.; Bakarov, A. K.; Sih, V.; Hernandez, F. G. G.
2017-06-01
Spin drag measurements were performed in a two-dimensional electron system set close to the crossed spin helix regime and coupled by strong intersubband scattering. In a sample with an uncommon combination of long spin lifetime and high charge mobility, the drift transport allows us to determine the spin-orbit field and the spin mobility anisotropies. We used a random walk model to describe the system dynamics and found excellent agreement for the Rashba and Dresselhaus couplings. The proposed two-subband system displays a large tuning lever arm for the Rashba constant with gate voltage, which provides a new path towards a spin transistor. Furthermore, the data show large spin mobility controlled by the spin-orbit constants setting the field along the direction perpendicular to the drift velocity. This work directly reveals the resistance experienced in the transport of a spin-polarized packet as a function of the strength of anisotropic spin-orbit fields.
Spin Dependent Electronic Structure of Doped Manganese Perovskites
International Nuclear Information System (INIS)
Park, J.-H.
1999-01-01
The spin-resolved photoemission spectra were successfully obtained from La0.7Sr0.3MnO3 190 nm thick epitaxial film on SrTiO3(001). Well below Tc the results clearly manifest the half-metallic nature, i.e., for the majority spin, the photoemission spectrum clearly shows a metallic Fermi cut-off, whereas for the minority spin, it shows an insulating gap with disappearance of the spectral weight at ∼0.6 eV binding energy. On heating through Tc the spectra show no difference for different spins and the spectra weight at the Fermi level (EF disappears, indicating that the Mn 3d spins become disordered) and the system undergoes the ferromagnetic metal to paramagnetic non-metal transition. (c) 2000 American Vacuum Society
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
International Nuclear Information System (INIS)
Wei Guozhu; Miao Hailing
2009-01-01
The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and tricritical line. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples
Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.
2018-04-01
A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.
An S=1/2 impurity spin in the antiferromagnetic S=1 bond-alternating chain
Energy Technology Data Exchange (ETDEWEB)
Ogawa, Nobuyuki [Gifu National College of Technology, Dept. of Fundamental Science, Gifu (Japan); Hikihara, Toshiya [National Inst. for Materials Science, Computational Material Research Group, Tsukuba, Ibaraki (Japan); Kaburagi, Makoto [Kobe Univ., Faculty of Cross-Cultural Studies, Kobe, Hyogo (Japan); Tonegawa, Takashi [Fukui Univ. of Technology, Dept. of Mechanical Engineering, Fukui (Japan)
2002-06-01
We explore low-lying excited states as well as the ground state of the antiferromagnetic S=1 bond-alternating chain with an S=1/2 impurity spin. For the case where the ground-state phase of the host system is the Haldane phase, we review a numerical analysis of the electron-spin-resonance experimental results on the NENP: Cu{sup 2+} system. For the case where the ground-state phase of the host system is the dimer phase, on the other hand, we calculate, using the exact-diagonalization method, the dependences of the energy differences between the ground and low-lying excited states upon both the impurity-host exchange constant and the single-ion-type anisotropy constant, and also calculate, using the density-matrix renormalization-group method, the external-magnetic-field dependence of the impurity-spin magnetization in the ground state. In these calculations, we keep the NTENP: Cu{sup 2+} system in mind to choose the value of the bond-alternation parameter. We find that a few low-lying excited states which are expected from the valence-bond-solid picture appear as the impurity states in the energy gap between the singlet ground and triplet first-excited states (the dimer gap). Furthermore, for certain values of the above constants, we find that the impurity-spin magnetization shows a clear jump at a magnetic field which is in the dimer-gap region or in the magnetization-plateau region of the host system, and also that the impurity-spin magnetization has a magnetic-field region where it decreases as a function of the magnetic field. (author)
International Nuclear Information System (INIS)
Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi
2015-01-01
We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO 2 . We used CrO 2 epitaxial films on TiO 2 (100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO 2 . In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E F ) with an energy gap of 0.5 eV below E F were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO 2 film, constituting spectroscopic evidence for the half-metallicity of CrO 2 at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d
Quantum critical dynamics for a prototype class of insulating antiferromagnets
Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao
2018-06-01
Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
The electron-nuclear spin system in (In,Ga)As quantum dots
International Nuclear Information System (INIS)
Auer, Thomas
2008-01-01
For a long time, the nuclear spins in quantum dots were virtually ignored. It was thought that the interaction strength was so small that the interaction between the nuclei and electrons could only be observed under very specific optical pumping conditions. Then, in the pursuit of long living electron spins as a building block for quantum information storage and processing, their destructive action on the lifetime of the electron spin became apparent. The nuclear spin system increasingly gained the attention of the quantum dot community. It seemed that the randomly oriented, fluctuating nuclear spins can only be counteracted by strong magnetic fields suppressing the depolarising effect of the random nuclear spin fluctuation fields on a single electron spin. Gradually, however, the work done thirty years before on the electron-nuclear spin system in bulk semiconductors attracted the notice of scientists again. Some of the old experiments could be performed with quantum dots as well. It could be shown that the nuclear spins in quantum dots may well be polarised by optical orientation and that their action is not always destructive at all. The nuclear spins in quantum dots are increasingly used in order to create and tailor a specific environment for a single electron in a quantum dot. In this way quantum dots contain their own ''nuclear nanomagnet''. This might be the future of the studies on the electron-nuclear spin system. The aim of this work is to shed some more light on the complex interdependent system formed of an electron spin and the nuclear spin ensemble in quantum dots. The effects are manifold, often unexpected, sometimes miraculous. Nevertheless, I believe that this work is another tiny step towards the understanding of this challenging system. I have shown that the randomly polarised nuclear spin system always affects the electron spin of a single electron in quantum dots. Further we have seen, however, that the nuclear spin system can easily be
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
Classical spins in superconductors
Energy Technology Data Exchange (ETDEWEB)
Shiba, H [Tokyo Univ.; Maki, K
1968-08-01
It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.
Observation of the spin gap in a S=1/2 alternating chain compound, high pressure phase of (VO)2P2O7
International Nuclear Information System (INIS)
Saito, Takashi; Azuma, Masaki; Fujita, Masaki; Takano, Mikio
2001-01-01
Inelastic neutron scattering data were collected on the high pressure phase of (VO) 2 P 2 O 7 , a S=1/2 Heisenberg antiferromagnetic alternating chain compound. The existence of a spin gap was confirmed, and the size was determined to be Δ=2.15(6) meV (=25.0(7) K). The theoretically predicted second gap (Δ'=2Δ) owing to a 2-magnon bound state was not observed. This is consistent with the high field magnetization measurement reported previously. (author)
Majorana surface modes of nodal topological pairings in spin-3/2 semimetals
Yang, Wang; Xiang, Tao; Wu, Congjun
2017-10-01
When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.
Robust band gap and half-metallicity in graphene with triangular perforations
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka
2016-01-01
. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy...... disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag......, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications....
Electron and nuclear spin system polarization in semiconductors by light
Energy Technology Data Exchange (ETDEWEB)
Zakharchenya, B; Flejsher, V
1981-02-01
Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.
Spin-exchange and spin-destruction rates for the 3He-Na system
International Nuclear Information System (INIS)
Borel, P.I.; Soegaard, L.V.; Svendsen, W.E.; Andersen, N.
2003-01-01
Optically pumped Na is used as a spin-exchange partner to polarize 3 He. Polarizations around 20% have routinely been achieved in sealed spherical glass cells containing 3 He, N 2 , and a few droplets of Na. An optical technique has been developed to determine the Na- 3 He spin-exchange rate coefficient. By monitoring the Na spin relaxation ''in the dark,'' the average Na-Na spin-destruction cross section at 330 degree sign C is estimated to be around 5x10 -19 cm 2 . This value is 2-5 (15-30) times smaller than the previously reported values for the K-K (Rb-Rb) spin-relaxation cross section. In the temperature range 310-355 degree sign C the spin-exchange rate coefficient is found to be (6.1±0.6)x10 -20 cm 3 /s with no detectable temperature dependence. This value is in good agreement with a previous theoretical estimate reported by Walker and it is only slightly lower than the corresponding Rb- 3 He spin-exchange rate coefficient. The total Na- 3 He spin-destruction rate coefficient is, within errors, found to be the same as the Na- 3 He spin-exchange rate coefficient, thereby indicating that the maximum possible photon efficiency may approach unity for the Na- 3 He system. A technique, in which a charge-coupled device camera is used to take images of faint unquenched fluorescence light, has been utilized to allow for an instantaneous determination of the sodium number densities during the rate coefficient measurements
Electron and nuclear spin system polarization in semiconductors by light
International Nuclear Information System (INIS)
Zakharchenya, B.; Flejsher, V.
1981-01-01
Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)
Magnetic excitations in low-dimensional spin systems: neutron scattering study on AV2O5
International Nuclear Information System (INIS)
Nakajima, Kenji
1997-01-01
Recent experiments on vanadium oxide bronzes AV 2 O 5 (A=Na, Mg, Li) are reviewed. Experiments are carried out combining two triple-axis spectrometers installed at a thermal beam port and a cold neutron guide at JRR-3M. Spin-wave excitations in single crystals NaV 2 O 5 in the spin-Peierls state shows a steep intra-chain dispersion, which is consistent with estimated exchange interaction from magnetization measurement, and a weak inter-chain dispersion. In the low energy excitation measurement on powder sample of MgV 2 O 5 , we have observed energy gap of 2 meV, which indicates that this material is a ladder system with strong 1D character. Preliminary result on LiV 2 O 5 , which is expected to be a simple 1D antiferromagnet or a zig-zag chain, is also mentioned
Spin-filter and spin-gapless semiconductors: The case of Heusler compounds
International Nuclear Information System (INIS)
Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E.
2016-01-01
We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatile applications, e.g. as spin-filter materials in magnetic tunnel junctions. Finally, a special case are the spin-gapless semiconductors, where the energy gap at the Fermi level for the one spin-direction is almost vanishing, offering novel functionalities in spintronic/magnetoelectronic devices.
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg (Germany); Rehn, Dirk R. [Departments of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)
2016-08-28
For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.
Statistical mechanics of systems of unbounded spins
Energy Technology Data Exchange (ETDEWEB)
Lebowitz, J L [Yeshiva Univ., New York (USA). Belfer Graduate School of Science; Presutti, E [L' Aquila Univ. (Italy). Istituto di Matematica
1976-11-01
We develop the statistical mechanics of unbounded n-component spin systems interacting via potentials which are superstable and strongly tempered. The uniqueness of the equilibrium state is then proven for one component ferromagnetic spins whose free energy is differentiable with respect to the magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Ferdous, Naheed; Ertekin, Elif, E-mail: ertekin@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois 61801 (United States)
2016-07-21
The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO{sub 3} and the wide band gap semiconductor TiO{sub 2}, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO{sub 3}, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO{sub 3}, the interface is found to be rectifying with a Schottky barrier of ≈1.3–1.6 eV, in good agreement with experiment. In the minority spin, SrRuO{sub 3} exhibits a Schottky barrier alignment with TiO{sub 2} and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO{sub 3} recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-01-01
ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Calogero-Sutherland system with two types interacting spins
Kharchev, S.; Levin, A.; Olshanetsky, M.; Zotov, A.
2017-08-01
We consider the classical Calogero-Sutherland system with two types of interacting spin variables. It can be reduced to the standard Calogero-Sutherland system, when one of the spin variables vanishes. We describe the model in the Hitchin approach and prove complete integrability of the system by constructing the Lax pair and the classical r-matrix with the spectral parameter on a singular curve.
Polyakov loop and spin correlators on finite lattices. A study beyond the mass gap
International Nuclear Information System (INIS)
Engels, J.; Neuhaus, T.
1995-01-01
We derive an analytic expression for point-to-point correlation functions of the Polyakov loop based on the transfer matrix formalism. For the 2D Ising model we show that the results deduced from point-point spin correlators are coinciding with those from zero momentum correlators. We investigate the contributions from eigenvalues of the transfer matrix beyond the mass gap and discuss the limitations and possibilities of such an analysis. The finite size behaviour of the obtained 2D Ising model matrix elements is examined. The point-to-point correlator formula is then applied to Polyakov loop data in finite temperature SU(2) gauge theory. The leading matrix element shows all expected scaling properties. Just above the critical point we find a Debye screening mass μ D /T∼4, independent of the volume. ((orig.))
Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions
Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng
2018-04-01
We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.
Two interacting spins in external fields. Four-level systems
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G.; Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Levin, A.D. [Dexter Research Center (United States)
2007-04-15
In the present article, we consider the so-called two-spin equation that describes four-level quantum systems. Recently, these systems attract attention due to their relation to the problem of quantum computation. We study general properties of the two-spin equation and show that the problem for certain external backgrounds can be identified with the problem of one spin in an appropriate background. This allows one to generate a number of exact solutions for two-spin equations on the basis of already known exact solutions of the one-spin equation. Besides, we present some exact solutions for the two-spin equation with an external background different for each spin but having the same direction. We study the eigenvalue problem for a time-independent spin interaction and a time-independent external background. A possible analogue of the Rabi problem for the two-spin equation is defined. We present its exact solution and demonstrate the existence of magnetic resonances in two specific frequencies, one of them coinciding with the Rabi frequency, and the other depending on the rotating field magnitude. The resonance that corresponds to the second frequency is suppressed with respect to the first one. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Krishtopenko, S. S.
2015-01-01
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system
Energy Technology Data Exchange (ETDEWEB)
Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2015-02-15
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.
Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems
Energy Technology Data Exchange (ETDEWEB)
Lueffe, Matthias Clemens
2012-02-10
-state system in which effects of (pseudo)spin-orbit coupling come to light is monolayer graphene. The graphene Hamiltonian entirely consists of pseudospin-orbit coupling, yielding the peculiar Dirac-cone band structure. In the second part of this thesis, we have calculated corrections to the electrical conductivity of graphene in the Boltzmann regime, which are due to pseudospin coherences. We have found that several generally well-established formalisms for the derivation of kinetic equations yield different results for this problem. We cannot resolve this discrepancy, but we make propose an alternative ansatz for the nonequilibrium Green function, which would resolve some contradictions. The calculated corrections could possibly explain a part of the experimentally observed residual conductivity in graphene.
Max Auwaerter symposium: spin mapping and spin manipulation on the atomic scale
International Nuclear Information System (INIS)
Wiesendanger, R.
2008-01-01
excitations in magnetic systems of reduced dimensions now become experimentally accessible. Finally, the combination of spin state read-out and spin state manipulation, based on spin-current induced switching across a vacuum gap by means of SP-STM, provides a fascinating novel type of approach towards ultra-high density magnetic recording without the use of magnetic stray fields. (author)
International Nuclear Information System (INIS)
Alvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-01-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states vertical bar ↑,↓> and vertical bar ↓,↑> gives an oscillation with a Rabi frequency b/ℎ (the spin-spin coupling). The interaction, ℎ/τ SE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτ SE > or approx. ℎ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form
On the spectrum of the polyallyl spin chain
International Nuclear Information System (INIS)
Zhikol, O.A.; Cheranovskij, V.O.
1996-01-01
A study of the exact initial energy levels of the model organic ferromagnet, namely, polyallyl spin chain, has been performed for various values of exchange integral λ describing interaction between radical centers and polyene chain. Perturbation theory analyses and the estimations based on the extrapolation of the results of exact numerical calculations for the finite chain clusters have shown that there exist three types of excitations in the exact polyallyl spectra. The first type is of a gapless character and similar to magnon excitations of the uniform ferromagnet Heisenberg spin chain, which reduce the total chain spin. The second type causes the total spin increase and has the gap character for any values of λ. The third type does not affect the value of the total spin and has gap character for large values of λ
Bell's Inequality for a System Composed of Particles with Different Spins
International Nuclear Information System (INIS)
Moradi, Shahpoor
2009-01-01
For two particles with different spins, we derive the Bell's inequality. The inequality is investigated for two systems combining spin-1 and spin-1/2; spin-1/2 and spin-3/2. We show that for these states Bell's inequality is violated.
Symmetric coupling of four spin-1/2 systems
Suzuki, Jun; Englert, Berthold-Georg
2012-06-01
We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.
How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian
2017-11-30
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
International Nuclear Information System (INIS)
Wang Qin; Chen Hong; Zheng Hang
2007-01-01
The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
International Nuclear Information System (INIS)
Tokura, Y.; Koshihara, S.; Arima, T.; Takagi, H.; Ishibashi, S.; Ido, T.; Uchida, S.
1990-01-01
Spectra of optical conductivity and magnon Raman scattering have been investigated in single crystals of a parent family of cuprate superconductors with various types of Cu-O single-layer networks. The analysis of the spectra shows the systematic dependence of the charge-transfer gaps and covalent character of Cu-O bonds on the pattern of the Cu-O network, while the spin-exchange energy is rather convergent for all the single-CuO 2 -sheet compounds
NMR studies at high magnetic fields of LiVGe_2O_6, a quasi one-dimensional spin S=1 system
Vonlanthen, P.; Tanaka, K. B.; Clark, W. G.; Gavilano, J. L.; Ott, H. R.; Millet, P.; Mila, F.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.
2001-03-01
We report ^7Li NMR studies of LiVGe_2O_6, a quasi one-dimensional spin S=1 system. Our measurements include NMR spectra, the spin-lattice relaxation rate, T_1-1, and the spin-spin relaxation rate, T_2-1, obtained at magnetic fields (B) of 9 and 23 T and temperatures (T) over the range 1.8 - 300 K. The 9 T NMR spectra show a continuous transfer of spectral weight from a paramagnetic phase to an antiferromagnetic one in a narrow temperature range of about 2 K around the transition temperature TN ≈ 25 K. Both phases coexist in this range. Below 10 K, well into the antiferromagnetic phase, the T_1-1 measurements are consistent with electron spin excitations across an energy gap (Δ) with Δ/k_B≈ 14 K at 9 T and 11 K at about 23 T; i.e., applying a large B slightly reduces Δ. Changing B from 9 to 23 T increases TN by 1 K. Thus, TN is influenced only marginally by B up to 23 Tesla. The UCLA part of the work was supported by NSF Grants DMR-9705369 and DMR-0072524.
Systems chemistry: All in a spin
Clark, Lucy; Lightfoot, Philip
2016-05-01
A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
Manchon, Aurelien
2018-01-29
Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
Manchon, Aurelien; Miron, I. M.; Jungwirth, T.; Sinova, J.; Zelezný , J.; Thiaville, A.; Garello, K.; Gambardella, P.
2018-01-01
Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Goldmann, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-02-15
This work describes methods of dynamic nuclear polarization in solids based on the thermal mixing between nuclear spin systems. The description of the thermal mixing processes involves most of the fundamental aspects of the spin temperature theory. The experiments, conducted with paradichlorobenzene and para-dibromobenzene, yield a detailed confirmation of the theoretical predictions. (author) [French] Ce travail decrit des methodes de polarisation dynamique nucleaire dans les solides basees sur le melange thermique entre systemes de spins nucleaires. La description des processus de melange thermique met en jeu la plupart des aspects fondamentaux de la theorie de la temperature de spin. Les experiences, realisees avec du paradichlorobenzene et du paradibromobenzene, apportent une confirmation detaillee des previsions theoriques. (auteur)
Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}.
Baek, S-H; Do, S-H; Choi, K-Y; Kwon, Y S; Wolter, A U B; Nishimoto, S; van den Brink, Jeroen; Büchner, B
2017-07-21
We report a ^{35}Cl nuclear magnetic resonance study in the honeycomb lattice α-RuCl_{3}, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α-RuCl_{3} exhibits a magnetic-field-induced QSL. For fields larger than ∼10 T, a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ∼50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.
Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3
Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.
2017-07-01
We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.
Phase-space spinor amplitudes for spin-1/2 systems
International Nuclear Information System (INIS)
Watson, P.; Bracken, A. J.
2011-01-01
The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1/2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1/2) magnetic dipole in a time-dependent magnetic field.
Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs
Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd
2018-05-01
We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.
The spin-Peierls chain revisited
International Nuclear Information System (INIS)
Hager, Georg; Weisse, Alexander; Wellein, Gerhard; Jeckelmann, Eric; Fehske, Holger
2007-01-01
We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gapless to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes
Microelectromechanical systems integrating molecular spin crossover actuators
Energy Technology Data Exchange (ETDEWEB)
Manrique-Juarez, Maria D. [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France); Rat, Sylvain; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France)
2016-08-08
Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H{sub 2}B(pz){sub 2}){sub 2}(phen)] (H{sub 2}B(pz){sub 2} = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δf{sub r} = −0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.
A quantum spin system with random interactions I
Indian Academy of Sciences (India)
. In order to study the dynamics of a quantum spin glass we model it as a .... Next we construct a family of strongly continuous one-parameter groups of c-auto- morphisms which determine the evolution of the spin system. To this end, we have ...
Li, Rui
2018-02-01
The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.
Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaoshi; Wu, Yong [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Li, Zhongyao, E-mail: lizyusst@gmail.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Gao, Yong [School of Science, Shanghai Second Polytechnic University, Shanghai 201209 (China)
2017-04-01
Highlights: • The gap of isolated ribbon is inversely proportional to the width of ribbon. • The gap of doped ribbon cannot be modeled by effective width approximation. • The fitted energy gap can match the experimental observations. • The doping results in a spin-polarized metallic-like band structure. - Abstract: The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.
Electrical detection of spin transport in Si two-dimensional electron gas systems
Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.
2016-09-01
Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.
Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices
Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene
2017-06-01
Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.
Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields
International Nuclear Information System (INIS)
Lyo, S.K.
1981-01-01
The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate
DEFF Research Database (Denmark)
Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.
2002-01-01
We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....
Band splitting and relative spin alignment in two-layer systems
Ovchinnikov, A A
2002-01-01
It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models
Topics on frustrated spin systems and high-temperature superconductors
International Nuclear Information System (INIS)
Lu Yong.
1990-01-01
The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current
A many-body analysis of NMR in spin-1/2 system
International Nuclear Information System (INIS)
Roy, G.K.; Sinha, S.K.
1977-01-01
The NMR absorption in a spin-1/2 system at finite temperature has been analysed by using the linear response theory and calculating the finite-temperature retarted spin Green's function. In this calculations, the Drone-Fermion representation for the spin operators has been used. A model spin-lattice interaction which is linear in phonon and Fermion operators has been considered, and its effect on a mutually non-interacting spin system has been calculated using the diagrammatic expansions technique. It is found that the complete summing up of a particular class of diagrams yields the Lorentzian shape of the resonance line. (author)
Electrical spin injection into high mobility 2D systems.
Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D
2014-12-05
We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.
Phase diagram study of a dimerized spin-S zig–zag ladder
International Nuclear Information System (INIS)
Matera, J M; Lamas, C A
2014-01-01
The phase diagram of a frustrated spin-S zig–zag ladder is studied through different numerical and analytical methods. We show that for arbitrary S, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar–Ghosh point for a particular member of the family. We show that the system presents a transition between a dimerized phase to a Néel-like phase for S = 1/2, and spiral phases can appear for large S. The phase diagram is characterized by means of a generalization of the usual mean field approximation. The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the random phase approximation. Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like the Density Matrix Renormalization Group are also presented. (paper)
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems
Chang, Zhiwei; Halle, Bertil
2017-08-01
In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
A temperature dependent tunneling study of the spin density wave gap in EuFe2As2 single crystals.
Dutta, Anirban; Anupam; Hossain, Z; Gupta, Anjan K
2013-09-18
We report temperature dependent scanning tunneling microscopy and spectroscopy measurements on single crystals of EuFe2As2 in the 15-292 K temperature range. The in situ cleaved crystals show atomic terraces with homogeneous tunnel spectra that correlate well with the spin density wave (SDW) transition at a temperature, TSDW ≈ 186 K. Above TSDW the local tunnel spectra show a small depression in the density of states (DOS) near the Fermi energy (EF). The gap becomes more pronounced upon entering the SDW state with a gap value ∼90 meV at 15 K. However, the zero bias conductance remains finite down to 15 K indicating a finite DOS at the EF in the SDW phase. Furthermore, no noticeable change is observed in the DOS at the antiferromagnetic ordering transition of Eu(2+) moments at 19 K.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Evidence for a Field-induced Quantum Spin Liquid in $\\alpha$-RuCl$_3$
Baek, S. -H.; Do, S. -H.; Choi, K. -Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; Brink, Jeroen van den; Büchner, B.
2017-01-01
We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $\\alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $\\alpha$-RuCl$_3$ exhibits a magnetic field-induced QSL. For fields larger than $\\sim 10$ T a spin-gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly...
Supersymmetric quantum spin chains and classical integrable systems
International Nuclear Information System (INIS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-01-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Large spin accumulation due to spin-charge coupling across a break-junction
Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi
2013-03-01
We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.
Elementary excitations and the phase transition in the bimodal Ising spin glass model
International Nuclear Information System (INIS)
Jinuntuya, N; Poulter, J
2012-01-01
We show how the nature of the phase transition in the two-dimensional bimodal Ising spin glass model can be understood in terms of elementary excitations. Although the energy gap with the ground state is expected to be 4J in the ferromagnetic phase, a gap 2J is in fact found if the finite lattice is wound around a cylinder of odd circumference L. This 2J gap is really a finite size effect that should not occur in the thermodynamic limit of the ferromagnet. The spatial influence of the frustration must be limited and not wrap around the system if L is large enough. In essence, the absence of 2J excitations defines the ferromagnetic phase without recourse to calculating the magnetization or investigating the system response to domain wall defects. This study directly investigates the response to temperature. We also estimate the defect concentration where the phase transition to the spin glass state occurs. The value p c = 0.1045(11) is in reasonable agreement with the literature
Simulations of defect spin qubits in piezoelectric semiconductors
Seo, Hosung
In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.
Superconducting gap anomaly in heavy fermion systems
Indian Academy of Sciences (India)
of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...
Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain
Directory of Open Access Journals (Sweden)
S. Paul
2017-06-01
Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.
Resolved sidebands in a strain-coupled hybrid spin-oscillator system
Teissier, Jean; Barfuss, Arne; Appel, Patrick; Neu, Elke; Maletinsky, P.
2014-01-01
We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystalline diamond cantilevers with embedded Nitrogen-Vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding ten MHz under mechanical driving...
International Nuclear Information System (INIS)
Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.
1987-01-01
A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Spin ordering in three-leg ladders in Ludwigite systems
International Nuclear Information System (INIS)
Vallejo, E.; Avignon, M.
2007-01-01
We study the spin ordering in a three-leg ladder present in Ludwigite systems formed of localized spins interacting with an extra electron per rung. We also consider the competition with super exchange interactions resulting in a very rich phase diagram. Among the phases we find the possibility of ferromagnetic rungs ordered antiferromagnetically and a zigzag spin ordering linked to the formation of a charge ordering as observed
NMR studies of spin dynamics in cuprates
International Nuclear Information System (INIS)
Takigawa, M.; Mitzi, D.B.
1994-01-01
The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector
NMR studies of spin dynamics in cuprates
Takigawa, M.; Mitzi, D. B.
1994-04-01
We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.
Suppression of quantum tunneling for all spins for easy-axis systems
International Nuclear Information System (INIS)
Khare, Avinash; Paranjape, M. B.
2011-01-01
The semiclassical limit of quantum spin systems corresponds to a dynamical Lagrangian which contains the usual kinetic energy, the couplings and interactions of the spins, and an additional, first-order kinematical term which corresponds to the Wess-Zumino-Novikov-Witten (WZNW) term for the spin degree of freedom. It was shown that in the case of the kinetic dynamics determined only by the WZNW term, half-odd integer spin systems show a lack of tunneling phenomena, whereas integer spin systems are subject to it in the case of potentials with easy-plane easy-axis symmetry. Here we prove for the theory with a normal quadratic kinetic term of arbitrary strength or the first-order theory with azimuthal symmetry (which is equivalently the so-called easy-axis situation), that the tunneling is in fact suppressed for all nonzero values of spin. This model exemplifies the concept that in the presence of complex Euclidean action, it is necessary to use the ensuing complex critical points in order to define the quantum (perturbation) theory. In the present example, if we do not do so, exactly the opposite, erroneous conclusion that the tunneling is unsuppressed for all spins, is reached.
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems
International Nuclear Information System (INIS)
Corini, Cosimo
2009-01-01
Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)
Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems
Energy Technology Data Exchange (ETDEWEB)
Corini, Cosimo
2009-06-12
Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)
Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State
Directory of Open Access Journals (Sweden)
D. Andrew Golter
2016-12-01
Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.
Divide and conquer method for proving gaps of frustration free Hamiltonians
DEFF Research Database (Denmark)
Kastoryano, Michael J.; Lucia, Angelo
2018-01-01
Providing system-size independent lower bounds on the spectral gap of local Hamiltonian is in general a hard problem. For the case of finite-range, frustration free Hamiltonians on a spin lattice of arbitrary dimension, we show that a property of the ground state space is sufficient to obtain...... such a bound. We furthermore show that such a condition is necessary and equivalent to a constant spectral gap. Thanks to this equivalence, we can prove that for gapless models in any dimension, the spectral gap on regions of diameter $n$ is at most $o\\left(\\frac{\\log(n)^{2+\\epsilon}}{n}\\right)$ for any...... positive $\\epsilon$....
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Effect of spin rotation coupling on spin transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-12-15
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.
Ground states of quantum spin systems
International Nuclear Information System (INIS)
Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.
1978-07-01
The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume
International Nuclear Information System (INIS)
Keskin, Mustafa; Polat, Yasin
2009-01-01
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T abs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i 1 , i 2 , i 3 ) phases, and three coexistence or mixed phase regions, namely i 1 +p, i 2 +p and i 3 +p mixed phases that strongly depend on interaction parameters.
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Polat, Yasin [Institutes of Science, Erciyes University, 38039 Kayseri (Turkey)
2009-12-15
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins {sigma}=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T{sub abs} and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i{sub 1}, i{sub 2}, i{sub 3}) phases, and three coexistence or mixed phase regions, namely i{sub 1}+p, i{sub 2}+p and i{sub 3}+p mixed phases that strongly depend on interaction parameters.
Krawczyk, M.; Puszkarski, H.
2005-01-01
A theory of three-dimensional (3D) hypothetical magnonic crystal (conceived as the magnetic counterpart of the well-known photonic crystal) is developed and applied to explain the existence of a spin-wave frequency gap recently revealed in low-doped manganites $La_{1-x}Ca_{x}MnO_{3}$ by neutron scattering. A successful confrontation with the experimental results allows us to formulate a working hypothesis that certain manganites could be regarded as 3D magnonic crystals existing in nature.
Energy efficient hybrid computing systems using spin devices
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
Shot noise of spin current and spin transfer torque
Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian
2013-04-01
We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.
Gap-minimal systems of notations and the constructible hierarchy
Lucian, M. L.
1972-01-01
If a constructibly countable ordinal alpha is a gap ordinal, then the order type of the set of index ordinals smaller than alpha is exactly alpha. The gap ordinals are the only points of discontinuity of a certain ordinal-valued function. The notion of gap minimality for well ordered systems of notations is defined, and the existence of gap-minimal systems of notations of arbitrarily large constructibly countable length is established.
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-05
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
International Nuclear Information System (INIS)
Schwager, Heike
2012-01-01
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Nonmagnetic impurity in the spin-gap state
International Nuclear Information System (INIS)
Nagaosa, N.; Ng, T.
1995-01-01
The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
Energy Technology Data Exchange (ETDEWEB)
Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)
2015-07-01
Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.
Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control
International Nuclear Information System (INIS)
Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei
2012-01-01
Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems
Production of entropy on simplified dynamics in spin glass systems
Saakyan, D B
2001-01-01
In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space
Unconventional spin texture of a topologically nontrivial semimetal Sb(110)
DEFF Research Database (Denmark)
Strózecka, A.; Eiguren, A.; Bianchi, Marco
2012-01-01
The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands...... signal.We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion....
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
Customizing Laboratory Information Systems: Closing the Functionality Gap.
Gershkovich, Peter; Sinard, John H
2015-09-01
Highly customizable laboratory information systems help to address great variations in laboratory workflows, typical in Pathology. Often, however, built-in customization tools are not sufficient to add all of the desired functionality and improve systems interoperability. Emerging technologies and advances in medicine often create a void in functionality that we call a functionality gap. These gaps have distinct characteristics—a persuasive need to change the way a pathology group operates, the general availability of technology to address the missing functionality, the absence of this technology from your laboratory information system, and inability of built-in customization tools to address it. We emphasize the pervasive nature of these gaps, the role of pathology informatics in closing them, and suggest methods on how to achieve that. We found that a large number of the papers in the Journal of Pathology Informatics are concerned with these functionality gaps, and an even larger proportion of electronic posters and abstracts presented at the Pathology Informatics Summit conference each year deal directly with these unmet needs in pathology practice. A rapid, continuous, and sustainable approach to closing these gaps is critical for Pathology to provide the highest quality of care, adopt new technologies, and meet regulatory and financial challenges. The key element of successfully addressing functionality gaps is gap ownership—the ability to control the entire pathology information infrastructure with access to complementary systems and components. In addition, software developers with detailed domain expertise, equipped with right tools and methodology can effectively address these needs as they emerge.
Shot noise of spin current and spin transfer torque
International Nuclear Information System (INIS)
Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian
2013-01-01
We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)
The spin glasses: the paradigm of the complex systems
International Nuclear Information System (INIS)
Ruiz-Lorenzo, J.J.
1997-01-01
The solution of the spin glasses in the Mean Field approximation gives some interesting characteristics such as the existence of an infinite number of pure states organized in an ultrametric way (like in Taxonomy). These properties raise the spin glasses to a paradigm of the complex systems. (Author) 7 refs
Quantum phase transitions in random XY spin chains
International Nuclear Information System (INIS)
Bunder, J.E.; McKenzie, R.H.
2000-01-01
Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
International Nuclear Information System (INIS)
Diniz, Ginetom S.; Ulloa, Sergio E.
2014-01-01
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Estimating yield gaps at the cropping system level.
Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G
2017-05-01
Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.
The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling
Zhao, Jingxiang; Yan, Xu; Gu, Qiang
2017-10-01
The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.
International Nuclear Information System (INIS)
Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika
1997-01-01
Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)
Energy Technology Data Exchange (ETDEWEB)
Wu, Xiuqiang, E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)
2016-04-22
With the Blonder–Tinkham–Klapwijk (BTK) approach, we investigate conductance spectrum in Ferromagnet/Semiconductor/Superconductor (FM/Sm/SC) double tunnel junctions where strong Rashba spin–orbit interaction (RSOI) is taken into account in semiconductors. For the half-metal limit, we find that the in-gap conductance becomes finite except at zero voltage when inserting a ferromagnetic insulator (FI) at the Sm/SC interface, which means that the appearance of a long-range triplet states in the half-metal. This is because of the emergence of the unconventional equal-spin Andreev reflection (ESAR). When the FI locates at the FM/Sm interface, however, we find the vanishing in-gap conductance due to the absence of the ESAR. Moreover, the non-zero in-gap conductance shows a nonmonotonic dependence on RSOI which can be controlled by applying an external gate voltage. Our results can be used to generate and manipulate the long-range spin triplet correlation in the nascent field of superconducting spintronics. - Highlights: • We study the equal-spin Andreev reflection in half-metal/semiconductor/superconductor (HM/Sm/SC) junctions. • The equal-spin Andreev reflection appearance when inserting a ferromagnetic insulator at the Sm/SC interface. • The finite in-gap conductance is attributed to the emergence of the equal-spin Andreev reflection. • The finite in-gap conductance shows a nonmonotonic dependence on Rashba spin–orbit interaction. • The finite in-gap conductance can be controlled by applying an external gate voltage.
Bulk and edge spin transport in topological magnon insulators
Rückriegel, A.; Brataas, A.; Duine, R.A.
2018-01-01
We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.
Moessbauer thermal scan study of a spin crossover system
Energy Technology Data Exchange (ETDEWEB)
Zelis, P Mendoza; Pasquevich, G A; Sanchez, F H; Veiga, A; Cabrera, A F [Departamento de Fisica, FCE-UNLP, La Plata (Argentina); Ceolin, M [Instituto de Investigaciones FIsico-Quimicas Teoricas y Aplicadas (UNLP-CONICET), La Plata (Argentina); Coronado-Miralles, E; Monrabal-Capilla, M; Galan-Mascaros, J R, E-mail: pmendoza@fisica.unlp.edu.a [Instituto de Ciencias Moleculares, Universidad de Valencia, Valencia (Spain)
2010-03-01
Programmable Velocity equipment was used to perform a Moessbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz){sub 2}(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.
Salberger, Olof; Korepin, Vladimir
We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].
What Explains the Survival Gap of Pushed and Pulled Corporate Spin-offs?
DEFF Research Database (Denmark)
Rocha, Vera; Carneiro, Anabela; Varum, Celeste
2015-01-01
Unconditionally, pushed spin-offs are found to survive longer than their pulled counterparts. Using matched employer-employee data and novel multivariate decomposition techniques, we show that pushed spin-offs’ relative survival advantage is mostly explained by their larger human capital endowments...
To the theory of spin-charge separation in one-dimensional correlated electron systems
International Nuclear Information System (INIS)
Zvyagin, A.A.
2004-01-01
Spin-charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges -e and spins 1/2 . It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge
Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions
Institute of Scientific and Technical Information of China (English)
Hossein Karbaschi; Gholam Reza Rashedi
2015-01-01
We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F
Spin temperature concept verified by optical magnetometry of nuclear spins
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.
2018-01-01
We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.
Electrodynamics of quantum spin liquids
Dressel, Martin; Pustogow, Andrej
2018-05-01
Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.
Spin-dependent electron many-body effects in GaAs
Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.
2005-12-01
Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .
Raman scattering in cuprate superconductors : an analysis in the spin bag model
International Nuclear Information System (INIS)
Behera, S.N.; Gaitonde, D.M.
1992-01-01
The spin bag model for the high temperature superconductivity (SC) in the cuprates is reformulated, so that the spin density wave (SDW) collective mode mediated pairing interaction between the doped charge carriers, has a formal similarity to the usual phonon mediated BCS mechanism. The collective modes of the spin bag superconductor are calculated and the spectral density function for the amplitude mode is plotted. The self energy and the spectral density function of an optic phonon are calculated in the spin bag superconducting state. The spectral density function does not couple to the SDW-amplitude mode. A low frequency is shown to harden while the high frequency (greater than the SC-gap) one softens; which are features in qualitative agreement with the behaviour seen in the Raman data. When the phonon frequency is larger than the SC-gap, its spectral function shows a low frequency weak peak, attributed to the SC-gap excitation which is not observed experimentally. (author). 21 refs., 3 figs
Continuum model for chiral induced spin selectivity in helical molecules
Energy Technology Data Exchange (ETDEWEB)
Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems
Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto
2017-12-01
We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.
Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto
2015-04-10
Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.
SPIN–SPIN COUPLING IN THE SOLAR SYSTEM
International Nuclear Information System (INIS)
Batygin, Konstantin; Morbidelli, Alessandro
2015-01-01
The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects
SPIN–SPIN COUPLING IN THE SOLAR SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu [Departement Lagrange, Observatoire de la Côte d’Azur, F-06304 Nice (France)
2015-09-10
The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.
Theory of spin-fluctuation induced superconductivity in iron-based superconductors
International Nuclear Information System (INIS)
Zhang, Junhua
2011-01-01
In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum
Debray, Philippe; Shorubalko, Ivan; Xu, Hongqi
2007-03-01
We have studied polarized spin transport in a device consisting of three quantum point contacts (QPCs) in series made on InGaAs/InP quantum-well (QW) structures. The QPCs were created by independent pairs of side gates, each pair for one QPC. By adjusting the bias voltages of the side gates, the widths of the QPCs are independently tuned to have transport in the fundamental mode. An external magnetic field of a few T causes spin splitting of the lowest one-dimensional (1D) subbands. The widths of the end QPCs are adjusted to position the Fermi level in the spin-split energy gap, while that of the central QPC is kept wide enough to populate both spin-split bands. Measurement of the conductance of the end QPCs at low temperatures (spinFET.
Massive Triplet Excitations in a Magnetized Anisotropic Haldane Spin Chain
International Nuclear Information System (INIS)
Zheludev, Andrey I.; Honda, Z.; Broholm, C.L.; Katsumada, K.; Shapiro, S.M.; Kolezhuk, A.; Park, S.; Qiu, Y.
2003-01-01
Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet Ni(C 5 D 14 N 2 ) 2 N 3 (PF 6 ) are performed at mK temperatures in magnetic fields of almost twice the critical field H c applied perpendicular to the spin chains. Above H c a reopening of the spin gap is clearly observed. In the high-field Neel-ordered state the spectrum is dominated by three distinct excitation branches. A theoretical model consistently describing the experimental data is proposed.
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Order and chaos in the nonlinear response of driven nuclear spin systems
Energy Technology Data Exchange (ETDEWEB)
Brun, E; Derighetti, B; Holzner, R; Ravani, M [Zurich Univ. (Switzerland). Inst. fuer Physik
1984-01-01
The authors report on observations of ordered and chaotic behavior of a nonlinear system of strongly polarized nuclear spins inside the tuning coil of an NMR detector. The combined system: spins plus LC-circuit, may act as a nonlinear bistable absorber or a spin-flip laser, depending on the sign of the nuclear spin polarization. For the NMR laser experimental evidence is presented for limit-cycle behavior, sequences of bifurcations which lead to chaos, intermittency, multistability, and pronounced hysteresis effects. The experimental facts are compared with computer solutions of appropriate Bloch equations for the macroscopic order parameters.
A standard format and a graphical user interface for spin system specification.
Biternas, A G; Charnock, G T P; Kuprov, Ilya
2014-03-01
We introduce a simple and general XML format for spin system description that is the result of extensive consultations within Magnetic Resonance community and unifies under one roof all major existing spin interaction specification conventions. The format is human-readable, easy to edit and easy to parse using standard XML libraries. We also describe a graphical user interface that was designed to facilitate construction and visualization of complicated spin systems. The interface is capable of generating input files for several popular spin dynamics simulation packages. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Run-Wu; Liu, Cheng-Cheng; Ma, Da-Shuai; Yao, Yugui
2018-03-01
Two-dimensional (2D) topological insulators (TIs) have attracted tremendous research interest from both the theoretical and the experimental fields in recent years. However, it is much less investigated in realizing node line (NL) semimetals in 2D materials. Combining first-principles calculations and symmetry analysis, we find that NL phases emerge in p -CS2 and p -SiS2 , as well as other pentagonal IVX2 films, i.e., p -IVX2 (IV= C, Si, Ge, Sn, Pb; X=S, Se, Te) in the absence of spin-orbit coupling (SOC). The NLs in p -IVX2 consist of symbolic Fermi loops centered around the Γ point and are protected by mirror reflection symmetry. As the atomic number is downward shifted, the NL semimetals are driven into 2D TIs with the large bulk gap up to 0.715 eV induced by the remarkable SOC effect. The nontrivial bulk gap can be tunable under external biaxial strain and uniaxial strain. Moreover, we also propose a quantum well by sandwiching a p -PbTe2 crystal between two NaI sheets in which p -PbTe2 still keeps its nontrivial topology with a sizable band gap (˜0.5 eV). These findings provide a new 2D material platform for exploring fascinating physics in both NL semimetals and TIs.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Where does the nucleon spin come from?
International Nuclear Information System (INIS)
Frois, B.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette; Karliner, M.
1994-01-01
This article describes current thinking on exactly how quarks form neutrons and protons, and where nucleon spin is derived. The European Muon Collaboration has recently shown that, contrary to previous thinking, little of the proton spin is carried by quarks, rather that virtual strange quarks in a sea contribute to nucleon spin. Thus a fundamental gap is revealed in our understanding of nucleon structure which is explored in this article, by looking at several ways of accounting for these surprising results using the ''axiaanomaly'' and the idea of gluon polarization. Future experiments already planned, on polarized scattering, should resolve the enigma of proton spin. (UK)
Quantum revivals and magnetization tunneling in effective spin systems
International Nuclear Information System (INIS)
Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R
2016-01-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the
Yavari, H.; Mokhtari, M.; Tamaddonpour, M.
2013-10-01
The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.
Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.
2008-01-01
The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...
Wide gap Chern Mott insulating phases achieved by design
Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.
2017-12-01
Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.
Directory of Open Access Journals (Sweden)
D. H. Berman
2014-03-01
Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.
Superconducting quasiparticle lifetimes due to spin-fluctuation scattering
International Nuclear Information System (INIS)
Quinlan, S.M.; Scalapino, D.J.; Bulut, N.
1994-01-01
Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor
Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor
Directory of Open Access Journals (Sweden)
Zein W. A.
2008-01-01
Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.
Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor
Directory of Open Access Journals (Sweden)
Zein W. A.
2008-01-01
Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic/superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.
An enhancement of spin polarization by multiphoton pumping in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2011-08-15
Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.
An enhancement of spin polarization by multiphoton pumping in semiconductors
International Nuclear Information System (INIS)
Miah, M. Idrish
2011-01-01
Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.
International Nuclear Information System (INIS)
Funayama, C.; Furukawa, T.; Sato, T.; Ichikawa, Y.; Ohtomo, Y.; Sakamoto, Y.; Kojima, S.; Suzuki, T.; Hirao, C.; Chikamori, M.; Hikota, E.; Tsuchiya, M.; Yoshimi, A.; Bidinosti, C. P.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.
2015-01-01
We demonstrate spin-exchange optical pumping of 129 Xe atoms with our newly made laser system. The new laser system was prepared to provide higher laser power required for the stable operation of spin maser oscillations in the 129 Xe EDM experiment. We studied the optimum cell temperature and pumping laser power to improve the degree of 129 Xe spin polarization. The best performance was achieved at the cell temperature of 100 ∘ C with the presently available laser power of 1 W. The results show that a more intense laser is required for further improvement of the spin polarization at higher cell temperatures in our experiment
Energy Technology Data Exchange (ETDEWEB)
Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)
2014-12-15
We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.
Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator.
Chen, Haoqi; Li, Bin; Yang, Jinlong
2017-11-08
Black phosphorus is a promising candidate for future nanoelectronics with a moderate electronic band gap and a high carrier mobility. Introducing the magnetism into black phosphorus will widely expand its application scope and may present a bright prospect in spintronic nanodevices. Here, we report our first-principles calculations of spin-polarized electronic structure of monolayer black phosphorus (phosphorene) adsorbed on a magnetic europium oxide (EuO) substrate. Effective spin injection into the phosphorene is realized by means of interaction with the nearby EuO(111) surface, i.e., proximity effect, which results in spin-polarized electrons in the 3p orbitals of phosphorene, with the spin polarization at Fermi level beyond 30%, together with an exchange-splitting energy of ∼0.184 eV for conduction-band minimum of the adsorbed phosphorene corresponding to an energy region where only one spin channel is conductive. The energy region of these exchange-splitting and spin-polarized band gaps of the adsorbed phosphorene can be effectively modulated by in-plane strain. Intrinsically high and anisotropic carrier mobilities at the conduction-band minimum of the phosphorene also become spin-polarized mainly due to spin polarization of deformation potentials and are not depressed significantly after the adsorption. These extraordinary properties would endow black phosphorus with great potentials in the future spintronic nanodevices.
The paramagnetic properties of ferromagnetic mixed-spin chain system
International Nuclear Information System (INIS)
Hu, Ai-Yuan; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping
2015-01-01
The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods
Correlation functions of Sp(2n) invariant higher-spin systems
Energy Technology Data Exchange (ETDEWEB)
Skvortsov, Evgeny [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich,Theresienstr. 37, D-80333 Munich (Germany); ebedev Institute of Physics,Leninsky ave 53, 119991, Moscow (Russian Federation); Sorokin, Dmitri [INFN - Sezione di Padova,via F. Marzolo 8, 35131 Padova (Italy); Tsulaia, Mirian [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley, Perth, WA 6009 (Australia)
2016-07-26
We study the general structure of correlation functions in an Sp(2n)-invariant formulation of systems of an infinite number of higher-spin fields. For n=4,8 and 16 these systems comprise the conformal higher-spin fields in space-time dimensions D=4,6 and 10, respectively, while when n=2, one deals with conventional D=3 conformal field theories of scalars and spinors. We show that for n>2 the Sp(2n) symmetry and current conservation makes the 3-point correlators of two (rank-one or rank-two) conserved currents with a scalar operator be that of free theory. This situation is analogous to the one in conventional conformal field theories, where conservation of higher-spin currents implies that the theories are free.
Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics
International Nuclear Information System (INIS)
Trukhanova, Mariya Iv.
2015-01-01
We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.
Energy Technology Data Exchange (ETDEWEB)
Brunel, V
1999-06-29
This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)
Effect of quantum tunneling on spin Hall magnetoresistance.
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-22
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y 3 Fe 5 O 12 ) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Evolution of Spin fluctuations in CaFe2As2 with Co-doping.
Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.
Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.
Fabrication of a printed capacitive air-gap touch sensor
Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon
2018-05-01
Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.
The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system
International Nuclear Information System (INIS)
Deviren, Bayram; Bati, Mehmet; Keskin, Mustafa
2009-01-01
An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb (δ=3) and square (δ=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the (Δ/|J|,k B T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.
The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram; Bati, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr
2009-06-15
An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb ({delta}=3) and square ({delta}=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction ({delta}) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the ({delta}/|J|,k{sub B}T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.
Electronic transport through EuO spin-filter tunnel junctions
Jutong, Nuttachai; Eckern, Ulrich; Rungger, Ivan; Sanvito, Stefano; Schuster, Cosima; Schwingenschlö gl, Udo
2012-01-01
. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large
Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin
International Nuclear Information System (INIS)
McKenzie, B.J.; Stedman, G.E.
1976-01-01
For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)
Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System
Lee, Kenneth William, III
A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no
Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction
Kuzmak, A. R.
2018-04-01
The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Energy Technology Data Exchange (ETDEWEB)
Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)
2015-11-15
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy
International Nuclear Information System (INIS)
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-01-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J ij of the nanosystem Ni 7 –Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni 7 -cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with
Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Ryndyk, D.A.
1992-08-01
We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs
Effective field renormalization group approach for Ising lattice spin systems
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Nonlinear spin wave coupling in adjacent magnonic crystals
International Nuclear Information System (INIS)
Sadovnikov, A. V.; Nikitov, S. A.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.
2016-01-01
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
International Nuclear Information System (INIS)
Xu Wen; Guo Yong
2005-01-01
We investigate the influence of the Rashba and Dresselhaus spin-orbit coupling interactions on tunnelling through two-dimensional magnetic quantum systems. It is showed that not only Rashba spin-orbit coupling but also Dresselhaus one can affect spin tunnelling properties greatly in such a quantum system. The transmission possibility, the spin polarization and the conductance are obviously oscillated with both coupling strengths. High spin polarization, conductance and magnetic conductance of the structure can be obtained by modulating either Rashba or Dresselhaus coupling strength
Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design
Wang, X. S.; Zhang, H. W.; Wang, X. R.
2018-02-01
Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.
Spin dynamics in mesoscopic size magnetic systems: A 1HNMR study in rings of iron (III) ions
International Nuclear Information System (INIS)
Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.
1997-01-01
Two magnetic molecular clusters containing almost coplanar rings of iron (III) ions with spinS=5/2 have been investigated by 1 H NMR and relaxation measurements. The first system, which will be referred to as Fe6, is a molecule of general formula [NaFe 6 (OCH 3 ) 12 (C 17 O 4 H 15 ) 6 ] + ClO 4 - or [NaFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - or [LiFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - while the second type of ring, denoted Fe10, corresponds to the molecule [Fe 10 (OCH 3 ) 20 (C 2 H 2 O 2 Cl) 10 ]. The 1 H NMR linewidth is broadened by the nuclear dipolar interaction and by the dipolar coupling of the protons with the iron (III) paramagnetic moment. It is found that the nuclear spin-lattice relaxation rate, T 1 -1 , of the proton is a sensitive probe of the Fe spin dynamics. In both clusters, T 1 -1 decreases with decreasing temperatures from room temperature, goes through a peak just below about 30 K in Fe6 and 10 K in Fe10, and it drops exponentially to very small values at helium temperature. The temperature dependence of the relaxation rate is discussed in terms of the fluctuations of the local spins within the allowed total spin configurations in the framework of the weak collision theory to describe the nuclear relaxation. We use the calculated energy levels for the Fe6 ring based on a Heisenberg Hamiltonian and the value of J obtained from the fit of the magnetic susceptibility to describe semiquantitatively the behavior of T 1 -1 vs T. The exponential drop of T 1 -1 at low temperature is consistent with a nonmagnetic singlet ground state separated by an energy gap from the first excited triplet state. (Abstract Truncated)
Spin transport in spin filtering magnetic tunneling junctions.
Li, Yun; Lee, Eok Kyun
2007-11-01
Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.
Electronic transport through EuO spin-filter tunnel junctions
Jutong, Nuttachai
2012-11-12
Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.
Energy Technology Data Exchange (ETDEWEB)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it [Dipartimento di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara (Italy)
2016-03-14
The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shell systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.
Zhang, Chunmei; Jiao, Yalong; Ma, Fengxian; Bottle, Steven; Zhao, Mingwen; Chen, Zhongfang; Du, Aijun
2017-02-15
The zero-band gap nature of graphene prevents it from performing as a semi-conductor in modern electronics. Although various graphene modification strategies have been developed to address this limitation, the very small band gap of these materials and the suppressed charge carrier mobility of the devices developed still significantly hinder graphene's applications. In this work, a two dimensional (2D) WB 4 monolayer, which exhibits a double Dirac cone, was conceived and assessed using density functional theory (DFT) methods, which would provide a sizable band gap while maintaining higher charge mobility with a Fermi velocity of 1.099 × 10 6 m s -1 . Strong spin-orbit-coupling can generate an observable band gap of up to 0.27 eV that primarily originates from the d-orbit of the heavy metal atom W; therefore a 2D WB 4 nanosheet would be operable at room temperature (T = 300 K) and would be a promising candidate to fabricate nanoelectronics in the upcoming post-silicon era. The phonon-spectrum and ab initio molecular dynamics calculations further demonstrate the dynamic and thermal stability of such nanosheets, thus, suggesting a potentially synthesizable Dirac material.
Study of spin-polaron formation in 1D systems
International Nuclear Information System (INIS)
Arredondo, Y.; Navarro, O.; Vallejo, E.
2014-01-01
We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J H and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J H and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems
Quantum SU(2|1) supersymmetric Calogero-Moser spinning systems
Fedoruk, Sergey; Ivanov, Evgeny; Lechtenfeld, Olaf; Sidorov, Stepan
2018-04-01
SU(2|1) supersymmetric multi-particle quantum mechanics with additional semi-dynamical spin degrees of freedom is considered. In particular, we provide an N=4 supersymmetrization of the quantum U(2) spin Calogero-Moser model, with an intrinsic mass parameter coming from the centrally-extended superalgebra \\widehat{su}(2\\Big|1) . The full system admits an SU(2|1) covariant separation into the center-of-mass sector and the quotient. We derive explicit expressions for the classical and quantum SU(2|1) generators in both sectors as well as for the total system, and we determine the relevant energy spectra, degeneracies, and the sets of physical states.
Pereira, J. R. V.; Tunes, T. M.; de Arruda, A. S.; Godoy, M.
2018-06-01
In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins SA = 1 in the sublattice A and SB = 3 / 2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J single-ion anisotropies, DiA and DjB , on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature Tc versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution.
Emergence of Dirac and quantum spin Hall states in fluorinated monolayer As and AsSb
Zhang, Qingyun
2016-01-21
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer As and AsSb. While the pristine monolayers are semiconductors (direct band gap at the Γ point), fluorination results in Dirac cones at the K points. Fluorinated monolayer As shows a band gap of 0.16 eV due to spin-orbit coupling, and fluorinated monolayer AsSb a larger band gap of 0.37 eV due to inversion symmetry breaking. Spin-orbit coupling induces spin splitting similar to monolayer MoS2. Phonon calculations confirm that both materials are dynamically stable. Calculations of the edge states of nanoribbons by the tight-binding method demonstrate that fluorinated monolayer As is topologically nontrivial in contrast to fluorinated monolayer AsSb.
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
Laser-assisted spin-polarized transport in graphene tunnel junctions
International Nuclear Information System (INIS)
Ding Kaihe; Zhu Zhengang; Berakdar, Jamal
2012-01-01
The Keldysh nonequilibrium Green’s function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. (paper)
Control of electron spin decoherence in nuclear spin baths
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath
Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process
Bae, D.; Palmstrom, A.; Roelofs, K.; Mei, Bastian Timo; Chorkendorf, I.; Bent, S.F.; Vesborg, P.C.
2016-01-01
Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently,
AIR GAP CONTROL SYSTEM FOR HYDROGENERATORS
Directory of Open Access Journals (Sweden)
I. O. Zaitsev
2017-01-01
Full Text Available In this paper, we report of the solving the actual problem of control the air gap in the hydrogenerators. The aim of the study was development of a computerized information-measuring system for measuring the air gap in the hydrogenator, which used two capacitive sensors with parallel coplanar electrodes, and the method of determining the shape of the envelope parameters hydrogenerator rotor poles relative to the center axis of rotation, using the measurement results of the air gap.In practical studies of the sensor circuit it has been shown that its use allows for the informative value of the sensor capacitance conversion function to obtain a high accuracy and resolution measurement with digital linearization of converting function of the sensor with use program utility. To determine the form deviations of the envelope line of the rotor pole from the ideal cylinder, which is one of the main structural defects of the technological errors as results the distortion of the shape of the air gap in the hydrogenator, when the machine was manufacture and assembly. It is proposed to describe the shape of the envelope to use a Fourier transform. Calculation of the coefficients of the Fourier series is performed using the method of least squares as the regression coefficients.Application of this method in processing the measuring data in a computerized information-measuring system the developed with the primary converter with coplanar parallel electrodes allowed attaining the high measurement accuracy and resolution informative in magnitude of the capacity.
Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.
2018-05-01
In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.
International Nuclear Information System (INIS)
Deviren, Bayram; Polat, Yasin; Keskin, Mustafa
2011-01-01
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second- and first-order phase transitions besides triple point (TP), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in Néel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions. (general)
Allred, J. W.; Fleck, V. J.
1992-01-01
A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.
2017-12-01
Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
Violation of local realism by a system with N spin-(1/2) particles
International Nuclear Information System (INIS)
Wu, Xiao-Hua; Zong, Hong-Shi
2003-01-01
Recently, it was found that Mermin's inequalities may not always be optimal for the refutation of a local realistic description [Phys. Rev. Lett. 88, 210402 (2002)]. To complete this work, we derive an inequality for the Greenberger-Horne-Zeilinger-type pure state for a system with N spin-(1/2) particles and the violation of the inequality can be shown for all the non product pure states. Mermin's inequality for a system of N spin-(1/2) particles and Gisin's theorem for a system of two spin-(1/2) particles are both included in our inequality
YBCO nanoSQUIDs applied to the investigation of small spin systems
Energy Technology Data Exchange (ETDEWEB)
Martinez Perez, Maria Jose; Schwarz, Tobias; Woelbing, Roman; Mueller, Benedikt; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen (Germany); Reiche, Christopher F.; Muehl, Thomas; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Sese, Javier [Instituto de Nanociencia de Aragon and Advanced Microscopy Laboratory, Zaragoza (Spain)
2015-07-01
We present the realization of ultra-sensitive YBCO nanoSQUIDs based on submicron grain boundary junctions patterned by focused ion beam milling. White flux noise down to ∝ 50nΦ{sub 0}/Hz{sup 1/2} has been achieved, yielding spin sensitivities of down to a few μ{sub B}/Hz{sup 1/2} at T=4.2 K. Moreover, we demonstrate that magnetic fields up to the tesla range can be applied, fulfilling a fundamental condition for the study of small spin systems. As a proof-of-principle we present the successful deposition of a Fe-filled carbon nanotube (∝ 40 nm in diameter and ∝ 14 μm in length) and an individual Co nanopillar (base diameter of ∝ 50 nm and height ∝ 10 nm) close to the nanoSQUID loop. We show that sub-micrometric control over the particle position lead to large magnetic coupling factors between the nano-loop and the spin system. Together with the possibility of applying large magnetic fields, the latter has allowed us to directly observe the magnetization reversal of these spin systems at different temperatures.
Supplying Spin-Offs: Collaboration Practices in the Perpetuation of an Organizaton
Directory of Open Access Journals (Sweden)
Katja Maria Hydle
2016-01-01
Full Text Available This paper focuses on the collaboration practices between spin-offs and their customers and suppliers. With empirical material from seven cases of incumbentbacked spin-offs, we find that suppliers are highly involved in the development of the innovation that spin-offs are based upon and specifically, the practices of understanding customers, identifying a market gap and collaborating with suppliers. We contribute to the spin-off literature by revealing which activities are at play for successful spin-offs, and we contribute to practice theory by empirically uncovering the general understandings in the perpetuation of an organization and the nets between the spin-offs and their suppliers.
Energy Technology Data Exchange (ETDEWEB)
Masunov, Artëm E., E-mail: amasunov@ucf.edu [NanoScience Technology Center, Department of Chemistry, and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Gangopadhyay, Shruba [Department of Physics, University of California, Davis, CA 95616 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States)
2015-12-15
New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals.
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Kar, J. K.; Panda, Saswati; Rout, G. C.
2017-05-01
We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints
Static spin-3/2 perturbations of two-black hole system
International Nuclear Information System (INIS)
Embacher, F.; Aichelburg, P.C.
1984-01-01
We construct the most general static regular, non-gauge spin-3/2 perturbations on the Majumdar-Papapetrou background for two black holes. The construction applies a limiting procedure by combining Killing spinors and spacetime perturbations. The supercharge associated with the spin-3/2 field is proportional to the difference of the mass parameters, implying that a system of two equal black holes has zero supercharge. (Author)
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Quasiparticle Breakdown in a Quantum Spin Liquid
International Nuclear Information System (INIS)
Stone, Matthew B.; Zalinznyak, I.; Hong, T.; Broholm, C.L.; Reich, D.H.
2006-01-01
Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles -- fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter -- super-fluid 4 He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4 He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.
Energy Technology Data Exchange (ETDEWEB)
Vatansever, Erol [Dokuz Eylül University, Graduate School of Natural and Applied Sciences, TR-35160 Izmir (Turkey); Polat, Hamza, E-mail: hamza.polat@deu.edu.tr [Department of Physics, Dokuz Eylül University, TR-35160 Izmir (Turkey)
2015-10-15
Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters. - Highlights: • Spin-1/2 and spin-3/2 Ising ferrimagnetic model is examined. • The system is exposed to time-dependent magnetic field. • Kinetic Monte Carlo simulation technique is used. • Any evidence of first-order phase transition has not been found.
Study of spin-polaron formation in 1D systems
Energy Technology Data Exchange (ETDEWEB)
Arredondo, Y.; Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico); Vallejo, E. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km. 7.5 Ciudad Universitaria, 27276 Torreón, Coahuila (Mexico)
2014-05-15
We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.
Phase-space curvature in spin-orbit-coupled ultracold atomic systems
Armaitis, J.; Ruseckas, J.; Anisimovas, E.
2017-04-01
We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.
Screening, Aharonov - Bohm effect, and linking number in spin systems
International Nuclear Information System (INIS)
Borisenko, O.; Petrov, K.; Faber, M.
2000-01-01
Screening mechanisms and related effects are studied in a variety of spin systems coupled to an external magnetic field. We use a special order parameter which can distinguish between screening due to the kinetic energy of spin excitations and screening due to the magnetic field. The action of this order parameter is based on an analog of the Aharonov - Bohm (AB) effect. The order parameter may test the realization of discrete symmetries embedded into the group symmetry of the theory via probing a nontrivial discrete charge. As simple examples, we study the Gaussian and Ising models. For the latter, we performed also Monte-Carlo simulations for a constant magnetic field. We then apply our results to spin systems with abelian and nonabelian global symmetries in two dimensions and argue that the order parameter proposed could serve as a tool to detect the Berezinskii - Kosterlitz - Thouless (BKT) phase transition
Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene
Lima, Leandro; Lewenkopf, Caio
Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.
Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects
García-Pablos, D.; García, N.; Raedt, H. De
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated
Key role of orbital anisotropy in geometrically frustrated electron system
International Nuclear Information System (INIS)
Onishi, Hiroaki; Hotta, Takashi
2005-01-01
By using the density matrix renormalization group method, we investigate ground- and excited-state properties of the e g -orbital degenerate Hubbard model at quarter filling for two kinds of lattices, zigzag chain and ladder. In the zigzag chain, the system is effectively regarded as a decoupled double chain of the S=12 antiferromagnetic Heisenberg model, and the spin gap is approximately zero, similar to the case of weakly coupled Heisenberg chains. On the other hand, in the ladder, the spin correlation on the rung remains robust and the spin gap exists
Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi
2016-08-01
The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.
Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H
2016-09-26
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Spin nematics next to spin singlets
Yokoyama, Yuto; Hotta, Chisa
2018-05-01
We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.
International Nuclear Information System (INIS)
Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.
2011-01-01
Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed
Electron spin and nuclear spin manipulation in semiconductor nanosystems
International Nuclear Information System (INIS)
Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi
2006-01-01
Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)
2010-09-15
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.
International Nuclear Information System (INIS)
Keskin, Mustafa; Kantar, Ersin
2010-01-01
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.
Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G
2015-08-12
The spin-1/2 chain with isotropic Heisenberg exchange J1, J2 > 0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between -1.2 quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.
Possibility of Cooper-pair formation controlled by multi-terminal spin injection
Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.
2018-03-01
A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.
Gate tunable spin transport in graphene with Rashba spin-orbit coupling
Tan, Xiao-Dong; Liao, Xiao-Ping; Sun, Litao
2016-10-01
Recently, it attracts much attention to study spin-resolved transport properties in graphene with Rashba spin-orbit coupling (RSOC). One remarkable finding is that Klein tunneling in single layer graphene (SLG) with RSOC (SLG + R for short below) behaves as in bi-layer graphene (BLG). Based on the effective Dirac theory, we reconsider this tunneling problem and derive the analytical solution for the transmission coefficients. Our result shows that Klein tunneling in SLG + R and BLG exhibits completely different behaviors. More importantly, we find two new transmission selection rules in SLG + R, i.e., the single band to single band (S → S) and the single band to multiple bands (S → M) transmission regimes, which strongly depend on the relative height among Fermi level, RSOC, and potential barrier. Interestingly, in the S → S transmission regime, only normally incident electrons have capacity to pass through the barrier, while in the S → M transmission regime the angle-dependent tunneling becomes very prominent. Using the transmission coefficients, we also derive spin-resolved conductance analytically, and conductance oscillation with the increasing barrier height and zero conductance gap are found in SLG + R. The present study offers new insights and opportunities for developing graphene-based spin devices.
Magnetic interactions in strongly correlated systems: Spin and orbital contributions
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2015-09-15
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.
Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction
Marchetti, P. A.; Ye, F.; Su, Z. B.; Yu, L.
2011-01-01
Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction betwe...
GAP: yet another image processing system for solar observations.
Keller, C. U.
GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.
Directory of Open Access Journals (Sweden)
Phillip Weinberg, Marin Bukov
2017-02-01
Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.
Spin chain from membrane and the Neumann-Rosochatius integrable system
International Nuclear Information System (INIS)
Bozhilov, P.
2007-01-01
We find membrane configurations in AdS 4 xS 7 , which correspond to the continuous limit of the SU(2) integrable spin chain, considered as a limit of the SU(3) spin chain, arising in N=4 SYM in four dimensions, dual to strings in AdS 5 xS 5 . We also discuss the relationship with the Neumann-Rosochatius integrable system at the level of Lagrangians, comparing the string and membrane cases
International Nuclear Information System (INIS)
Vladimirov, A.A.; Plakida, N.M.; Ihle, D.
2010-01-01
A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found
International Nuclear Information System (INIS)
Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee
2013-01-01
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: ► The spin polarized transport through a diluted magnetic quantum dot is studied. ► The model is based on the Green’s function and the equation of motion method.► The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. ► The system is suitable for current-induced spin-transfer torque application. ► A large tunneling current and a high TMR are possible for sensor application.
Spin-lattice relaxation of individual solid-state spins
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
Spin nutation effects in molecular nanomagnet–superconductor tunnel junctions
International Nuclear Information System (INIS)
Abouie, J; Abdollahipour, B; Rostami, A A
2013-01-01
We study the spin nutation effects of a molecular nanomagnet on the Josephson current through a superconductor|molecular nanomagnet|superconductor tunnel junction. We explicitly demonstrate that, due to the spin nutation of the molecular nanomagnet, two oscillatory terms emerge in the ac Josephson current in addition to the conventional ac Josephson current. Some resonances occur in the junction due to the interactions of the transported quasiparticles with the bias voltage and molecular nanomagnet spin dynamics. Their appearance indicates that the energy exchanged during these interactions is in the range of the superconducting energy gap. We also show that the spin nutation is able to convert the ac Josephson current to a dc current, which is interesting for applications. (paper)
Large spin Seebeck effects in zigzag-edge silicene nanoribbons
International Nuclear Information System (INIS)
Yang, Xi-Feng; Liu, Yu-Shen; Feng, Jin-Fu; Wang, Xue-Feng
2014-01-01
Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite
Topics on frustrated spin systems and high-temperature superconductors
International Nuclear Information System (INIS)
Lu, Yong.
1990-01-01
The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
International Nuclear Information System (INIS)
Kryshtal, R.G.; Medved, A.V.
2015-01-01
Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined
Energy Technology Data Exchange (ETDEWEB)
Kryshtal, R.G.; Medved, A.V., E-mail: avm@ms.ire.rssi.ru
2015-12-01
Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined.
Indian Academy of Sciences (India)
the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.
Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem
Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz
2017-07-01
Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.
Control of entanglement transitions in quantum spin clusters
Irons, Hannah R.; Quintanilla, Jorge; Perring, Toby G.; Amico, Luigi; Aeppli, Gabriel
2017-12-01
Quantum spin clusters provide a platform for the experimental study of many-body entanglement. Here we address a simple model of a single-molecule nanomagnet featuring N interacting spins in a transverse field. The field can control an entanglement transition (ET). We calculate the magnetization, low-energy gap, and neutron-scattering cross section and find that the ET has distinct signatures, detectable at temperatures as high as 5% of the interaction strength. The signatures are stronger for smaller clusters.
A finite size scaling test of an SU(2) gauge-spin system
International Nuclear Information System (INIS)
Tomiya, M.; Hattori, T.
1984-01-01
We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)
International Nuclear Information System (INIS)
Dalton, B J; Goold, J; Garraway, B M; Reid, M D
2017-01-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for
Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts
DEFF Research Database (Denmark)
Hu, C.-M.; Nitta, Junsaku; Jensen, Ane
2001-01-01
Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...
Directory of Open Access Journals (Sweden)
Dong Pei
2018-02-01
Full Text Available The prioritization of capability gaps for weapon system of systems is the basis for design and capability planning in the system of systems development process. In order to address input information uncertainties, the prioritization of capability gaps is computed in two steps using the conditional evidential network method. First, we evaluated the belief distribution of degree of required satisfaction for capabilities, and then calculated the reverse conditional belief function between capability hierarchies. We also provided verification for the feasibility and effectiveness of the proposed method through a prioritization of capability gaps calculation using an example of a spatial-navigation-and-positioning system of systems.
Wide gap, permanent magnet biased magnetic bearing system
Boden, Karl
1992-01-01
The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.
Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems
Directory of Open Access Journals (Sweden)
Vikram S. Vijayaraghavan
2017-05-01
Full Text Available Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for each given system’s observed emergent patterns. Recent developments in information theory, however, suggest quantifying collective organization in a system- and phenomenon-agnostic way: decomposing the system’s thermodynamic entropy density into a localized entropy, that is solely contained in the dynamics at a single location, and a bound entropy, that is stored in space as domains, clusters, excitations, or other emergent structures. As a concrete demonstration, we compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, on the Bethe lattice with coordination number k = 3 , and on the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (in cluster bulk, cluster edges, and the like and how these affect the dependencies between spins.
Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs
International Nuclear Information System (INIS)
Ney, A; Harris, J S Jr; Parkin, S S P
2006-01-01
The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED
Gravity and the Spin-2 Planar Schrödinger Equation
Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.
2018-04-01
A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.
Koga, M.; Matsumoto, M.; Kusunose, H.
2018-05-01
We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.
Superconducting gap anomaly in heavy fermion systems
International Nuclear Information System (INIS)
Rout, G.C.; Ojha, M.S.; Behera, S.N.
2008-01-01
The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)
Quantum correlations in a bipartite multiqubit spin ring system
International Nuclear Information System (INIS)
Doronin, S I; Fel’dman, E B; Kuznetsova, E I
2015-01-01
We consider a spin ring with an arbitrary number of spins on the ring and one spin in its center in a strong external magnetic field. The spins on the ring are connected by the secular dipole–dipole interactions and interact with the central spin through the Heisenberg zz-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for an arbitrary number of the spins in the high-temperature approximation. We demonstrate the evolution of quantum correlations at different numbers of the spins. The contributions of longitudinal and transversal spin interactions to the quantum discord are discussed. (paper)
Hybrid spin-nanomechanics with single spins in diamond mechanical oscillators
Barfuss, Arne
2017-01-01
Hybrid spin-oscillator systems, formed by single spins coupled to mechanical oscillators, have attracted ever-increasing attention over the past few years, triggered largely by the prospect of employing such devices as high-performance nanoscale sensors or transducers in multi-qubit networks. Provided the spin-oscillator coupling is strong and robust, such systems can even serve as test-beds for studying macroscopic objects in the quantum regime. In this thesis we present a novel hybrid sp...
Spin Transport in Semiconductor heterostructures
International Nuclear Information System (INIS)
Marinescu, Domnita Catalina
2011-01-01
The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.
Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures
International Nuclear Information System (INIS)
Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin
2007-01-01
Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer
High spin rotational bands in Zn
Indian Academy of Sciences (India)
We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...
Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements
Directory of Open Access Journals (Sweden)
Sharma Vijay R.
2015-01-01
Full Text Available In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid
2015-01-01
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717
Sign rules for anisotropic quantum spin systems
International Nuclear Information System (INIS)
Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.
2000-01-01
We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model
Influence of spin correlations in the transport properties of a double quantum dot system
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2013-03-01
In this work we study the influence of spin correlations in the transport properties of a system consisting of two quantum dots (QDs) with high Coulomb interaction U which are interconnected through a chain of N non-interacting sites and individually coupled to two metallic leads. Using both the finite U slave boson mean field approach (FUSBMFA) and the Logarithmic-discretization-embedded-cluster approximation (LDECA) we studied the system in different regions of the parameter space for which we calculate many physical quantities, namely local density of states, conductance, total spin, spin correlations, in addition to the renormalization parameters associated with the FUSBMFA. The results reveled a very rich physical scenario which is manifested by at least two different Kondo regimes, the well-known spin s = 1/2 and some other type of Kondo effect which appears as a result of the coupling between the QDs and the non-interacting central sites. We also consider the possibility of accessing some kind of Kondo box effect due to the discrete nature of the central chain and study how this regime is affected by the magnetic interaction between the local spins of the QD's and by the interaction between these spins and the spins of the conduction electros in the leads.
Two-photon spin generation and detection
International Nuclear Information System (INIS)
Miah, M Idrish
2009-01-01
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Nuclear spin-lattice relaxation in nitroxide spin-label EPR.
Marsh, Derek
2016-11-01
Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.
Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2003-01-01
The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
Graph topology and gap topology for unstable systems
Zhu, S.Q.
1989-01-01
A reformation is provided of the graph topology and the gap topology for a general setting (including lumped linear time-invariant systems and distributed linear time-invariant systems) in the frequency domain. Some essential properties and their comparisons are clearly presented in the
Landau-Zener-Stückelberg Interferometry of a Single Electronic Spin in a Noisy Environment
Directory of Open Access Journals (Sweden)
Pu Huang
2011-08-01
Full Text Available We demonstrate quantum coherent control of single electronic spins in a nitron-vacancy center in diamond by exploiting and implementing the general concept of Landau-Zener-Stückelberg interferometry at room temperature. The interferometry manipulates an effective two-level system of electronic spins which are coupled to the nearby ^{14}N nuclear spin in the nitron-vacancy center as well as the nuclear spin bath in the diamond. With a microwave field to control the energy gap between the two levels and an AC field as the time-dependent driving field in Landau-Zener-Stückelberg interferometry, the interference pattern can be generated and controlled by controlling a number of parameters in the fields, corresponding to coherent control of the state of the electronic spins. In particular, the interference pattern is observed oscillating as a function of the frequency of the microwave field. Decays in the visibility of the interference pattern are also observed and well explained by numerical simulation which takes into account the thermal fluctuations arising from the nuclear bath. Therefore, our work also demonstrates that Landau-Zener-Stückelberg interferometry can be used for probing decoherence processes of electronic spins.
Thermographic measurements of the spin Peltier effect in metal/yttrium-iron-garnet junction systems
Daimon, Shunsuke; Uchida, Ken-ichi; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji
2017-07-01
The spin Peltier effect (SPE), heat-current generation due to spin-current injection, in various metal (Pt, W, and Au single layers and Pt/Cu bilayer)/ferrimagnetic insulator [yttrium-iron-garnet (YIG)] junction systems has been investigated by means of a lock-in thermography (LIT) method. The SPE is excited by a spin current across the metal/YIG interface, which is generated by applying a charge current to the metallic layer via the spin Hall effect. The LIT method enables the thermal imaging of the SPE free from the Joule-heating contribution. Importantly, we observed spin-current-induced temperature modulation not only in the Pt/YIG and W/YIG systems, but also in the Au/YIG and Pt/Cu/YIG systems, excluding the possible contamination by anomalous Ettingshausen effects due to proximity-induced ferromagnetism near the metal/YIG interface. As demonstrated in our previous study, the SPE signals are confined only in the vicinity of the metal/YIG interface; we buttress this conclusion by reducing a spatial blur due to thermal diffusion in an infrared-emission layer on the sample surface used for the LIT measurements. We also found that the YIG-thickness dependence of the SPE is similar to that of the spin Seebeck effect measured in the same Pt/YIG sample, implying the reciprocal relation between them.
AUTOMATIC ROAD GAP DETECTION USING FUZZY INFERENCE SYSTEM
Directory of Open Access Journals (Sweden)
S. Hashemi
2012-09-01
Full Text Available Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1 Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2 Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3 Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4 Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
Automatic Road Gap Detection Using Fuzzy Inference System
Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.
2011-09-01
Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
Matrix superpotentials and superintegrable systems for arbitrary spin
International Nuclear Information System (INIS)
Nikitin, A G
2012-01-01
A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202). (paper)
International Nuclear Information System (INIS)
Jha, S.S.; Rajagopal, A.K.
1997-01-01
Anisotropy and the wave-vector dependence of the energy gap function determine many important properties of a superconductor. Starting from first principles, we present here a complete analysis of possible symmetries of the superconducting gap function E g (k) at the Fermi surface in high-T c layered superconductors with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov close-quote s mean-field theory of superconductivity in the so-called open-quotes layer representationclose quotes introduced by us earlier. For N conducting cuprate layers, J=1,2,hor-ellipsis,N, in each unit cell, the spin-singlet order parameters Δ JJ (k) can be expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals, which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity in the direction perpendicular to the layers and the residual point group and translational symmetries for the two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation to determine different branches of the energy gap function E g (k) at the Fermi surface in terms of Δ JJ (k), which include both intralayer and interlayer order parameters. For N=2, we also obtain an exact expression for quasiparticle energies E p (k), p=1,2, in the superconducting state in the presence of intralayer and complex interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of cylindrical coordinates k t ,φ,k z to take advantage of the orthogonality of functions with respect to φ integrations. (Abstract Truncated)
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
International Nuclear Information System (INIS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-01-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems
75As-NQR study of the hybridization gap semiconductor CeOs4As12
International Nuclear Information System (INIS)
Yogi, M; Niki, H; Higa, N; Kawata, T; Sekine, C
2016-01-01
We performed an 75 As nuclear quadrupole resonance (NQR) measurement on CeOs 4 As 12 . The 75 As-NQR spectrum shape demonstrates that the Ce-site filling fraction of our high-pressure synthesized sample is close to unity. A presence of the c — f hybridization gap is confirmed from the temperature dependence of the nuclear spin-lattice relaxation rate 1/T 1 . An increase of 1/T 1 below ∼3 K indicates a development of the spin fluctuations. The 1/T 1 for CeOs 4 As 12 shows similar behavior as that for CeOs 4 Sb 12 with different magnitude of the c — f hybridization gap. An absence of phase transition in CeOs 4 As 12 may be caused by the increase of the c — f hybridization, which increases the gap magnitude and reduces the residual density of state inside the gap. (paper)
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo
2014-06-11
Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.
Microscopic energy flows in disordered Ising spin systems
International Nuclear Information System (INIS)
Agliari, E; Casartelli, M; Vezzani, A
2010-01-01
An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder, i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier discretized picture. Then, we work out a linearized 'mean-field approximation', where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on generic discrete structures
Energy Technology Data Exchange (ETDEWEB)
Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)
2004-07-01
Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and
International Nuclear Information System (INIS)
Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.
2004-01-01
Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid
Generalized spin Sutherland systems revisited
Directory of Open Access Journals (Sweden)
L. Fehér
2015-04-01
Full Text Available We present generalizations of the spin Sutherland systems obtained earlier by Blom and Langmann and by Polychronakos in two different ways: from SU(n Yang–Mills theory on the cylinder and by constraining geodesic motion on the N-fold direct product of SU(n with itself, for any N>1. Our systems are in correspondence with the Dynkin diagram automorphisms of arbitrary connected and simply connected compact simple Lie groups. We give a finite-dimensional as well as an infinite-dimensional derivation and shed light on the mechanism whereby they lead to the same classical integrable systems. The infinite-dimensional approach, based on twisted current algebras (alias Yang–Mills with twisted boundary conditions, was inspired by the derivation of the spinless Sutherland model due to Gorsky and Nekrasov. The finite-dimensional method relies on Hamiltonian reduction under twisted conjugations of N-fold direct product groups, linking the quantum mechanics of the reduced systems to representation theory similarly as was explored previously in the N=1 case.
International Nuclear Information System (INIS)
Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa
2010-01-01
The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb (δ = 3) and a square lattice (δ = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the (Δ/|J|, k B T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Nevsehir University, Nevsehir (Turkmenistan); Kantar, Ersin; Keskin, Mustafa [Erciyes University, Kayseri (Turkmenistan)
2010-06-15
The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb ({delta} = 3) and a square lattice ({delta} = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction ({Delta}) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the ({Delta}/|J|, k{sub B}T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.
Nuclear spins in nanostructures
International Nuclear Information System (INIS)
Coish, W.A.; Baugh, J.
2009-01-01
We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Systemic accident analysis: examining the gap between research and practice.
Underwood, Peter; Waterson, Patrick
2013-06-01
The systems approach is arguably the dominant concept within accident analysis research. Viewing accidents as a result of uncontrolled system interactions, it forms the theoretical basis of various systemic accident analysis (SAA) models and methods. Despite the proposed benefits of SAA, such as an improved description of accident causation, evidence within the scientific literature suggests that these techniques are not being used in practice and that a research-practice gap exists. The aim of this study was to explore the issues stemming from research and practice which could hinder the awareness, adoption and usage of SAA. To achieve this, semi-structured interviews were conducted with 42 safety experts from ten countries and a variety of industries, including rail, aviation and maritime. This study suggests that the research-practice gap should be closed and efforts to bridge the gap should focus on ensuring that systemic methods meet the needs of practitioners and improving the communication of SAA research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure
Wang, Xuhui; Ortiz Pauyac, Christian; Manchon, Aurelien
2014-01-01
Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.
Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure
Wang, Xuhui
2014-02-07
Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.
Sengupta, Abhronil; Roy, Kaushik
2017-12-01
Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.
Green’s functions for spin boson systems: Beyond conventional perturbation theories
Energy Technology Data Exchange (ETDEWEB)
Liu, Junjie [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Xu, Hui [Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)
2016-12-20
Unraveling general properties of Green’s functions of quantum dissipative systems is of both experimental relevance and theoretical interest. Here, we study the spin-boson model as a prototype. By utilizing the Majorana-fermion representation together with the polaron transformation, we establish a theoretical approach to analyze Green’s functions of the spin-boson model. In contrast to conventional perturbation theories either in the tunneling energy or in the system-bath coupling strength, the proposed scheme gives reliable results over wide regimes of the coupling strength, bias, as well as temperature. To demonstrate the utility of the approach, we consider the susceptibility as well as the symmetrized spin correlation function (SSCF) which can be expressed in terms of Green’s functions. Thorough investigations are made on systems embedded in Ohmic or sub-Ohmic bosonic baths. We found the so-obtained SSCF is the same as that of the non-interacting blip approximation (NIBA) in unbiased systems while it is applicable for a wider range of temperature in the biased systems compared with the NIBA. We also show that a previous perturbation result is recovered as a weak coupling limit of the so-obtained SSCF. Furthermore, by studying the quantum criticality of the susceptibility, we confirm the validity of the quantum-to-classical mapping in the whole sub-Ohmic regime.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
Interplay of charge density wave and spin density wave in high-Tc superconductors
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2008-01-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters
Spin resonance in the new-structure-type iron-based superconductor CaKFe4As4
International Nuclear Information System (INIS)
Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira
2017-01-01
The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe 4 As 4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Q res = 1.17(1) Å -1 , corresponding to the (π, π) nesting wave vector in tetragonal notation, evolves below T c . The characteristic energy of the spin resonance E res = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe 4 As 4 is the s ± symmetry. (author)
Flight test of a spin parachute for use with a Super Arcas sounding rocket
Silbert, M. N.
1975-01-01
The development and flight testing of a specially configured 16.6 ft Disc Band Gap (DBG) Spin Parachute is discussed. The parachute is integrated with a modified Super Arcas launch vehicle. Total payload weight was 17.6 lbs including the Spin Parachute and a scientific payload, and lift-off weight was 100.3 lbs. The Super Arcas vehicle was despun from 18.4 cps. After payload separation at 244,170 ft the Spin Parachute and its payload attained a maximum spin rate of 2.4 cps. Total suspended weight of the Spin Parachute and its payload was 14.64 lbs.
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Crossover between spin swapping and Hall effect in disordered systems
Saidaoui, Hamed Ben Mohamed
2015-07-16
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.
Crossover between spin swapping and Hall effect in disordered systems
Saidaoui, Hamed Ben Mohamed; Otani, Y.; Manchon, Aurelien
2015-01-01
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.
Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.
Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M
2015-12-11
The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8 meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.
Boekema, C.; Brabers, V.A.M.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.
1986-01-01
Zero-field longitudinal muon-spin-relaxation (µSR) experiments have been performed on single crystals of pseudo-brookite (Fe2-xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation
Directory of Open Access Journals (Sweden)
Arima T.
2013-03-01
Full Text Available Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.
Foucault's pendulum, a classical analog for the electron spin state
Linck, Rebecca A.
Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Energy Technology Data Exchange (ETDEWEB)
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)
2016-02-01
The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.
On the quantization of spin systems and Fermi systems
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue, M.
1978-03-01
It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure
Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3
International Nuclear Information System (INIS)
Kubo, K; Morinari, T
2015-01-01
We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)
Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces
International Nuclear Information System (INIS)
Feiguin, Adrian E.; Fisher, Matthew P. A.
2009-01-01
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.
Novel spin-electronic properties of BC7 sheets induced by strain
International Nuclear Information System (INIS)
Xu, Lei; Dai, ZhenHong; Sui, PengFei; Sun, YuMing; Wang, WeiTian
2014-01-01
Based on first-principles calculations, the authors have investigated the electronic and magnetic properties of BC 7 sheets with different planar strains. It is found that metal–semiconductor transition appears at the biaxial strain of 15.5%, and the sheets are characteristic of spin-polarized semiconductor with a zero band-gap. The band-gap rapidly increases with strain, and reaches a maximum value of 0.60 eV at the strain of 20%. Subsequently, the band-gap decreases until the strain reaches up to 22% and shows a semiconductor-half metal transformation. It will further present metal properties until the strain is up to the maximum value of 35%. The magnetic moments also have some changes induced by biaxial strain. The numerical analysis shows that the two-dimensional distortions have great influences on the magnetic moments. The novel spin-electronic properties make BC 7 sheets have potential applications in future spintronic nanodevices
Institute of Scientific and Technical Information of China (English)
YANG YongHong; WANG YongGang; LIU Mei; WANG Jin
2002-01-01
Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.
Yield gaps in Dutch arable farming systems
Nunes Vieira da Silva, Joao; Reidsma, Pytrik; Ittersum, van Martin K.
2017-01-01
Arable farming systems in the Netherlands are characterized by crop rotations in which potato, sugar beet, spring onion, winter wheat and spring barley are the most important crops. The objectives of this study were to decompose crop yield gaps within such rotations into efficiency, resource and
International Nuclear Information System (INIS)
Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.
2010-01-01
The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.
Energy Technology Data Exchange (ETDEWEB)
El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com
2016-02-01
The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.
Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter
2018-05-01
While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.
Spin dynamics in 122-type iron-based superconductors
International Nuclear Information System (INIS)
Park, Jitae
2012-01-01
magnetically ordered and SC phases at low temperatures, which was confirmed by complementary experimental techniques such as neutron and X-ray scattering, muon-spin relaxation, and magnetic-force microscopy measurements. Based on our experimental data, we discuss the possibility of this phase separation being an intrinsic property of the Ba 1-x K x Fe 2 As 2 system. However, this view has been recently challenged by several new measurements performed on the next generation of single crystals, which apparently exhibit a much more homogeneous behavior. These results are presented and discussed in Chap. 4. The most prominent feature in the spin-excitation spectrum of the SC state is the magnetic resonant mode that is characterized as spin-1 excitonic collective mode below the edge of the particle-hole continuum. Our experimental observations of magnetic resonant modes in BaFe 1.85 Co 0.15 As 2 , BaFe 1.91 Ni 0.09 As 2 , and Rb 0.8 Fe 1.6 Se 2 compounds will be presented and a discussion about their physical implications will follow in Chap. 4. In addition, we will show that the temperature-dependent resonance energy displays an order-parameter-like behavior in the same manner as the SC energy gap that is expected within the conventional Fermi-liquid approaches for the magnetic resonant mode. As most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin-excitation spectrum above the SC transition temperature is fundamentally required to assess the viability of magnetically mediated Cooper pairing. Thus, in Chap. 4, we present the results of normal-state spin-fluctuation spectra in absolute units and find that the normal-state spectrum carries a weight comparable to that in the underdoped cuprates, while the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals. In the following, we show that the first-principles calculations can remarkably well reproduce our INS
Spin dynamics in 122-type iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Park, Jitae
2012-07-16
separation between magnetically ordered and SC phases at low temperatures, which was confirmed by complementary experimental techniques such as neutron and X-ray scattering, muon-spin relaxation, and magnetic-force microscopy measurements. Based on our experimental data, we discuss the possibility of this phase separation being an intrinsic property of the Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} system. However, this view has been recently challenged by several new measurements performed on the next generation of single crystals, which apparently exhibit a much more homogeneous behavior. These results are presented and discussed in Chap. 4. The most prominent feature in the spin-excitation spectrum of the SC state is the magnetic resonant mode that is characterized as spin-1 excitonic collective mode below the edge of the particle-hole continuum. Our experimental observations of magnetic resonant modes in BaFe{sub 1.85}Co{sub 0.15}As{sub 2}, BaFe{sub 1.91}Ni{sub 0.09}As{sub 2}, and Rb{sub 0.8}Fe{sub 1.6}Se{sub 2} compounds will be presented and a discussion about their physical implications will follow in Chap. 4. In addition, we will show that the temperature-dependent resonance energy displays an order-parameter-like behavior in the same manner as the SC energy gap that is expected within the conventional Fermi-liquid approaches for the magnetic resonant mode. As most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin-excitation spectrum above the SC transition temperature is fundamentally required to assess the viability of magnetically mediated Cooper pairing. Thus, in Chap. 4, we present the results of normal-state spin-fluctuation spectra in absolute units and find that the normal-state spectrum carries a weight comparable to that in the underdoped cuprates, while the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals. In the following, we show
Nuclear spin-lattice relaxation in nitroxide spin-label EPR
DEFF Research Database (Denmark)
Marsh, Derek
2016-01-01
that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...
Magnetic phase transitions in low dimension quantum spin systems
International Nuclear Information System (INIS)
Canevet, Emmanuel
2010-01-01
In this PhD thesis, three low dimensional spin systems are studied by means of elastic and inelastic neutron scattering. Macroscopic measurements in the DMACuCl 3 compound indicate the coexistence of two kinds of dimers: antiferromagnetic and ferromagnetic. The magnetic structure determined by our neutron diffraction survey at H = 0 shows irrevocably the existence of these two kinds of dimers. It has been shown that the Ising-like compound BaCo 2 V 2 O 8 should be the first realization of a system in which a longitudinal spin density wave (LSDW) magnetic order occurs when a magnetic field is applied. In a first time, we have determined the magnetic structure in zero magnetic field. Then, we focused on the effect of a magnetic field on the propagation vector, showing an entrance in the LSDW phase at H c = 3.9 T. The magnetic structure refined above this critical field confirms that BaCo 2 V 2 O 8 is the first compound in which occurs a LSDW phase. In the organic compound DF 5 PNN, it has been shown that this compound is well described at low temperature by spin chains with alternating couplings. However, the crystallographic structure determined at room temperature implies that the interactions are uniform. By means of neutron diffraction, we characterized a structural transition at low temperature (T c = 450 mK) making the system evolve from C2/c space group to Pc. This transition explains the alternating behavior of the interactions. We have also evidenced a field-induced structural transition (H c = 1.1 T). Above this field, the system is back to the C2/c space group, implying that the interactions are back to uniform. We have confirmed this by studying the magnetic excitations. (author) [fr
Mananga, Eugene Stephane; Charpentier, Thibault
2015-04-01
In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.
International Nuclear Information System (INIS)
Saha, S.; Palit, R.; Sethi, J.
2012-01-01
The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space
International Nuclear Information System (INIS)
Bobak, A.; Dely, J.
2007-01-01
The effect of a single-ion anisotropy on the phase diagram of the mixed spin-32 and spin-2 Ising system is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the free energy. Topologically different kinds of phase diagrams are achieved by changing values of the parameter in the model Hamiltonian. Besides second-order transitions, lines of first-order transitions terminating either at a tricritical point or an isolated critical point, are found
Energy Technology Data Exchange (ETDEWEB)
Kawakita, Masatoshi; Okabe, Kyota [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kimura, Takashi [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)
2016-01-11
We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x} device implies the importance of the spin on the resistive switching.
Two-photon spin generation and detection
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)
2009-02-21
A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.
Equilibration in long-range quantum spin systems from a BBGKY perspective
International Nuclear Information System (INIS)
Paškauskas, Rytis; Kastner, Michael
2012-01-01
The time evolution of l-spin reduced density operators is studied for a class of Heisenberg-type quantum spin models with long-range interactions. In the framework of the quantum Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, we introduce an unconventional representation, different from the usual cluster expansion, which casts the hierarchy into the form of a second-order recursion. This structure suggests a scaling of the expansion coefficients and the corresponding time scales in powers of N 1/2 with the system size N, implying a separation of time scales in the large-system limit. For special parameter values and initial conditions, we can show analytically that closing the BBGKY hierarchy by neglecting l-spin correlations never leads to equilibration, but gives rise to quasi-periodic time evolution with at most l/2 independent frequencies. Moreover, for the same special parameter values and in the large-N limit, we solve the complete recursion relation (the full BBGKY hierarchy), observing a superexponential decay to equilibrium in rescaled time τ = tN −1/2
Gap analysis of industrial energy management systems in Slovenia
International Nuclear Information System (INIS)
Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.
2016-01-01
Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.
Mixed spin Ising model with four-spin interaction and random crystal field
International Nuclear Information System (INIS)
Benayad, N.; Ghliyem, M.
2012-01-01
The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.
Quantum one dimensional spin systems. Disorder and impurities
International Nuclear Information System (INIS)
Brunel, V.
1999-01-01
This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)
Charge and spin separation in one-dimensional systems
International Nuclear Information System (INIS)
Balseiro, C.A.; Jagla, E.A.; Hallberg, K.
1995-01-01
In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)
Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.
2010-08-01
The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.
Spin polarization of tunneling current in barriers with spin-orbit coupling
International Nuclear Information System (INIS)
Fujita, T; Jalil, M B A; Tan, S G
2008-01-01
We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons
Spin polarization of tunneling current in barriers with spin-orbit coupling.
Fujita, T; Jalil, M B A; Tan, S G
2008-03-19
We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.
The performance of a quantum heat engine working with spin systems
International Nuclear Information System (INIS)
Chen Jincan; Lin Bihong; Hua Ben
2002-01-01
It is considered that the cycle of a quantum heat engine working with many non-interacting spin-1/2 systems is composed of two isothermal and two isomagnetic field processes. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of the efficiency and power output are given. The regenerative losses in two isomagnetic field processes are calculated. The influence of non-perfect regeneration is analysed. Some interesting cases are discussed in detail. The results obtained are further generalized, so that they may be directly used to describe the performance of the quantum heat engine using spin-J systems as the working substance. (author)
Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase
DEFF Research Database (Denmark)
Schröder, A.; Aeppli, G.; Mason, T.E.
1997-01-01
The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...
A graphene spin diode based on Rashba SOI
International Nuclear Information System (INIS)
Mohammadpour, Hakimeh
2015-01-01
In this paper a graphene-based two-terminal electronic device is modeled for application in spintronics. It is based on a gapped armchair graphene nanoribbon (GNR). The electron transport is considered through a scattering or channel region which is sandwiched between two lateral semi-infinite ferromagnetic leads. The two ferromagnetic leads, being half-metallic, are supposed to be in either parallel or anti-parallel magnetization. Meanwhile, the central channel region is a normal layer under the influence of the Rashba SOI, induced e.g., by the substrate. The device operation is based on modulating the (spin-) current by tuning the strength of the RSOI. The resultant current, being spin-polarized, is controlled by the RSOI in mutual interplay with the channel length. Inverting alternating bias voltage to a fully rectified spin-current is the main achievement of this paper. - Highlights: • Graphene-based electronic device is modeled with ferromagnetic leads. • The device operation is based on modulating the (spin-) current by Rashba SOI. • Inverting alternating bias voltage to rectified spin-current is the main achievement
Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can
2016-10-01
In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.
Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2011-01-17
Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.
Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs
International Nuclear Information System (INIS)
Idrish Miah, M.
2011-01-01
Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.
The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system
Akbari, M.; Rezaei, G.; Khordad, R.
2017-01-01
We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Energy Technology Data Exchange (ETDEWEB)
Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.
Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations
Bernaschi, M.; Bisson, M.; Salvadore, F.
2014-10-01
We present and compare the performances of two many-core architectures: the Nvidia Kepler and the Intel MIC both in a single system and in cluster configuration for the simulation of spin systems. As a benchmark we consider the time required to update a single spin of the 3D Heisenberg spin glass model by using the Over-relaxation algorithm. We present data also for a traditional high-end multi-core architecture: the Intel Sandy Bridge. The results show that although on the two Intel architectures it is possible to use basically the same code, the performances of a Intel MIC change dramatically depending on (apparently) minor details. Another issue is that to obtain a reasonable scalability with the Intel Phi coprocessor (Phi is the coprocessor that implements the MIC architecture) in a cluster configuration it is necessary to use the so-called offload mode which reduces the performances of the single system. As to the GPU, the Kepler architecture offers a clear advantage with respect to the previous Fermi architecture maintaining exactly the same source code. Scalability of the multi-GPU implementation remains very good by using the CPU as a communication co-processor of the GPU. All source codes are provided for inspection and for double-checking the results.
Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos
2017-04-01
Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
DEFF Research Database (Denmark)
Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst
2018-01-01
Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6......-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot...... and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may...
Open quantum system approach to the modeling of spin recombination reactions.
Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J
2012-04-26
In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.
Statistical properties of spectra in harmonically trapped spin-orbit coupled systems
DEFF Research Database (Denmark)
V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.
2014-01-01
We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin-orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin......-orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner...... distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...
Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru
2016-06-07
Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.
Permanent spin currents in cavity-qubit systems
Kulkarni, Manas; Hein, Sven M.; Kapit, Eliot; Aron, Camille
2018-02-01
In a recent experiment [P. Roushan et al., Nat. Phys. 13, 146 (2017), 10.1038/nphys3930], a spin current in an architecture of three superconducting qubits was produced during a few microseconds by creating synthetic magnetic fields. The lifetime of the current was set by the typical dissipative mechanisms that occur in those systems. We propose a scheme for the generation of permanent currents, even in the presence of such imperfections, and scalable to larger system sizes. It relies on striking a subtle balance between multiple nonequilibrium drives and the dissipation mechanisms, in order to engineer and stimulate chiral excited states which can carry current.
Multitudes of Stable States in a Periodically Driven Electron-Nuclear Spin System in a Quantum Dot
Korenev, V. L.
2010-01-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. A similar frequency-loc...
Spatial distribution of spin polarization in a channel on the surface of a topological insulator
International Nuclear Information System (INIS)
Zhou Xiaoying; Shao Huaihua; Liu Yiman; Tang Dongsheng; Zhou Guanghui
2012-01-01
We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states. (paper)
Anomalous behavior of spin fluctuations in polycrystalline NdBa_2Cu_3O_7-δ
Abdelrazek, M. M.; Reyes, A. P.; Kuhns, P. L.; Moulton, W. G.; Halperin, W. P.; Kishio, K.
2001-03-01
Critical slowing down of Nd spin fluctuations have been observed in 92K superconductor NdBa_2Cu_3O_7-δ at temperatures well below Tc and orders of magnitude higher than TN ( ~0.5K). Nuclear spin-lattice relaxation rate 1/T1 at the planar O(2,3) and bridging O(4) oxygen sites have been measured as a function of temperature in fields up to 37T. Data is characterized by an extremely fast relaxation, roughly two orders of magnitude larger than those of YBCO, suggestive of Nd origin. The temperature dependence shows neither Tc nor the pseudo-gap but rather a well-defined field-dependent peak for both sites. Preliminary analysis suggests 1/T1 follows the typical behavior of freezing of spin fluctuations, when the inverse correlation time of the Nd spins τc becomes comparable to NMR frequency, ω τc ~ 1. The field dependence originates from the tail of the power spectrum beyond the 1/τc cutoff. The implications of these results to superconductivity in these systems will be discussed.
International Nuclear Information System (INIS)
Yang Huatong
2007-01-01
Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory
Real-space description of semiconducting band gaps in substitutional systems
International Nuclear Information System (INIS)
Magri, R.; Zunger, A.
1991-01-01
The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell
Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity
Thurston, Cameron
Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.
Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems
International Nuclear Information System (INIS)
He, Q. Y.; Drummond, P. D.; Reid, M. D.
2011-01-01
We develop criteria to detect three classes of nonlocality that have been shown by Wiseman et al. [Phys. Rev. Lett. 98, 140402 (2007)] to be nonequivalent: entanglement, EPR steering, and the failure of local hidden-variable theories. We use the approach of Cavalcanti et al. [Phys. Rev. Lett. 99, 210405 (2007)] for continuous variables to develop the nonlocality criteria for arbitrary spin observables defined on a discrete Hilbert space. The criteria thus apply to multisite qudits, i.e., systems of fixed dimension d, and take the form of inequalities. We find that the spin moment inequalities that test local hidden variables (Bell inequalities) can be violated for arbitrary d by optimized highly correlated nonmaximally entangled states provided the number of sites N is high enough. On the other hand, the spin inequalities for entanglement are violated and thus detect entanglement for such states, for arbitrary d and N, and with a violation that increases with N. We show that one of the moment entanglement inequalities can detect the entanglement of an arbitrary generalized multipartite Greenberger-Horne-Zeilinger state. Because they involve the natural observables for atomic systems, the relevant spin-operator correlations should be readily observable in trapped ultracold atomic gases and ion traps.
International Nuclear Information System (INIS)
Vojtenko, V.A.
1995-01-01
Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs
Theory of spin-dependent tunnelling in magnetic junctions
International Nuclear Information System (INIS)
Mathon, J.
2002-01-01
Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)
Spin-polarons and high-Tc superconductivity
International Nuclear Information System (INIS)
Wood, R.F.
1994-03-01
The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)
Enacted identities in the university spin-off process - bridging an imaginative gap
DEFF Research Database (Denmark)
Hannibal, Martin
2017-01-01
This paper employs a case study to explore the interdependencies between enacted role identities and behavioural logics of eight inventor-founders embedded in university spin-off venturing. The major tendencies in the findings suggest that the inventor-founders enact their academic role identity ...
Energy Technology Data Exchange (ETDEWEB)
Griesbeck, Michael
2012-11-22
Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.
Spin-dependent Peltier effect in 3D topological insulators
Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard
2013-03-01
The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.
Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures
Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.
2010-07-01
The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.
Spin-Wave Dispersion and Sublattice Magnetization in NiCl_2
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Birgeneau, R. J.; Als-Nielsen, Jens Aage
1975-01-01
temperature dependence on the sublattice magnetization, gap energy and specific heat. The authors report an inelastic neutron scattering study of the spin waves both at low temperatures and, for selected q-vectors, for temperatures up to TN=52.3K. The sublattice magnetization has been measured from 1.5K to TN......-dependent dispersion relations (together with the sublattice magnetization) and the gap energy up to approximately 0.4 TN are properly predicted....
International Nuclear Information System (INIS)
Temizer, Ümüt
2014-01-01
In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system. - Highlights: • The mixed spin (1, 3/2) Ising system is studied on a two-layer square lattice. • The Glauber transition rates are employed to construct the dynamic equations. • The dynamic phase diagrams are presented in seven different planes. • The system displays many dynamic critical points. • The reentrant behavior is observed for AFM/FM interaction
Novel spin-electronic properties of BC{sub 7} sheets induced by strain
Energy Technology Data Exchange (ETDEWEB)
Xu, Lei; Dai, ZhenHong, E-mail: zhdai@ytu.edu.cn; Sui, PengFei; Sun, YuMing; Wang, WeiTian [Computational Physics Laboratory, Institute of Opto-Electronic Information Science and Technology, Yantai University, Yantai 264005 (China)
2014-11-01
Based on first-principles calculations, the authors have investigated the electronic and magnetic properties of BC{sub 7} sheets with different planar strains. It is found that metal–semiconductor transition appears at the biaxial strain of 15.5%, and the sheets are characteristic of spin-polarized semiconductor with a zero band-gap. The band-gap rapidly increases with strain, and reaches a maximum value of 0.60 eV at the strain of 20%. Subsequently, the band-gap decreases until the strain reaches up to 22% and shows a semiconductor-half metal transformation. It will further present metal properties until the strain is up to the maximum value of 35%. The magnetic moments also have some changes induced by biaxial strain. The numerical analysis shows that the two-dimensional distortions have great influences on the magnetic moments. The novel spin-electronic properties make BC{sub 7} sheets have potential applications in future spintronic nanodevices.
Two perspectives on a decohering spin
International Nuclear Information System (INIS)
Albrecht, A.
1992-01-01
I study the quantum mechanics of a spin interacting with an environment. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or ''wavefunction collapse,'' of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or ''Schmidt path''), and also using the consistent histories (or decoherence functional) approach
Spin tunnelling in mesoscopic systems
Garg, Anupam
2001-02-01
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.
Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.
Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting
2016-01-25
We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.
Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates
Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar
2017-05-01
We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.
Breakdown localization in the fixed gap system
Rajamaki, Robin; Wuensch, Walter
2014-01-01
Accurate localization of breakdowns in vacuum could help shed light on breakdown related processes that are not yet fully understood. At the DC spark lab at CERN, an instrument called the Fixed Gap System (FGS) has been developed partially for this purpose. Among other things, the FGS has four built-in antennas, which are intended for breakdown localization. The capability of this aspect of the FGS was explored in this report. Specifically, the feasibility of using a method similar to that which is used in cavity Beam Position Monitors (BPMs) was investigated. The usable frequency range of the current experimental setup was also studied. Firstly, a modal analysis of the inner geometry of the FGS was done in HFSS. This showed that the two first modes to be expected in the spark gap quite differ from those of the ideal pillbox – both in field pattern and in frequency ( 4 and 6 GHz vs. 0.2 and 3 GHz). Secondly, S-parameters of the system were measured. These showed that the coupling between antennas is weak...
Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems
International Nuclear Information System (INIS)
Raj, B.K.; Panda, S.K.; Rout, G.C.
2013-01-01
Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy
Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems
Energy Technology Data Exchange (ETDEWEB)
Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)
2013-09-15
Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.
Spin Chern number and topological phase transition on the Lieb lattice with spin–orbit coupling
International Nuclear Information System (INIS)
Chen, Rui; Zhou, Bin
2017-01-01
We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin–orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin–orbit coupling effect. The inclusion of Rashba spin–orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin–orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin–orbit coupling and intrinsic spin–orbit coupling coexist in the Lieb lattice. - Highlights: • Spin Chern numbers of the bulk states on the Lieb lattice are calculated. • RSOC plays an important role on the topological phase transition on the Lieb lattice. • Quantum anomalous Hall effect can occur due to RSOC and staggered potentials. • Topological phase transition can occur when ISOC and RSOC coexist.
The effect of spin-orbit coupling in band structure of few-layer graphene
Energy Technology Data Exchange (ETDEWEB)
Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)
2014-03-24
Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
International Nuclear Information System (INIS)
Wang Chuan; Zhang Yong; Jin Guangsheng
2011-01-01
We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.
2018-05-01
Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.
Directory of Open Access Journals (Sweden)
R. Wu
2016-05-01
Full Text Available Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe_{5} crystal hosts a large full gap of ∼100 meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.
Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.
2017-12-01
We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.
Interplay of charge density wave and spin density wave in high-T{sub c} superconductors
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in
2008-12-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.
Proximity effect in semiconductor films with spin-splitting and spin-orbit interaction
Energy Technology Data Exchange (ETDEWEB)
Michelsen, Jens; Grein, Roland [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)
2012-07-01
Superconducting heterostructures with spin-active materials have emerged as promising platforms for engineering topological superconductors featuring Majorana bound states at surfaces, edges and vortices. Here we present a method for evaluating, from a microscopic model, the band structure of a semiconductor film of finite thickness deposited on top of a conventional superconductor. Analytical expressions for the proximity induced gap openings are presented in terms of microscopic parameters and the proximity effect in presence of spin-orbit and exchange splitting is visualized in terms of Andreev reflection processes. An expression for the topological invariant, associated with the existence of Majorana bound states, is shown to depend only on parameters of the semiconductor film. The finite thickness of the film leads to resonant states in the film giving rise to a complex band structure with the topological phase alternating between trivial and non-trivial as the parameters are tuned of the film are tuned.
Spin-resolved electron waiting times in a quantum-dot spin valve
Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian
2018-04-01
We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.