The quantum transverse spin-2 Ising model with a bimodal random-field in the pair approximation
International Nuclear Information System (INIS)
Canko, O.; Albayrak, E.; Keskin, M.
2005-01-01
In this paper, we have investigated the bimodal random-field spin-2 Ising system in a transverse field by combining the pair approximation with the discretized path-integral representation. The exact equations for the second-order phase transition lines and tricritical points are obtained in terms of the random field H, the transverse field G and the coordination number z. It is found that there are some critical values for H and G where the tricritical points disappear for given z. We have also observed that the system presents reentrant behavior which may be caused by the quantum effects and randomness. The phase diagram with respect to the random field and the second-order phase transition temperature are studied extensively for given values of the transverse field and the coordination number
Ertaş, Mehmet
2015-09-01
Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.
Energy Technology Data Exchange (ETDEWEB)
Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-01-01
The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.
Effective Hamiltonian for 2-dimensional arbitrary spin Ising model
International Nuclear Information System (INIS)
Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)
1983-08-01
The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)
International Nuclear Information System (INIS)
Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram
2010-01-01
The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.
International Nuclear Information System (INIS)
Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F
2010-01-01
In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.
International Nuclear Information System (INIS)
Keskin, Mustafa; Polat, Yasin
2009-01-01
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T abs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i 1 , i 2 , i 3 ) phases, and three coexistence or mixed phase regions, namely i 1 +p, i 2 +p and i 3 +p mixed phases that strongly depend on interaction parameters.
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Polat, Yasin [Institutes of Science, Erciyes University, 38039 Kayseri (Turkey)
2009-12-15
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins {sigma}=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T{sub abs} and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i{sub 1}, i{sub 2}, i{sub 3}) phases, and three coexistence or mixed phase regions, namely i{sub 1}+p, i{sub 2}+p and i{sub 3}+p mixed phases that strongly depend on interaction parameters.
International Nuclear Information System (INIS)
Bobak, A.; Dely, J.
2007-01-01
The effect of a single-ion anisotropy on the phase diagram of the mixed spin-32 and spin-2 Ising system is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the free energy. Topologically different kinds of phase diagrams are achieved by changing values of the parameter in the model Hamiltonian. Besides second-order transitions, lines of first-order transitions terminating either at a tricritical point or an isolated critical point, are found
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Bahmad, L. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco)
2015-09-01
The magnetic behaviors of a mixed spins (2-1) hexagonal Ising nanowire with core–shell structure are investigated by using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperatures of core–shell are studied for different values of crystal field and exchange interactions. The thermal and magnetic hysteresis cycles are given for different values of the crystal field. - Highlights: • Critical temperature increase when exchange interaction increasing in core-shell. • Hysteresis loop areas decrease at above transition temperature. • Magnetic coercive field decrease when crystal field increasing. • Magnetic coercive field increase when exchange interaction increasing.
International Nuclear Information System (INIS)
Wei Guozhu; Miao Hailing
2009-01-01
The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and tricritical line. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Fermions as generalized Ising models
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-04-01
Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
International Nuclear Information System (INIS)
Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa
2010-01-01
The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb (δ = 3) and a square lattice (δ = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the (Δ/|J|, k B T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Nevsehir University, Nevsehir (Turkmenistan); Kantar, Ersin; Keskin, Mustafa [Erciyes University, Kayseri (Turkmenistan)
2010-06-15
The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb ({delta} = 3) and a square lattice ({delta} = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction ({Delta}) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the ({Delta}/|J|, k{sub B}T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.
Ising models and soliton equations
International Nuclear Information System (INIS)
Perk, J.H.H.; Au-Yang, H.
1985-01-01
Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained
Monte Carlo simulations of the Spin-2 Blume-Emery-Griffiths model
International Nuclear Information System (INIS)
Iwashita, Takashi; Uragami, Kakuko; Muraoka, Yoshinori; Kinoshita, Takehiro; Idogaki, Toshihiro
2010-01-01
The magnetic properties of the spin S = 2 Ising system with the bilinear exchange interaction J 1 S iz S jz , the biquadratic exchange interaction J 2 S iz 2 S jz 2 and the single-ion anisotropy DS iz 2 are discussed by making use of the Monte Carlo (MC) simulation for the magnetization z >, sub-lattice magnetizations z (A)> and z (B)>, the magnetic specific heat C M and spin structures. This Ising spin system of S = 2 with interactions J 1 and J 2 and with anisotropy D corresponds to the spin-2 Blume-Emery-Griffiths model. The phase diagram of this Ising spin system on a two-dimensional square lattice has been obtained for exchange parameter J 2 /J 1 and anisotropy parameter D/J 1 . The shapes of the temperature dependence of sublattice magnetizations z (A)> and z (B)> are related with abnormal behavior of temperature dependence of z > at low temperatures and affected significantly by the single-ion anisotropy D. The staggered quadrupolar (SQ) ordering turns out to be different largely between Ising systems with the single-ion anisotropy (D ≠ 0) and without the one (D 0).
DEFF Research Database (Denmark)
Roudi, Yasser; Tyrcha, Joanna; Hertz, John
2009-01-01
(dansk abstrakt findes ikke) We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we...... extract the optimal couplings for subsets of size up to $200$ neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two of these methods -- inversion...... of the Thouless-Anderson-Palmer equations and an approximation proposed by Sessak and Monasson -- are remarkably accurate. Using these approximations for larger subsets of neurons, we find that extracting couplings using data from a subset smaller than the full network tends systematically to overestimate...
Ising model for packet routing control
International Nuclear Information System (INIS)
Horiguchi, Tsuyoshi; Takahashi, Hideyuki; Hayashi, Keisuke; Yamaguchi, Chiaki
2004-01-01
For packet routing control in computer networks, we propose an Ising model which is defined in order to express competition among a queue length and a distance from a node with a packet to its destination node. By introducing a dynamics for a mean-field value of an Ising spin, we show by computer simulations that effective control of packet routing through priority links is possible
Statistical mechanics of the cluster Ising model
International Nuclear Information System (INIS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-01-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Statistical mechanics of the cluster Ising model
Energy Technology Data Exchange (ETDEWEB)
Smacchia, Pietro [SISSA - via Bonomea 265, I-34136, Trieste (Italy); Amico, Luigi [CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale Andrea Doria 6, I-95125 Catania (Italy); Facchi, Paolo [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Fazio, Rosario [NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, 56126 Pisa (Italy); Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Florio, Giuseppe; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Vedral, Vlatko [Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)
2011-08-15
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Transverse Ising spin-glass model
International Nuclear Information System (INIS)
Santos, Raimundo R. dos; Santos, R.M.Z. dos.
1984-01-01
The zero temperature behavior of the Transverse Ising spin-glass (+-J 0 ) model is discussed. The d-dimensional quantum model is shown to be equivalent to a classical (d + 1)- dimensional Ising spin-glass with correlated disorder. An exact Renormalization Group treatment of the one-dimensional quantum model indicates the existence of a spin-glass phase. The Migdal-Kadanoff approximation is used to obtain the phase diagram of the quantum spin-glass in two-dimensions. (Author) [pt
Localized endomorphisms of the chiral Ising model
International Nuclear Information System (INIS)
Boeckenhauer, J.
1994-07-01
In the frame of the treatment of the chiral Ising model by Mack and Schomerus, examples of localized endomorphisms ρ 1 loc and ρ 1/2 loc are presented. It is shown that they lead to the same superselection sectors as the global ones in the sense that π 0 oρ 1 log ≅π 1 and π 0 pρ 1/2 loc ≅π 1/2 holds. For proving the latter unitary equivalence, Arakis formalism of the selfdual CAR algebra is used. Further it is shown that the localized endomorphisms obey the Ising fusion rules. (orig.)
International Nuclear Information System (INIS)
Keskin, M.; Canko, O.; Gueldal, S.
2009-01-01
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.
Energy Technology Data Exchange (ETDEWEB)
Keskin, M., E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, O. [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Gueldal, S. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)
2009-12-14
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.
Thue-Morse quantum Ising model
International Nuclear Information System (INIS)
Doria, M.M.; Nori, F.; Satija, I.I.
1989-01-01
We study the one-dimensional quantum Ising model in a transverse magnetic field where the exchange couplings are ordered according to the Thue-Morse (TM) sequence. At zero temperature, this model is equivalent to a two-dimensional classical Ising model in a magnetic field with TM aperiodicity along one direction. We compute the order parameter (magnetization) of the chain and the scaling behavior of the energy spectrum when the system undergoes a phase transition. Analogous to the quasiperiodic (QP) quantum Ising chain, the onset of long-range order is signaled by a nonanaliticity in the exponent δ which describes the scaling of the total bandwidth with the size of the chain. The critical spin-coupling can be computed analytically and it is found to be lower than the QP case. Furthermore, the energy bands are found to be narrower than the corresponding QP chain. The former and latter results are consistent with the fact that the present structure has a degree of ordering intermediate between QP and random
International Nuclear Information System (INIS)
Ertaş Mehmet; Keskin Mustafa
2013-01-01
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)
International Nuclear Information System (INIS)
Deviren, Bayram; Polat, Yasin; Keskin, Mustafa
2011-01-01
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second- and first-order phase transitions besides triple point (TP), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in Néel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions. (general)
Tricritical Ising model with a boundary
International Nuclear Information System (INIS)
De Martino, A.; Moriconi, M.
1998-03-01
We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)
Exact sampling hardness of Ising spin models
Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.
2017-09-01
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
Dynamics of the Random Field Ising Model
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
An Ising model for metal-organic frameworks
Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz
2017-08-01
We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.
The Peierls argument for higher dimensional Ising models
International Nuclear Information System (INIS)
Bonati, Claudio
2014-01-01
The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)
Particles and scaling for lattice fields and Ising models
International Nuclear Information System (INIS)
Glimm, J.; Jaffe, A.
1976-01-01
The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de
The ising model on the dynamical triangulated random surface
International Nuclear Information System (INIS)
Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.
1990-01-01
The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions
Quantum Ising model on hierarchical structures
International Nuclear Information System (INIS)
Lin Zhifang; Tao Ruibao.
1989-11-01
A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs
The Ising model coupled to 2d orders
Glaser, Lisa
2018-04-01
In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.
An extended chain Ising model and its Glauber dynamics
International Nuclear Information System (INIS)
Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru
2012-01-01
It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Quantum simulation of transverse Ising models with Rydberg atoms
Schauss, Peter
2018-04-01
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
Universal amplitude ratios in the 3D Ising model
International Nuclear Information System (INIS)
Caselle, M.; Hasenbusch, M.
1998-01-01
We present a high precision Monte Carlo study of various universal amplitude ratios of the three dimensional Ising spin model. Using state of the art simulation techniques we studied the model close to criticality in both phases. Great care was taken to control systematic errors due to finite size effects and correction to scaling terms. We obtain C + /C - =4.75(3), f +,2nd /f -,2nd =1.95(2) and u * =14.3(1). Our results are compatible with those obtained by field theoretic methods applied to the φ 4 theory and high and low temperature series expansions of the Ising model. (orig.)
Zeros of the partition function for some generalized Ising models
International Nuclear Information System (INIS)
Dunlop, F.
1981-01-01
The author considers generalized Ising Models with two and four body interactions in a complex external field h such that Re h>=mod(Im h) + C, where C is an explicit function of the interaction parameters. The partition function Z(h) is then shown to satisfy mod(Z(h))>=Z(c), so that the pressure is analytic in h inside the given region. The method is applied to specific examples: the gauge invariant Ising Model, and the Widom Rowlinson model on the lattice. (Auth.)
Conformal Invariance in the Long-Range Ising Model
Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo
2016-01-01
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Conformal invariance in the long-range Ising model
Directory of Open Access Journals (Sweden)
Miguel F. Paulos
2016-01-01
Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
Conformal invariance in the long-range Ising model
Energy Technology Data Exchange (ETDEWEB)
Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)
2016-01-15
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.
New relation for critical exponents in the Ising model
International Nuclear Information System (INIS)
Pishtshev, A.
2007-01-01
The Ising model in a transverse field is considered at T=0. From the analysis of the power low behaviors of the energy gap and the order parameter as functions of the field a new relation between the respective critical exponents, β>=1/(8s 2 ), is derived. By using the Suzuki equivalence from this inequality a new relation for critical exponents in the Ising model, β>=1/(8ν 2 ), is obtained. A number of numerical examples for different cases illustrates the generality and validity of the relation. By applying this relation the estimation ν=(1/4) 1/3 ∼0.62996 for the 3D-Ising model is proposed
One-dimensional Ising model with multispin interactions
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models
Sastre, Francisco; Dornic, Ivan; Chaté, Hugues
2003-01-01
We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.
The square Ising model with second-neighbor interactions and the Ising chain in a transverse field
International Nuclear Information System (INIS)
Grynberg, M.D.; Tanatar, B.
1991-06-01
We consider the thermal and critical behaviour of the square Ising lattice with frustrated first - and second-neighbor interactions. A low-temperature domain wall analysis including kinks and dislocations shows that there is a close relation between this classical model and the Hamiltonian of an Ising chain in a transverse field provided that the ratio of the next-nearest to nearest-neighbor coupling, is close to 1/2. Due to the field inversion symmetry of the Ising chain Hamiltonian, the thermal properties of the classical system are symmetrical with respect to this coupling ratio. In the neighborhood of this regime critical exponents of the model turn out to belong to the Ising universality class. Our results are compared with previous Monte Carlo simulations. (author). 23 refs, 6 figs
Specific heat of the simple-cubic Ising model
Feng, X.; Blöte, H.W.J.
2010-01-01
We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions
Correlation effects in the Ising model in an external field
International Nuclear Information System (INIS)
Borges, H.E.; Silva, P.R.
1983-01-01
The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt
The spin S quantum Ising model at T=0
International Nuclear Information System (INIS)
Kamieniarz, G.; Kowalewski, L.; Piechocki, W.
1982-09-01
The Ising model with a transverse field for a general spin S is investigated within the framework of the Green-function method in the paramagnetic region at T=0. The analysis of selfconsistent equations gives a description of softmode phase transition as well as extrapolated values of critical fields and critical energy gap exponents. (author)
Susceptibility and magnetization of a random Ising model
Energy Technology Data Exchange (ETDEWEB)
Kumar, D; Srivastava, V [Roorkee Univ. (India). Dept. of Physics
1977-08-01
The susceptibility of a bond disordered Ising model is calculated by configurationally averaging an Ornstein-Zernike type of equation for the two spin correlation function. The equation for the correlation function is derived using a diagrammatic method due to Englert. The averaging is performed using bond CPA. The magnetization is also calculated by averaging in a similar manner a linearised molecular field equation.
The dilute random field Ising model by finite cluster approximation
International Nuclear Information System (INIS)
Benyoussef, A.; Saber, M.
1987-09-01
Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs
Multiple Time Series Ising Model for Financial Market Simulations
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2015-01-01
In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated
Simplified dark matter models with a spin-2 mediator at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kraml, Sabine [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Laa, Ursula [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); LAPTh, Universite Savoie Mont Blanc, CNRS, B.P.110, Annecy Cedex (France); Mawatari, Kentarou [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium); Yamashita, Kimiko [Ochanomizu University, Department of Physics, Graduate School of Humanities and Sciences, and Program for Leading Graduate Schools, Tokyo (Japan)
2017-05-15
We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an s-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on the complementarity among different searches, in particular monojet and multijet plus missing-energy searches and resonance searches. For universal couplings of the mediator to SM particles, missing-energy searches can give stronger constraints than WW, ZZ, dijet, dihiggs, t anti t, b anti b resonance searches in the low-mass region and/or when the coupling of the mediator to dark matter is much larger than its couplings to SM particles. The strongest constraints, however, come from diphoton and dilepton resonance searches. Only if these modes are suppressed, missing-energy searches can be competitive in constraining dark matter models with a spin-2 mediator. (orig.)
Simplified dark matter models with a spin-2 mediator at the LHC
International Nuclear Information System (INIS)
Kraml, Sabine; Laa, Ursula; Mawatari, Kentarou; Yamashita, Kimiko
2017-01-01
We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an s-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on the complementarity among different searches, in particular monojet and multijet plus missing-energy searches and resonance searches. For universal couplings of the mediator to SM particles, missing-energy searches can give stronger constraints than WW, ZZ, dijet, dihiggs, t anti t, b anti b resonance searches in the low-mass region and/or when the coupling of the mediator to dark matter is much larger than its couplings to SM particles. The strongest constraints, however, come from diphoton and dilepton resonance searches. Only if these modes are suppressed, missing-energy searches can be competitive in constraining dark matter models with a spin-2 mediator. (orig.)
Weyl and transverse diffeomorphism invariant spin-2 models in D = 2 + 1
International Nuclear Information System (INIS)
Dalmazi, Denis; Mendonca, E.L.; Santos, A.L.R. dos; Ghosh, Subir
2017-01-01
There are two covariant descriptions of massless spin-2 particles in D = 3 + 1 via a symmetric rank-2 tensor: the linearized Einstein-Hilbert (LEH) theory and the Weyl plus transverse diffeomorphism (WTDIFF) invariant model. From the LEH theory one can obtain the linearized new massive gravity (NMG) in D = 2 + 1 via Kaluza-Klein dimensional reduction followed by a dual master action. Here we show that a similar route takes us from the WTDIFF model to a linearized scalar-tensor NMG which belongs to a larger class of consistent spin-0 modifications of NMG. We also show that a traceless master action applied to a parity singlet furnishes two new spin-2 self-dual models. Moreover, we examine the singular replacement h_μ_ν → h_μ_ν - η_μ_νh/D and prove that it leads to consistent massive spin-2 models in D = 2 + 1. They include linearized versions of unimodular topologically massive gravity (TMG) and unimodular NMG. Although the free part of those unimodular theories are Weyl invariant, we do not expect any improvement in the renormalizability. Both the linearized K-term (in NMG) and the linearized gravitational Chern-Simons term (in TMG) are invariant under longitudinal reparametrizations δh_μ_ν = ∂_μ∂_νζ, which is not a symmetry of the WTDIFF Einstein-Hilbert term. Therefore, we still have one degree of freedom whose propagator behaves like 1/p"2 for large momentum. (orig.)
Weyl and transverse diffeomorphism invariant spin-2 models in D=2+1
Dalmazi, Denis; dos Santos, A. L. R.; Ghosh, Subir; Mendonça, E. L.
2017-09-01
There are two covariant descriptions of massless spin-2 particles in D=3+1 via a symmetric rank-2 tensor: the linearized Einstein-Hilbert (LEH) theory and the Weyl plus transverse diffeomorphism (WTDIFF) invariant model. From the LEH theory one can obtain the linearized new massive gravity (NMG) in D=2+1 via Kaluza-Klein dimensional reduction followed by a dual master action. Here we show that a similar route takes us from the WTDIFF model to a linearized scalar-tensor NMG which belongs to a larger class of consistent spin-0 modifications of NMG. We also show that a traceless master action applied to a parity singlet furnishes two new spin-2 self-dual models. Moreover, we examine the singular replacement h_{μ ν } → h_{μ ν } - η _{μ ν }h/D and prove that it leads to consistent massive spin-2 models in D=2+1. They include linearized versions of unimodular topologically massive gravity (TMG) and unimodular NMG. Although the free part of those unimodular theories are Weyl invariant, we do not expect any improvement in the renormalizability. Both the linearized K-term (in NMG) and the linearized gravitational Chern-Simons term (in TMG) are invariant under longitudinal reparametrizations δ h_{μ ν } = partial _{μ }partial _{ν }ζ , which is not a symmetry of the WTDIFF Einstein-Hilbert term. Therefore, we still have one degree of freedom whose propagator behaves like 1/p^2 for large momentum.
Dynamical quantum phase transitions in extended transverse Ising models
Bhattacharjee, Sourav; Dutta, Amit
2018-04-01
We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.
Computational Analysis of 3D Ising Model Using Metropolis Algorithms
International Nuclear Information System (INIS)
Sonsin, A F; Cortes, M R; Nunes, D R; Gomes, J V; Costa, R S
2015-01-01
We simulate the Ising Model with the Monte Carlo method and use the algorithms of Metropolis to update the distribution of spins. We found that, in the specific case of the three-dimensional Ising Model, methods of Metropolis are efficient. Studying the system near the point of phase transition, we observe that the magnetization goes to zero. In our simulations we analyzed the behavior of the magnetization and magnetic susceptibility to verify the phase transition in a paramagnetic to ferromagnetic material. The behavior of the magnetization and of the magnetic susceptibility as a function of the temperature suggest a phase transition around KT/J ≈ 4.5 and was evidenced the problem of finite size of the lattice to work with large lattice. (paper)
The transverse spin-1 Ising model with random interactions
Energy Technology Data Exchange (ETDEWEB)
Bouziane, Touria [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco)], E-mail: touria582004@yahoo.fr; Saber, Mohammed [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco); Dpto. Fisica Aplicada I, EUPDS (EUPDS), Plaza Europa, 1, San Sebastian 20018 (Spain)
2009-01-15
The phase diagrams of the transverse spin-1 Ising model with random interactions are investigated using a new technique in the effective field theory that employs a probability distribution within the framework of the single-site cluster theory based on the use of exact Ising spin identities. A model is adopted in which the nearest-neighbor exchange couplings are independent random variables distributed according to the law P(J{sub ij})=p{delta}(J{sub ij}-J)+(1-p){delta}(J{sub ij}-{alpha}J). General formulae, applicable to lattices with coordination number N, are given. Numerical results are presented for a simple cubic lattice. The possible reentrant phenomenon displayed by the system due to the competitive effects between exchange interactions occurs for the appropriate range of the parameter {alpha}.
Precision islands in the Ising and O(N) models
Energy Technology Data Exchange (ETDEWEB)
Kos, Filip [Department of Physics, Yale University, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Vichi, Alessandro [Theory Division, CERN, Geneva (Switzerland)
2016-08-04
We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, O(2), and O(3) models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, (Δ{sub σ},Δ{sub ϵ},λ{sub σσϵ},λ{sub ϵϵϵ})=(0.5181489(10),1.412625(10),1.0518537(41),1.532435(19)), give the most precise determinations of these quantities to date.
Precision Islands in the Ising and $O(N)$ Models
Kos, Filip; Simmons-Duffin, David; Vichi, Alessandro
2016-01-01
We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, $O(2)$, and $O(3)$ models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, $(\\Delta_{\\sigma}, \\Delta_{\\epsilon},\\lambda_{\\sigma\\sigma\\epsilon}, \\lambda_{\\epsilon\\epsilon\\epsilon}) = (0.5181489(10), 1.412625(10), 1.0518537(41), 1.532435(19))$, give the most precise determinations of these quantities to date.
Genus-two characters of the Ising model
International Nuclear Information System (INIS)
Choi, J.H.; Koh, I.G.
1989-01-01
As a first step in studying conformal theories on a higher-genus Riemann surface, we construct genus-two characters of the Ising model from their behavior in zero- and nonzero-homology pinching limits, the Goddard-Kent-Oliveco set-space construction, and the branching coefficients in the level-two A 1 /sup (1)/ Kac-Moody characters on the higher-genus Riemann surface
Ising model on tangled chain - 1: Free energy and entropy
International Nuclear Information System (INIS)
Mejdani, R.
1993-04-01
In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. to understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of addition interaction (ferromagnetic or antiferromagnetic). We found that the condition J=J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. (author). 17 refs, 8 figs
Weyl and transverse diffeomorphism invariant spin-2 models in D = 2 + 1
Energy Technology Data Exchange (ETDEWEB)
Dalmazi, Denis; Mendonca, E.L. [UNESP-Campus de Guaratingueta-DFQ, Guaratingueta, SP (Brazil); ICTP South American Institute for Fundamental Research, IFT-UNESP, Sao Paulo, SP (Brazil); Santos, A.L.R. dos [UNESP-Campus de Guaratingueta-DFQ, Guaratingueta, SP (Brazil); Ghosh, Subir [ICTP South American Institute for Fundamental Research, IFT-UNESP, Sao Paulo, SP (Brazil); Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)
2017-09-15
There are two covariant descriptions of massless spin-2 particles in D = 3 + 1 via a symmetric rank-2 tensor: the linearized Einstein-Hilbert (LEH) theory and the Weyl plus transverse diffeomorphism (WTDIFF) invariant model. From the LEH theory one can obtain the linearized new massive gravity (NMG) in D = 2 + 1 via Kaluza-Klein dimensional reduction followed by a dual master action. Here we show that a similar route takes us from the WTDIFF model to a linearized scalar-tensor NMG which belongs to a larger class of consistent spin-0 modifications of NMG. We also show that a traceless master action applied to a parity singlet furnishes two new spin-2 self-dual models. Moreover, we examine the singular replacement h{sub μν} → h{sub μν} - η{sub μν}h/D and prove that it leads to consistent massive spin-2 models in D = 2 + 1. They include linearized versions of unimodular topologically massive gravity (TMG) and unimodular NMG. Although the free part of those unimodular theories are Weyl invariant, we do not expect any improvement in the renormalizability. Both the linearized K-term (in NMG) and the linearized gravitational Chern-Simons term (in TMG) are invariant under longitudinal reparametrizations δh{sub μν} = ∂{sub μ}∂{sub ν}ζ, which is not a symmetry of the WTDIFF Einstein-Hilbert term. Therefore, we still have one degree of freedom whose propagator behaves like 1/p{sup 2} for large momentum. (orig.)
Ising model of financial markets with many assets
Eckrot, A.; Jurczyk, J.; Morgenstern, I.
2016-11-01
Many models of financial markets exist, but most of them simulate single asset markets. We study a multi asset Ising model of a financial market. Each agent has two possible actions (buy/sell) for every asset. The agents dynamically adjust their coupling coefficients according to past market returns and external news. This leads to fat tails and volatility clustering independent of the number of assets. We find that a separation of news into different channels leads to sector structures in the cross correlations, similar to those found in real markets.
International Nuclear Information System (INIS)
Li Jun; Wei Guozhu; Du An
2005-01-01
The compensation and critical behaviors of a mixed spin-2 and spin-12 Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by the two-time Green's function technique, which takes into account the quantum nature of Heisenberg spins. The model can be relevant for understanding the magnetic behavior of the new class of organometallic ferromagnetic materials that exhibit spontaneous magnetic properties at room temperature. We carry out the calculation of the sublattice magnetizations and the spin-wave spectra of the ground state. In particular, we have studied the effects of the nearest, next-nearest-neighbor interactions, the crystal field and the external magnetic field on the compensation temperature and the critical temperature. When only the nearest-neighbor interactions and the crystal field are included, no compensation temperature exists; when the next-nearest-neighbor interaction between spin-12 is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other parameters in Hamiltonian fixed. The next-nearest-neighbor interactions between spin-2 and the external magnetic field have the effects of changing the compensation temperature and there is a narrow range of parameters of the Hamiltonian for which the model has the compensation temperatures and compensation temperature exists only for a small value of them
Recurrence relations in the three-dimensional Ising model
International Nuclear Information System (INIS)
Yukhnovskij, I.R.; Kozlovskij, M.P.
1977-01-01
Recurrence relations between the coefficients asub(2)sup((i)), asub(4)sup((i)) and Psub(2)sup((i)), Psub(4)sup((i)) which characterize the probabilities of distribution for the three-dimensional Ising model are studied. It is shown that for large arguments z of the Makdonald functions Ksub(ν)(z) the recurrence relations correspond to the known Wilson relations. But near the critical point for small values of the transfer momentum k this limit case does not take place. In the pointed region the argument z tends to zero, and new recurrence relations take place
Monte Carlo technique for very large ising models
Kalle, C.; Winkelmann, V.
1982-08-01
Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.
Decorated Ising models with competing interactions and modulated structures
International Nuclear Information System (INIS)
Tragtenberg, M.H.R.; Yokoi, C.S.O.; Salinas, S.R.A.
1988-01-01
The phase diagrams of a variety of decorated Ising lattices are calculated. The competing interactions among the decorating spins may induce different types of modulated orderings. In particular, the effect of an applied field on the phase diagram of the two-dimensional mock ANNNI model is considered, where only the original horizontal bonds on a square lattice are decorated. Some Bravais lattices and Cayley trees where all bonds are equally decorated are then studied. The Bravais lattices display a few stable modulated structures. The Cayley trees, on the other hand, display a large number of modulated phases, which increases with the lattice coordination number. (authors) [pt
Ising tricriticality in the extended Hubbard model with bond dimerization
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
Ising percolation in a three-state majority vote model
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Martínez-Cruz, M.A.; Gayosso Martínez, Felipe [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)
2017-02-05
Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.
Ising percolation in a three-state majority vote model
International Nuclear Information System (INIS)
Balankin, Alexander S.; Martínez-Cruz, M.A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier
2017-01-01
Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.
Ising and Potts models: binding disorder-and dimension effects
International Nuclear Information System (INIS)
Curado, E.M.F.
1983-01-01
Within the real space renormalization group framework, some thermal equilibrium properties of pure and disordered insulating systems are calculated. In the pure hypercubic lattice system, the Ising model surface tension and the correlation length of the q-state Potts model, which generalizes the former are analyzed. Several asymptotic behaviors are obtained (for the first time as far as we know) for both functions and the influence of dimension over them can be observed. Accurate numerical proposals for the surface tension are made in several dimensions, and the effect of the number of states (q) on the correlation lenght is shown. In disordered systems, attention is focused essentiall on those which can be theoretically represented by pure sistem Hamiltonians where probability distributions are assumed for the coupling constants (disorder in the bonds). It is obtained with high precision several approximate critical surfaces for the quenched square-lattice Ising model, whose probability distribution can assume two positive values (hence there is no frustration). These aproximate surfaces contain all the exact known points. In the cases where the coupling constant probability distribution can also assume negative values (allowing disordered and frustrated systems), a theoretical treatment which distinguishes the frustration effect from the dilution one is proposed. This distinction can be seen by the different ways in which the bonds of any series-parallel topological array combine. (Author) [pt
On the quantum symmetry of the chiral Ising model
Vecsernyés, Peter
1994-03-01
We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.
On the phase transition nature in compressible Ising models
International Nuclear Information System (INIS)
Ota, A.T.
1985-01-01
The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt
Quasi-realistic distribution of interaction fields leading to a variant of Ising spin glass model
International Nuclear Information System (INIS)
Tanasa, Radu; Enachescu, Cristian; Stancu, Alexandru; Linares, Jorge; Varret, Francois
2004-01-01
The distribution of interaction fields of an Ising-like system, obtained by Monte Carlo entropic sampling is used for modeling the hysteretic behavior of patterned media made of magnetic particles with a common anisotropy axis; a variant of the canonical Edwards-Anderson Ising spin glass model is introduced
High temperature limit of the order parameter correlation functions in the quantum Ising model
Reyes, S. A.; Tsvelik, A. M.
2006-06-01
In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.
High temperature limit of the order parameter correlation functions in the quantum Ising model
Energy Technology Data Exchange (ETDEWEB)
Reyes, S.A. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tsvelik, A.M. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States) and Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)]. E-mail tsvelik@bnl.gov
2006-06-12
In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.
String effects in the 3d gauge Ising model
International Nuclear Information System (INIS)
Caselle, Michele; Panero, Marco; Hasenbusch, Martin
2003-01-01
We compare the predictions of the effective string description of confinement with a set of Monte Carlo data for the 3d gauge Ising model at finite temperature. Thanks to a new algorithm which makes use of the dual symmetry of the model we can reach very high precisions even for large quark-antiquark distances. We are thus able to explore the large R regime of the effective string. We find that for large enough distances and low enough temperature the data are well described by a pure bosonic string. As the temperature increases higher order corrections become important and cannot be neglected even at large distances. These higher order corrections seem to be well described by the Nambu-Goto action truncated at the first perturbative order. (author)
History of the Lenz–Ising model 1965–1971
DEFF Research Database (Denmark)
Niss, Martin
2011-01-01
when it was realized that the Lenz–Ising model is actually relevant for the understanding of phase transitions. In this article, which is self-contained, I study how this realization affected attempts to understand critical phenomena, which can be understood as limiting cases of (first-order) phase...... of critical phenomena, for example that diverse physical systems exhibit similar behavior close to a critical point. Later, a more systematic program of understanding critical phenomena emerged that involved an explicit formulation of what it means to understand critical phenomena, namely, the elucidation...... of what features of the Hamiltonian of models lead to what kinds of behavior close to critical points. Attempts to accomplish this program culminated with the so-called hypothesis of universality, put forward independently by Robert B. Griffiths and Leo P. Kadanoff in 1970. They divided critical phenomena...
Antiferromagnetic Ising model with transverse and longitudinal field
International Nuclear Information System (INIS)
Kischinhevsky, M.
1985-01-01
We study the quantum hamiltonian version of the Ising Model in one spacial dimension under an external longitudinal (uniform) field at zero temperature. A phenomenological renormalization group procedure is used to obtain the phase diagram; the transverse and longitudinal zero field limits are studied and we verify the validity of universality at non zero transverse fields, where two-dimensional critical behaviour is obtained. To perform the numerical calculations we use the Lanczos scheme, which gives highly precise results with rather short processing times. We also analyse the possibility of using these techniques to extend the present work to the quantum hamiltonian version of the q-state Potts Model (q>2) in larger system. (author) [pt
Ising formulation of associative memory models and quantum annealing recall
Santra, Siddhartha; Shehab, Omar; Balu, Radhakrishnan
2017-12-01
Associative memory models, in theoretical neuro- and computer sciences, can generally store at most a linear number of memories. Recalling memories in these models can be understood as retrieval of the energy minimizing configuration of classical Ising spins, closest in Hamming distance to an imperfect input memory, where the energy landscape is determined by the set of stored memories. We present an Ising formulation for associative memory models and consider the problem of memory recall using quantum annealing. We show that allowing for input-dependent energy landscapes allows storage of up to an exponential number of memories (in terms of the number of neurons). Further, we show how quantum annealing may naturally be used for recall tasks in such input-dependent energy landscapes, although the recall time may increase with the number of stored memories. Theoretically, we obtain the radius of attractor basins R (N ) and the capacity C (N ) of such a scheme and their tradeoffs. Our calculations establish that for randomly chosen memories the capacity of our model using the Hebbian learning rule as a function of problem size can be expressed as C (N ) =O (eC1N) , C1≥0 , and succeeds on randomly chosen memory sets with a probability of (1 -e-C2N) , C2≥0 with C1+C2=(0.5-f ) 2/(1 -f ) , where f =R (N )/N , 0 ≤f ≤0.5 , is the radius of attraction in terms of the Hamming distance of an input probe from a stored memory as a fraction of the problem size. We demonstrate the application of this scheme on a programmable quantum annealing device, the D-wave processor.
Large Deviations for the Annealed Ising Model on Inhomogeneous Random Graphs: Spins and Degrees
Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; Hofstad, Remco van der
2018-04-01
We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Testing Lorentz Invariance Emergence in the Ising Model using Monte Carlo simulations
Dias Astros, Maria Isabel
2017-01-01
In the context of the Lorentz invariance as an emergent phenomenon at low energy scales to study quantum gravity a system composed by two 3D interacting Ising models (one with an anisotropy in one direction) was proposed. Two Monte Carlo simulations were run: one for the 2D Ising model and one for the target model. In both cases the observables (energy, magnetization, heat capacity and magnetic susceptibility) were computed for different lattice sizes and a Binder cumulant introduced in order to estimate the critical temperature of the systems. Moreover, the correlation function was calculated for the 2D Ising model.
Effective field treatment of the annealed bond-dilute transverse Ising model
International Nuclear Information System (INIS)
Silva, P.R.; Sa Barreto, F.C. de
1983-01-01
The dilution of the spin-1/2 transverse Ising Model is studied by means of an effective field type treatment based on an extension of Callen's relation to the present model. The thermodynamics of the diluted model is obtained and the results are shown to be an improvement over the standard mean field treatment. The results are also compared with the Monte Carlo calculation for the spin-infinite transverse Ising Model. (Author) [pt
Two dimensional kicked quantum Ising model: dynamical phase transitions
International Nuclear Information System (INIS)
Pineda, C; Prosen, T; Villaseñor, E
2014-01-01
Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)
Ising percolation in a three-state majority vote model
Balankin, Alexander S.; Martínez-Cruz, M. A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier
2017-02-01
In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the "magnetization" of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.
Excited TBA equations I: Massive tricritical Ising model
International Nuclear Information System (INIS)
Pearce, Paul A.; Chim, Leung; Ahn, Changrim
2001-01-01
We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II
Ising model on tangled chain - 2: Magnetization and susceptibility
International Nuclear Information System (INIS)
Mejdani, R.
1993-05-01
In the preceding paper we have considered an Ising model defined on tangled chain to study the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit. In this paper, following the main line and basing on some results of the previous work, we shall study in the ''language'' of state configurations the behaviour of the magnetization and the susceptibility for different conditions of the model, to understand better the competition between the ferromagnetic bonds along the chain and the antiferromagnetic additional bonds across the chain. Particularly interesting is the behaviour of the susceptibility in the zero-field and zero-temperature limit. Exact solutions for the magnetization and susceptibility, generated by analytical calculations and iterative algorithms, are described. The additional bonds, introduced as a form of perfectly disorder, indicate a particular effect on the spin correlation. We found that the condition J=-J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. (author). 16 refs, 14 figs
Stability and replica symmetry in the ising spin glass: a toy model
International Nuclear Information System (INIS)
De Dominicis, C.; Mottishaw, P.
1986-01-01
Searching for possible replica symmetric solutions in an Ising spin glass (in the tree approximation) we investigate a toy model whose bond distribution has two non vanishing cumulants (instead of one only as in a gaussian distribution)
Ising model of a randomly triangulated random surface as a definition of fermionic string theory
International Nuclear Information System (INIS)
Bershadsky, M.A.; Migdal, A.A.
1986-01-01
Fermionic degrees of freedom are added to randomly triangulated planar random surfaces. It is shown that the Ising model on a fixed graph is equivalent to a certain Majorana fermion theory on the dual graph. (orig.)
Nonequilibrium two-dimensional Ising model with stationary uphill diffusion
Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia
2018-03-01
Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.
Restoration of dimensional reduction in the random-field Ising model at five dimensions
Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas
2017-04-01
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D equality at all studied dimensions.
Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
Mo, Qianxing; Liang, Faming
2010-01-01
approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
Aonishi, Toru; Mimura, Kazushi; Utsunomiya, Shoko; Okada, Masato; Yamamoto, Yoshihisa
2017-10-01
The coherent Ising machine (CIM) has attracted attention as one of the most effective Ising computing architectures for solving large scale optimization problems because of its scalability and high-speed computational ability. However, it is difficult to implement the Ising computation in the CIM because the theories and techniques of classical thermodynamic equilibrium Ising spin systems cannot be directly applied to the CIM. This means we have to adapt these theories and techniques to the CIM. Here we focus on a ferromagnetic model and a finite loading Hopfield model, which are canonical models sharing a common mathematical structure with almost all other Ising models. We derive macroscopic equations to capture nonequilibrium phase transitions in these models. The statistical mechanical methods developed here constitute a basis for constructing evaluation methods for other Ising computation models.
Correlation functions of the Ising model and the eight-vertex model
International Nuclear Information System (INIS)
Ko, L.F.
1986-01-01
Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. In Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations
Probabilistic image processing by means of the Bethe approximation for the Q-Ising model
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M
2003-01-01
The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results
Phase transitions in the random field Ising model in the presence of a transverse field
Energy Technology Data Exchange (ETDEWEB)
Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)
1996-09-07
We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)
The Ising model and its applications to a phase transition of biological interest
International Nuclear Information System (INIS)
Cabrera, G.G.; Stein-Barana, A.M.; Zuckermann, M.J.
1984-01-01
It is investigated a gel-liquid crystal phase transition employing a two-state model equivalent to the Spin 1/2 Ising Model with applied magnetic field. The model is studied from the standpoint of the cluster variational method of Kikuchi for cooperative phenomena. (M.W.O.) [pt
Long-range transverse Ising model built with dipolar condensates in two-well arrays
International Nuclear Information System (INIS)
Li, Yongyao; Pang, Wei; Xu, Jun; Lee, Chaohong; Malomed, Boris A; Santos, Luis
2017-01-01
Dipolar Bose–Einstein condensates in an array of double-well potentials realize an effective transverse Ising model with peculiar inter-layer interactions, that may result under proper conditions in an anomalous first-order ferromagnetic–antiferromagnetic phase transition, and non-trivial phases due to frustration. The considered setup allows as well for the study of Kibble–Zurek defect formation, whose kink statistics follows that expected from the universality class of the mean-field one-dimensional transverse Ising model. Furthermore, random occupation of each layer of the stack leads to random effective Ising interactions and local transverse fields, that may lead to the Anderson-like localization of imbalance perturbations. (paper)
Multi spin-flip dynamics: a solution of the one-dimensional Ising model
International Nuclear Information System (INIS)
Novak, I.
1990-01-01
The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs
Monte Carlo Simulations of Compressible Ising Models: Do We Understand Them?
Landau, D. P.; Dünweg, B.; Laradji, M.; Tavazza, F.; Adler, J.; Cannavaccioulo, L.; Zhu, X.
Extensive Monte Carlo simulations have begun to shed light on our understanding of phase transitions and universality classes for compressible Ising models. A comprehensive analysis of a Landau-Ginsburg-Wilson hamiltonian for systems with elastic degrees of freedom resulted in the prediction that there should be four distinct cases that would have different behavior, depending upon symmetries and thermodynamic constraints. We shall provide an account of the results of careful Monte Carlo simulations for a simple compressible Ising model that can be suitably modified so as to replicate all four cases.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
International Nuclear Information System (INIS)
Kepner, J.
1990-12-01
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs
Physics and financial economics (1776-2014): puzzles, Ising and agent-based models
Sornette, Didier
2014-06-01
This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.
Physics and financial economics (1776–2014): puzzles, Ising and agent-based models
International Nuclear Information System (INIS)
Sornette, Didier
2014-01-01
This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. (key issues reviews)
Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.
Sornette, Didier
2014-06-01
This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.
Exact solutions to plaquette Ising models with free and periodic boundaries
International Nuclear Information System (INIS)
Mueller, Marco; Johnston, Desmond A.; Janke, Wolfhard
2017-01-01
An anisotropic limit of the 3d plaquette Ising model, in which the plaquette couplings in one direction were set to zero, was solved for free boundary conditions by Suzuki (1972) , who later dubbed it the fuki-nuke, or “no-ceiling”, model. Defining new spin variables as the product of nearest-neighbour spins transforms the Hamiltonian into that of a stack of (standard) 2d Ising models and reveals the planar nature of the magnetic order, which is also present in the fully isotropic 3d plaquette model. More recently, the solution of the fuki-nuke model was discussed for periodic boundary conditions, which require a different approach to defining the product spin transformation, by Castelnovo et al. (2010) . We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.
Ising critical behaviour in the one-dimensional frustrated quantum XY model
International Nuclear Information System (INIS)
Granato, E.
1993-06-01
A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs
Zero-temperature renormalization of the 2D transverse Ising model
International Nuclear Information System (INIS)
Kamieniarz, G.
1982-08-01
A zero-temperature real-space renormalization-group method is applied to the transverse Ising model on planar hexagonal, triangular and quadratic lattices. The critical fields and the critical exponents describing low-field large-field transition are calculated. (author)
Annealed central limit theorems for the ising model on random graphs
Giardinà, C.; Giberti, C.; van der Hofstad, R.W.; Prioriello, M.L.
2016-01-01
The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by √N of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration
Finite cluster renormalization and new two step renormalization group for Ising model
International Nuclear Information System (INIS)
Benyoussef, A.; El Kenz, A.
1989-09-01
New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs
First steps towards a state classification in the random-field Ising model
International Nuclear Information System (INIS)
Basso, Vittorio; Magni, Alessandro; Bertotti, Giorgio
2006-01-01
The properties of locally stable states of the random-field Ising model are studied. A map is defined for the dynamics driven by the field starting from a locally stable state. The fixed points of the map are connected with the limit hysteresis loops that appear in the classification of the states
Monte Carlo simulation of Ising models by multispin coding on a vector computer
Wansleben, Stephan; Zabolitzky, John G.; Kalle, Claus
1984-11-01
Rebbi's efficient multispin coding algorithm for Ising models is combined with the use of the vector computer CDC Cyber 205. A speed of 21.2 million updates per second is reached. This is comparable to that obtained by special- purpose computers.
Exact solution of an Ising model with competing interactions on a Cayley tree
Ganikhodjaev, N N; Wahiddin, M R B
2003-01-01
The exact solution of an Ising model with competing restricted interactions on the Cayley tree, and in the absence of an external field is presented. A critical curve is defined where it is possible to get phase transitions above it, and a single Gibbs state is obtained elsewhere.
Lifshitz-Allen-Cahn domain-growth kinetics of Ising models with conserved density
DEFF Research Database (Denmark)
Fogedby, Hans C.; Mouritsen, Ole G.
1988-01-01
The domain-growth kinetics of p=fourfold degenerate (2×1) ordering in two-dimensional Ising models with conserved density is studied as a function of temperature and range of Kawasaki spin exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for nearest-nei...
Dynamics of the two-dimensional directed Ising model in the paramagnetic phase
Godrèche, C.; Pleimling, M.
2014-05-01
We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.
Dynamic of Ising model with transverse field for two coupled sublattices in disordered phase
International Nuclear Information System (INIS)
Sa Motta, C.E.H. de.
1984-02-01
The dynamics of the two coupled sublattices tridimensional Ising model in a transverse field was studied by means of a continued fraction expansion for coupled operators. The static Correlation Functions necessary for studying the dynamics were calculated with the Green's Functions Method in the Random Phase Approximation (RPA). The spectral function was calculated in the region T c → . (Author) [pt
Study on non-universal critical behaviour in Ising model with defects
International Nuclear Information System (INIS)
Guimaraes, L.G.
1986-01-01
One-dimensional quantum analogous of two-dimensional Ising models with line and step type linear defects are studied. The phenomenological renormalization group was approached using conformal invariance for relating critical exponent N sup(*) sub(H). Aiming to obtain the Hamiltonian diagonal, Lanczos tridiagonal method was used. (H.C.K.)
The dilute spin-one Ising model with both bilinear and biquadratic exchange interactions
International Nuclear Information System (INIS)
Saber, M.
1987-08-01
The influence of bond and site dilution on the two-dimensional spin-one Ising model on a honeycomb lattice is investigated. Temperature-concentration phase diagrams for fixed values of the ratio of bilinear and biquadratic exchange interactions are determined. (author). 7 refs, 3 figs
Magnetic properties of the three-dimensional Ising model with an interface amorphization
International Nuclear Information System (INIS)
Benyoussef, A.; El Kenz, A.; Saber, M.
1993-09-01
A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs
Modeling of the financial market using the two-dimensional anisotropic Ising model
Lima, L. S.
2017-09-01
We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.
Energy Technology Data Exchange (ETDEWEB)
Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)
2016-09-12
We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.
3D-Ising model as a string theory in three-dimensional euclidean space
International Nuclear Information System (INIS)
Sedrakyan, A.
1992-11-01
A three-dimensional string model is analyzed in the strong coupling regime. The contribution of surfaces with different topology to the partition function is essential. A set of corresponding models is discovered. Their critical indices, which depend on two integers (m,n) are calculated analytically. The critical indices of the three-dimensional Ising model should belong to this set. A possible connection with the chain of three dimensional lattice Pott's models is pointed out. (author) 22 refs.; 2 figs
Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field
International Nuclear Information System (INIS)
Keskin, M.; Canko, O.; Ertas, M.
2007-01-01
Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the time dependence of the average order parameter and the behavior of the average order parameter in a period, which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (continuous and discontinuous) of the transition is characterized by the dynamic order parameter. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and an ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction parameter
Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez
2017-11-01
Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.
An analysis of intergroup rivalry using Ising model and reinforcement learning
Zhao, Feng-Fei; Qin, Zheng; Shao, Zhuo
2014-01-01
Modeling of intergroup rivalry can help us better understand economic competitions, political elections and other similar activities. The result of intergroup rivalry depends on the co-evolution of individual behavior within one group and the impact from the rival group. In this paper, we model the rivalry behavior using Ising model. Different from other simulation studies using Ising model, the evolution rules of each individual in our model are not static, but have the ability to learn from historical experience using reinforcement learning technique, which makes the simulation more close to real human behavior. We studied the phase transition in intergroup rivalry and focused on the impact of the degree of social freedom, the personality of group members and the social experience of individuals. The results of computer simulation show that a society with a low degree of social freedom and highly educated, experienced individuals is more likely to be one-sided in intergroup rivalry.
Critical Behavior of the Annealed Ising Model on Random Regular Graphs
Can, Van Hao
2017-11-01
In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.
Single-file water as a one-dimensional Ising model
Energy Technology Data Exchange (ETDEWEB)
Koefinger, Juergen [Laboratory of Chemical Physics, Bldg 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Dellago, Christoph, E-mail: koefingerj@mail.nih.go [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)
2010-09-15
We show that single-file water in nanopores can be viewed as a one-dimensional (1D) Ising model, and we investigate, on the basis of this, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To achieve this, we use a recently developed dipole lattice model that accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as the sum of the effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the 1D Ising model, which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.
International Nuclear Information System (INIS)
Vasconcelos Dos Santos, R.J.; Coutinho, S.
1995-01-01
The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed
Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model
International Nuclear Information System (INIS)
Freitas, A.S.; Albuquerque, Douglas F. de; Fittipaldi, I.P.; Moreno, N.O.
2014-01-01
We study the phase diagram of Fe 1−q Al q alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane
Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model
Energy Technology Data Exchange (ETDEWEB)
Freitas, A.S. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Coordenadoria de Física, Instituto Federal de Sergipe, 49400-000 Lagarto, SE (Brazil); Albuquerque, Douglas F. de, E-mail: douglas@ufs.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Departamento de Matemática, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Fittipaldi, I.P. [Representação Regional do Ministério da Ciência, Tecnologia e Inovação no Nordeste - ReNE, 50740-540 Recife, PE (Brazil); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil)
2014-08-01
We study the phase diagram of Fe{sub 1−q}Al{sub q} alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane.
Tricriticality in the q-neighbor Ising model on a partially duplex clique.
Chmiel, Anna; Sienkiewicz, Julian; Sznajd-Weron, Katarzyna
2017-12-01
We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics [Phys. Rev. E 92, 052105 (2015)PLEEE81539-375510.1103/PhysRevE.92.052105] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding master equation. The existence of the second level changes dramatically the character of the phase transition. In the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q=3, discontinuous phase transition for q≥4, and for q=1 and q=2 the phase transition is not observed. On the other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for q=1 and q=2. Subsequently we introduce a partially duplex clique, parametrized by r∈[0,1], which allows us to tune the network from monoplex (r=0) to duplex (r=1). Such a generalized topology, in which a fraction r of all nodes appear on both levels, allows us to obtain the critical value of r=r^{*}(q) at which a tricriticality (switch from continuous to discontinuous phase transition) appears.
Monte Carlo method for critical systems in infinite volume: The planar Ising model.
Herdeiro, Victor; Doyon, Benjamin
2016-10-01
In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three-, and four-point of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.
Tightness of the Ising-Kac Model on the Two-Dimensional Torus
Hairer, Martin; Iberti, Massimo
2018-05-01
We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717-812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising-Kac model near criticality and characterise the law of the limit as the Φ ^4_2 measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131-1138, 1995) on Z^2, but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.
Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model
Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.
2018-04-01
While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.
Sampling algorithms for validation of supervised learning models for Ising-like systems
Portman, Nataliya; Tamblyn, Isaac
2017-12-01
In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).
International Nuclear Information System (INIS)
Tsallis, C.; Levy, S.V.F.
1979-05-01
Two different renormalization-group approaches are used to determine approximate solutions for the paramagnetic-ferromagnetic transition line of the square-lattice bond-dilute first-neighbour-interaction Ising model. (Author) [pt
Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model
International Nuclear Information System (INIS)
Hamer, C.J.; Barber, M.N.
1979-01-01
Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ
International Nuclear Information System (INIS)
Bachschmid-Romano, Ludovica; Opper, Manfred
2015-01-01
We study analytically the performance of a recently proposed algorithm for learning the couplings of a random asymmetric kinetic Ising model from finite length trajectories of the spin dynamics. Our analysis shows the importance of the nontrivial equal time correlations between spins induced by the dynamics for the speed of learning. These correlations become more important as the spin’s stochasticity is decreased. We also analyse the deviation of the estimation error (paper)
Two site spin correlation function in Bethe-Peierls approximation for Ising model
Energy Technology Data Exchange (ETDEWEB)
Kumar, D [Roorkee Univ. (India). Dept. of Physics
1976-07-01
Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.
The diluted tri-dimensional spin-one Ising model with crystal field interactions
International Nuclear Information System (INIS)
Saber, M.
1988-09-01
3D spin-one Ising models with nearest-neighbour ferromagnetic interactions with crystal-field exhibit tricritical behaviour. A new method that applies to a wide class of random systems is used to study the influence of site and bond dilution on this behaviour. We have calculated temperature-crystal-field-concentration phase diagrams and determined, in particular, the influence of dilution on the zero temperature tricritical temperature. (author). 10 refs, 8 figs
Schlittmeier, Sabine J; Weissgerber, Tobias; Kerber, Stefan; Fastl, Hugo; Hellbrück, Jürgen
2012-01-01
Background sounds, such as narration, music with prominent staccato passages, and office noise impair verbal short-term memory even when these sounds are irrelevant. This irrelevant sound effect (ISE) is evoked by so-called changing-state sounds that are characterized by a distinct temporal structure with varying successive auditory-perceptive tokens. However, because of the absence of an appropriate psychoacoustically based instrumental measure, the disturbing impact of a given speech or nonspeech sound could not be predicted until now, but necessitated behavioral testing. Our database for parametric modeling of the ISE included approximately 40 background sounds (e.g., speech, music, tone sequences, office noise, traffic noise) and corresponding performance data that was collected from 70 behavioral measurements of verbal short-term memory. The hearing sensation fluctuation strength was chosen to model the ISE and describes the percept of fluctuations when listening to slowly modulated sounds (f(mod) background sounds, the algorithm estimated behavioral performance data in 63 of 70 cases within the interquartile ranges. In particular, all real-world sounds were modeled adequately, whereas the algorithm overestimated the (non-)disturbance impact of synthetic steady-state sounds that were constituted by a repeated vowel or tone. Implications of the algorithm's strengths and prediction errors are discussed.
Quantum-information approach to the Ising model: Entanglement in chains of qubits
International Nuclear Information System (INIS)
Stelmachovic, Peter; Buzek, Vladimir
2004-01-01
Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin-1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin-1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter λ has a maximum around the point λ=1, and it monotonically decreases for large values of λ. We prove that in the limit λ→∞ this state is locally unitary equivalent to an N-partite Greenberger-Horn-Zeilinger state. We also analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenenergy (we denote this eigenstate as the X-state). This X-state exhibits the 'extreme' entanglement in a sense that an arbitrary subset A of k≤n qubits in the Ising chain composed of N=2n+1 qubits is maximally entangled with the remaining qubits (set B) in the chain. In addition, we prove that by performing a local operation just on the subset B, one can transform the X-state into a direct product of k singlets shared by the parties A and B. This property of the X-state can be utilized for new secure multipartite communication protocols
Effective field study of ising model on a double perovskite structure
Energy Technology Data Exchange (ETDEWEB)
Ngantso, G. Dimitri; El Amraoui, Y. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Benyoussef, A. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Center of Materials and Nanomaterials, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); El Kenz, A., E-mail: elkenz@fsr.ac.ma [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco)
2017-02-01
By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.
Effective field study of ising model on a double perovskite structure
International Nuclear Information System (INIS)
Ngantso, G. Dimitri; El Amraoui, Y.; Benyoussef, A.; El Kenz, A.
2017-01-01
By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.
Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
International Nuclear Information System (INIS)
Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston
2009-01-01
The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ=A + /A - , within the 3.5% and 7% of the Monte Carlo predictions, respectively
Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model
Ricateau, Hugo; Cugliandolo, Leticia F.; Picco, Marco
2018-01-01
We study, with numerical methods, the fractal properties of the domain walls found in slow quenches of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in the disordered phase have critical percolation fractal dimension over a wide range of length scales. We confirm that the system falls out of equilibrium at a temperature that depends on the cooling rate as predicted by the Kibble-Zurek argument and we prove that the dynamic growing length once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic scaling properties of the interface winding angle variance and we show that the crossover between critical Ising and critical percolation properties is determined by the growing length reached when the system fell out of equilibrium.
Semi-local invariance in Ising models with multi-spin interaction
International Nuclear Information System (INIS)
Lipowski, A.
1996-08-01
We examine implications of semi-local invariance in Ising models with multispin interaction. In ergodic models all spin-spin correlation functions vanish and the local symmetry is the same as in locally gauge-invariant models. The d = 3 model with four-spin interaction is nonergodic at low temperature but the magnetic symmetry remains unbroken. The d = 3 model with eight-spin interaction is ergodic but undergoes the phase transition and most likely its low-temperature phase is characterized by a nonlocal order parameter. (author). 7 refs, 1 fig
Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr
2008-06-15
We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f{sub 2}) phases, and the f{sub 2}+d, f{sub 2}+fq, fq+d, f{sub 2}+f{sub 1}+fq and f{sub 2}+fq+d, where f{sub 1} are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.
Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field
International Nuclear Information System (INIS)
Ertas, Mehmet; Canko, Osman; Keskin, Mustafa
2008-01-01
We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f 2 ) phases, and the f 2 +d, f 2 +fq, fq+d, f 2 +f 1 +fq and f 2 +fq+d, where f 1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters
Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field
Ertaş, Mehmet; Canko, Osman; Keskin, Mustafa
We extend our recent paper [M. Keskin, O. Canko, M. Ertaş, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered ( d) and the ferromagnetic-2 ( f2) phases, and the f2+ d, f2+ fq, fq+ d, f2+ f1+ fq and f2+ fq+ d, where f1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.
Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model
International Nuclear Information System (INIS)
Samin, Adib; Cao, Lei
2015-01-01
A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.
Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model
Energy Technology Data Exchange (ETDEWEB)
Samin, Adib; Cao, Lei
2015-10-01
A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.
El-Showk, Sheer; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro
2014-01-01
We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z2-even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension Delta_sigma=0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.
International Nuclear Information System (INIS)
Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.
2009-01-01
An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.
Monte Carlo Studies of Phase Separation in Compressible 2-dim Ising Models
Mitchell, S. J.; Landau, D. P.
2006-03-01
Using high resolution Monte Carlo simulations, we study time-dependent domain growth in compressible 2-dim ferromagnetic (s=1/2) Ising models with continuous spin positions and spin-exchange moves [1]. Spins interact with slightly modified Lennard-Jones potentials, and we consider a model with no lattice mismatch and one with 4% mismatch. For comparison, we repeat calculations for the rigid Ising model [2]. For all models, large systems (512^2) and long times (10^ 6 MCS) are examined over multiple runs, and the growth exponent is measured in the asymptotic scaling regime. For the rigid model and the compressible model with no lattice mismatch, the growth exponent is consistent with the theoretically expected value of 1/3 [1] for Model B type growth. However, we find that non-zero lattice mismatch has a significant and unexpected effect on the growth behavior.Supported by the NSF.[1] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, second ed. (Cambridge University Press, New York, 2005).[2] J. Amar, F. Sullivan, and R.D. Mountain, Phys. Rev. B 37, 196 (1988).
Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model
Mo, Qianxing
2010-01-29
ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.
Magnetization of the Ising model on the Sierpinski pastry-shell
Chame, Anna; Branco, N. S.
1992-02-01
Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.
Rigorous spin-spin correlation function of Ising model on a special kind of Sierpinski Carpets
International Nuclear Information System (INIS)
Yang, Z.R.
1993-10-01
We have exactly calculated the rigorous spin-spin correlation function of Ising model on a special kind of Sierpinski Carpets (SC's) by means of graph expansion and a combinatorial approach and investigated the asymptotic behaviour in the limit of long distance. The result show there is no long range correlation between spins at any finite temperature which indicates no existence of phase transition and thus finally confirms the conclusion produced by the renormalization group method and other physical arguments. (author). 7 refs, 6 figs
Critical properties of a ferroelectric superlattice described by a transverse spin-1/2 Ising model
International Nuclear Information System (INIS)
Tabyaoui, A; Saber, M; Baerner, K; Ainane, A
2007-01-01
The phase transition properties of a ferroelectric superlattice with two alternating layers A and B described by a transverse spin-1/2 Ising model have been investigated using the effective field theory within a probability distribution technique that accounts for the self spin correlation functions. The Curie temperature T c , polarization and susceptibility have been obtained. The effects of the transverse field and the ferroelectric and antiferroelectric interfacial coupling strength between two ferroelectric materials are discussed. They relate to the physical properties of antiferroelectric/ferroelectric superlattices
Learning and inference in a nonequilibrium Ising model with hidden nodes.
Dunn, Benjamin; Roudi, Yasser
2013-02-01
We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.
A theory of solving TAP equations for Ising models with general invariant random matrices
DEFF Research Database (Denmark)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-01-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....
The ground-state phase diagrams of the spin-3/2 Ising model
International Nuclear Information System (INIS)
Canko, Osman; Keskin, Mustafa
2003-01-01
The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes
Dimers and the Critical Ising Model on lattices of genus >1
International Nuclear Information System (INIS)
Costa-Santos, Ruben; McCoy, B.M.
2002-01-01
We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann surfaces
Approximating the Ising model on fractal lattices of dimension less than two
DEFF Research Database (Denmark)
Codello, Alessandro; Drach, Vincent; Hietanen, Ari
2015-01-01
We construct periodic approximations to the free energies of Ising models on fractal lattices of dimension smaller than two, in the case of a zero external magnetic field, based on the combinatorial method of Feynman and Vdovichenko. We show that the procedure is applicable to any fractal obtained...... with, possibly, arbitrary accuracy and paves the way for determination Tc of any fractal of dimension less than two. Critical exponents are more diffcult to determine since the free energy of any periodic approximation still has a logarithmic singularity at the critical point implying α = 0. We also...
International Nuclear Information System (INIS)
Zhang Ang-Hui; Li Xiao-Wen; Su Gui-Feng; Zhang Yi
2015-01-01
We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series. (paper)
Kovacs effect in the one-dimensional Ising model: A linear response analysis
Ruiz-García, M.; Prados, A.
2014-01-01
We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.
Ising model with competing axial interactions in the presence of a field
International Nuclear Information System (INIS)
Yokoi, C.S.O.; Salinas, S.R.A.; Coutinho Filho, M.D.
1980-09-01
A layered Ising model is studied with competing interactions between nearest and next-nearest layers in the presence of a magnetic field. The analysis is carried out in the mean-field approximation with one effective field for each layer. The high-temperature region is studied analytically. The low-temperature region is studied numerically. T-H phase diagrams are constructed, which exhibit a variety of modulated phases, for various values of the ratio of the strength of the competing interactions. Numerical evidence of the devil's staircase behavior is found either as a function of temperature or applied magnetic field. (Author) [pt
New estimates on various critical/universal quantities of the 3d Ising model
International Nuclear Information System (INIS)
Hasenbusch, M.
1998-01-01
We present estimates for the 3D Ising model on the cubic lattice, both regarding interface and bulk properties. We have results for the interface tension, in particular the amplitude σ 0 in the critical law σ=ρ 0 t μ , and for the universal combination R - =σξ 2 . Concerning the bulk properties, we estimate the specific heat universal amplitude ratio A + /A - , together with the exponent α, the nonsingular background of energy and specific heat at criticality, together with the exponent ν. There are also results for the universal combination f s ξ 3 , where f s is the singular part of the free energy. (orig.)
Numerical study of self-couplings in the broken phase of the lattice Ising model
International Nuclear Information System (INIS)
Munehisa, T.; Munehisa, Y.
1989-01-01
A Monte Carlo study of a one-component scalar Φ 4 model was made on a 10 4 hypercubic lattice in its Ising limit. We measured the renormalized mass and coupling of the three-point vertex in the spontaneously broken phase. By measuring them at non-zero momenta, we successfully settled problems caused by the finite vacuum expectation value of the scalar field. To suppress artificial fluctuation of observables, a uniform source was introduced. Our results are in good agreement with the one-loop relation between the vacuum expectation value, mass and the three-point coupling. (orig.)
Heat fluctuations in Ising models coupled with two different heat baths
Energy Technology Data Exchange (ETDEWEB)
Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy)
2008-08-22
Monte Carlo simulations of Ising models coupled to heat baths at two different temperatures are used to study a fluctuation relation for the heat exchanged between the two thermostats in a time {tau}. Different kinetics (single-spin-flip or spin-exchange Kawasaki dynamics), transition rates (Glauber or Metropolis), and couplings between the system and the thermostats have been considered. In every case the fluctuation relation is verified in the large {tau} limit, both in the disordered and in the low temperature phase. Finite-{tau} corrections are shown to obey a scaling behavior. (fast track communication)
The Ising model for prediction of disordered residues from protein sequence alone
International Nuclear Information System (INIS)
Lobanov, Michail Yu; Galzitskaya, Oxana V
2011-01-01
Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database
Flocking with discrete symmetry: The two-dimensional active Ising model.
Solon, A P; Tailleur, J
2015-10-01
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.
The Ising model in the scaling limit as model for the description of elementary particles
International Nuclear Information System (INIS)
Weinzierl, W.
1981-01-01
In this thesis a possible way is stepped over which starts from the derivation of a quantum field theory from simplest statistical degrees of freedom, as for instance in a two-level system. On a model theory, the Ising model in (1+1) dimensions the idea is explained. In this model theory two particle-interpretable quantum fields arise which can be constructed by a basic field which parametrizes the local dynamics in a simplest way. This so called proliferation is further examined. For the proliferation of the basic field a conserved quantity, a kind of parity is necessary. The stability of both particle fields is a consequence of this conservation law. For the identification of the ''particle-interpretable'' fields the propagators of the order and disorder parameter field are calculated and discussed. An effective Hamiltonian in this particle fields is calculated. As further aspect of this transition from the statistical system to quantum field theory the dimensional transmutation and the closely to this connected mass renormalization is examined. The relation between spin systems in the critical region and fermionic field theories is explained. Thereby it results that certain fermionic degrees of freedom of the spin system vanish in the scaling limit. The ''macroscopically'' relevant degrees of freedom constitute a relativistic Majorana field. (orig./HSI) [de
The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice
Heydenreich, Markus; Kolesnikov, Leonid
2018-04-01
We consider the ferromagnetic nearest-neighbor Ising model on regular trees (Bethe lattice), which is well-known to undergo a phase transition in the absence of an external magnetic field. The behavior of the model at critical temperature can be described in terms of various critical exponents; one of them is the critical 1-arm exponent ρ which characterizes the rate of decay of the (root) magnetization as a function of the distance to the boundary. The crucial quantity we analyze in this work is the thermal expectation of the root spin on a finite subtree, where the expected value is taken with respect to a probability measure related to the corresponding finite-volume Hamiltonian with a fixed boundary condition. The spontaneous magnetization, which is the limit of this thermal expectation in the distance between the root and the boundary (i.e., in the height of the subtree), is known to vanish at criticality. We are interested in a quantitative analysis of the rate of this convergence in terms of the critical 1-arm exponent ρ. Therefore, we rigorously prove that ⟨σ0⟩ n +, the thermal expectation of the root spin at the critical temperature and in the presence of the positive boundary condition, decays as ⟨σ0 ⟩ n +≈n-1/2 (in a rather sharp sense), where n is the height of the tree. This establishes the 1-arm critical exponent for the Ising model on regular trees (ρ =1/2 ).
Correspondence between spanning trees and the Ising model on a square lattice
Viswanathan, G. M.
2017-06-01
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T (z ) gives the spanning tree constant when evaluated at z =1 , while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z (K ) of the Ising model evaluated at the critical temperature K =Kc is related to T (1 ) . Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K ) s e c h 2 K ] 2=k exp[T (k )] , where k =2 tanh(2 K )s e c h (2 K ) . The identical Mahler measure connects the two seemingly disparate quantities T (z ) and Z (K ) . In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Q-deformed Grassmann field and the two-dimensional Ising model
International Nuclear Information System (INIS)
Bugrij, A.I.; Shadura, V.N.
1994-01-01
In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs
The Ising model: from elliptic curves to modular forms and Calabi-Yau equations
International Nuclear Information System (INIS)
Bostan, A; Boukraa, S; Hassani, S; Zenine, N; Van Hoeij, M; Maillard, J-M; Weil, J-A
2011-01-01
We show that almost all the linear differential operators factors obtained in the analysis of the n-particle contributions of the susceptibility of the Ising model for n ≤ 6 are linear differential operators associated with elliptic curves. Beyond the simplest differential operators factors which are homomorphic to symmetric powers of the second order operator associated with the complete elliptic integral E, the second and third order differential operators Z 2 , F 2 , F 3 , L-tilde 3 can actually be interpreted as modular forms of the elliptic curve of the Ising model. A last order-4 globally nilpotent linear differential operator is not reducible to this elliptic curve, modular form scheme. This operator is shown to actually correspond to a natural generalization of this elliptic curve, modular form scheme, with the emergence of a Calabi-Yau equation, corresponding to a selected 4 F 3 hypergeometric function. This hypergeometric function can also be seen as a Hadamard product of the complete elliptic integral K, with a remarkably simple algebraic pull-back (square root extension), the corresponding Calabi-Yau fourth order differential operator having a symplectic differential Galois group SP(4,C). The mirror maps and higher order Schwarzian ODEs, associated with this Calabi-Yau ODE, present all the nice physical and mathematical ingredients we had with elliptic curves and modular forms, in particular an exact (isogenies) representation of the generators of the renormalization group, extending the modular group SL(2,Z) to a GL(2,Z) symmetry group.
Testing ground for fluctuation theorems: The one-dimensional Ising model
Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.
2018-04-01
In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.
Magnetization plateaus and phase diagrams of the Ising model on the Shastry–Sutherland lattice
Energy Technology Data Exchange (ETDEWEB)
Deviren, Seyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr
2015-11-01
The magnetization properties of a two-dimensional spin-1/2 Ising model on the Shastry–Sutherland lattice are studied within the effective-field theory (EFT) with correlations. The thermal behavior of the magnetizations is investigated in order to characterize the nature (the first- or second-order) of the phase transitions as well as to obtain the phase diagrams of the model. The internal energy, specific heat, entropy and free energy of the system are also examined numerically as a function of the temperature in order to confirm the stability of the phase transitions. The applied field dependence of the magnetizations is also examined to find the existence of the magnetization plateaus. For strong enough magnetic fields, several magnetization plateaus are observed, e.g., at 1/9, 1/8, 1/3 and 1/2 of the saturation. The phase diagrams of the model are constructed in two different planes, namely (h/|J|, |J′|/|J|) and (h/|J|, T/|J|) planes. It was found that the model exhibits first- and second-order phase transitions; hence tricitical point is also observed in additional to the zero-temperature critical point. Moreover the Néel order (N), collinear order (C) and ferromagnetic (F) phases are also found with appropriate values of the system parameters. The reentrant behavior is also obtained whenever model displays two Néel temperatures. These results are compared with some theoretical and experimental works and a good overall agreement has been obtained. - Highlights: • Magnetization properties of spin-1/2 Ising model on SS lattice are investigated. • The magnetization plateaus of the 1/9, 1/8, 1/3 and 1/2 are observed. • The phase diagrams of the model are constructed in two different planes. • The model exhibits the tricitical and zero-temperature critical points. • The reentrant behavior is obtained whenever model displays two Neel temperatures.
The high-temperature expansion of the classical Ising model with Sz2 term
Directory of Open Access Journals (Sweden)
M.T. Thomaz
2012-03-01
Full Text Available We derive the high-temperature expansion of the Helmholtz free energy up to order β17 of the one-dimensional spin-S Ising model, with single-ion anisotropy term, in the presence of a longitudinal magnetic field. We show that the values of some thermodynamical functions for the ferromagnetic models, in the presence of a weak magnetic field, are not small corrections to their values with h=0. This model with S=3 was applied by Kishine et al. [J.-i. Kishine et al., Phys. Rev. B, 2006, 74, 224419] to analyze experimental data of the single-chain magnet [Mn (saltmen]2 [Ni(pac2 (py2] (PF62 for T<40 K. We show that for T<35 K the thermodynamic functions of the large-spin limit model are poor approximations to their analogous spin-3 functions.
Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model
International Nuclear Information System (INIS)
Deng Dongling; Gu Shijian; Chen Jingling
2010-01-01
Recently Seevinck and Uffink argued that genuine multipartite entanglement (GME) had not been established in the experiments designed to confirm GME. In this paper, we use the Bell-type inequalities introduced by Seevinck and Svetlichny [M. Seevinck, G. Svetlichny, Phys. Rev. Lett. 89 (2002) 060401] to investigate the GME problem in the one-dimensional transverse-field Ising model. We show explicitly that the ground states of this model violate the inequality when the external transverse magnetic field is weak, which indicate that the ground states in this model with weak magnetic field are fully entangled. Since this model can be simulated with nuclear magnetic resonance, our results provide a fresh approach to experimental test of GME.
de Albuquerque, Douglas F.; Fittipaldi, I. P.
1994-05-01
A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.
A hidden Ising model for ChIP-chip data analysis
Mo, Q.
2010-01-28
Motivation: Chromatin immunoprecipitation (ChIP) coupled with tiling microarray (chip) experiments have been used in a wide range of biological studies such as identification of transcription factor binding sites and investigation of DNA methylation and histone modification. Hidden Markov models are widely used to model the spatial dependency of ChIP-chip data. However, parameter estimation for these models is typically either heuristic or suboptimal, leading to inconsistencies in their applications. To overcome this limitation and to develop an efficient software, we propose a hidden ferromagnetic Ising model for ChIP-chip data analysis. Results: We have developed a simple, but powerful Bayesian hierarchical model for ChIP-chip data via a hidden Ising model. Metropolis within Gibbs sampling algorithm is used to simulate from the posterior distribution of the model parameters. The proposed model naturally incorporates the spatial dependency of the data, and can be used to analyze data with various genomic resolutions and sample sizes. We illustrate the method using three publicly available datasets and various simulated datasets, and compare it with three closely related methods, namely TileMap HMM, tileHMM and BAC. We find that our method performs as well as TileMap HMM and BAC for the high-resolution data from Affymetrix platform, but significantly outperforms the other three methods for the low-resolution data from Agilent platform. Compared with the BAC method which also involves MCMC simulations, our method is computationally much more efficient. Availability: A software called iChip is freely available at http://www.bioconductor.org/. Contact: moq@mskcc.org. © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.
Quantum Ising model in transverse and longitudinal fields: chaotic wave functions
International Nuclear Information System (INIS)
Atas, Y Y; Bogomolny, E
2017-01-01
The construction of a statistical model for eigenfunctions of the Ising model in transverse and longitudinal fields is discussed in detail for the chaotic case. When the number of spins is large, each wave function coefficient has the Gaussian distribution with zero mean and variance calculated from the first two moments of the Hamiltonian. The main part of the paper is devoted to the discussion of various corrections to the asymptotic result. One type of correction is related to higher order moments of the Hamiltonian, and can be taken into account by Gibbs-like formulae. Other corrections are due to symmetry contributions, which manifest as different numbers of non-zero real and complex coefficients. The statistical model with these corrections included agrees well with numerical calculations of wave function moments. (paper)
Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction
International Nuclear Information System (INIS)
Wang Qiong; He Zhi; Yao Chun-Mei
2015-01-01
We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. (paper)
The Landau-Lifshitz equation describes the Ising spin correlation function in the free-fermion model
Rutkevich, S B
1998-01-01
We consider time and space dependence of the Ising spin correlation function in a continuous one-dimensional free-fermion model. By the Ising spin we imply the 'sign' variable, which takes alternating +-1 values in adjacent domains bounded by domain walls (fermionic world paths). The two-point correlation function is expressed in terms of the solution of the Cauchy problem for a nonlinear partial differential equation, which is proved to be equivalent to the exactly solvable Landau-Lifshitz equation. A new zero-curvature representation for this equation is presented. In turn, the initial condition for the Cauchy problem is given by the solution of a nonlinear ordinary differential equation, which has also been derived. In the Ising limit the above-mentioned partial and ordinary differential equations reduce to the sine-Gordon and Painleve III equations, respectively. (author)
Mixed spin Ising model with four-spin interaction and random crystal field
International Nuclear Information System (INIS)
Benayad, N.; Ghliyem, M.
2012-01-01
The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.
DEFF Research Database (Denmark)
Høst-Madsen, Anders; Shah, Peter Jivan; Hansen, Torben
1987-01-01
Computer-simulation techniques are used to study the domain-growth kinetics of (2×1) ordering in a two-dimensional Ising model with nonconserved order parameter and with variable ratio α of next-nearest- and nearest-neighbor interactions. At zero temperature, persistent growth characterized...
Energy Technology Data Exchange (ETDEWEB)
Antal, T [Physics Department, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH 1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest, Pazmany setany 1/a (Hungary)
2004-02-06
Finite-size scaling functions are investigated both for the mean-square magnetization fluctuations and for the probability distribution of the magnetization in the one-dimensional Ising model. The scaling functions are evaluated in the limit of the temperature going to zero (T {yields} 0), the size of the system going to infinity (N {yields} {infinity}) while N[1 - tanh(J/k{sub B}T)] is kept finite (J being the nearest neighbour coupling). Exact calculations using various boundary conditions (periodic, antiperiodic, free, block) demonstrate explicitly how the scaling functions depend on the boundary conditions. We also show that the block (small part of a large system) magnetization distribution results are identical to those obtained for free boundary conditions.
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Pini, Maria Gloria; Rettori, Angelo
1993-08-01
The thermodynamical properties of an alternating spin (S,s) one-dimensional (1D) Ising model with competing nearest- and next-nearest-neighbor interactions are exactly calculated using a transfer-matrix technique. In contrast to the case S=s=1/2, previously investigated by Harada, the alternation of different spins (S≠s) along the chain is found to give rise to two-peaked static structure factors, signaling the coexistence of different short-range-order configurations. The relevance of our calculations with regard to recent experimental data by Gatteschi et al. in quasi-1D molecular magnetic materials, R (hfac)3 NITEt (R=Gd, Tb, Dy, Ho, Er, . . .), is discussed; hfac is hexafluoro-acetylacetonate and NlTEt is 2-Ethyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide.
International Nuclear Information System (INIS)
Battistin, C; Roudi, Y; Hertz, J; Tyrcha, J
2015-01-01
We propose a new algorithm for inferring the state of hidden spins and reconstructing the connections in a synchronous kinetic Ising model, given the observed history. Focusing on the case in which the hidden spins are conditionally independent of each other given the state of observable spins, we show that calculating the likelihood of the data can be simplified by introducing a set of replicated auxiliary spins. Belief propagation (BP) and susceptibility propagation (SusP) can then be used to infer the states of hidden variables and to learn the couplings. We study the convergence and performance of this algorithm for networks with both Gaussian-distributed and binary bonds. We also study how the algorithm behaves as the fraction of hidden nodes and the amount of data are changed, showing that it outperforms the Thouless–Anderson–Palmer (TAP) equations for reconstructing the connections. (paper)
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Quantum dynamics in transverse-field Ising models from classical networks
Directory of Open Access Journals (Sweden)
Markus Schmitt, Markus Heyl
2018-02-01
Full Text Available The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.
Frozen into stripes: fate of the critical Ising model after a quench.
Blanchard, T; Picco, M
2013-09-01
In this article we study numerically the final state of the two-dimensional ferromagnetic critical Ising model after a quench to zero temperature. Beginning from equilibrium at T_{c}, the system can be blocked in a variety of infinitely long lived stripe states in addition to the ground state. Similar results have already been obtained for an infinite temperature initial condition and an interesting connection to exact percolation crossing probabilities has emerged. Here we complete this picture by providing an example of stripe states precisely related to initial crossing probabilities for various boundary conditions. We thus show that this is not specific to percolation but rather that it depends on the properties of spanning clusters in the initial state.
Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model
O'Brien, Edward; Fendley, Paul
2018-05-01
We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
Transverse spin correlations of the random transverse-field Ising model
Iglói, Ferenc; Kovács, István A.
2018-03-01
The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.
Self-organization of domain growth in the Ising model with impurities
DEFF Research Database (Denmark)
Andersen, Jørgen Vitting; Mouritsen, Ole G.
1992-01-01
We have studied avalanchelike rearrangements of domain patterns in the two-dimensional Ising model with static impurities, which is quenched to low temperatures. When breaking the up-down symmetry of the spins by a small applied field, the mere fluctuation of a single spin eventually results...... in a cascade of spin flips at the domain boundaries. We have analyzed the lifetime and size distribution functions for the avalanches and related the results to the general phenomena of self-organized criticality and to recent experiments on cellular magnetic domain patterns in magnetic garnet films. Our...... results suggest that the self-organized state in this system appears to be subcritical, in agreement with a recent theory....
Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field
International Nuclear Information System (INIS)
Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.
2005-01-01
The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field
Cluster-cluster correlations in the two-dimensional stationary Ising-model
International Nuclear Information System (INIS)
Klassmann, A.
1997-01-01
In numerical integration of the Cahn-Hillard equation, which describes Oswald rising in a two-phase matrix, N. Masbaum showed that spatial correlations between clusters scale with respect to the mean cluster size (itself a function of time). T. B. Liverpool showed by Monte Carlo simulations for the Ising model that the analogous correlations have a similar form. Both demonstrated that immediately around each cluster there is some depletion area followed by something like a ring of clusters of the same size as the original one. More precisely, it has been shown that the distribution of clusters around a given cluster looks like a sinus-curve decaying exponentially with respect to the distance to a constant value
International Nuclear Information System (INIS)
Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko
2009-01-01
The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.
Nonasymptotic form of the recursion relations of the three-dimensional Ising model
International Nuclear Information System (INIS)
Kozlovskii, M.P.
1989-01-01
Approximate recursion relations for the three-dimensional Ising model are obtained in the form of rapidly converging series. The representation of the recursion relations in the form of nonasymptotic series entails the abandonment of traditional perturbation theory based on a Gaussian measure density. The recursion relations proposed in the paper are used to calculate the critical exponent ν of the correlation length. It is shown that the difference form of the recursion relations leads, when higher non-Gaussian basis measures are used, to disappearance of a dependence of the critical exponent ν on s when s > 2 (s is the parameter of the division of the phase space into layers). The obtained results make it possible to calculate explicit expressions for the thermodynamic functions near the phase transition point
Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures
International Nuclear Information System (INIS)
Viteri, C. Ricardo; Tomita, Yu; Brown, Kenneth R.
2009-01-01
We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.
Dynamical response of the Ising model to the time dependent magnetic field with white noise
Akıncı, Ümit
2018-03-01
The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.
Finite-size-scaling analysis of subsystem data in the dilute Ising model
International Nuclear Information System (INIS)
Hennecke, M.
1993-01-01
Monte Carlo simulation results for the magnetization of subsystems of finite lattices are used to determine the critical temperature and a critical exponent of the simple-cubic Ising model with quenched site dilution, at a concentration of p=40%. Particular attention is paid to the effect of the finite size of the systems from which the subsystem results are obtained. This finiteness of the lattices involved is shown to be a source of large deviations of critical temperatures and exponents estimated from subsystem data from their values in the thermodynamic limit. By the use of different lattice sizes, the results T c (40%)=1.209±0.002 and ν(40%)=0.78±0.01 could be extrapolated
International Nuclear Information System (INIS)
Monthus, Cécile; Garel, Thomas
2012-01-01
To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)
Linking market interaction intensity of 3D Ising type financial model with market volatility
Fang, Wen; Ke, Jinchuan; Wang, Jun; Feng, Ling
2016-11-01
Microscopic interaction models in physics have been used to investigate the complex phenomena of economic systems. The simple interactions involved can lead to complex behaviors and help the understanding of mechanisms in the financial market at a systemic level. This article aims to develop a financial time series model through 3D (three-dimensional) Ising dynamic system which is widely used as an interacting spins model to explain the ferromagnetism in physics. Through Monte Carlo simulations of the financial model and numerical analysis for both the simulation return time series and historical return data of Hushen 300 (HS300) index in Chinese stock market, we show that despite its simplicity, this model displays stylized facts similar to that seen in real financial market. We demonstrate a possible underlying link between volatility fluctuations of real stock market and the change in interaction strengths of market participants in the financial model. In particular, our stochastic interaction strength in our model demonstrates that the real market may be consistently operating near the critical point of the system.
Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory
Directory of Open Access Journals (Sweden)
T. K. Das
2014-01-01
Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.
Comment on "Many-body localization in Ising models with random long-range interactions"
Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.
2017-11-01
This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)type="doi" specific-use="suppress-display">10.1103/PhysRevA.94.063625].
Evaluation of tranche in securitization and long-range Ising model
Kitsukawa, K.; Mori, S.; Hisakado, M.
2006-08-01
This econophysics work studies the long-range Ising model of a finite system with N spins and the exchange interaction J/N and the external field H as a model for homogeneous credit portfolio of assets with default probability Pd and default correlation ρd. Based on the discussion on the (J,H) phase diagram, we develop a perturbative calculation method for the model and obtain explicit expressions for Pd,ρd and the normalization factor Z in terms of the model parameters N and J,H. The effect of the default correlation ρd on the probabilities P(Nd,ρd) for Nd defaults and on the cumulative distribution function D(i,ρd) are discussed. The latter means the average loss rate of the“tranche” (layered structure) of the securities (e.g. CDO), which are synthesized from a pool of many assets. We show that the expected loss rate of the subordinated tranche decreases with ρd and that of the senior tranche increases linearly, which are important in their pricing and ratings.
Ferrimagnetism and compensation points in a decorated 3D Ising model
International Nuclear Information System (INIS)
Oitmaa, J.; Zheng, W.
2003-01-01
Full text: Ferrimagnets are materials where ions on different sublattices have opposing magnetic moments which do not exactly cancel even at zero temperature. An intriguing possibility then is the existence of a compensation point, below the Curie temperature, where the net moment changes sign. This has obvious technological significance. Most theoretical studies of such systems have used mean-field approaches, making it difficult to distinguish real properties of the model from artefacts of the approximation. For this reason a number of simpler models have been proposed, where treatments beyond mean-field theory are possible. Of particular interest are decorated systems, which can be mapped exactly onto simpler models and, in this way, either solved exactly or to a high degree of numerical precision. We use this approach to study a ferrimagnetic Ising system with spins 1/2 at the sites of a simple cubic lattice and spins S=1 or 3/2 located on the bonds. Our results, which are exact to high numerical precision, show a number of surprising and interesting features: for S=1 the possibility of zero, one or two compensation points, re-entrant behaviour, and up to three critical points; for S=3/2 always a simple critical point and zero or one compensation point
Finite-range-scaling analysis of metastability in an Ising model with long-range interactions
International Nuclear Information System (INIS)
Gorman, B.M.; Rikvold, P.A.; Novotny, M.A.
1994-01-01
We apply both a scalar field theory and a recently developed transfer-matrix method to study the stationary properties of metastability in a two-state model with weak, long-range interactions: the Nx∞ quasi-one-dimensional Ising model. Using the field theory, we find the analytic continuation f of the free energy across the first-order transition, assuming that the system escapes the metastable state by the nucleation of noninteracting droplets. We find that corrections to the field dependence are substantial, and, by solving the Euler-Lagrange equation for the model numerically, we have verified the form of the free-energy cost of nucleation, including the first correction. In the transfer-matrix method, we associate with the subdominant eigenvectors of the transfer matrix a complex-valued ''constrained'' free-energy density f α computed directly from the matrix. For the eigenvector with an associated magnetization most strongly opposed to the applied magnetic field, f α exhibits finite-range scaling behavior in agreement with f over a wide range of temperatures and fields, extending nearly to the classical spinodal. Some implications of these results for numerical studies of metastability are discussed
Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures
Abeling, Nils; Kehrein, Stefan
The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).
Directory of Open Access Journals (Sweden)
D.Ivaneyko
2005-01-01
Full Text Available We apply numerical simulations to study of the criticality of the 3D Ising model with random site quenched dilution. The emphasis is given to the issues not being discussed in detail before. In particular, we attempt a comparison of different Monte Carlo techniques, discussing regions of their applicability and advantages/disadvantages depending on the aim of a particular simulation set. Moreover, besides evaluation of the critical indices we estimate the universal ratio Γ+/Γ- for the magnetic susceptibility critical amplitudes. Our estimate Γ+/Γ- = 1.67 ± 0.15 is in a good agreement with the recent MC analysis of the random-bond Ising model giving further support that both random-site and random-bond dilutions lead to the same universality class.
Energy Technology Data Exchange (ETDEWEB)
Mukhamedov, Farrukh, E-mail: far75m@yandex.ru, E-mail: farrukh.m@uaeu.ac.ae [International Islamic University Malaysia, Department of Computational and Theoretical Sciences, Faculty of Science (Malaysia); Barhoumi, Abdessatar, E-mail: abdessatar.barhoumi@ipein.rnu.tn [Carthage University, Department of Mathematics, Nabeul Preparatory Engineering Institute (Tunisia); Souissi, Abdessatar, E-mail: s.abdessatar@hotmail.fr [Carthage University, Department of Mathematics, Marsa Preparatory Institute for Scientific and Technical Studies (Tunisia)
2016-12-15
It is known that the disordered phase of the classical Ising model on the Caley tree is extreme in some region of the temperature. If one considers the Ising model with competing interactions on the same tree, then about the extremity of the disordered phase there is no any information. In the present paper, we first aiming to analyze the correspondence between Gibbs measures and QMC’s on trees. Namely, we establish that states associated with translation invariant Gibbs measures of the model can be seen as diagonal quantum Markov chains on some quasi local algebra. Then as an application of the established correspondence, we study some algebraic property of the disordered phase of the Ising model with competing interactions on the Cayley tree of order two. More exactly, we prove that a state corresponding to the disordered phase is not quasi-equivalent to other states associated with translation invariant Gibbs measures. This result shows how the translation invariant states relate to each other, which is even a new phenomena in the classical setting. To establish the main result we basically employ methods of quantum Markov chains.
Quantum correlated cluster mean-field theory applied to the transverse Ising model.
Zimmer, F M; Schmidt, M; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Test of quantum thermalization in the two-dimensional transverse-field Ising model.
Blaß, Benjamin; Rieger, Heiko
2016-12-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.
The square lattice Ising model on the rectangle II: finite-size scaling limit
Hucht, Alfred
2017-06-01
Based on the results published recently (Hucht 2017 J. Phys. A: Math. Theor. 50 065201), the universal finite-size contributions to the free energy of the square lattice Ising model on the L× M rectangle, with open boundary conditions in both directions, are calculated exactly in the finite-size scaling limit L, M\\to∞ , T\\to Tc , with fixed temperature scaling variable x\\propto(T/Tc-1)M and fixed aspect ratio ρ\\propto L/M . We derive exponentially fast converging series for the related Casimir potential and Casimir force scaling functions. At the critical point T=Tc we confirm predictions from conformal field theory (Cardy and Peschel 1988 Nucl. Phys. B 300 377, Kleban and Vassileva 1991 J. Phys. A: Math. Gen. 24 3407). The presence of corners and the related corner free energy has dramatic impact on the Casimir scaling functions and leads to a logarithmic divergence of the Casimir potential scaling function at criticality.
Phase transitions in an Ising model for monolayers of coadsorbed atoms
International Nuclear Information System (INIS)
Lee, H.H.; Landau, D.P.
1979-01-01
A Monte Carlo method is used to study a simple S=1 Ising (lattice-gas) model appropriate for monolayers composed of two kinds of atoms on cubic metal substrates H = K/sub nn/ Σ/sub nn/ S 2 /sub i/zS 2 /sub j/z + J/sub nnn/ Σ/sub nnn/ S/sub i/zS/sub j/z + Δ Σ/sub i/ S 2 /sub i/z (where nn denotes nearest-neighbor and nnn next-nearest-neighbor pairs). The phase diagram is determined over a wide range of Δ and T for K/sub nn//J/sub nnn/=1/4. For small (or negative) Δ we find an antiferromagnetic 2 x 1 ordered phase separated from the disordered state by a line of second-order phase transitions. The 2 x 1 phase is separated by a line of first-order transitions from a c (2 x 2) phase which appears for larger Δ. The 2 x 1 and c (2 x 2) phases become simultaneously critical at a bicritical point and the phase boundary of the c (2 x 2) → disordered transition shows a tricritical point
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
High order Fuchsian equations for the square lattice Ising model: χ-tilde(5)
International Nuclear Information System (INIS)
Bostan, A; Boukraa, S; Guttmann, A J; Jensen, I; Hassani, S; Zenine, N; Maillard, J-M
2009-01-01
We consider the Fuchsian linear differential equation obtained (modulo a prime) for χ-tilde (5) , the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the corresponding linear differential operator from calculations using just a single prime. A particular linear combination of χ-tilde (1) and χ-tilde (3) can be removed from χ-tilde (5) and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth-order linear differential operator occurs as the left-most factor of the 'depleted' differential operator and it is shown to be equivalent to the symmetric fourth power of L E , the linear differential operator corresponding to the elliptic integral E. This result generalizes what we have found for the lower order terms χ-tilde (3) and χ-tilde (4) . We conjecture that a linear differential operator equivalent to a symmetric (n - 1) th power of L E occurs as a left-most factor in the minimal order linear differential operators for all χ-tilde (n) 's
Approximate critical surface of the bond-mixed square-lattice Ising model
International Nuclear Information System (INIS)
Levy, S.V.F.; Tsallis, C.; Curado, E.M.F.
1979-09-01
The critical surface of the quenched bond-mixed square-lattice spin-1/2 first-neighbour-interaction ferromagnetic Ising model (with exchange interactions J 1 and J 2 ) has been investigated. Through renormalization group and heuristical procedures, a very accurate (error inferior to 3x10 -4 in the variables t sub(i) = th (J sub(i)/k sub(b)T)) approximate numerical proposal for all points of this surface is presented. This proposal simultaneously satisfies all the available exact results concerning the surface, namely P sub(c) = 1/2, t sub(c) = √2 - 1, both limiting slopes in these points, and t 2 = (1-t 1 )/(1+t 1 ) for p = 1/2. Furthemore an analytic approximation (namely (1 - p) 1n(1 + t 1 ) + p 1n(1 + t 2 ) =(1/2)1n 2) is also proposed. In what concerns the available exact results, it only fails in reproducing one of the two limiting slopes, where there is an error of 1% in the derivative: these facts result in an estimated error less than 10 -3 (in the t-variables) for any points in the surface. (Author) [pt
Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model
International Nuclear Information System (INIS)
Atitoaie, Alexandru; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian
2014-01-01
Recent developments in the synthesis and characterization of spin crossover (SCO) nanoparticles and their prospects of switching at molecular level turned these bistable compounds into possible candidates for replacing the materials used in recording media industry for development of solid state pressure and temperature sensors or for bringing contributions in engineering. Compared to bulk samples with the same chemical structure, SCO nanoparticles display different characteristics of the hysteretic and relaxation properties like the shift of the transition temperature towards lower values along with decrease of the hysteresis width with nanoparticles size. Using an Ising-like model with specific boundary conditions within a Monte Carlo procedure, we here reproduce most of the hysteretic properties of SCO nanoparticles by considering the interaction between spin crossover edge molecules and embedding surfactant molecules and we propose a complex analysis concerning the effect of the interactions and sizes during the thermal transition in systems of SCO nanoparticles by using the First Order Reversal Curves diagram method and by comparison with similar effects in mixed crystal systems. - Highlights: • The influence of size effects in spin crossover nanoparticles is analyzed. • The environment shifts the hysteresis loop towards lower temperatures. • First Order Reversal Curves technique is employed. • One determines the distributions of switching temperatures. • One disentangles between kinetics and non-kinetic parts of the hysteresis
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Elementary excitations and the phase transition in the bimodal Ising spin glass model
International Nuclear Information System (INIS)
Jinuntuya, N; Poulter, J
2012-01-01
We show how the nature of the phase transition in the two-dimensional bimodal Ising spin glass model can be understood in terms of elementary excitations. Although the energy gap with the ground state is expected to be 4J in the ferromagnetic phase, a gap 2J is in fact found if the finite lattice is wound around a cylinder of odd circumference L. This 2J gap is really a finite size effect that should not occur in the thermodynamic limit of the ferromagnet. The spatial influence of the frustration must be limited and not wrap around the system if L is large enough. In essence, the absence of 2J excitations defines the ferromagnetic phase without recourse to calculating the magnetization or investigating the system response to domain wall defects. This study directly investigates the response to temperature. We also estimate the defect concentration where the phase transition to the spin glass state occurs. The value p c = 0.1045(11) is in reasonable agreement with the literature
Fluctuation relations in non-equilibrium stationary states of Ising models
Energy Technology Data Exchange (ETDEWEB)
Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy); Pelizzola, A [Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, and CNISM, Politecnico di Torino, c. Duca degli Abruzzi 24, 10129 Torino (Italy)
2009-01-15
Fluctuation relations for the entropy production in non-equilibrium stationary states of Ising models are investigated by means of Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, considering different kinetic rules and couplings with the baths, the behaviors of the probability distributions of the heat exchanged in time {tau} with the thermostats, both in the disordered phase and in the low temperature phase, are discussed. The fluctuation relation is always followed in the large {tau} limit and deviations from linear response theory are observed. Finite {tau} corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath, but work is done by shearing it. Also for this system, using the statistics collected for the mechanical work we show the validity of the fluctuation relation and the preasymptotic corrections behave analogously to those for the case with two baths.
de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine
2018-03-01
We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.
Degenerate Ising model for atomistic simulation of crystal-melt interfaces
International Nuclear Information System (INIS)
Schebarchov, D.; Schulze, T. P.; Hendy, S. C.
2014-01-01
One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level
Degenerate Ising model for atomistic simulation of crystal-melt interfaces
Energy Technology Data Exchange (ETDEWEB)
Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)
2014-02-21
One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.
Kiely, Thomas G.; Freericks, J. K.
2018-02-01
In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.
Generation of Control by SU(2) Reduction for the Anisotropic Ising Model
International Nuclear Information System (INIS)
Delgado, F
2016-01-01
Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed. (paper)
Exact solution of the Ising model in a fully frustrated two-dimensional lattice
International Nuclear Information System (INIS)
Silva, N.R. da; Medeiros e Silva Filho, J.
1983-01-01
A straightforward extension of the Onsager method allows us to solve exactly the Ising problem in a fully frustated square lattice in the absence of external magnetic field. It is shown there is no singularity in the thermodynamic functions for non-zero temperature. (Author) [pt
From tricritical Ising to critical Ising by thermodynamic Bethe ansatz
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1991-01-01
A simple factorized scattering theory is suggested for the massless Goldstone fermions of the trajectory flowing from the tricritical Ising fixed point to the critical Ising one. The thermodynamic Bethe ansatz approach is applied to this scattering theory to support its interpretation both analytically and numerically. As a generalization a sequence of massless TBA systems is proposed which seems relevant for the trajectories interpolating between two successive minimal CFT models M p and M p-1 . (orig.)
Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study
Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.
2017-08-01
The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.
International Nuclear Information System (INIS)
Colomo, F.; Mussardo, G.
1992-01-01
In this paper, the authors compute the S matrix of the tricritical Ising model perturbed by the subleading magnetic operator using Smirnov's RSOS reduction of the Izergin-Korepin model. The massive model contains kink excitations which interpolate between two degenerate asymmetric vacua. As a consequence of the different structure of the two vacua, the crossing symmetry is implemented in a nontrivial way. The authors use finite-size techniques to compare their results with the numerical data obtained by the truncated conformal space approach and find good agreement
DEFF Research Database (Denmark)
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2012-01-01
The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove that they......The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove...... that they exhibit no spontaneous magnetization. Furthermore, the values of the Hausdorff and spectral dimensions of the underlying trees are calculated and found to be, respectively,¯dh =2 and¯ds = 4/3....
International Nuclear Information System (INIS)
Bouttier, J; Francesco, P Di; Guitter, E
2007-01-01
We introduce Eulerian maps with blocked edges as a general way to implement statistical matter models on random maps by a modification of intrinsic distances. We show how to code these dressed maps by means of mobiles, i.e. decorated trees with labelled vertices, leading to a closed system of recursion relations for their generating functions. We discuss particular solvable cases in detail, as well as various applications of our method to several statistical systems such as spanning trees on quadrangulations, mutually excluding particles on Eulerian triangulations or the Ising model on quadrangulations
Minimal duality breaking in the Kallen-Lehman approach to 3D Ising model: A numerical test
International Nuclear Information System (INIS)
Astorino, Marco; Canfora, Fabrizio; Martinez, Cristian; Parisi, Luca
2008-01-01
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed
LeVine, Michael V; Weinstein, Harel
2015-05-01
In performing their biological functions, molecular machines must process and transmit information with high fidelity. Information transmission requires dynamic coupling between the conformations of discrete structural components within the protein positioned far from one another on the molecular scale. This type of biomolecular "action at a distance" is termed allostery . Although allostery is ubiquitous in biological regulation and signal transduction, its treatment in theoretical models has mostly eschewed quantitative descriptions involving the system's underlying structural components and their interactions. Here, we show how Ising models can be used to formulate an approach to allostery in a structural context of interactions between the constitutive components by building simple allosteric constructs we termed Allosteric Ising Models (AIMs). We introduce the use of AIMs in analytical and numerical calculations that relate thermodynamic descriptions of allostery to the structural context, and then show that many fundamental properties of allostery, such as the multiplicative property of parallel allosteric channels, are revealed from the analysis of such models. The power of exploring mechanistic structural models of allosteric function in more complex systems by using AIMs is demonstrated by building a model of allosteric signaling for an experimentally well-characterized asymmetric homodimer of the dopamine D2 receptor.
International Nuclear Information System (INIS)
Jullien, R.; Pfeuty, P.; Fields, J.N.; Doniach, S.
1978-01-01
A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising model with a transverse field in one dimension. The transition between the low-field and high-field regimes is studied. Magnetization components, spin correlation functions, and critical exponents are derived and checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure yields more accurate results, especially for the critical ''magnetic'' exponents near the transition
International Nuclear Information System (INIS)
Zimmer, F.M.; Magalhaes, S.G.
2007-01-01
The one-step replica symmetry breaking is used to study the competition between spin glass (SG) and antiferromagnetic order (AF) in two-sublattice fermionic Ising SG models in the presence of a transverse Γ and a parallel H magnetic fields. Inter- and intra-sublattice exchange interactions following Gaussian distributions are considered. The problem is formulated in a Grassmann path integral formalism within the static ansatz. Results show that H favors the non-ergodic mixed phase (AF+SG) and it destroys the AF. The Γ suppresses the magnetic orders, and the intra-sublattice interaction can introduce a discontinuous phase transition
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Institute of Science, Erciyes University, Kayseri 38039 (Turkey); Canko, Osman [Department of Physics, Erciyes University, Kayseri 38039 (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, Kayseri 38039 (Turkey)], E-mail: keskin@erciyes.edu.tr
2008-09-15
The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior.
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2008-01-01
The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior
International Nuclear Information System (INIS)
Boulatov, D.V.; Kazakov, V.A.
1987-01-01
We investigate the critical properties of a recently proposed exactly soluble Ising model on a planar random dynamical lattice representing a regularization of the zero-dimensional string with internal fermions. The sum over all lattices gives rise to a new quantum degree of freedom - fluctuation of the metric. The whole system of critical exponents is found: α = -1, β = 1/2, γ = 2, δ = 5, v . D = 3. To test the universality we have used the planar graphs with the coordination number equal to 4 (Φ 4 theory graphs) as well as with the equal to 3 (Φ 3 theory graphs or triangulations). The critical exponents coincide for both cases. (orig.)
Wetting and layering transitions of a spin-1/2 Ising model in a random transverse field
International Nuclear Information System (INIS)
Bahmad, L.; Benyoussef, A.; El-Kenz, A.; Ez-Zahraouy, H.
2000-09-01
The effect of a random transverse field (RTF) on the wetting and layering transitions of a spin-1/2 Ising model, in the presence of bulk and surface fields, is studied within an effective field theory by using the differential operator technique. Indeed, the dependencies of the wetting temperature and wetting transverse field on the probability of the presence of a transverse field are established. For specific values of the surface field we show the existence of a critical probability p, above which wetting and layering transitions disappear. (author)
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
International Nuclear Information System (INIS)
Huang, W C; Huo, L; Tian, G; Qian, H R; Gao, X S; Qin, M H; Liu, J-M
2012-01-01
The magnetization behaviors and spin configurations of the classical Ising model on a Shastry-Sutherland lattice are investigated using Monte Carlo simulations, in order to understand the fascinating magnetization plateaus observed in TmB 4 and other rare-earth tetraborides. The simulations reproduce the 1/2 magnetization plateau by taking into account the dipole-dipole interaction. In addition, a narrow 2/3 magnetization step at low temperature is predicted in our simulation. The multi-step magnetization can be understood as the consequence of the competitions among the spin-exchange interaction, the dipole-dipole interaction, and the static magnetic energy.
Experimental mathematics on the magnetic susceptibility of the square lattice Ising model
Energy Technology Data Exchange (ETDEWEB)
Boukraa, S [LPTHIRM and Departement d' Aeronautique, Universite de Blida (Algeria); Guttmann, A J; Jensen, I [ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Hassani, S; Zenine, N [Centre de Recherche Nucleaire d' Alger, 2 Bd. Frantz Fanon, BP 399, 16000 Alger (Algeria); Maillard, J-M [LPTMC, Universite de Paris, Tour 24, 4eme etage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Nickel, B [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)], E-mail: boukraa@mail.univ-blida.dz, E-mail: tonyg@ms.unimelb.edu.au, E-mail: I.Jensen@ms.unimelb.edu.au, E-mail: maillard@lptmc.jussieu.fr, E-mail: maillard@lptl.jussieu.fr, E-mail: njzenine@yahoo.com
2008-11-14
We calculate very long low- and high-temperature series for the susceptibility {chi} of the square lattice Ising model as well as very long series for the five-particle contribution {chi}{sup (5)} and six-particle contribution {chi}{sup (6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150 000 CPU hours on computer clusters. The series for {chi} (low- and high-temperature regimes), {chi}{sup (5)} and {chi}{sup (6)} are now extended to 2000 terms. In addition, for {chi}{sup (5)}, 10 000 terms of the series are calculated modulo a single prime, and have been used to find the linear ODE satisfied by {chi}{sup (5)} modulo a prime. A diff-Pade analysis of the 2000 terms series for {chi}{sup (5)} and {chi}{sup (6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the n-particle components of the susceptibility, up to a small set of 'additional' singularities. The exponents at all the singularities of the Fuchsian linear ODE of {chi}{sup (5)} and the (as yet unknown) ODE of {chi}{sup (6)} are given: they are all rational numbers. We find the presence of singularities at w = 1/2 for the linear ODE of {chi}{sup (5)}, and w{sup 2} = 1/8 for the ODE of {chi}{sup (6)}, which are not singularities of the 'physical' {chi}{sup (5)} and {chi}{sup (6)}, that is to say the series solutions of the ODE's which are analytic at w = 0. Furthermore, analysis of the long series for {chi}{sup (5)} (and {chi}{sup (6)}) combined with the corresponding long series for the full susceptibility {chi} yields previously conjectured singularities in some {chi}{sup (n)}, n {>=} 7. The exponents at all these singularities are also seen to be rational numbers. We also present a mechanism of resummation of the logarithmic singularities of the {chi}{sup (n)} leading to the known power-law critical behaviour occurring in
Damage spreading at the corner-filling transition in the two-dimensional Ising model
International Nuclear Information System (INIS)
Rubio Puzzo, M Leticia; Albano, Ezequiel V
2007-01-01
The propagation of damage on the square Ising lattice with a corner geometry is studied by means of Monte Carlo simulations. By imposing free boundary conditions at which competing boundary magnetic fields ± h are applied, the system undergoes a filling transition at a temperature T f (h) lower than the Onsager critical temperature T C . The competing fields cause the formation of two magnetic domains with opposite orientation of the magnetization, separated by an interface that for T larger than T f (h) (but T C ) runs along the diagonal of the sample that connects the corners where the magnetic fields of different orientation meet. Also, for T f (h) this interface is localized either close to the corner where the magnetic field is positive or close to the opposite one, with the same probability. It is found that, just at T = T f (h), the damage initially propagates along the interface of the competing domains, according to a power law given by D(t) ∝ t η . The value obtained for the dynamic exponent (η* = 0.89(1)) is in agreement with that corresponding to the wetting transition in the slit geometry (Abraham model) given by η WT = 0.91(1). However, for later times the propagation crosses to a new regime such as η** = 0.40(2), which is due to the propagation of the damage into the bulk of the magnetic domains. This result can be understood as being due to the constraints imposed on the propagation of damage by the corner geometry of the system that cause healing at the corners where the interface is attached. The critical points for the damage-spreading transition (T D (h)) are evaluated by extrapolation to the thermodynamic limit by using a finite-size scaling approach. Considering error bars, an overlap between the filling and the damage-spreading transitions is found, such that T f (h) = T D (h). The probability distribution of the damage average position P(l 0 D ) and that of the interface between magnetic domains of different orientation P(l 0 ) are
From Holonomy of the Ising Model Form Factors to n-Fold Integrals and the Theory of Elliptic Curves
Directory of Open Access Journals (Sweden)
Salah Boukraa
2007-10-01
Full Text Available We recall the form factors $f^(j_{N,N}$ corresponding to the $lambda$-extension $C(N,N; lambda$ of the two-point diagonal correlation function of the Ising model on the square lattice and their associated linear differential equations which exhibit both a "Russian-doll" nesting, and a decomposition of the linear differential operators as a direct sum of operators (equivalent to symmetric powers of the differential operator of the complete elliptic integral $E$. The scaling limit of these differential operators breaks the direct sum structure but not the "Russian doll" structure, the "scaled" linear differential operators being no longer Fuchsian. We then introduce some multiple integrals of the Ising class expected to have the same singularities as the singularities of the $n$-particle contributions $chi^{(n}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equations satisfied by these multiple integrals for $n = 1, 2, 3, 4$ and, only modulo a prime, for $n = 5$ and 6, thus providing a large set of (possible new singularities of the $chi^{(n}$. We get the location of these singularities by solving the Landau conditions. We discuss the mathematical, as well as physical, interpretation of these new singularities. Among the singularities found, we underline the fact that the quadratic polynomial condition $1 + 3w + 4w^2 = 0$, that occurs in the linear differential equation of $chi^{(3}$, actually corresponds to the occurrence of complex multiplication for elliptic curves. The interpretation of complex multiplication for elliptic curves as complex fixed points of generators of the exact renormalization group is sketched. The other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting a geometric interpretation in terms of more general (motivic mathematical structures beyond the theory of elliptic curves. The scaling limit of the (lattice
Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.
2017-04-01
Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.
Entanglement of two blocks of spins in the critical Ising model
Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.
2008-11-01
We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.
Jiménez, Andrea
2014-02-01
We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.
International Nuclear Information System (INIS)
Atitoaie, Alexandru; Tanasa, Radu; Enachescu, Cristian
2012-01-01
Spin crossover compounds are photo-magnetic bistable molecular magnets with two states in thermodynamic competition: the diamagnetic low-spin state and paramagnetic high-spin state. The thermal transition between the two states is often accompanied by a wide hysteresis, premise for possible application of these materials as recording media. In this paper we study the influence of the system's size on the thermal hysteresis loops using Monte Carlo simulations based on an Arrhenius dynamics applied for an Ising like model with long- and short-range interactions. We show that using appropriate boundary conditions it is possible to reproduce both the drop of hysteresis width with decreasing particle size, the hysteresis shift towards lower temperatures and the incomplete transition, as in the available experimental data. The case of larger systems composed by several sublattices is equally treated reproducing the shrinkage of the hysteresis loop's width experimentally observed. - Highlights: ► A study concerning size effects in spin crossover nanoparticles hysteresis is presented. ► An Ising like model with short- and long-range interactions and Arrhenius dynamics is employed. ► In open boundary system the hysteresis width decreases with particle size. ► With appropriate environment, hysteresis loop is shifted towards lower temperature and transition is incomplete.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)
2016-03-15
The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa
2015-08-15
Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa
2015-01-01
Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors
An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model
Energy Technology Data Exchange (ETDEWEB)
Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)
2014-11-15
We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.
International Nuclear Information System (INIS)
Nishiyama, Yoshihiro
2011-01-01
A length-N spin chain with the √N(=v)th neighbor interaction is identical to a two-dimensional (d = 2) model under the screw-boundary (SB) condition. The SB condition provides a flexible scheme to construct a d ≥ 2 cluster from an arbitrary number of spins; the numerical diagonalization combined with the SB condition admits a potential applicability to a class of systems intractable with the quantum Monte Carlo method due to the negative-sign problem. However, the simulation results suffer from characteristic finite-size corrections inherent in SB. In order to suppress these corrections, we adjust the screw pitch v(N) so as to minimize the excitation gap for each N. This idea is adapted to the transverse-field Ising model on the triangular lattice with N ≤ 32 spins. As a demonstration, the correlation-length critical exponent ν is analyzed in some detail
The spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field
International Nuclear Information System (INIS)
Yigit, A.; Albayrak, E.
2010-01-01
The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in a pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It was also found that the system exhibits double-critical end points and isolated points. The model also presents two Neel temperatures, TN, and the existence of which leads to the reentrant behavior.
The democracy ochlocracy dictatorship transition in the Sznajd model and in the Ising model
Schneider, Johannes J.; Hirtreiter, Christian
2005-08-01
Since its introduction in 2000, the Sznajd model has been assumed to simulate a democratic community with two parties. The main flaw in this model is that a Sznajd system freezes in the long term in a non-democratic state, which can be either a dictatorship or a stalemate configuration. Here we show that the Sznajd model has better to be considered as a transition model, transferring a democratic system already at the beginning of a simulation via an ochlocratic scenario, i.e., a regime in which several mobs rule, to a dictatorship, thus reproducing the corresponding Aristotelian theory.
Eising, G.; Kooi, B. J.
2012-01-01
Growth and decay of clusters at temperatures below T-c have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal
Kim, Eunhye; Lee, Sung Jong; Kim, Bongsoo
2007-02-01
We present an extensive Monte Carlo simulation study on the nonequilibrium kinetics of triangular antiferromagnetic Ising model within the ground state ensemble which consists of sectors, each of which is characterized by a unique value of the string density p through a dimer covering method. Building upon our recent work [Phys. Rev. E 68, 066127 (2003)] where we considered the nonequilibrium relaxation observed within the dominant sector with p=2/3, we here focus on the nonequilibrium kinetics within the minor sectors with psimple scaling behavior A(t)=A(t/tau(A)(p)), where the time scale tau(A)(p) shows a power-law divergence with vanishing p as tau(A)(p) approximately p(-phi) with phi approximately or equal to 4. These features can be understood in terms of random walk nature of the fluctuations of the strings within the typical separation between neighboring strings.
Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.
2008-01-01
The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Albuquerque, E.L. de.
1984-01-01
The phae diagram for the Ising Model on a Cayley tree with competing nearest-neighbour interactions J 1 and next-nearest-neighbour interactions J 2 and J 3 in the presence of an external magnetic field is studied. To perform this study, an iterative scheme similar to that appearing in real space renormalization group frameworks is established; it recovers, as particular cases, previous works by Vannimenus and by Inawashiro et al. At vanishing temperature, the phase diagram is fully determined, for all values and signs of J 2 /J 1 and J 3 /J 2 ; in particular, it is verified that values of J 3 /J 2 high enough favour the paramagnetic phase. At finite temperatures, several interesting features (evolution of re-entrances, separation of the modulated region in two disconnected pieces, etc.) are exhibited for typical values of J 2 /J 1 and J 3 /J 2 . (Author) [pt
Phase diagrams of a spin-1/2 transverse Ising model with three-peak random field distribution
International Nuclear Information System (INIS)
Bassir, A.; Bassir, C.E.; Benyoussef, A.; Ez-Zahraouy, H.
1996-07-01
The effect of the transverse magnetic field on the phase diagrams structures of the Ising model in a random longitudinal magnetic field with a trimodal symmetric distribution is investigated within a finite cluster approximation. We find that a small magnetizations ordered phase (small ordered phase) disappears completely for a sufficiently large value of the transverse field or/and large value of the concentration of the disorder of the magnetic field. Multicritical behaviour and reentrant phenomena are discussed. The regions where the tricritical, reentrant phenomena and the small ordered phase persist are delimited as a function of the transverse field and the concentration p. Longitudinal magnetizations are also presented. (author). 33 refs, 6 figs
International Nuclear Information System (INIS)
Martin, H.O.; Tsallis, C.
1981-01-01
A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt
International Nuclear Information System (INIS)
Kamieniarz, G.
1984-12-01
A zero temperature real space renormalization group block method is applied to the random quantum Ising model with a transverse field on the planar honeycomb and square lattices. For the bond diluted system the magnetisation and the separation of the ground state energy level (in the paramagnetic phase) are presented for several bond concentrations p. The critical exponents extracted both from the fixed-points and from direct numerical computations preserve some scaling relations, and the critical curve displays a characteristic discontinuity at the percolation concentration. For the McCoy and Wu distribution the random fields and bonds are found to introduce a strong relevant disorder. The order parameter still falls off continuously to zero for well-defined values of the parameters, but a new fixed point yields a slight change in the critical exponents. (author)
Chen, Jiahui; Zhou, Hui; Duan, Changkui; Peng, Xinhua
2017-03-01
Entanglement, a unique quantum resource with no classical counterpart, remains at the heart of quantum information. The Greenberger-Horne-Zeilinger (GHZ) and W states are two inequivalent classes of multipartite entangled states which cannot be transformed into each other by means of local operations and classic communication. In this paper, we present the methods to prepare the GHZ and W states via global controls on a long-range Ising spin model. For the GHZ state, general solutions are analytically obtained for an arbitrary-size spin system, while for the W state, we find a standard way to prepare the W state that is analytically illustrated in three- and four-spin systems and numerically demonstrated for larger-size systems. The number of parameters required in the numerical search increases only linearly with the size of the system.
Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.
2018-05-01
We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.
Shielding property for thermal equilibrium states in the quantum Ising model
Móller, N. S.; de Paula, A. L.; Drumond, R. C.
2018-03-01
We show that Gibbs states of nonhomogeneous transverse Ising chains satisfy a shielding property. Namely, whatever the fields on each spin and exchange couplings between neighboring spins are, if the field in one particular site is null, then the reduced states of the subchains to the right and to the left of this site are exactly the Gibbs states of each subchain alone. Therefore, even if there is a strong exchange coupling between the extremal sites of each subchain, the Gibbs states of the each subchain behave as if there is no interaction between them. In general, if a lattice can be divided into two disconnected regions separated by an interface of sites with zero applied field, then we can guarantee a similar result only if the surface contains a single site. Already for an interface with two sites we show an example where the property does not hold. When it holds, however, we show that if a perturbation of the Hamiltonian parameters is done in one side of the lattice, then the other side is completely unchanged, with regard to both its equilibrium state and dynamics.
Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut
2017-09-01
In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.
Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr
2016-01-01
In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435
On the equivalence of Ising models on ‘small-world’ networks and LDPC codes on channels with memory
International Nuclear Information System (INIS)
Neri, Izaak; Skantzos, Nikos S
2014-01-01
We demonstrate the equivalence between thermodynamic observables of Ising spin-glass models on small-world lattices and the decoding properties of error-correcting low-density parity-check codes on channels with memory. In particular, the self-consistent equations for the effective field distributions in the spin-glass model within the replica symmetric ansatz are equivalent to the density evolution equations forr Gilbert–Elliott channels. This relationship allows us to present a belief-propagation decoding algorithm for finite-state Markov channels and to compute its performance at infinite block lengths from the density evolution equations. We show that loss of reliable communication corresponds to a first order phase transition from a ferromagnetic phase to a paramagnetic phase in the spin glass model. The critical noise levels derived for Gilbert–Elliott channels are in very good agreement with existing results in coding theory. Furthermore, we use our analysis to derive critical noise levels for channels with both memory and asymmetry in the noise. The resulting phase diagram shows that the combination of asymmetry and memory in the channel allows for high critical noise levels: in particular, we show that successful decoding is possible at any noise level of the bad channel when the good channel is good enough. Theoretical results at infinite block lengths using density evolution equations aree compared with average error probabilities calculated from a practical implementation of the corresponding decoding algorithms at finite block lengths. (paper)
Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model
Lulli, M.; Bernaschi, M.; Parisi, G.
2015-11-01
We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.
Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.
2018-04-01
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
International Nuclear Information System (INIS)
Monthus, Cécile
2015-01-01
For the quantum Ising chain, the self-dual block renormalization procedure of Fernandez-Pacheco (1979 Phys. Rev. D 19 3173) is known to reproduce exactly the location of the zero-temperature critical point and the correlation length exponent ν = 1. Recently, Miyazaki and Nishimori (2013 Phys. Rev. E 87 032154) have proposed to study the disordered quantum Ising model in dimensions d > 1 by applying the Fernandez-Pacheco procedure successively in each direction. To avoid the inequivalence of directions of their approach, we propose here an alternative procedure where the d directions are treated on the same footing. For the pure model, this leads to the correlation length exponents ν ≃ 0.625 in d = 2 (to be compared with the 3D classical Ising model exponent ν ≃ 0.63) and ν ≃ 0.5018 (to be compared with the 4D classical Ising model mean-field exponent ν = 1/2). For the disordered model in dimension d = 2, either ferromagnetic or spin-glass, the numerical application of the renormalization rules to samples of linear size L = 4096 yields that the transition is governed by an Infinite Disorder Fixed Point, with the activated exponent ψ ≃ 0.65, the typical correlation exponent ν typ ≃ 0.44 and the finite-size correlation exponent ν FS ≃ 1.25. We discuss the similarities and differences with the Strong Disorder Renormalization results. (paper)
Chakraborty, Saikat; Das, Subir K.
2017-09-01
Via Monte Carlo simulations we study pattern and aging during coarsening in a nonconserved nearest-neighbor Ising model, following quenches from infinite to zero temperature, in space dimension d = 3. The decay of the order-parameter autocorrelation function appears to obey a power-law behavior, as a function of the ratio between the observation and waiting times, in the large ratio limit. However, the exponent of the power law, estimated accurately via a state-of-the-art method, violates a well-known lower bound. This surprising fact has been discussed in connection with a quantitative picture of the structural anomaly that the 3D Ising model exhibits during coarsening at zero temperature. These results are compared with those for quenches to a temperature above that of the roughening transition.
International Nuclear Information System (INIS)
Gudyma, Iu.; Maksymov, A.; Spinu, L.
2015-01-01
Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.
Energy Technology Data Exchange (ETDEWEB)
Gudyma, Iu. [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, A., E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Spinu, L. [Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)
2015-10-15
Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.
Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model
Paga, Pierre; Kühn, Reimer
2017-08-01
We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.
Ising formulations of many NP problems
Lucas, Andrew
2013-01-01
We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.
Ising formulations of many NP problems
Directory of Open Access Journals (Sweden)
Andrew eLucas
2014-02-01
Full Text Available We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Quantum critical spin-2 chain with emergent SU(3) symmetry.
Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K
2015-04-10
We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.
A comparison of portfolio selection models via application on ISE 100 index data
Altun, Emrah; Tatlidil, Hüseyin
2013-10-01
Markowitz Model, a classical approach to portfolio optimization problem, relies on two important assumptions: the expected return is multivariate normally distributed and the investor is risk averter. But this model has not been extensively used in finance. Empirical results show that it is very hard to solve large scale portfolio optimization problems with Mean-Variance (M-V)model. Alternative model, Mean Absolute Deviation (MAD) model which is proposed by Konno and Yamazaki [7] has been used to remove most of difficulties of Markowitz Mean-Variance model. MAD model don't need to assume that the probability of the rates of return is normally distributed and based on Linear Programming. Another alternative portfolio model is Mean-Lower Semi Absolute Deviation (M-LSAD), which is proposed by Speranza [3]. We will compare these models to determine which model gives more appropriate solution to investors.
Study of an Ising model with competing long- and short-range interactions
International Nuclear Information System (INIS)
Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.
1994-01-01
A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate
Exposure Modeling Tools and Databases for Consideration for Relevance to the Amended TSCA (ISES)
The Agency’s Office of Research and Development (ORD) has a number of ongoing exposure modeling tools and databases. These efforts are anticipated to be useful in supporting ongoing implementation of the amended Toxic Substances Control Act (TSCA). Under ORD’s Chemic...
Ising-based model of opinion formation in a complex network of interpersonal interactions
Grabowski, A.; Kosiński, R. A.
2006-03-01
In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.
DEFF Research Database (Denmark)
Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.
1989-01-01
temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...
Kinetics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model
International Nuclear Information System (INIS)
Deviren, Bayram; Keskin, Mustafa; Canko, Osman
2009-01-01
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, σ=±1/2 , alternated with spins that can take the four values, S=±3/2 ,±1/2 . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters
Kinetics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2009-03-15
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, {sigma}={+-}1/2 , alternated with spins that can take the four values, S={+-}3/2 ,{+-}1/2 . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.
Bi, Jiang-lin; Wang, Wei; Li, Qi
2017-07-01
In this paper, the effects of the next-nearest neighbors exchange couplings on the magnetic and thermal properties of the ferrimagnetic mixed-spin (2, 5/2) Ising model on a 3D honeycomb lattice have been investigated by the use of Monte Carlo simulation. In particular, the influences of exchange couplings (Ja, Jb, Jan) and the single-ion anisotropy(Da) on the phase diagrams, the total magnetization, the sublattice magnetization, the total susceptibility, the internal energy and the specific heat have been discussed in detail. The results clearly show that the system can express the critical and compensation behavior within the next-nearest neighbors exchange coupling. Great deals of the M curves such as N-, Q-, P- and L-types have been discovered, owing to the competition between the exchange coupling and the temperature. Compared with other theoretical and experimental works, our results have an excellent consistency with theirs.
International Nuclear Information System (INIS)
Kawamoto, Tohru; Abe, Shuji
2005-01-01
We investigated the switching behavior of small particles of an Ising-like model under constant excitation by means of Monte Carlo simulations to study photoinduced spinstate switching in nanoparticles of transition metal complexes. The threshold intensity required for that switching becomes drastically small in small particles with diameter of less than 10 pseudospins. This lower intensity results enhancement of the pseudospin fluctuation at the surface in the small particles. Our result might originate the increase of the photoinduced magnetization in nanoparticles of a Mo-Cu cyanide
Self-interacting spin-2 dark matter
Chu, Xiaoyong; Garcia-Cely, Camilo
2017-11-01
Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.
Cosmological viability of theories with massive spin-2 fields
Energy Technology Data Exchange (ETDEWEB)
Koennig, Frank
2017-03-30
Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.
Energy Technology Data Exchange (ETDEWEB)
Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)
2006-01-15
As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.
International Nuclear Information System (INIS)
Nam, Keekwon; Kim, Bongsoo; Park, Sangwoong; Lee, Sung Jong
2011-01-01
We present a numerical study on an interacting monomer–dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is observed to exhibit two nearby continuous transitions: the Z 2 symmetry-breaking order–disorder transition and the absorbing transition with directed percolation criticality. We find that the symmetry-breaking transition shows a non-Ising critical behavior, and that the absorbing phase becomes critical, in the sense that the critical decay of the dimer density observed at the absorbing transition persists even within the absorbing phase. Our findings call for further studies on microscopic models and the corresponding continuum description belonging to the generalized voter university class. (letter)
International Nuclear Information System (INIS)
Albano, Ezequiel V; Virgiliis, Andres de; Mueller, Marcus; Binder, Kurt
2004-01-01
Confined magnetic Ising films in a L x D geometry (L w (h). For T w (h) (T>T w (h)) such an interface is bounded (unbounded) to the walls, while right at T w (h) the interface is freely fluctuating around the centre of the film. Starting from disordered configurations, corresponding to T → ∞, we quench to the wetting critical temperature and study the dynamics of the approach to the stationary regime by means of extensive Monte Carlo simulations. It is found that for all layers parallel to the wall (rows), the row magnetizations exhibit a peak at a time τ max ∝ L 2 and subsequently relax to the stationary, equilibrium behaviour. The characteristic time for such a relaxation scales as τ R ∝ L 4 , as expected from theoretical arguments, that are discussed in detail
ISEE : An Intuitive Sound Editing Environment
Vertegaal, R.P.H.; Bonis, E.
1994-01-01
This article presents ISEE, an intuitive sound editing environment, as a general sound synthesis model based on expert auditory perception and cognition of musical instruments. It discusses the backgrounds of current synthesizer user interface design and related timbre space research. Of the three
ISE System Development Methodology Manual
Energy Technology Data Exchange (ETDEWEB)
Hayhoe, G.F.
1992-02-17
The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.
Integrated Support Environment (ISE) Laboratory
Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...
Trobo, Marta L; Albano, Ezequiel V; Binder, Kurt
2014-08-01
We present a study of the critical behavior of the Blume-Capel model with three spin states (S=±1,0) confined between parallel walls separated by a distance L where competitive surface magnetic fields act. By properly choosing the crystal field (D), which regulates the density of nonmagnetic species (S=0), such that those impurities are excluded from the bulk (where D=-∞) except in the middle of the sample [where D(M)(L/2)≠-∞], we are able to control the presence of a defect line in the middle of the sample and study its influence on the interface between domains of different spin orientations. So essentially we study an Ising model with a defect line but, unlike previous work where defect lines in Ising models were defined via weakened bonds, in the present case the defect line is due to mobile vacancies and hence involves additional entropy. In this way, by drawing phase diagrams, i.e., plots of the wetting critical temperature (T(w)) versus the magnitude of the crystal field at the middle of the sample (D(M)), we observe curves of (first-) second-order wetting transitions for (small) high values of D(M). Theses lines meet in tricritical wetting points, i.e., (T(w)(tc),D(M)(tc)), which also depend on the magnitude of the surface magnetic fields. It is found that second-order wetting transitions satisfy the scaling theory for short-range interactions, while first-order ones do not exhibit hysteresis, provided that small samples are used, since fluctuations wash out hysteretic effects. Since hysteresis is observed in large samples, we performed extensive thermodynamic integrations in order to accurately locate the first-order transition points, and a rather good agreement is found by comparing such results with those obtained just by observing the jump of the order parameter in small samples.
Gálisová, Lucia; Strečka, Jozef
2018-05-01
The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.
Fitzenreiter, R. J.; Scudder, J. D.; Klimas, A. J.
1990-01-01
A model which is consistent with the solar wind and shock surface boundary conditions for the foreshock electron distribution in the absence of wave-particle effects is formulated for an arbitrary location behind the magnetic tangent to the earth's bow shock. Variations of the gyrophase-averaged velocity distribution are compared and contrasted with in situ ISEE observations. It is found that magnetic mirroring of solar wind electrons is the most important process by which nonmonotonic reduced electron distributions in the foreshock are produced. Leakage of particles from the magnetosheath is shown to be relatively unimportant in determining reduced distributions that are nonmonotonic. The two-dimensional distribution function off the magnetic field direction is the crucial contribution in producing reduced distributions which have beams. The time scale for modification of the electron velocity distribution in velocity space can be significantly influenced by steady state spatial gradients in the background imposed by the curved shock geometry.
Statistically interacting quasiparticles in Ising chains
International Nuclear Information System (INIS)
Lu Ping; Vanasse, Jared; Piecuch, Christopher; Karbach, Michael; Mueller, Gerhard
2008-01-01
The exclusion statistics of two complementary sets of quasiparticles, generated from opposite ends of the spectrum, are identified for Ising chains with spin s = 1/2, 1. In the s = 1/2 case the two sets are antiferromagnetic domain walls (solitons) and ferromagnetic domains (strings). In the s = 1 case they are soliton pairs and nested strings, respectively. The Ising model is equivalent to a system of two species of solitons for s = 1/2 and to a system of six species of soliton pairs for s = 1. Solitons exist on single bonds but soliton pairs may be spread across many bonds. The thermodynamics of a system of domains spanning up to M lattice sites is amenable to exact analysis and shown to become equivalent, in the limit M → ∞, to the thermodynamics of the s = 1/2 Ising chain. A relation is presented between the solitons in the Ising limit and the spinons in the XX limit of the s = 1/2 XXZ chain
International Nuclear Information System (INIS)
Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian
2016-01-01
The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.
International Nuclear Information System (INIS)
Híjar, Humberto; Sutmann, Godehard
2008-01-01
Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one
Energy Technology Data Exchange (ETDEWEB)
Atitoaie, Alexandru, E-mail: atitoaie@phys-iasi.ro [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); National Institute of Research and Development for Technical Physics, Iasi (Romania); Stoleriu, Laurentiu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Stancu, Alexandru; Enachescu, Cristian [Department. of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania)
2016-04-01
The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.
On Ising - Onsager problem in external magnetic field
International Nuclear Information System (INIS)
Kochmanski, M.S.
1997-01-01
In this paper a new approach to solving the Ising - Onsager problem in external magnetic field is investigated. The expression for free energy on one Ising spin in external field both for the two dimensional and three dimensional Ising model with interaction of the nearest neighbors are derived. The representations of free energy being expressed by multidimensional integrals of Gauss type with the appropriate dimensionality are shown. Possibility of calculating the integrals and the critical indices on the base of the derived representations for free energy is investigated
Tadić, Bosiljka
2018-03-01
We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other
Hyperscaling breakdown and Ising spin glasses: The Binder cumulant
Lundow, P. H.; Campbell, I. A.
2018-02-01
Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.
Cheraghalizadeh, J.; Najafi, M. N.; Dashti-Naserabadi, H.; Mohammadzadeh, H.
2017-11-01
The self-organized criticality on the random fractal networks has many motivations, like the movement pattern of fluid in the porous media. In addition to the randomness, introducing correlation between the neighboring portions of the porous media has some nontrivial effects. In this paper, we consider the Ising-like interactions between the active sites as the simplest method to bring correlations in the porous media, and we investigate the statistics of the BTW model in it. These correlations are controlled by the artificial "temperature" T and the sign of the Ising coupling. Based on our numerical results, we propose that at the Ising critical temperature Tc the model is compatible with the universality class of two-dimensional (2D) self-avoiding walk (SAW). Especially the fractal dimension of the loops, which are defined as the external frontier of the avalanches, is very close to DfSAW=4/3 . Also, the corresponding open curves has conformal invariance with the root-mean-square distance Rrms˜t3 /4 (t being the parametrization of the curve) in accordance with the 2D SAW. In the finite-size study, we observe that at T =Tc the model has some aspects compatible with the 2D BTW model (e.g., the 1 /log(L ) -dependence of the exponents of the distribution functions) and some in accordance with the Ising model (e.g., the 1 /L -dependence of the fractal dimensions). The finite-size scaling theory is tested and shown to be fulfilled for all statistical observables in T =Tc . In the off-critical temperatures in the close vicinity of Tc the exponents show some additional power-law behaviors in terms of T -Tc with some exponents that are reported in the text. The spanning cluster probability at the critical temperature also scales with L1/2, which is different from the regular 2D BTW model.
Spin-2 NΩ dibaryon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)
2014-08-15
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.
Spin-2 NΩ dibaryon from lattice QCD
International Nuclear Information System (INIS)
Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji
2014-01-01
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error
International Nuclear Information System (INIS)
Fitzenreiter, R.J.; Scudder, J.D.; Klimas, A.J.
1990-01-01
A model of the gyrophase-averaged electron distribution in the Earth's foreshock consistent with boundary conditions at the bow shock and in the solar wind has been constructed according to the reversible guiding center characteristics and compared with ISEE electron and wave observations. This model demonstrates (1) that the basic features and morphology of beams in the observed and reduced distributions F(υ parallel ) are determined almost exclusively by the solar wind electrons mirrored at the shock's magnetic ramp and are relatively insensitive to the leakage fluxes from the magnetosheath, (2) that the wave particle modifications have been detected by contrasting the reversible model with the direct observations, (3) that the nonmonotonic reduced distributions F(υ parallel ) are rarely the result of a nonmonotonic energy spectra but are rather the result of the transverse velocity space integration necessary to produce F(υ parallel ) from the directly observed electron distribution function f(v), (4) that the time scale for beam resupply to F(υ parallel ) from the dc spatial gradients of the self-consistent reversible distribution function can have a factor of 100 variation across the foreshock, being shortest within a few degrees of the magnetic tangent surface, (5) that the beams predicted by the model have strongly varying and correlated variations of mean energy, thermal spread, and number density with angular departure from the magnetic tangent with the coldest, most tenuous, and lowest mean energy beams suggested to be present deep behind the magnetic tangent (≅5 degree-10 degree), and (6) that the lowest-energy beams have low contrast to the background solar wind distributing and although difficult to detect have beam density and temperature parameters compatible with ω pe growth of electrostatic waves
Quantum Ising chains with boundary fields
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea
2015-01-01
We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)
Testing a spin-2 mediator by angular observables in b →s μ+μ-
Fajfer, Svjetlana; Melić, Blaženka; Patra, Monalisa
2018-05-01
We consider the effects of the spin-2 particle in the b →s μ+μ- transition assuming that the spin-2 particle couples in a flavor-nonuniversal way to b and s quarks and in the leptonic sector couples only to the muons, thereby only contributing to the process b →s μ+μ-. The Bs-B¯s transition gives the strong constraint on the coupling of the spin-2 mediator and b and s quarks, while the observed discrepancy from the standard model prediction for the muon anomalous magnetic moment (g -2 )μ serves to constrain the μ coupling to a spin-2 particle. We find that the spin-2 particle can modify the angular observables in the B →K μ+μ- and B →K*μ+μ- decays and produce effects that do not exist in the standard model. The generated forward-backward asymmetries in these processes can reach 15%, while other observables for these decays receive tiny effects.
International Nuclear Information System (INIS)
Temizer, Umuet; Keskin, Mustafa; Canko, Osman
2009-01-01
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D 0 >3.8275, H 0 is the magnetic field amplitude, the compensation effect does not appear in the system.
Energy Technology Data Exchange (ETDEWEB)
Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2009-10-15
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H{sub 0}>3.8275, H{sub 0} is the magnetic field amplitude, the compensation effect does not appear in the system.
Nightingale, M.P.; Blöte, H.W.J.
1996-01-01
The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity
An Ising spin state explanation for financial asset allocation
Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit
2016-03-01
We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.
International Nuclear Information System (INIS)
Castro-Alvaredo, Olalla A; Fring, Andreas
2009-01-01
We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry, we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turn out to be unique with the sole assumption that the Dyson map is Hermitian. Finally, we analyse the magnetization of the chain in the z- and x-direction.
Microcanonical simulation of Ising systems
International Nuclear Information System (INIS)
Bhanot, G.; Neuberger, H.
1984-01-01
Numerical simulations of the microcanonical ensemble for Ising systems are described. We explain how to write very fast algorithms for such simulations, relate correlations measured in the microcanonical ensemble to those in the canonical ensemble and discuss criteria for convergence and ergodicity. (orig.)
Inverse Ising Inference Using All the Data
Aurell, Erik; Ekeberg, Magnus
2012-03-01
We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1 regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.
Quenched random-bond ising ferromagnet
International Nuclear Information System (INIS)
Sarmento, E.F.; Honmura, R.; Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro)
1984-01-01
A effective-field framework which, without mathematical complexities, enables the calculation of the phase diagram (and magnetization) associated with a quenched bond-mixed spin - 1/2 Ising model in an anisotropic simple cubic lattice have been recently introduced. The case corresponding to anisotropic coupling constants but isotropic concentrations was discussed in detail. Herein the case corresponding to isotropic coupling constants but anisotropic concentrations is discussed. A certain amount of interesting phase diagrams are exhibited; whenever comparison with available data is possible, the present results provide a satisfactory qualitative (and to a certain extent quantitative) agreement. (Author) [pt
Entrepreneurial Leapfrogging in the Context of ISE
DEFF Research Database (Denmark)
Li, Peter
2013-01-01
We know little regarding the underlying contexts and mechanisms for disruptive innovation initiated by the entrepreneurial firms in the emerging economies. Further, there is limited knowledge about the contexts and mechanisms for global latecomers to catch up with and leapfrog global early......-movers. The cross-fertilization between such two research streams provides a great opportunity to shed light on their link toward an interdisciplinary domain of international strategic entrepreneurship (ISE). This article will develop an integrative typology of global innovations as well as a dynamic model...
Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin
Energy Technology Data Exchange (ETDEWEB)
Li Wei, E-mail: liwei-b09@mails.gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Department of Physics, Beihang University, Beijing 100191 (China); Gong Shoushu [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Chen Ziyu [Department of Physics, Beihang University, Beijing 100191 (China); Zhao Yang [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Su Gang, E-mail: gsu@gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China)
2010-05-31
The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.
Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin
International Nuclear Information System (INIS)
Li Wei; Gong Shoushu; Chen Ziyu; Zhao Yang; Su Gang
2010-01-01
The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.
Possible signatures of the inflationary particle content: spin-2 fields
Energy Technology Data Exchange (ETDEWEB)
Biagetti, Matteo [Institute of Physics, Universiteit van Amsterdam, Science Park, Amsterdam, 1098XH The Netherlands (Netherlands); Dimastrogiovanni, Emanuela [CERCA and Department of Physics, Case Western Reserve University, Cleveland, OH, 44106 (United States); Fasiello, Matteo, E-mail: m.biagetti@uva.nl, E-mail: emanuela1573@gmail.com, E-mail: matteorf@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA, 94306 (United States)
2017-10-01
We study the imprints of a massive spin-2 field on inflationary observables, and in particular on the breaking of consistency relations. In this setup, the minimal inflationary field content interacts with the massive spin-2 field through dRGT interactions, thus guaranteeing the absence of Boulware-Deser ghostly degrees of freedom. The unitarity requirement on spinning particles, known as Higuchi bound, plays a crucial role for the size of the observable signal.
Inverse Ising inference with correlated samples
International Nuclear Information System (INIS)
Obermayer, Benedikt; Levine, Erel
2014-01-01
Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)
A coherent Ising machine for 2000-node optimization problems
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
Hyperscaling in the Ising model
International Nuclear Information System (INIS)
Baker, G.A. Jr.
1976-01-01
The high temperature series expansions relevant to the hyperscaling relation Δ = 1 / 2 (dν + γ) are extended and reexamined. Hyperscaling is found to hold in 2 dimensions as expected, but fails in 3 and 4 dimensions. The triviality of hyperstrong-coupling, Euclidean, Boson, phi 4 field theory follows
Effective-field renormalization-group method for Ising systems
Fittipaldi, I. P.; De Albuquerque, D. F.
1992-02-01
A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.
Rosaria Marraffino
2014-01-01
CRISTAL-ISE, a new version of the CRISTAL data tracking software developed at CERN in the late 90s, has recently been launched under an open source license. The potential for applications of this free software outside particle physics covers several areas, including medicine, where CRISTAL-ISE helps to monitor the progress of Alzheimer’s Disease. CMS lead tungstate crystals produced in Russia. CRISTAL began as a collaboration between CERN, the University of the West of England (UWE) and the Centre National de la Recherche Scientifique (CNRS).“At the time of CMS’s construction, there was a need for software able to track the production of the almost 80,000 lead tungstate crystals for the Electromagnetic Calorimeter,” explains Andrew Branson, member of the CMS collaboration and Technical Coordinator of the CRISTAL-ISE project. “We started to develop the software when we didn’t yet know the detector testing procedures to go through,...
Pengembangan Indentation Size Effect (ISE Dalam Penentuan Koefisien Pengerasan Regang Baja
Directory of Open Access Journals (Sweden)
I Nyoman Budiarsa
2016-07-01
Full Text Available Abstrak: Hubungan antara sifat material konstitutif dengan indentasi kekerasan (Hardness Indentation termasuk ISE (Indentation Size Effect telah dikembangkan dan dievaluasi dengan indentasi Vickers, hal Ini akan menjadi alat yang berguna dalam mengevaluasi kelayakan penggunaan nilai kekerasan dalam memprediksi parameter bahan konstitutif dengan mengacu pada syarat akurasi pada rentang semua potensi bahan. ISE dapat konsisten diukur dan dapat berpotensi dihubungkan dengan H/E rasio. Skala ISE dari sampel yang diuji menunjukkan pengulangan yang konsisten dan berhubungan kuat dengan sifat material secara signifikan. Hal Ini berpotensi memberikan set data eksperimen yang mencerminkan sifat material yang terkait dengan ketegangan gradien dan kerapatan dislokasi selama proses indentasi Konsep untuk menggunakan data ukuran indentasi Vickers telah dikembangkan untuk meningkatkan akurasi sifat invers pemodelan berdasarkan kekerasan menggunakan baja sebagai sistem bahan. Penelitian ini menunjukkan bahwa ada ISE signifikan dalam tes kekerasan Vickers dimana skala dan reliabilitas ISE dianalisis dengan fitting data mengikuti Power law and proportional resistance model Sebuah konsep baru menggunakan data ISE untuk memperkirakan Koefisien Pengerasan Regang (n nilai-nilai dari baja telah dievaluasi dan menunjukkan hasil yang baik untuk mempersempit kisaran sifat material yang diprediksi berdasarkan nilai-nilai kekerasan. . Kata kunci: ISE, H/E rasio, Koefisien Pengerasan Regang (n Abstract: The relationship between the constitutive material properties with Hardness indentation including ISE (indentation Size Effect has been developed and evaluated by Vickers indentation. This provided a useful tool in evaluating the feasibility of using of hardness value in predicting the constitutive material parameters with reference to the terms of accuracy in the all the potential materials range. ISE can be consistently measured and may potentially be associated with H
Energy Technology Data Exchange (ETDEWEB)
Batı, Mehmet, E-mail: mehmet.bati@erdogan.edu.tr [Department of Physics, Recep Tayyip Erdoğan University, 53100 Rize (Turkey); Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2017-05-15
The hysteresis properties of a kinetic mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice are studied by means of the dynamic mean field theory. In the present study, the effects of the nearest-neighbor interaction, temperature, frequency of oscillating magnetic field and the exchange anisotropy on the hysteresis properties of the kinetic system are discussed in detail. A number of interesting phenomena such as the shape of hysteresis loops with one, two, three and inverted-hysteresis/proteresis (butterfly shape hysteresis) have been obtained. Finally, the obtained results are compared with some experimental and theoretical results and a qualitatively good agreement is found.
Denkins, Pamela S.; Saganti, P.; Obot, V.; Singleterry, R.
2006-01-01
This viewgraph document reviews the Radiation Interuniversity Science and Engineering (RaISE) Project, which is a project that has as its goals strengthening and furthering the curriculum in radiation sciences at two Historically Black Colleges and Universities (HBCU), Prairie View A&M University and Texas Southern University. Those were chosen in part because of the proximity to NASA Johnson Space Center, a lead center for the Space Radiation Health Program. The presentation reviews the courses that have been developed, both in-class, and on-line.
Ising game: Nonequilibrium steady states of resource-allocation systems
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
Inverse Ising problem in continuous time: A latent variable approach
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Nonlinear massive spin-2 field generated by higher derivative gravity
International Nuclear Information System (INIS)
Magnano, Guido; Sokolowski, Leszek M.
2003-01-01
We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called '(Helmholtz-)Jordan frame' and 'Einstein frame'. In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected
Commuting quantum circuits and complexity of Ising partition functions
International Nuclear Information System (INIS)
Fujii, Keisuke; Morimae, Tomoyuki
2017-01-01
Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)
A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns
Köksal, Bülent
2009-01-01
We compare more than 1000 different volatility models in terms of their fit to the historical ISE-100 Index data and their forecasting performance of the conditional variance in an out-of-sample setting. Exponential GARCH model of Nelson (1991) with “constant mean, t-distribution, one lag moving average term” specification achieves the best overall performance for modeling the ISE-100 return volatility. The t-distribution seems to characterize the distribution of the heavy tailed returns bett...
International Nuclear Information System (INIS)
Bailey, D H; Borwein, J M; Crandall, R E
2006-01-01
From an experimental-mathematical perspective we analyse 'Ising-class' integrals. These are structurally related n-dimensional integrals we call C n , D n , E n , where D n is a magnetic susceptibility integral central to the Ising theory of solid-state physics. We first analyse C n := 4/(n factorial) ∫ 0 ∞ ... ∫ 0 ∞ 1/(Σ j=1 n (u j + 1/u j )) 2 du 1 /u 1 ... du n /u n . We had conjectured-on the basis of extreme-precision numerical quadrature-that C n has a finite large-n limit, namely C ∞ = 2 e -2γ , with γ being the Euler constant. On such a numerological clue we are able to prove the conjecture. We then show that integrals D n and E n both decay exponentially with n, in a certain rigorous sense. While C n , D n remain unresolved for n ≥ 5, we were able to conjecture a closed form for E 5 . Our experimental results involved extreme-precision, multidimensional quadrature on intricate integrands; thus, a highly parallel computation was required
Sznajd, J.
2016-12-01
The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.
Dynamics of asymmetric kinetic Ising systems revisited
International Nuclear Information System (INIS)
Huang, Haiping; Kabashima, Yoshiyuki
2014-01-01
The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)
Critical behavior of ferromagnetic Ising thin films
International Nuclear Information System (INIS)
Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.
2006-01-01
In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films
Ecological risk assessment of TBT in Ise Bay.
Yamamoto, Joji; Yonezawa, Yoshitaka; Nakata, Kisaburo; Horiguchi, Fumio
2009-02-01
An ecological risk assessment of tributyltin (TBT) in Ise Bay was conducted using the margin of exposure (MOE) method. The assessment endpoint was defined to protect the survival, growth and reproduction of marine organisms. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Ise Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. Estimated MOEs for marine organisms for 1990 and 2008 were approximately 0.1-2.0 and over 100 respectively, indicating a declining temporal trend in the probability of adverse effects. The chemical fate model predicts a much longer persistence of TBT in sediments than in the water column. Therefore, it is necessary to monitor the harmful effects of TBT on benthic organisms.
Investigating Investment Preferences of Institutional Investors toward ISE Companies
Serkan Yilmaz Kandir
2010-01-01
Institutional investors may be defined as specialized financial institutions that manage savings collectively on behalf of small investors toward specific objectives. Aim of this study is to investigate the factors that affect investment preferences of institutional investors toward ISE companies. Empirical analysis is performed by employing cross-sectional regression model. In the regression model, estimated for the years, 2005, 2006 and 2007, institutional ownership in each company is used ...
Performance evaluation of coherent Ising machines against classical neural networks
Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa
2017-12-01
The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.
Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Ravindran, V.
2018-05-01
We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge invariant operators with different coupling strengths has been considered. These operators not being conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the colliders. We find that our results using the higher order quantum corrections stabilize the predictions with respect to renormalization and factorization scales. We also find that corrections are appreciable which need to be taken into account in such searches at the colliders.
Power laws in Ising nanostripes
International Nuclear Information System (INIS)
Drzewinski, A.; Sznajd, J.; Szota, K.
2005-01-01
The results of high accuracy density-matrix renormalization-group calculations for infinite Ising stripes of finite widths 100 ≤ L ≤ 400 are presented. It is shown that in the presence of the small external magnetic field the infinite system critical power laws can be observed for L of order hundreds nm. The single power law describes the field dependence of the magnetization or the longitudinal correlation length only on the infinite system critical isotherm independently of the value of L. The approximate power law which describes how the magnetization varies with a distance from the infinite system critical point for several directions in the plane (temperature, external field) is also studied. (author)
Dark matter scenarios with multiple spin-2 fields
González Albornoz, N. L.; Schmidt-May, Angnis; von Strauss, Mikael
2018-01-01
We study ghost-free multimetric theories for (N+1) tensor fields with a coupling to matter and maximal global symmetry group SN×(Z2)N. Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N‑1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N=2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.
Phase transitions of a spin-one Ising ferromagnetic superlattice
International Nuclear Information System (INIS)
Saber, A.
2001-09-01
Using the effective field theory with a probability distribution technique, the magnetic properties in an infinite superlattice consisting of two different ferromagnets are studied in a spin-one Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs in one period and as a function of the intra- and interlayer exchange interactions. A critical value of the exchange reduced interaction above which the interface magnetism appears is found. (author)
OpenCL Implementation of NeuroIsing
Zapart, C. A.
Recent advances in graphics card hardware combined with anintroduction of the OpenCL standard promise to accelerate numerical simulations across diverse scientific disciplines. One such field benefiting from new hardware/software paradigms is econophysics. The paper describes an OpenCL implementation of a selected econophysics model: NeuroIsing, which has been designed to execute in parallel on a vendor-independent graphics card. Originally introduced in the paper [C.~A.~Zapart, ``Econophysics in Financial Time Series Prediction'', PhD thesis, Graduate University for Advanced Studies, Japan (2009)], at first it was implemented on a CELL processor running inside a SONY PS3 games console. The NeuroIsing framework can be applied to predicting and trading foreign exchange as well as stock market index futures.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.
Farajollahpour, T; Jafari, S A
2018-01-10
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator
Farajollahpour, T.; Jafari, S. A.
2018-01-01
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Ladder Ising spin configurations. Pt. 1. Heat capacity
International Nuclear Information System (INIS)
Mejdani, R.; Lambros, A.
1996-01-01
We consider a ladder Ising spin model (with two coupled Ising spin chains), characterized by two couplings (interchain and intrachain couplings), to study in detail, in an analytical way, its thermal behaviour and particularly the variation of the specific heat versus temperature, the ratio of interaction constants, and the magnetic field. It is interesting that when the competition between interchain and intrachain interactions is strong the specific heat exhibits a double peak and when the competition is not so strong the specific heat has a single peak. Further, without entering into details, we give, in a numerical way, some similar results for more complicated ladder configurations (with more than two linear Ising chains). The spin-1/2 ladders or systems of spin chains may be realized in nature by vanadyl pyrophosphate ((VO) 2 P 2 O 7 ) or similar materials. All these intermediate systems are today important to gain further insight into the physics of one-dimensional spin chains and two-dimensional high-T c spin systems, both of which have shown interesting and unusual magnetic and superconducting properties. It is plausible that experimental and theoretical studies of ladders may lead to other interesting physical phenomena. (orig.)
Volatility behavior of visibility graph EMD financial time series from Ising interacting system
Zhang, Bo; Wang, Jun; Fang, Wen
2015-08-01
A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.
THE EFFECT OF INVESTOR SENTIMENT ON ISE SECTOR INDICES
Directory of Open Access Journals (Sweden)
SERPİL CANBAŞ
2013-06-01
Full Text Available Determining the factors that affect stock returns is one of the most investigated topics of the finance literature. A number of models have been developed to explain stock returns. Some of these models maintain that stock returns are generated rationally. These models are, Capital Asset Pricing Model, Index Models, Arbitrage Pricing Model and Macroeconomic Factor Models. Nevertheless, these models could not have explained stock returns, although they have used different parameters and methods. Some studies have maintained that investor psychology would have a role in the stock return generation process. There are three theories that investigate the effect of investor psychology on financial markets: Mental accounting theory, herd behavior theory and investor sentiment theory. The aim of this study is to investigate the effect of investor sentiment on stock returns. In this context, three investor sentiment proxies have been determined in the light of previous studies. These proxies are closed-end fund discount, average fund flow of mutual funds and the ratio of net stock purchases of foreign investors to ISE market capitalization. ISE sector indices are used to proxy stock returns. On the other hand, there is a possibility that investor sentiment would merely reflect economic innovations. Some economic factors are used as control variables in order to examine this possibility. Regression analyses are employed for investigating the effect of investor sentiment on stock returns. Findings suggest that investor sentiment affect stock returns systematically. This finding keeps its robustness when economic variables are added to the model.
Fang, Wen; Wang, Jun
2013-09-01
We develop a financial market model using an Ising spin system on a Sierpinski carpet lattice that breaks the equal status of each spin. To study the fluctuation behavior of the financial model, we present numerical research based on Monte Carlo simulation in conjunction with the statistical analysis and multifractal analysis of the financial time series. We extract the multifractal spectra by selecting various lattice size values of the Sierpinski carpet, and the inverse temperature of the Ising dynamic system. We also investigate the statistical fluctuation behavior, the time-varying volatility clustering, and the multifractality of returns for the indices SSE, SZSE, DJIA, IXIC, S&P500, HSI, N225, and for the simulation data derived from the Ising model on the Sierpinski carpet lattice. A numerical study of the model’s dynamical properties reveals that this financial model reproduces important features of the empirical data.
Dynamical TAP equations for non-equilibrium Ising spin glasses
DEFF Research Database (Denmark)
Roudi, Yasser; Hertz, John
2011-01-01
We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....
Critical phenomena in Ising-type thin films by Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
Critical phenomena in Ising-type thin films by Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-04-01
The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.
ISE and Chemfet sensors in greenhouse cultivation
Gieling, T.H.; Straten, van G.; Janssen, H.J.J.; Wouters, H.
2005-01-01
The development and market introduction of ion-specific sensors, like the ion selective electrode (ISE) and ion selective field effect transistor (ISFET) sensor, has paved the way for completely new systems for application of fertilisers to crops in greenhouses. This paper illustrates the usefulness
Weak universality in inhomogeneous Ising quantum chains
International Nuclear Information System (INIS)
Karevski, Dragi
2006-01-01
The Ising quantum chain with arbitrary coupling distribution {λ i } leading to an anisotropic scaling is considered. The smallest gap of the chain is connected to the surface magnetization by the relation Λ 1 = m s ({λ i })m s ({λ -1 i }). For some aperiodic distribution {λ i }, a weak universality of the critical behaviour is found. (letter to the editor)
Testing Efficiency of Derivative Markets: ISE30, ISE100, USD and EURO
Akal, Mustafa; Birgili, Erhan; Durmuskaya, Sedat
2012-01-01
This study attempts to develop new market efficiency tests depending on the spot and future prices, or the differences of them alternative to traditional unit root test build on univariate time series. As a result of the autocorrelation, normality and run tests applied to spot and futures prices or differences of them, and Adopted Purchasing Power Parity test based on a regression the future markets of ISE30, ISE100 index indicators, USD and Euro currencies, all of which have been traded dail...
Renormalization group theory of phase transitions in square Ising systems
International Nuclear Information System (INIS)
Nienhuis, B.
1978-01-01
Some renormalization group calculations are presented on a number of phase transitions in a square Ising model, both second and first order. Of these transitions critical exponents are calculated, the amplitudes of the power law divergences and the locus of the transition. In some cases attention is paid to the thermodynamic functions also far from the critical point. Universality and scaling are discussed and the renormalization group theory is reviewed. It is shown how a renormalization transformation, which relates two similar systems with different macroscopic dimensions, can be constructed, and how some critical properties of the system follow from this transformation. Several numerical and analytical applications are presented. (Auth.)
Phase transition of the FCC Ising ferromagnet with competing interactions
International Nuclear Information System (INIS)
Oh, J.H.; Lee, J.Y.; Kim, D.C.
1984-01-01
A molecular field theory with correlation and Monte Carlo simulations are utilized to determine the zero field phase diagram of a fcc Ising model with ferromagnetic nearest neighbor(-J) and antiferromagnetic next neighbor (*aJ) interactions. The correlated molecular field theory predicts a fluctuation induced first order phase transition for 0.87<*a<1.31. Monte Carlo analysis indicates that the first order transition occurs for a somewhat wider range of *a. The transition temperatures obtained by the two methods are in good agreement especially near *a=1 where the fluctuation effect is expected to be large. (Author)
Markov chain analysis of single spin flip Ising simulations
International Nuclear Information System (INIS)
Hennecke, M.
1997-01-01
The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities
Emergent Ising degrees of freedom above a double-stripe magnetic ground state
Zhang, Guanghua; Flint, Rebecca
2017-12-01
Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.
Specific heat of the Ising linear chain in a Random field
International Nuclear Information System (INIS)
Silva, P.R.; Sa Barreto, F.C. de
1984-01-01
Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt
ISEE observations of radiation at twice the solar wind plasma frequency
International Nuclear Information System (INIS)
Lacombe, C.; Harvey, C.C.; Hoang, S.
1988-01-01
Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma frequency f p is seen by both ISEE-1 and ISEE-3, respectively at about 20 and about 200 R E from the Earth. This electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and accelerated at the Earth's bow shock. We show that the source is near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150 R E . Emissivity is given. The angular size of the source, seen by ISEE-3, is increased by scattering of the 2f p radio waves on the solar wind density fluctuations. We examine whether the bandwidth and directivity predicted by current source models are consistent with our observations
Phase diagrams of diluted transverse Ising nanowire
Energy Technology Data Exchange (ETDEWEB)
Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)
2013-06-15
In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.
Phase diagrams of diluted transverse Ising nanowire
International Nuclear Information System (INIS)
Bouhou, S.; Essaoudi, I.; Ainane, A.; Saber, M.; Ahuja, R.; Dujardin, F.
2013-01-01
In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J cs exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given
An order-by-disorder process in the cyclic phase of spin-2 condensate with a weak magnetic field
International Nuclear Information System (INIS)
Zheng, Gong-Ping; Xu, Lei-Kuan; Qin, Shuai-Feng; Jian, Wen-Tian; Liang, J.-Q.
2013-01-01
We present in this paper a model study on the “order-by-disorder” process in the cyclic phase of spin-2 condensate, which forms a family of incommensurable, spiral degenerate ground states. On the basis of the ordering mechanism of entropic splitting, it is demonstrated that the energy corrections resulting from quantum fluctuations of disorder lift the accidental degeneracy of the cyclic configurations and thus lead to an eventual spiral order called the cyclic order. The order-by-disorder phenomenon is then realized even if the magnetic field exists. Finally, we show that our theoretic observations can be verified experimentally by direct detection of the cyclic order in the 87 Rb condensate of a spin-2 manifold with a weak magnetic field. -- Highlights: •A model for the order-by-disorder process in the cyclic phase of spin-2 condensate is presented. •The second-order quantum fluctuations of the mean-field states are studied. •The energy corrections lift the accidental degeneracy of the cyclic configurations. •The order-by-disorder phenomenon is realized even if a magnetic field exists. •The theoretic observations can be verified experimentally for 87 Rb condensate
Evidence for two-dimensional ising structure in atomic nuclei
International Nuclear Information System (INIS)
MacGregor, M.H.
1976-01-01
Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations
ISEE-magnetopause observations - workshop results
International Nuclear Information System (INIS)
Paschmann, G.
1982-01-01
A brief history of ISEE magnetopause workshops held during 1977-1981 is presented, and an assessment of the activity of these workshops is made. Workshop results are surveyed, with attention given to magnetopause thickness and speed, large-scale reconnection, small-scale reconnection, magnetic field topology, plasma waves, boundary layer structure, surface waves, plasma origin, and the relationship between magnetopause and particle boundaries. Finally, a few topics that require particular attention in the future are mentioned
Xu, Ping; Du, An
2017-09-01
A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.
The exact solution of the Ising quantum chain with alternating single and sector defects
International Nuclear Information System (INIS)
Zhang Degang; Li Bozang; Li Yun
1992-10-01
The Ising quantum chain with alternating single and sector defects is solved exactly by using the technique of Lieb, Schultz and Mattis. The energy spectrum of this model is shown to have a tower structure if and only if these defects constitute a commensurate configuration. This means that conformal invariance is preserved under these circumstances. (author). 13 refs
Stimulated wave of polarization in a one-dimensional Ising chain
International Nuclear Information System (INIS)
Lee, Jae-Seung; Khitrin, A.K.
2005-01-01
It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin. This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement
International Nuclear Information System (INIS)
Crooker, N.U.; Siscoe, G.L.; Russell, C.T.; Smith, E.J.
1982-01-01
The degree of correlation between ISEE 1 and ISEE 3 IMF measurements is highly variable. Approximately 200 two-hour periods when the correlation was good and 200 more when the correlation was poor are used to determine the relative control of several factors over the degree of correlation. Both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. Good correlations are associated with high variance and distances less than 90 R/sub E/. During periods of highest variance, good correlations occur at distances beyond 90 R/sub E/ up to 120 R/sub E/, the maximum range of ISEE 1-ISEE 3 separation. Thus it appears that the scale size of magnetic features is larger when the variance is high. Abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance: changes in correlation from poor to good correspond to increasing variance and vice versa. The IMF orientation also exerts control over the degree of correlation. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and ISEE 3 perpendicular to the IMF is less than 20 R/sub E/. This scale size expands to approx.50 R/sub E/ during periods of high variance. Solar wind speed shows little control over the degree of correlation in the speed range 300--500 km/s
ISEE (InformationsSystem Erneuerbare Energie): Renewable Energy Information System
International Nuclear Information System (INIS)
Grebe, R.; Koch, H.
1991-01-01
Since the end of 1989 ISET has been operating the title database ISEE. Access to this on-line database may be obtained by any interested party posessing a computer, which is connected to the network of the 'Deutsche TeleCom' by telephone or Datex-P. The command language of ISEE is German. ISET will establish an English version in 1991/1992. In brief attention is paid to the components of the ISEE database, its user groups, the possibilities to access ISEE, and further developments. 3 figs
The dynamics of the Frustrated Ising Lattice Gas
International Nuclear Information System (INIS)
Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.
2000-04-01
The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)
Random field Ising chain and neutral networks with synchronous dynamics
International Nuclear Information System (INIS)
Skantzos, N.S.; Coolen, A.C.C.
2001-01-01
We first present an exact solution of the one-dimensional random-field Ising model in which spin-updates are made fully synchronously, i.e. in parallel (in contrast to the more conventional Glauber-type sequential rules). We find transitions where the support of local observables turns from a continuous interval into a Cantor set and we show that synchronous and sequential random-field models lead asymptotically to the same physical states. We then proceed to an application of these techniques to recurrent neural networks where 1D short-range interactions are combined with infinite-range ones. Due to the competing interactions these models exhibit phase diagrams with first-order transitions and regions with multiple locally stable solutions for the macroscopic order parameters
Dynamic Ising model: reconstruction of evolutionary trees
International Nuclear Information System (INIS)
De Oliveira, P M C
2013-01-01
An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N − 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed. (paper)
Gravity and the Spin-2 Planar Schrödinger Equation
Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.
2018-04-01
A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.
Coevolution of Glauber-like Ising dynamics and topology
Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio
2009-11-01
We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.
Thermal contact through a two-temperature kinetic Ising chain
Bauer, M.; Cornu, F.
2018-05-01
We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.
Entanglement negativity in the critical Ising chain
International Nuclear Information System (INIS)
Calabrese, Pasquale; Tagliacozzo, Luca; Tonni, Erik
2013-01-01
We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(ρ A T 2 ) n and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks. (paper)
Tsurutani, B. T.; Baker, D. N.
1979-01-01
A real-time ISEE data system directed toward predicting geomagnetic substorms and storms is discussed. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution.
Dynamics of the directed Ising chain
International Nuclear Information System (INIS)
Godrèche, Claude
2011-01-01
The study by Glauber of the time-dependent statistics of the Ising chain is extended to the case where each spin is influenced unequally by its nearest neighbours. The asymmetry of the dynamics implies the failure of the detailed balance condition. The functional form of the rate at which an individual spin changes its state is constrained by the global balance condition with respect to the equilibrium measure of the Ising chain. The local magnetization, the equal-time and two-time correlation functions and the linear response to an external magnetic field obey linear equations which are solved explicitly. The behaviour of these quantities and the relation between the correlation and response functions are analysed both in the stationary state and in the zero-temperature scaling regime. In the stationary state, a transition between two behaviours of the correlation function occurs when the amplitude of the asymmetry crosses a critical value, with the consequence that the limit fluctuation-dissipation ratio decays continuously from the value 1, for the equilibrium state in the absence of asymmetry, to 0 for this critical value. At zero temperature, under asymmetric dynamics, the system loses its critical character, yet keeping many of the characteristic features of a coarsening system
Applications of ISES for the atmospheric sciences
Hoell, James M., Jr.
1990-01-01
The proposed Information Sciences Experiment System (ISES) will offer the opportunity for real-time access to measurements acquired aboard the Earth Observation System (Eos) satellite. These measurements can then be transmitted to remotely located ground based stations. The application of such measurements to issues related to atmospheric science which was presented to a workshop convened to review possible application of the ISES in earth sciences is summarized. The proposed protocol for Eos instruments requires that measurement results be available in a central data archive within 72 hours of acquiring data. Such a turnaround of raw satellite data to the final product will clearly enhance the timeliness of the results. Compared to the time that results from many current satellite programs, the 72 hour turnaround may be considered real time. Examples are discussed showing how real-time measurements from one or more of the proposed Eos instruments could have been applied to the study of certain issues important to global atmospheric chemistry. Each of the examples discussed is based upon a field mission conducted during the past five years. Each of these examples will emphasize how real-time data could have been used to alter the course of a field experiment, thereby enhancing the scientific output. For the examples, brief overviews of the scientific rationale and objectives, the region of operation, the measurements aboard the aircraft, and finally how one or more of the proposed Eos instruments could have provided data to enhance the productivity of the mission are discussed.
Diagonalization of replicated transfer matrices for disordered Ising spin systems
International Nuclear Information System (INIS)
Nikoletopoulos, T; Coolen, A C C
2004-01-01
We present an alternative procedure for solving the eigenvalue problem of replicated transfer matrices describing disordered spin systems with (random) 1D nearest neighbour bonds and/or random fields, possibly in combination with (random) long range bonds. Our method is based on transforming the original eigenvalue problem for a 2 n x 2 n matrix (where n → 0) into an eigenvalue problem for integral operators. We first develop our formalism for the Ising chain with random bonds and fields, where we recover known results. We then apply our methods to models of spins which interact simultaneously via a one-dimensional ring and via more complex long-range connectivity structures, e.g., (1 + ∞)-dimensional neural networks and 'small-world' magnets. Numerical simulations confirm our predictions satisfactorily
Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories
International Nuclear Information System (INIS)
Babujian, H.; Karowski, M.
2003-01-01
Previous results on form factors for the scaling Ising and the sinh-Gordon models are extended to general Z N -Ising and affine A N-1 -Toda quantum field theories. In particular result for order, disorder parameters and para-Fermi fields σ Q (x), μ Q-tilde (x) and ψ Q (x) are presented for the Z N -model. For the A N-1 -Toda model form factors for exponentials of the Toda fields are proposed. The quantum field equation of motion is proved and the mass and wave function renormalization are calculated exactly
Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata
Astaraki, M.; Ghaemi, M.; Afzali, K.
2018-05-01
Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.
International Nuclear Information System (INIS)
Tsurutani, B.T.; Baker, D.N.
1979-01-01
Prediction of geomagnetic substorms and storms would be of great scientific and commercial interest. A real-time ISEE data system directed toward this purpose is discussed in detail. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution. 6 figures, 1 table
Initial ISEE magnetometer results: shock observation
International Nuclear Information System (INIS)
Russell, C.T.
1979-01-01
ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)
Ising ferromagnet: zero-temperature dynamic evolution
International Nuclear Information System (INIS)
Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L
2006-01-01
The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit
Ising antiferromagnet on the Archimedean lattices
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2011-01-01
We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....
Interference of Spin-2 Self-Dual Modes
Ilha, Anderson; Wotzasek, Clovis
2001-01-01
We study the effects of interference between the self-dual and anti self-dual massive modes of the linearized Einstein-Chern-Simons topological gravity. The dual models to be used in the interference process are carefully analyzed with special emphasis on their propagating spectrum. We identify the opposite dual aspects, necessary for the application of the interference formalism on this model. The soldered theory so obtained displays explicitly massive modes of the Proca type. It may also be...
Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.
Wu, Jianda; Kormos, Márton; Si, Qimiao
2014-12-12
A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.
The cavity approach to parallel dynamics of Ising spins on a graph
International Nuclear Information System (INIS)
Neri, I; Bollé, D
2009-01-01
We use the cavity method to study the parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single-site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulations. Using a heuristic method the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results from this method are discussed and compared with simulations
Conformal structure in the spectrum of an altered quantum Ising chain
International Nuclear Information System (INIS)
Henkel, M.; Patkos, A.
1986-07-01
The Ising model with an infinite line of defects is mapped onto a strip with two defect lines. The Hamiltonian spectrum is studied at the bulk critical point. Its exact diagonal form is found for an infinite number of sites. The spectrum of physical excitations contains an infinite number of primary fields, while the leading ground state energy correction is independent of the defect strength. A novel algebraic structure interpolating between those belonging to periodic and free boundary conditions is signalled. (orig.)
Quantum transitions driven by one-bond defects in quantum Ising rings.
Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore
2015-04-01
We investigate quantum scaling phenomena driven by lower-dimensional defects in quantum Ising-like models. We consider quantum Ising rings in the presence of a bond defect. In the ordered phase, the system undergoes a quantum transition driven by the bond defect between a magnet phase, in which the gap decreases exponentially with increasing size, and a kink phase, in which the gap decreases instead with a power of the size. Close to the transition, the system shows a universal scaling behavior, which we characterize by computing, either analytically or numerically, scaling functions for the low-level energy differences and the two-point correlation function. We discuss the implications of these results for the nonequilibrium dynamics in the presence of a slowly varying parallel magnetic field h, when going across the first-order quantum transition at h=0.
Universal scaling for the quantum Ising chain with a classical impurity
Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco
2017-10-01
We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .
Direct comparison of quantum and simulated annealing on a fully connected Ising ferromagnet
Wauters, Matteo M.; Fazio, Rosario; Nishimori, Hidetoshi; Santoro, Giuseppe E.
2017-08-01
We compare the performance of quantum annealing (QA, through Schrödinger dynamics) and simulated annealing (SA, through a classical master equation) on the p -spin infinite range ferromagnetic Ising model, by slowly driving the system across its equilibrium, quantum or classical, phase transition. When the phase transition is second order (p =2 , the familiar two-spin Ising interaction) SA shows a remarkable exponential speed-up over QA. For a first-order phase transition (p ≥3 , i.e., with multispin Ising interactions), in contrast, the classical annealing dynamics appears to remain stuck in the disordered phase, while we have clear evidence that QA shows a residual energy which decreases towards zero when the total annealing time τ increases, albeit in a rather slow (logarithmic) fashion. This is one of the rare examples where a limited quantum speedup, a speedup by QA over SA, has been shown to exist by direct solutions of the Schrödinger and master equations in combination with a nonequilibrium Landau-Zener analysis. We also analyze the imaginary-time QA dynamics of the model, finding a 1 /τ2 behavior for all finite values of p , as predicted by the adiabatic theorem of quantum mechanics. The Grover-search limit p (odd )=∞ is also discussed.
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Wang, Hanquan, E-mail: hanquan.wang@gmail.com [School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan Province, 650221 (China); Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221 (China)
2014-10-01
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.
On the infinite-dimensional spin-2 symmetries in Kaluza-Klein theories
International Nuclear Information System (INIS)
Hohm, O.; Hamburg Univ.
2005-11-01
We consider the couplings of an infinite number of spin-2 fields to gravity appearing in Kaluza-Klein theories. They are constructed as the broken phase of a massless theory possessing an infinite-dimensional spin-2 symmetry. Focusing on a circle compactification of four-dimensional gravity we show that the resulting gravity/spin-2 system in D=3 has in its unbroken phase an interpretation as a Chern-Simons theory of the Kac-Moody algebra iso(1,2) associated to the Poincare group and also fits into the geometrical framework of algebra-valued differential geometry developed by Wald. Assigning all degrees of freedom to scalar fields, the matter couplings in the unbroken phase are determined, and it is shown that their global symmetry algebra contains the Virasoro algebra together with an enhancement of the Ehlers group SL(2,R) to its affine extension. The broken phase is then constructed by gauging a subgroup of the global symmetries. It is shown that metric, spin-2 fields and Kaluza-Klein vectors combine into a Chern-Simons theory for an extended algebra, in which the affine Poincare subalgebra acquires a central extension. (orig.)
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
International Nuclear Information System (INIS)
Wang, Hanquan
2014-01-01
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method
Microscopic energy flows in disordered Ising spin systems
International Nuclear Information System (INIS)
Agliari, E; Casartelli, M; Vezzani, A
2010-01-01
An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder, i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier discretized picture. Then, we work out a linearized 'mean-field approximation', where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on generic discrete structures
Directory of Open Access Journals (Sweden)
Rongguo Yan
2016-10-01
Full Text Available There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electrodes in medical laboratory electrolytic ion tests, from conventional ISEs, solid-contact ISEs, carbon nanotube based ISEs, to graphene-based ISEs.
Phase transition in Ising, XY and Heisenberg magnetic films
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid - BP 63 46000 Safi (Morocco); LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Benyoussef, A. [LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco)
2012-01-01
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system {tau}{sub c} is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces J{sub b}, J{sub s} and J{sub Up-Tack }, respectively. It is found that {tau}{sub c} increases with the exchange interactions of surface. The magnetic phase diagrams ({tau}{sub c} versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures T{sub c}(l) from the bulk value (T{sub c}({infinity})/T{sub c}(l) - 1) can be described by a power law l{sup -{lambda}}, where {lambda} = 1/{upsilon} is the inverse of the correlation length exponent.
Hamiltonian truncation approach to quenches in the Ising field theory
Directory of Open Access Journals (Sweden)
T. Rakovszky
2016-10-01
Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Contingency plans for the ISEE-3 libration-point mission
Dunham, D. W.
1979-01-01
During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.
On the identification of gravitation with the massless spin 2 field
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
The identification of gravitation with the massless spin 2 gauge field (the gauge group is the group of translations) requires to restrict the solutions of Einstein's equations to the class of topologically trivial manifolds. It is shown that the validity of this restriction in nature is supported by the present-day empirical facts. The identification has a drastic impact on cosmology, because the fulfilment of the cosmological principle seems to be improbable. (author)
Compiling gate networks on an Ising quantum computer
International Nuclear Information System (INIS)
Bowdrey, M.D.; Jones, J.A.; Knill, E.; Laflamme, R.
2005-01-01
Here we describe a simple mechanical procedure for compiling a quantum gate network into the natural gates (pulses and delays) for an Ising quantum computer. The aim is not necessarily to generate the most efficient pulse sequence, but rather to develop an efficient compilation algorithm that can be easily implemented in large spin systems. The key observation is that it is not always necessary to refocus all the undesired couplings in a spin system. Instead, the coupling evolution can simply be tracked and then corrected at some later time. Although described within the language of NMR, the algorithm is applicable to any design of quantum computer based on Ising couplings
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
International Nuclear Information System (INIS)
Bhattacherjee, Aranya B; Jha, Pradip; Kumar, Tarun; Mohan, Man
2011-01-01
We study the physical properties of a Luttinger liquid in a superlattice that is characterized by alternating two tunneling parameters. Using the bosonization approach, we describe the corresponding Hubbard model by the equivalent Tomonaga-Luttinger model. We analyze the spin-charge separation and transport properties of the superlattice system. We suggest that cold Fermi gases trapped in a bichromatic optical lattice and coupled quantum dots offer the opportunity to measure these effects in a convenient manner. We also study the classical Ising chain with two tunneling parameters. We find that the classical two-point correlator decreases as the difference between the two tunneling parameters increases.
Simulations of ground state fluctuations in mean-field Ising spin glasses
International Nuclear Information System (INIS)
Boettcher, Stefan
2010-01-01
The scaling of fluctuations in the distribution of ground state energies or costs with the system size N for Ising spin glasses is considered using an extensive set of simulations with the extremal optimization heuristic across a range of different models on sparse and dense graphs. These models exhibit very diverse behaviors, and an asymptotic extrapolation is often complicated by higher-order corrections in size. The clearest picture, in fact, emerges from the study of graph bipartitioning, a combinatorial optimization problem closely related to spin glasses. Asides from two-spin interactions with discrete bonds, we also consider problems with Gaussian bonds and three-spin interactions, which behave quite differently
Light induced kickoff of magnetic domain walls in Ising chains
Bogani, Lapo
2012-02-01
Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. Contrary to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiation power is very low, a substantial improvement over present methods of magnetooptical switching: in our experimental demonstration we switched molecular nanowires with light, using powers thousands of times lower than in previous optical switching methods. This manipulation of stochastic dynamic processes is extremely clean, leading to fingerprint signatures and scaling laws. These observations can be used, in material science, to better study domain-wall displacements and solitons in discrete lattices. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to a myriad of fields, ranging from social evolution to neural networks and chemical reactivity. For nanoelectronics and molecular spintronics the kickoff affords external control of molecular spin-valves and a magnetic fingerprint in single molecule measurements. It can also be applied to the dynamics of mechanical switches and the related study of phasons and order-disorder transitions.
The Relationship between Macroeconomic Variables and ISE Industry Index
Directory of Open Access Journals (Sweden)
Ahmet Ozcan
2012-01-01
Full Text Available In this study, the relationship between macroeconomic variables and Istanbul Stock Exchange (ISE industry index is examined. Over the past years, numerous studies have analyzed these relationships and the different results obtained from these studies have motivated further research. The relationship between stock exchange index and macroeconomic variables has been well documented for the developed markets. However, there are few studies regarding the relationship between macroeconomic variables and stock exchange index for the developing markets. Thus, this paper seeks to address the question of whether macroeconomic variables have a significant relationship with ISE industry index using monthly data for the period from 2003 to 2010. The selected macroeconomic variables for the study include interest rates, consumer price index, money supply, exchange rate, gold prices, oil prices, current account deficit and export volume. The Johansen’s cointegration test is utilized to determine the impact of selected macroeconomic variables on ISE industry index. The result of the Johansen’s cointegration shows that macroeconomic variables exhibit a long run equilibrium relationship with the ISE industry index.
A simple approximation method for dilute Ising systems
International Nuclear Information System (INIS)
Saber, M.
1996-10-01
We describe a simple approximate method to analyze dilute Ising systems. The method takes into consideration the fluctuations of the effective field, and is based on a probability distribution of random variables which correctly accounts for all the single site kinematic relations. It is shown that the simplest approximation gives satisfactory results when compared with other methods. (author). 12 refs, 2 tabs
Proceedings of the ISES Millennium Solar Forum 2000. 1. ed.
Energy Technology Data Exchange (ETDEWEB)
Estrada, Claudio A. [ed.
2000-07-01
The ISES Millennium Solar Forum 2000 was organized by the Association Nacional de Energia Solar (ANES) of Mexico, and the International Solar Energy Society (ISES), in collaboration with other national and international organizations from 17 to 22 of September, 2000 in Mexico City. The Scientific-Technical Conference forms the core of this forum. This comprises of 167 papers, which were presented orally and form part of the proceedings. The papers represent the results of research and technological development effort in Renewable Energy reported by professionals and students of 22 countries. Of course, a major component is from Mexico and Latin America. Here you will find useful information on the advances in different fields of Renewable Energy. [Spanish] La Asociacion Nacional de Energia Solar A.C. (ANES) y la International Solar Society (ISES), apoyadas por organizaciones nacionales e internacionales, comprometidas con la promocion de las energias renovables organizaron el ISES Millennium Solar Forum 2000, los dias 17 a 22 de septiembre del 2000 en la Ciudad de Mexico. Como parte medular de este foro se organizo la reunion cientifico-tecnica, en donde se presentaron 167 trabajos, la mayoria de los cuales se incluyen en esta memoria. Estos trabajos representan el esfuerzo en investigacion y desarrollo tecnologico de estudiantes y profesionales de mas de 22 paises, la mayoria de Mexico y America Latina. En esta memoria se encuentran los avances mas relevantes en las distintas areas de especializacion de las energias renovables.
Non-Abelian anyons: when Ising meets Fibonacci
Grosfeld, E.; Schoutens, K.
2009-01-01
We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state, supporting Ising anyons, and the k=2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It is shown that the interface supports neutral excitations described by a (1+1)-dimensional conformal field
The Ising Decision Maker: a binary stochastic network for choice response time.
Verdonck, Stijn; Tuerlinckx, Francis
2014-07-01
The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. (c) 2014 APA, all rights reserved.
International Nuclear Information System (INIS)
Leite, R.V.; Oliveira Filho, L.O. de; Milton Pereira, J.; Cottam, M.G.; Costa Filho, R.N.
2009-01-01
A Green's function method is used to obtain the spectrum of spin excitations associated with a linear array of magnetic impurities implanted in a ferromagnetic thin film. The equations of motion for the Green's functions of the anisotropic film are written in the framework of the Ising model in a transverse field. The frequencies of localized modes are calculated as a function of the interaction parameters for the exchange coupling between impurity-spin pairs, host-spin pairs, and impurity-host neighbors, as well as the effective field parameter at the impurity sites.
Žukovič, M.; Borovský, M.; Bobák, A.
2018-05-01
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.
Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-07-01
We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory
International Nuclear Information System (INIS)
Janda, A.
2006-01-01
We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
International Nuclear Information System (INIS)
Yu Zhaoxian; Jiao Zhiyong
2004-01-01
In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
Yu, Zhao-xian; Jiao, Zhi-yong
2003-01-01
In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...
Energy Technology Data Exchange (ETDEWEB)
Salmon, Octavio D.R., E-mail: octaviors@gmail.com [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Neto, Minos A., E-mail: minosneto@pq.cnpq.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Viana, J. Roberto, E-mail: vianafisica@bol.com.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Padilha, Igor T., E-mail: igorfis@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Sousa, J. Ricardo de, E-mail: jsousa@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus-AM (Brazil)
2013-11-01
The phase transition of the three-dimensional spatially anisotropic Ising antiferromagnetic model in the presence of an uniform longitudinal magnetic field H is studied by using the traditional Monte Carlo (MC) simulation for sizes L=16, 32 and 64. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnetic). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the T–H plane. Was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point.
Production of τ τ jj final states at the LHC and the TauSpinner algorithm: the spin-2 case
Bahmani, M.; Kalinowski, J.; Kotlarski, W.; Richter-Wąs, E.; Wąs, Z.
2018-01-01
The TauSpinner algorithm is a tool that allows one to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights τ -lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of τ -lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a τ -lepton pair and two outgoing partons. This implementation is prepared as the external (user-provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adapted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, re-weighting algorithm and numerical results for observables sensitive to τ polarisation are presented.
Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3
International Nuclear Information System (INIS)
Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.
1982-01-01
Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold
Out-of-time-ordered correlators in a quantum Ising chain
Lin, Cheng-Ju; Motrunich, Olexei I.
2018-04-01
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a t-1 power law at long time t . On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law t-1 /4 for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
Dual descriptions of massive spin-2 particles in D=3+1
International Nuclear Information System (INIS)
Dalmazi, Denis
2013-01-01
Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)
The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)
2016-07-05
In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.
Directory of Open Access Journals (Sweden)
Julio Orestes da Silva
2010-01-01
Full Text Available The study aims to analyze the information related to environmental costs reported through management reports and explanations of the companies that make up the Corporate Sustainability Index (ISE, according to the categorization proposed by Rover, Borba and Borgert (2008. The research is characterized as descriptive, with a qualitative approach, carried out through desk research, using content analysis. The sample consisted of companies that make up the ISE of Bovespa 2009/2010. The results show that over 50% of companies in the ISE show in the management report or in the notes at least one of the categories analyzed. It was found that companies showed 49 observations, which corresponds to 9% of the total possible disclosure of environmental costs on the model proposed. We conclude that the information in the environmental costs highlighted refer to the "cost to control environmental impacts".
Dynamics of the diluted Ising antiferromagnet Fe0.42Zn0.58F2 at strong fields
International Nuclear Information System (INIS)
Rosales-Rivera, A.; Ferreira, J.M.; Montenegro, F.C.
2001-01-01
The random-field Ising model (RFIM) system Fe 0.42 Zn 0.58 F 2 is studied by magnetization and AC susceptibility measurements, under finite DC applied fields (H). For weak random fields (corresponding to H c (H) is accompanied by the critical slowing down inherent to the random field problem. For higher H, the PT is destroyed and a glassy dynamics dominates the magnetic behavior
Stable, metastable and unstable solutions of a spin-1 Ising system based on the free energy surfaces
Keskİin, Mustafa; Özgan, Şükrü
1990-04-01
Stable, metastable and unstable solutions of a spin-1 Ising model with bilinear and biquadratic interactions are found by using the free energy surfaces. The free energy expression is obtained in the lowest approximation of the cluster variation method. All these solutions are shown in the two-dimensional phase space, especially the unstable solutions which in some cases are difficult to illustrate in the two-dimensional phase space, found by Keskin et al. recently.
International Nuclear Information System (INIS)
Mozeika, A; Coolen, A C C
2009-01-01
We study the Glauber dynamics of Ising spin models with random bonds, on finitely connected random graphs. We generalize a recent dynamical replica theory with which to predict the evolution of the joint spin-field distribution, to include random graphs with arbitrary degree distributions. The theory is applied to Ising ferromagnets on randomly diluted Bethe lattices, where we study the evolution of the magnetization and the internal energy. It predicts a prominent slowing down of the flow in the Griffiths phase, it suggests a further dynamical transition at lower temperatures within the Griffiths phase, and it is verified quantitatively by the results of Monte Carlo simulations
Free energy distribution function of a random Ising ferromagnet
International Nuclear Information System (INIS)
Dotsenko, Victor; Klumov, Boris
2012-01-01
We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging
Nature versus nurture: Predictability in low-temperature Ising dynamics
Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.
2013-10-01
Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.
Ising Processing Units: Potential and Challenges for Discrete Optimization
Energy Technology Data Exchange (ETDEWEB)
Coffrin, Carleton James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagarajan, Harsha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-05
The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one example of a commercially available Ising processing unit.
Search for the non-canonical Ising spin glass on rewired square lattices
Surungan, Tasrief
2018-03-01
A spin glass (SG) of non-canonical type is a purely antiferromagnetic (AF) system, exemplified by the AF Ising model on a scale free network (SFN), studied by Bartolozzi et al. [ Phys. Rev. B73, 224419 (2006)]. Frustration in this new type of SG is rendered by topological factor and its randomness is caused by random connectivity. As an SFN corresponds to a large dimensional lattice, finding non-canonical SG in lattice with physical dimension is desireable. However, a regular lattice can not have random connectivity. In order to obtain lattices with random connection and preserving the notion of finite dimension, we costructed rewired lattices. We added some extra bonds randomly connecting each site of a regular lattice to its next-nearest neighbors. Very recently, Surungan et al., studied AF Heisenberg system on rewired square lattice and found no SG behavior [AIP Conf. Proc. 1719, 030006 (2016)]. Due to the importance of discrete symmetry for phase transition, here we study similar structure for the Ising model (Z 2 symmetry). We used Monte Carlo simulation with Replica Exchange algorithm. Two types of structures were studied, firstly, the rewired square lattices with one extra bonds added to each site, and secondly, two bonds added to each site. We calculated the Edwards-Anderson paremeter, the commonly used parameter in searching for SG phase. The non-canonical SG is clearly observed in the rewired square lattice with two extra bonds added.
Conditional CAPM and an Application on the ISE
Yalcin Karatepe; Elif Karaaslan; Fazil Gokgoz
2002-01-01
In the empirical studies carried out on standard CAPM, widely used in finance literature, it has been argued that static CAPM could not entirely explain the portfolio returns. One of the assumptions for one period application is that the beta coefficients of assets are assumed to be constant over time. However, in a dynamic world the expected returns and betas deviate over time. In this study, returns of ISE-30 securities have been estimated by employing conditional CAPM; it has been found th...
Phase transitions of ferromagnetic Ising films with amorphous surfaces
International Nuclear Information System (INIS)
Saber, M.; Ainane, A.; Dujardin, F.; Stebe, B.
1997-08-01
The critical behavior of a ferromagnetic Ising film with amorphous surfaces is studied within the framework of the effective field theory. The dependence of the critical temperature on exchange interaction strength ratio, film thickness, and structural fluctuation parameter is presented. It is found that an order-disorder magnetic transition occurs by varying the thickness of the film. Such a result is in agreement with experiments performed recently on Fe-films. (author). 39 refs, 4 figs
ISEE/IMP Observations of simultaneous upstream ion events
International Nuclear Information System (INIS)
Mitchel, D.G.; Roelof, E.C.; Sanderson, T.R.; Reinhard, R.; Wenzel, K.
1983-01-01
Propagation of upstream energetic (50--200 keV) ions is analyzed in sixteen events observed simulataneously by solid state detectors on ISEE 3 at approx.200 R/sub E/ and on IMP 8 at approx.35 R/sub E/ from the earth. Conclusions are based on comparisons of the pitch angle distributions observed at the two spacecraft and transformed into the solar wind frame. They are beamlike at ISEE 3 and are confined to the outward hemisphere. When IMP 8 is furtherest from the bow shock, they are also usually beamlike, or hemispheric. However, when IMP 8 is closer to the bow shock, pancakelike distributions are observed. This systematic variation in the IMP 8 pitch angle distributions delimits a scattering region l< or approx. =14 R/sub E/ upstream of the earth's bow shock (l measured along the interplanetary magnetic field) that dominates ion propagation, influences the global distribution of fluxes in the foreshock, and may play a role in acceleration of the ions. When IMP 8 is beyond lapprox.15 R/sub E/, the propagation appears to be essentially scatter-free between IMP 8 and ISEE 3; this is deduced from the absence of earthward fluxes at IMP 8 as well as the tendency for the spin-averaged fluxes to be comparable at the two spacecraft
Effective field renormalization group approach for Ising lattice spin systems
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
International Nuclear Information System (INIS)
Čisárová, Jana; Strečka, Jozef
2014-01-01
Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Yamamoto, Etsuji
2018-02-01
The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature TC. The critical exponent β for the temperature dependence of the spontaneous magnetization below TC,γ for the magnetic susceptibility, and δ for the magnetic isotherm at TC, have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis, and the scaling analysis. We have determined the critical exponents as β =0.287 ±0.005 , γ =1.47 ±0.02 , and δ =6.08 ±0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law δ =1 +γ /β . URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (β =0.325 , γ =1.241 , and δ =4.82 ) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J (r ) ˜r-(d +σ ) with σ =1.44 . We suggest that the strong hybridization between the uranium 5 f and rhodium 4 d electrons in the U-RhI layer in the hexagonal crystal structure is a source of the low-dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p -block elements) based on the 3D Ising model.
Correction of defective pixels for medical and space imagers based on Ising Theory
Cohen, Eliahu; Shnitser, Moriel; Avraham, Tsvika; Hadar, Ofer
2014-09-01
We propose novel models for image restoration based on statistical physics. We investigate the affinity between these fields and describe a framework from which interesting denoising algorithms can be derived: Ising-like models and simulated annealing techniques. When combined with known predictors such as Median and LOCO-I, these models become even more effective. In order to further examine the proposed models we apply them to two important problems: (i) Digital Cameras in space damaged from cosmic radiation. (ii) Ultrasonic medical devices damaged from speckle noise. The results, as well as benchmark and comparisons, suggest in most of the cases a significant gain in PSNR and SSIM in comparison to other filters.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
Selection rules for single-chain-magnet behaviour in non-collinear Ising systems
Energy Technology Data Exchange (ETDEWEB)
Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch
2009-06-10
The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.
Selection rules for single-chain-magnet behaviour in non-collinear Ising systems
International Nuclear Information System (INIS)
Vindigni, Alessandro; Pini, Maria Gloria
2009-01-01
The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.
Indian Academy of Sciences (India)
The Course will consist of stimulating experiments in different branches of chemistry covering diverse topics such as chemical kinetics, electrochemistry, spectrophotometry, polymer chemistry, advanced synthesis in inorganic and organic chemistry, and molecular modeling. The focus of this Course is to acquaint the ...
International Nuclear Information System (INIS)
Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef
2016-01-01
The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.
Title: Using US EPA’s Chemical Safety for Sustainability’s Comptox Chemistry Dashboard and Tools for Bioactivity, Chemical and Toxicokinetic Modeling Analyses • Class format: half-day (4 hours) • Course leader(s): Barbara A. Wetmore and Antony J. Williams,...
Magnetization in quenched bond-mixed Ising ferromagnetic with anisotropic coupling constants
International Nuclear Information System (INIS)
Sarmento, E.F.; Tsallis, C.
1982-01-01
Within the framework of an effective field theory the phase diagram (ferromagnetic phase stability limit) and magnetization of a quenched bond-mixed spin 1 / 2 Ising model in anisotropic simple cubic lattice for both competing and non competing interactions is dicussed. Although analytically simple, the present formalism is superior to the standard Mean Field Approximation regarding at least two important features, namely it is capable of providing: (i) vanishing critical temperatures for one-dimensional systems; (ii) expected non uniform convergences in the highly diluted and highly anisotropic limits. The largeness of the model under consideration enables the exhibition of a certain amount of physically interesting crossovers (dimensionality changements, (dilute) - (non dilute) behavior, or even mixed situations) at both the phase diagram and magnetization levels. Whenever comparison is possible a satisfactory qualitative (and to a certain extent quantitative) agreement is observed with results available in the literature. (Author) [pt
Relaxation theory of spin-3/2 Ising system near phase transition temperatures
International Nuclear Information System (INIS)
Canko, Osman; Keskin, Mustafa
2010-01-01
Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)
Inverse freezing in the Hopfield fermionic Ising spin glass with a transverse magnetic field
International Nuclear Information System (INIS)
Morais, C.V.; Zimmer, F.M.; Magalhaes, S.G.
2011-01-01
The Hopfield fermionic Ising spin glass (HFISG) model in the presence of a magnetic transverse field Γ is used to study the inverse freezing transition. The mean field solution of this model allows introducing a parameter a that controls the frustration level. Particularly, in the present fermionic formalism, the chemical potential μ and the Γ provide a magnetic dilution and quantum spin flip mechanism, respectively. Within the one step replica symmetry solution and the static approximation, the results show that the reentrant transition between the spin glass and the paramagnetic phases, which is related to the inverse freezing for a certain range of μ, is gradually suppressed when the level of frustration a is decreased. Nevertheless, the quantum fluctuations caused by Γ can destroy this inverse freezing for any value of a.
Properties of a random bond Ising chain in a magnetic field
International Nuclear Information System (INIS)
Landau, D.P.; Blume, M.
1976-01-01
The Ising chain with random bonds in a magnetic field H = -Σ/sub i/J/sub i/sigma/sub i/sigma/sub i + l/ - hΣ/sub i/sigma/sub i/, where J/sub i/ = +- 1 at random, and Σ/sub i/J/sub i/ = 0, represents a model of a magnetic glass, or of heteropolymer melting. Calculations of the thermodynamic properties of the chain as a function of field strength and temperature have been performed by Monte Carlo techniques. These results are compared with perturbation calculations for small and large values of h/T. The Monte Carlo results show, in agreement with the perturbation calculations, that the field-induced magnetization is generally smaller for the random bond model than for a chain of noninteracting spins. As T → 0 the magnetization approaches the result for noninteracting spins
Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation
International Nuclear Information System (INIS)
Lin, W.S.; Yang, T.H.; Wang, Y.; Qin, M.H.; Liu, J.-M.; Ren, Zhifeng
2014-01-01
The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB 4 . The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB 4 are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization
Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation
Energy Technology Data Exchange (ETDEWEB)
Lin, W.S.; Yang, T.H.; Wang, Y. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Qin, M.H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States); Liu, J.-M. [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Ren, Zhifeng, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States)
2014-07-04
The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB{sub 4}. The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB{sub 4} are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization.
Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle
International Nuclear Information System (INIS)
Bouhou, S.; El Hamri, M.; Essaoudi, I.; Ainane, A.; Ahuja, R.
2015-01-01
Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation function, the thermal and the magnetic properties of a single Ising nanoparticle consisting of a ferromagnetic core, a ferromagnetic surface shell and a ferrimagnetic interface coupling are examined. The effect of the transverse field in the surface shell, the exchange interactions between core/shell and in surface shell on the free energy, thermal magnetization, specific heat and susceptibility are studied. A number of interesting phenomena have been found such as the existence of the compensation phenomenon and the magnetization profiles exhibit P-type, N-type and Q-type behaviors
Logical operations realized on the Ising chain of N qubits
International Nuclear Information System (INIS)
Asano, Masanari; Tateda, Norihiro; Ishii, Chikara
2004-01-01
Multiqubit logical gates are proposed as implementations of logical operations on N qubits realized physically by the local manipulation of qubits before and after the one-time evolution of an Ising chain. This construction avoids complicated tuning of the interactions between qubits. The general rules of the action of multiqubit logical gates are derived by decomposing the process into the product of two-qubit logical operations. The formalism is demonstrated by the construction of a special type of multiqubit logical gate that is simulated by a quantum circuit composed of controlled-NOT gates
Nonequilibrium dynamic critical scaling of the quantum Ising chain.
Kolodrubetz, Michael; Clark, Bryan K; Huse, David A
2012-07-06
We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.
Wind power: Italian auto-production legislation (ISES convention)
International Nuclear Information System (INIS)
Mari, G.
1991-01-01
With reference to what was discussed at the Bologna (Italy) June 1991 ISES (International Solar Energy Society) convention on wind energy, this paper summarizes the Italian legislative framework relative to on-site power generation and outlines the National Energy Plan objectives regarding the promotion of the use, by industry, of renewable energy sources. Brief notes are also provided on wind energy promotional activities being carried out by ENEL (the Italian National Energy Board), ENEA (Italian Agency for New Technologies, Energy and the Environment), and EWEA (the European Wind Energy Association)
Entanglement dynamics in critical random quantum Ising chain with perturbations
Energy Technology Data Exchange (ETDEWEB)
Huang, Yichen, E-mail: ychuang@caltech.edu
2017-05-15
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.
Phi4 lattice field theory as an asymptotic expansion about the Ising limit
International Nuclear Information System (INIS)
Caginalp, G.
1980-01-01
For a d-dimensional phi 4 lattice field theory consisting of N spins, an asymptotic expansion of expectations about the Ising limit is established in inverse powers of the bare coupling constant lambda. In the thermodynamic limit (N→infinity), the expansion is expected to be valid in the noncritical region of the Ising system
On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)
2016-12-15
In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.
Linear perturbation renormalization group method for Ising-like spin systems
Directory of Open Access Journals (Sweden)
J. Sznajd
2013-03-01
Full Text Available The linear perturbation group transformation (LPRG is used to study the thermodynamics of the axial next-nearest-neighbor Ising model with four spin interactions (extended ANNNI in a field. The LPRG for weakly interacting Ising chains is presented. The method is used to study finite field para-ferrimagnetic phase transitions observed in layered uranium compounds, UAs1-xSex, UPd2Si2 or UNi2Si2. The above-mentioned systems are made of ferromagnetic layers and the spins from the nearest-neighbor and next-nearest-neighbor layers are coupled by the antiferromagnetic interactions J121-xSex the para-ferri phase transition is of the first order as expected from the symmetry reason, in UT2Si2 (T=Pd, Ni this transition seems to be a continuous one, at least in the vicinity of the multicritical point. Within the MFA, the critical character of the finite field para-ferrimagnetic transition at least at one isolated point can be described by the ANNNI model supplemented by an additional, e.g., four-spin interaction. However, in LPRG approximation for the ratio κ = J2/J1 around 0.5 there is a critical value of the field for which an isolated critical point also exists in the original ANNNI model. The positive four-spin interaction shifts the critical point towards higher fields and changes the shape of the specific heat curve. In the latter case for the fields small enough, the specific heat exhibits two-peak structure in the paramagnetic phase.
Giant magnetocaloric effect, magnetization plateaux and jumps of the regular Ising polyhedra
International Nuclear Information System (INIS)
Strečka, Jozef; Karľová, Katarína; Madaras, Tomáš
2015-01-01
Magnetization process and adiabatic demagnetization of the antiferromagnetic Ising spin clusters with the shape of regular polyhedra (Platonic solids) are exactly examined within the framework of a simple graph-theoretical approach. While the Ising cube as the only unfrustrated (bipartite) spin cluster shows just one trivial plateau at zero magnetization, the other regular Ising polyhedra (tetrahedron, octahedron, icosahedron and dodecahedron) additionally display either one or two intermediate plateaux at fractional values of the saturation magnetization. The nature of highly degenerate ground states emergent at intermediate plateaux owing to a geometric frustration is clarified. It is evidenced that the regular Ising polyhedra exhibit a giant magnetocaloric effect in a vicinity of magnetization jumps, whereas the Ising octahedron and dodecahedron belong to the most prominent geometrically frustrated spin clusters that enable an efficient low-temperature refrigeration by the process of adiabatic demagnetization
DEFF Research Database (Denmark)
Richards, H.L.; Rikvold, P.A.
1996-01-01
particularly promising as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems....... For systems in the weak-field ''stochastic region,'' where magnetization switching is on average effected by the nucleation and growth of a single droplet, the simulation results can be explained by a simple model in which the free energy is a function only of magnetization. In the intermediate......-field ''multidroplet region,'' a generalization of Avrami's law involving a magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching in highly anisotropic...
Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2013-07-01
We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.
The anisotropic Ising correlations as elliptic integrals: duality and differential equations
International Nuclear Information System (INIS)
McCoy, B M; Maillard, J-M
2016-01-01
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers–Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorized in a very simple way, in operators of decreasing orders. (paper)
Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides
Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.
2017-05-01
In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.
Electrical Transport on the Shastry-Sutherland Lattice in Ising-type Rare Earth Tetraborides
Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph. G.
In the presence of a magnetic field, frustrated spin systems may exhibit plateaus at fractional values of their saturation magnetization. Study of the magnetic ordering and excitations at such plateaus are key to understanding the nature of the underlying ground states in these systems. Here we study the magnetization plateaus in metallic rare earth tetraborides RB4 with Ising-type anisotropy (R = Er, Tm) in which R resides on a Shastry-Sutherland lattice. We focus on electrical transport and find that the response reflects scattering of charge carriers with the static and dynamic plateau structure. Modeling of these results is consistent with the expected strong uniaxial anisotropy and provides a framework for the study of plateau states in metallic frustrated systems. We thank NSF Grant No. DMR-1231319, Tsinghua Education Foundation, Moore foundation Grant No. GBMF3848 for support.
Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Yigit, Ali
2006-01-01
In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior
Markovian approach: From Ising model to stochastic radiative transfer
International Nuclear Information System (INIS)
Kassianov, E.; Veron, D.
2009-01-01
The origin of the Markovian approach can be traced back to 1906; however, it gained explicit recognition in the last few decades. This overview outlines some important applications of the Markovian approach, which illustrate its immense prestige, respect, and success. These applications include examples in the statistical physics, astronomy, mathematics, computational science and the stochastic transport problem. In particular, the overview highlights important contributions made by Pomraning and Titov to the neutron and radiation transport theory in a stochastic medium with homogeneous statistics. Using simple probabilistic assumptions (Markovian approximation), they have introduced a simplified, but quite realistic, representation of the neutron/radiation transfer through a two-component discrete stochastic mixture. New concepts and methodologies introduced by these two distinguished scientists allow us to generalize the Markovian treatment to the stochastic medium with inhomogeneous statistics and demonstrate its improved predictive performance for the down-welling shortwave fluxes. (authors)
An analytic equation of state for Ising-like models
International Nuclear Information System (INIS)
O'Connor, Denjoe; Santiago, J A; Stephens, C R
2007-01-01
Using an environmentally friendly renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y = f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x → 0, x → ∞ and x → -1. The only necessary inputs are the Wilson functions γ λ , γ ψ and γ φ 2 , associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N = 1, we derive a one-loop equation of state for 2 < d < 4 naturally parameterized by a ratio of nonlinear scaling fields. For d = 3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes
Noise as a Probe of Ising Spin Glass Transitions
Chen, Zhi; Yu, Clare
2009-03-01
Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.
Simple method to calculate percolation, Ising and Potts clusters
International Nuclear Information System (INIS)
Tsallis, C.
1981-01-01
A procedure ('break-collapse method') is introduced which considerably simplifies the calculation of two - or multirooted clusters like those commonly appearing in real space renormalization group (RG) treatments of bond-percolation, and pure and random Ising and Potts problems. The method is illustrated through two applications for the q-state Potts ferromagnet. The first of them concerns a RG calculation of the critical exponent ν for the isotropic square lattice: numerical consistence is obtained (particularly for q→0) with den Nijs conjecture. The second application is a compact reformulation of the standard star-triangle and duality transformations which provide the exact critical temperature for the anisotropic triangular and honeycomb lattices. (Author) [pt
Large-scale Ising-machines composed of magnetic neurons
Mizushima, Koichi; Goto, Hayato; Sato, Rie
2017-10-01
We propose Ising-machines composed of magnetic neurons, that is, magnetic bits in a recording track. In large-scale machines, the sizes of both neurons and synapses need to be reduced, and neat and smart connections among neurons are also required to achieve all-to-all connectivity among them. These requirements can be fulfilled by adopting magnetic recording technologies such as race-track memories and skyrmion tracks because the area of a magnetic bit is almost two orders of magnitude smaller than that of static random access memory, which has normally been used as a semiconductor neuron, and the smart connections among neurons are realized by using the read and write methods of these technologies.
Energy Technology Data Exchange (ETDEWEB)
Pitts, J. Brian, E-mail: jbp25@cam.ac.uk
2016-02-15
Einstein’s equations were derived for a free massless spin-2 field using universal coupling in the 1950–1970s by various authors; total stress–energy including gravity’s served as a source for linear free field equations. A massive variant was likewise derived in the late 1960s by Freund, Maheshwari and Schonberg, and thought to be unique. How broad is universal coupling? In the last decade four 1-parameter families of massive spin-2 theories (contravariant, covariant, tetrad, and cotetrad of almost any density weights) have been derived using universal coupling. The (co)tetrad derivations included 2 of the 3 pure spin-2 theories due to de Rham, Gabadadze, and Tolley; those two theories first appeared in the 2-parameter Ogievetsky–Polubarinov family (1965), which developed the symmetric square root of the metric as a nonlinear group realization. One of the two theories was identified as pure spin-2 by Maheshwari in 1971–1972, thus evading the Boulware–Deser–Tyutin–Fradkin ghost by the time it was announced. Unlike the previous 4 families, this paper permits nonlinear field redefinitions to build the effective metric. By not insisting in advance on knowing the observable significance of the graviton potential to all orders, one finds that an arbitrary graviton mass term can be derived using universal coupling. The arbitrariness of a universally coupled mass/self-interaction term contrasts sharply with the uniqueness of the Einstein kinetic term. One might have hoped to use universal coupling as a tie-breaking criterion for choosing among theories that are equally satisfactory on more crucial grounds (such as lacking ghosts and having a smooth massless limit). But the ubiquity of universal coupling implies that the criterion does not favor any particular theories among those with the Einstein kinetic term.
International Nuclear Information System (INIS)
Pitts, J. Brian
2016-01-01
Einstein’s equations were derived for a free massless spin-2 field using universal coupling in the 1950–1970s by various authors; total stress–energy including gravity’s served as a source for linear free field equations. A massive variant was likewise derived in the late 1960s by Freund, Maheshwari and Schonberg, and thought to be unique. How broad is universal coupling? In the last decade four 1-parameter families of massive spin-2 theories (contravariant, covariant, tetrad, and cotetrad of almost any density weights) have been derived using universal coupling. The (co)tetrad derivations included 2 of the 3 pure spin-2 theories due to de Rham, Gabadadze, and Tolley; those two theories first appeared in the 2-parameter Ogievetsky–Polubarinov family (1965), which developed the symmetric square root of the metric as a nonlinear group realization. One of the two theories was identified as pure spin-2 by Maheshwari in 1971–1972, thus evading the Boulware–Deser–Tyutin–Fradkin ghost by the time it was announced. Unlike the previous 4 families, this paper permits nonlinear field redefinitions to build the effective metric. By not insisting in advance on knowing the observable significance of the graviton potential to all orders, one finds that an arbitrary graviton mass term can be derived using universal coupling. The arbitrariness of a universally coupled mass/self-interaction term contrasts sharply with the uniqueness of the Einstein kinetic term. One might have hoped to use universal coupling as a tie-breaking criterion for choosing among theories that are equally satisfactory on more crucial grounds (such as lacking ghosts and having a smooth massless limit). But the ubiquity of universal coupling implies that the criterion does not favor any particular theories among those with the Einstein kinetic term.
Singh, R. R. P.; Young, A. P.
2017-12-01
We discuss generation of series expansions for Ising spin glasses with a symmetric ±J (i.e., bimodal) distribution on d -dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to higher order than for a general distribution. We discuss two types of problems, one classical and one quantum. The classical problem is that of the Ising spin glass in a longitudinal magnetic field h , for which we obtain high temperature series expansions in variables tanh(J /T ) and tanh(h /T ) . The quantum problem is a T =0 study of the Ising spin glass in a transverse magnetic field hT for which we obtain a perturbation theory in powers of J /hT . These methods require (i) enumeration and counting of all connected clusters that can be embedded in the lattice up to some order n , and (ii) an evaluation of the contribution of each cluster for the quantity being calculated, known as the weight. We discuss a general method that takes the much smaller list (and count) of all no free-end (NFE) clusters on a lattice up to some order n and automatically generates all other clusters and their counts up to the same order. The weights for finite clusters in both cases have a simple graphical interpretation that allows us to proceed efficiently for a general configuration of the ±J bonds and at the end perform suitable disorder averaging. The order of our computations is limited by the weight calculations for the high-temperature expansions of the classical model, while they are limited by graph counting for the T =0 quantum system. Details of the calculational methods are presented.
Herdeiro, Victor
2017-09-01
Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] introduced a numerical recipe, dubbed uv sampler, offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036, 10.1007/JHEP08(2016)036].
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.