WorldWideScience

Sample records for spin transition sensors

  1. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    Directory of Open Access Journals (Sweden)

    Cătălin M. Jureschi

    2015-01-01

    Full Text Available We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2’-hydroxyethyl-1,2,4-triazole3]I2∙H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P-temperature (T phase diagram calculated for this compound has been used to obtain the P-T bistability region.

  2. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Directory of Open Access Journals (Sweden)

    Catalin-Maricel Jureschi

    2016-02-01

    Full Text Available The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  3. Spin-glass transition in disordered terbium

    International Nuclear Information System (INIS)

    Hauser, J.J.

    1985-01-01

    While crystalline Tb is a helix antiferromagnet with a Neel temperature of 229 K which becomes ferromagnetic at 222 K, disordered Tb exhibits a spin-glass transition. The spin-glass freezing temperature ranges from 183 to 53 K, the lowest temperatures corresponding to the greatest degree of atomic disorder. These experiments constitute the first evidence for an elemental spin-glass. (author)

  4. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  5. Phase transitions with four-spin interactions

    OpenAIRE

    Lebowitz, Joel L.; Ruelle, David

    2010-01-01

    Using an extended Lee-Yang theorem and GKS correlation inequalities, we prove, for a class of ferromagnetic multi-spin interactions, that they will have a phase transition(and spontaneous magnetization) if, and only if, the external field $h=0$ (and the temperature is low enough). We also show the absence of phase transitions for some nonferromagnetic interactions. The FKG inequalities are shown to hold for a larger class of multi-spin interactions.

  6. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien

    2017-11-09

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  7. Revisiting the flocking transition using active spins.

    Science.gov (United States)

    Solon, A P; Tailleur, J

    2013-08-16

    We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas transition in the temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition, the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.

  8. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  9. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  10. Driving spin transition at interface: Role of adsorption configurations

    Science.gov (United States)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  11. Semitransparent anisotropic and spin Hall magnetoresistance sensor enabled by spin-orbit torque biasing

    Science.gov (United States)

    Yang, Yumeng; Xu, Yanjun; Xie, Hang; Xu, Baoxi; Wu, Yihong

    2017-07-01

    We demonstrate an ultrathin and semitransparent anisotropic and spin Hall magnetoresistance sensor based on NiFe/Pt heterostructures. The use of a spin-orbit torque effective field for transverse biasing allows us to reduce the total thickness of the sensors down to 3-4 nm, thereby leading to the semitransparency. Despite the extremely simple design, the spin-orbit torque effective field biased NiFe/Pt sensor exhibits levels of linearity and sensitivity comparable to those of sensors using more complex linearization schemes. In a proof-of-concept design using a full Wheatstone bridge comprising four sensing elements, we obtained a sensitivity up to 202.9 mΩ Oe-1, a linearity error below 5%, and a detection limit down to 20 nT. The transmittance of the sensor is over 50% in the visible range.

  12. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  13. Condensate-induced transitions and critical spin chains

    NARCIS (Netherlands)

    Månsson, T.; Lahtinen, V.; Suorsa, J.; Ardonne, E.

    2013-01-01

    We show that condensate-induced transitions between two-dimensional topological phases provide a general framework to relate one-dimensional spin models at their critical points. We demonstrate this using two examples. First, we show that two well-known spin chains, namely, the XY chain and the

  14. Spin-Precession Organic Magnetic Sensor

    Science.gov (United States)

    2012-09-26

    with the voltage and we get a value of ~200 per tesla for the quantity [V -1 (dV/dB)], which roughly translates into a sensitivity of 14 nT/Hz 1/2...Ideally, the response should be similar to the spin- valve measurements—the resistance changes as the magnetization of each of the contacts flips as we...strips. Typical spin- valve measurements employ strip widths of ~10-20 nm. However, the smallest width achievable in our FIB process is 500 nm, and the

  15. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  16. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  17. Antiferromagnetic phase transition and spin correlations in NiO

    DEFF Research Database (Denmark)

    Chatterji, Tapan; McIntyre, G.J.; Lindgård, Per-Anker

    2009-01-01

    We have investigated the antiferromagnetic (AF) phase transition and spin correlations in NiO by high-temperature neutron diffraction below and above TN. We show that AF phase transition is a continuous second-order transition within our experimental resolution. The spin correlations manifested...... by the strong diffuse magnetic scattering persist well above TN530 K and could still be observed at T=800 K which is about 1.5TN. We argue that the strong spin correlations above TN are due to the topological frustration of the spins on a fcc lattice. The Néel temperature is substantially reduced...... by this process. We determined the critical exponents =0.328±0.002 and =0.64±0.03 and the Néel temperature TN=530±1 K. These critical exponents suggest that NiO should be regarded as a 3dXY system...

  18. Analysis of phase transitions in spin-crossover compounds by using atom - phonon coupling model

    International Nuclear Information System (INIS)

    Gindulescu, A; Linares, J; Rotaru, A; Dimian, M; Nasser, J

    2011-01-01

    The spin - crossover compounds (SCO) have become of great interest recently due to their potential applications in memories, sensors, switches, and display devices. These materials are particularly interesting because upon application of heat, light, pressure or other physical stimulus, they feature a phase transition between a low-spin (LS) diamagnetic ground state and a high-spin (HS) paramagnetic state, accompanied in some cases by color change. The phase transition can be discontinuous (with hysteresis), in two steps or gradual. Our analysis is performed by using the atom - phonon coupling (APC) model which considers that neighboring molecules are connected through a spring characterized by an elastic constant depending on molecules electronic state. By associating a fictitious spin to each molecule that has -1 and +1 eigenvalues corresponding to LS and HS levels respectively, an Ising type model can be developed for the analysis of metastable states and phase transitions in spin-crossover compounds. This contribution is aimed at providing a review of our recent results in this area, as well as novel aspects related to SCO compounds behavior at low temperature. In the framework of the APC model, we will discuss about the existence of metastable and unstable states, phase transitions and hysteresis phenomena, as well as their dependence on sample size.

  19. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  20. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  1. Control of entanglement transitions in quantum spin clusters

    Science.gov (United States)

    Irons, Hannah R.; Quintanilla, Jorge; Perring, Toby G.; Amico, Luigi; Aeppli, Gabriel

    2017-12-01

    Quantum spin clusters provide a platform for the experimental study of many-body entanglement. Here we address a simple model of a single-molecule nanomagnet featuring N interacting spins in a transverse field. The field can control an entanglement transition (ET). We calculate the magnetization, low-energy gap, and neutron-scattering cross section and find that the ET has distinct signatures, detectable at temperatures as high as 5% of the interaction strength. The signatures are stronger for smaller clusters.

  2. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    International Nuclear Information System (INIS)

    Yu, Zhi Gang

    2010-01-01

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues concerning these

  3. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Gang Yu

    2010-06-30

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues

  4. Effects of spin-orbit coupling on the spin structure of deposited transition-metal clusters

    Science.gov (United States)

    Mankovsky, S.; Bornemann, S.; Minár, J.; Polesya, S.; Ebert, H.; Staunton, J. B.; Lichtenstein, A. I.

    2009-07-01

    The influence of the spin-orbit coupling on the magnetic structure of deposited transition-metal nanostructures has been studied by fully relativistic electronic-structure calculations. The interplay of exchange coupling and magnetic anisotropy was monitored by studying the corresponding magnetic torque calculated within ab initio and model approaches. We find that a spin-orbit-induced Dzyaloshinski-Moriya interaction has a profound effect on the spin structure of such complex magnetic systems and that in combination with magnetic anisotropies and isotropic exchange this can result in peculiar magnetic properties.

  5. Macro-spin modeling and experimental study of spin-orbit torque biased magnetic sensors

    Science.gov (United States)

    Xu, Yanjun; Yang, Yumeng; Luo, Ziyan; Xu, Baoxi; Wu, Yihong

    2017-11-01

    We reported a systematic study of spin-orbit torque biased magnetic sensors based on NiFe/Pt bilayers through both macro-spin modeling and experiments. The simulation results show that it is possible to achieve a linear sensor with a dynamic range of 0.1-10 Oe, power consumption of 1 μW-1mW, and sensitivity of 0.1-0.5 Ω/Oe. These characteristics can be controlled by varying the sensor dimension and current density in the Pt layer. The latter is in the range of 1 × 105-107 A/cm2. Experimental results of fabricated sensors with selected sizes agree well with the simulation results. For a Wheatstone bridge sensor comprising of four sensing elements, a sensitivity up to 0.548 Ω/Oe, linearity error below 6%, and detectivity of about 2.8 nT/√Hz were obtained. The simple structure and ultrathin thickness greatly facilitate the integration of these sensors for on-chip applications. As a proof-of-concept experiment, we demonstrate its application in detection of current flowing in an on-chip Cu wire.

  6. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    Science.gov (United States)

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2017-10-31

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Topological Phase Transitions in the Photonic Spin Hall Effect

    Science.gov (United States)

    Kort-Kamp, W. J. M.

    2017-10-01

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. We unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. We discover that photonic Hall shifts are sensitive to spin and valley properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.

  8. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  9. Quantum phase transitions in random XY spin chains

    International Nuclear Information System (INIS)

    Bunder, J.E.; McKenzie, R.H.

    2000-01-01

    Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes

  10. Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors

    Science.gov (United States)

    Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John

    2001-10-01

    Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.

  11. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  12. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  13. Phase transitions and spin excitations of spin-1 bosons in optical lattice

    Science.gov (United States)

    Zhu, Min-Jie; Zhao, Bo

    2018-03-01

    For spin-1 bosonic system trapped in optical lattice, we investigate two main problems, including MI-SF phase transition and magnetic phase separations in MI phase, with extended standard basis operator (SBO) method. For both ferromagnetic (U2 0) systems, we analytically figure out the symmetry properties in Mott-insulator and superfluid phases, which would provide a deeper insight into the MI-SF phase transition process. Then by applying self-consistent approach to the method, we include the effect of quantum and thermal fluctuations and derive the MI-SF transition phase diagram, which is in quantitative agreement with recent Monte-Carlo simulation at zero temperature, and at finite temperature, we find the underestimation of finite-temperature-effect in the mean-field approximation method. If we further consider the spin excitations in the insulating states of spin-1 system in external field, distinct spin phases are expected. Therefore, in the Mott lobes with n = 1 and n = 2 atoms per site, we give analytical and numerical boundaries of the singlet, nematic, partially magnetic and ferromagnetic phases in the magnetic phase diagrams.

  14. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  15. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  16. Quantum discord and quantum phase transition in spin chains

    OpenAIRE

    Dillenschneider, Raoul

    2008-01-01

    Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.

  17. Noise as a Probe of Ising Spin Glass Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  18. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  19. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  20. Smoothed transitions in higher spin AdS gravity

    International Nuclear Information System (INIS)

    Banerjee, Shamik; Shenker, Stephen; Castro, Alejandra; Hellerman, Simeon; Hijano, Eliot; Lepage-Jutier, Arnaud; Maloney, Alexander

    2013-01-01

    We consider CFTs conjectured to be dual to higher spin theories of gravity in AdS 3 and AdS 4 . Two-dimensional CFTs with W N symmetry are considered in the λ = 0 (k → ∞) limit where they are conjectured to be described by continuous orbifolds. The torus partition function is computed, using reasonable assumptions, and equals that of a free-field theory. We find no phase transition at temperatures of order 1; the usual Hawking–Page phase transition is removed by the highly degenerate light states associated with conical defect states in the bulk. Three-dimensional Chern–Simons matter CFTs with vector-like matter are considered on T 3 , where the dynamics is described by an effective theory for the eigenvalues of the holonomies. Likewise, we find no evidence for a Hawking–Page phase transition at a large level k. (paper)

  1. Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass

    OpenAIRE

    Hukushima, K.; Kawamura, H.

    2000-01-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...

  2. Dynamical sensitivity control of a single-spin quantum sensor.

    Science.gov (United States)

    Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan

    2017-07-26

    The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.

  3. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  4. Position-sensitive transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Iyomoto, N. [NASA/GSFC, Greenbelt, MD 20771 (United States)]. E-mail: iyomoto@milkyway.gsfc.nasa.gov; Bandler, S.R. [NASA/GSFC, Greenbelt, MD 20771 (United States); Brekosky, R.P. [NASA/GSFC, Greenbelt, MD 20771 (United States); Chervenak, J.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Figueroa-Feliciano, E. [NASA/GSFC, Greenbelt, MD 20771 (United States); Finkbeiner, F.M. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Lindeman, M.A. [University of Wisconsin, 1150 University Ave, Madison, WI 53706 (United States); Murphy, K. [NASA/GSFC, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA/GSFC, Greenbelt, MD 20771 (United States); Saab, T. [NASA/GSFC, Greenbelt, MD 20771 (United States); Sadleir, J.E. [NASA/GSFC, Greenbelt, MD 20771 (United States); Talley, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K K{alpha} lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193{mu}s is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events.

  5. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  6. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  7. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    Science.gov (United States)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  8. Account of states with indefinite spin in calculations of intercombination collisional transitions

    International Nuclear Information System (INIS)

    Gordeev, S.V.; Chirtsov, A.S.

    1986-01-01

    States with indefinite spin are used in the second order of the perturbation theory as intermediate states for calculating electronic collisional transitions with changing spin between excited states of atoms. The rate coefficient for 4 1 P-4 3 D transition in helium is estimated

  9. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  10. Versatile Sensor for Transition, Separation, and Shock Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a simple, robust, self-contained, and self-powered sensor array for the detection of laminar/turbulent transition location, areas of...

  11. Versatile Sensor for Transition, Separation, and Shock Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a simple, robust, sensor array for the detection of laminar/turbulent transition location, areas of flowfield separation, and shock wave...

  12. Longitudinal Proximity Effect Superconducting Transition-Edge Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting Transition-Edge Sensors (TESs) hold the highest energy resolving power of any nondispersive spectrometer.   They are used for imaging spectroscopy...

  13. Rancang Bangun Mini System Spin Coating Untuk Pelapisan Sensor Qcm (Quartz Crystal Microbalance)

    OpenAIRE

    Hudha, Lalu Sahrul; Sakti, Setyawan; Masruroh, Masruroh

    2013-01-01

    Quartz Crystal Microbalance (QCM) adalah salah satu sensor yang dapat mengukur massa per unit area dengan cara mengukur Perubahan frekuensi pada resonator kristal kuarsa. Tebal dan keseragaman lapisan yang melapisi QCM ini mempengaruhi sensitifitas dan kestabilan sensor QCM. Oleh karena itu, perlu dibuat suatu teknik pelapisan yang dapat menghasilkan lapisan yang diinginkan. Salah satunya adalah teknik spin atau yang bisa disebut sebagai spin coating. Oleh karena itu, telah dilakukan pembuata...

  14. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    Directory of Open Access Journals (Sweden)

    A. Ajoy

    2015-01-01

    Full Text Available Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  15. Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model

    Science.gov (United States)

    Lima, L. S.

    2018-04-01

    We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.

  16. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  17. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides

    Science.gov (United States)

    Offidani, Manuel; Milletarı, Mirco; Raimondi, Roberto; Ferreira, Aires

    2017-11-01

    When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

  18. Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition

    International Nuclear Information System (INIS)

    Yuan Zigang; Li Shushen; Zhang Ping

    2007-01-01

    We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed

  19. Phase transitions in continuum ferromagnets with unbounded spins

    Energy Technology Data Exchange (ETDEWEB)

    Daletskii, Alexei, E-mail: alex.daletskii@york.ac.uk [Department of Mathematics, University of York, York YO10 DD (United Kingdom); Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de [Fakultät für Mathematik, Universität Bielefeld, Bielefeld D-33615 (Germany); Kozitsky, Yuri, E-mail: jkozi@hektor.umcs.lublin.pl [Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, 20-031 Lublin (Poland)

    2015-11-15

    States of thermal equilibrium of an infinite system of interacting particles in ℝ{sup d} are studied. The particles bear “unbounded” spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into position-position and spin-spin parts. The position-position part is described by a superstable potential, and the spin-spin part is attractive and of finite range. Thermodynamic states of the system are defined as tempered Gibbs measures on the space of marked configurations. It is proved that the set of such measures contains at least two elements if the activity is big enough.

  20. Spin Transition of Iron in the Earth's Lower Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J; Tsuchiya, T

    2007-05-23

    Electronic spin-pairing transitions of iron and associated effects on the physical properties of host phases have been reported in lower-mantle minerals including ferropericlase, silicate perovskite, and possibly in post-perovskite at lower-mantle pressures. Here we evaluate current understanding of the spin and valence states of iron in the lower-mantle phases, emphasizing the effects of the spin transitions on the density, sound velocities, chemical behavior, and transport properties of the lower-mantle phases. The spin transition of iron in ferropericlase occurs at approximately 50 GPa but likely turns into a wide spin crossover under lower-mantle temperatures. Current experimental results indicate a continuous nature of the spin crossover in silicate perovskite at high pressures, but which valence state of iron undergoes the spin crossover and what is its associated crystallographic site remain uncertain. The spin transition of iron results in enhanced density, incompressibility, and sound velocities, and reduced radiative thermal conductivity in the low-spin ferropericlase, which should be considered in future geophysical and geodynamic modeling of the Earth's lower mantle. Our evaluation of the experimental and theoretical pressure-volume results shows that the spin crossover of iron results in a density increase of 3-4% in ferropericlase containing 17-19% FeO. Here we have modeled the density and bulk modulus profiles of ferropericlase across the spin crossover under lower-mantle pressure-temperature conditions and showed how the ratio of the spin states of iron affects our understanding of the state of the Earth's lower mantle.

  1. Spin transition of ferric iron in the calcium-ferrite type aluminous phase: Fe 3+ Spin Transition in the CF Phase

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ye [School of Science, Wuhan University of Technology, Wuhan China; Qin, Fei [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, and School of Earth and Space Sciences, Peking University, Beijing China; Wu, Xiang [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan China; Huang, Haijun [School of Science, Wuhan University of Technology, Wuhan China; McCammon, Catherine A. [Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth Germany; Yoshino, Takashi [Institute for Planetary Materials, Okayama University, Misasa Japan; Zhai, Shuangmeng [Key Laboratory of High-temperature and High-pressure Study of the Earth' s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China; Xiao, Yuming [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne Illinois USA; Prakapenka, Vitali B. [GeoSoilEnviroCARS, University of Chicago, Chicago Illinois USA

    2017-08-01

    We investigated Fe-free and Fe-bearing CF phases using nuclear forward scattering and X-ray diffraction coupled with diamond anvil cells up to 80 GPa at room temperature. Octahedral Fe3+ ions in the Fe-bearing CF phase undergo a high-spin to low-spin transition at 25–35 GPa, accompanied by a volume reduction of ~2.0% and a softening of bulk sound velocity up to 17.6%. Based on the results of this study and our previous studies, both the NAL and CF phases, which account for 10–30 vol % of subducted MORB in the lower mantle, are predicted to undergo a spin transition of octahedral Fe3+ at lower mantle pressures. Spin transitions in these two aluminous phases result in an increase of density of 0.24% and a pronounced softening of bulk sound velocity up to 2.3% for subducted MORB at 25–60 GPa and 300 K. The anomalous elasticity region expands and moves to 30–75 GPa at 1200 K and the maximum of the VΦ reduction decreases to ~1.8%. This anomalous elastic behavior of Fe-bearing aluminous phases across spin transition zones may be relevant in understanding the observed seismic signatures in the lower mantle.

  2. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  3. Efficient spin transitions in inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Lorente, Nicolás; Gauyacq, Jean-Pierre

    2009-10-23

    The excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies. First-principles transmissions are evaluated in quantitative agreement with the experiment.

  4. The Verwey transition observed by spin-resolved photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Tusche, Christian [Max Planck Institute of Microstructure Physics, Halle D-06120 (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), D-52425 Jülich (Germany)

    2017-01-01

    Highlights: • First observations of magnetic domains on magnetite (001) by spin-resolved PEEM. • Spin-polarization through the Verwey transitions does not change appreciably. • Shape and distribution of domains has been observed through the Verwey transition. - Abstract: We have imaged the magnetic domains on magnetite (001) through the Verwey transition by means of spin-resolved photoemission electron microscopy. A He laboratory source is used for illumination. The magnetic domains walls above the Verwey transition are aligned with 〈110〉 in-plane directions. Below the Verwey transition, the domain structure is interpreted as arising from a distribution of areas with different monoclinic c-axis, with linear 180° domain walls within each area and ragged edges when the magnetic domain boundaries coincide with structural domain walls. The domains evolve above the Verwey transition, while they are static below.

  5. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    International Nuclear Information System (INIS)

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  6. Photoinduced Coherent Spin Fluctuation in Primary Dynamics of Insulator to Metal Transition in Perovskite Cobalt Oxide

    Directory of Open Access Journals (Sweden)

    Arima T.

    2013-03-01

    Full Text Available Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.

  7. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    An average ferromagnetic moment may also be present, and the spin-glass order then resides in the plane orthogonal to the ferromagnetic moment. We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  8. Determination of the Tc distribution for 1000 Transition Edge Sensors

    International Nuclear Information System (INIS)

    Brink, P.L.; Saab, T.; Miller, A.J.; Cabrera, B.; Castle, J.P.; Chang, C.; Young, B.A.; Akerib, D.S.; Discroll, D.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Emes, J.H.; Gaitskell, R.J.; Mandic, V.; Meunier, P.; Rau, W.; Sadoulet, B.; Seitz, D.N.

    2002-01-01

    The ZIP detectors deployed in the CDMS II experiment utilize phonon sensors comprising W Transition Edge Sensors (TESs). In order to ensure uniform collection of the athermal phonon signal the TESs are dispersed uniformly on one side of a 1 cm thick, 3 inch diameter, disk. Each quadrant contains 1036 TESs connected in parallel to one series-array SQUID amplifier. The initial superconducting transition temperatures of these TESs tend to be too high for our requirements, and substantial gradients make the operation of the detectors difficult. Hence our implementation of Fe-56 ion implantation, as reported at the previous LTD meeting, to reduce in a controlled manner the transition temperature. However, the successful implementation of this ion-implantation scheme requires accurate knowledge of the initial transition temperature of each TES in a given quadrant. We report on our approaches and techniques employed to address the issue of determining the initial Tc distribution

  9. Tunable three-axis magnetoresistance sensor with a spin-polarised current

    Science.gov (United States)

    Chang, Jui-Hang; Chang, Ching-Ray

    2015-10-01

    A three-axis magnetic tunnel junction sensor with three ferromagnetic layers to achieve a linear and hysteresis-free response is proposed and studied analytically. We show that the orientation of the easy axis of the sensor and the sensitivity are tunable by changing the density of a injected spin-polarised current. Additionally, the sensors integrated in a full Wheatstone bridge can have perpendicular and transverse sensing capability in different initial magnetisation arrangements. A value of 0.35% TMR/Oe is observed in sensing the perpendicular field. These findings indicate that a three-axis sensor can be fabricated more easily on a flat substrate.

  10. Spin waves and the order-disorder transition in chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1969-01-01

    The inelastic magnetic scattering of neutrons has been studied in Cr and Cr0.95-Mn0.05 both below and above the Neel temperature. The temperature dependence of the spin-wave velocity in the alloy has been measured below TN. The scattering above TN may also be interpreted in terms of spin-wavelike...

  11. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    Science.gov (United States)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  12. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  13. Spin and Valley Physics in Two Dimensional Systems: Graphene and Superconducting Transition Metal Dichalcogenides

    Science.gov (United States)

    Sosenko, Evan Boyd

    Recent focus on two dimensional materials and spin-coupled phenomena holds future potential for fast, efficient, flexible, and transparent devices. The fundamental operation of a spintronic device depends on the injection, transmission, and detection of spins in a conducting channel. Long spin lifetimes during transit are critical for realizing this technology. An attractive platform for this purpose is graphene, which has high mobilities and low spin-orbit coupling. Unfortunately, measured spin lifetimes are orders of magnitude smaller than theoretically expected. A source of spin loss is the resistance mismatch between the ferromagnetic electrodes and graphene. While this has been studied numerically, here we provide a closed form expression for Hanle spin precession which is the standard method of measuring spin lifetimes. This allows for a detailed characterization of the nonlocal spin valve device. Strong spin-orbit interaction has the potential to engender unconventional superconducting states. A cousin to graphene, two dimensional transition metal dichalcogenides entwine interaction, spin-orbit coupling, and topology. The noninteracting electronic states have multiple valleys in the energy dispersion and are topologically nontrivial. We report on the possible superconducting states of hole-doped systems, and analyze to what extent the correlated phase inherits the topological aspects of the parent crystal. We find that local attractive interactions or proximal coupling to s-wave superconductors lead to a pairing which is an equal mixture of a spin singlet and the m = 0 spin triplet. Its topology allows quasiparticle excitations of net nonzero Berry curvature via pair-breaking by circularly polarized light. The valley contrasting optical response, where oppositely circularly polarized light couples to different valleys, is present even in the superconducting state, though with smaller magnitude.

  14. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels

    Science.gov (United States)

    Golysheva, Elena A.; Shevelev, Georgiy Yu.; Dzuba, Sergei A.

    2017-08-01

    In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, , of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ˜100-150 K and at ˜170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to τc, where is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on . For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for . As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not

  15. Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots

    Science.gov (United States)

    Żebrowski, D. P.; Peeters, F. M.; Szafran, B.

    2017-06-01

    Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.

  16. Phase Transition for a Mixed Spin-1/2 and Spin-SB System with a Transverse Crystal Field

    Science.gov (United States)

    Jiang, Wei; Xiao, Gui-Bin; Wei, Guo-Zhu; Du, An; Zhang, Qi

    2004-01-01

    The critical behaviors of a mixed spin-1/2 and spin-sB Ising system with a transverse crystal field are studied by use of the effective-field theory with correlations. The effect of the transverse crystal field on transition temperatures is investigated numerically for the honeycomb (z = 3) and square (z = 4) lattices. The results show that there is no tricritical point for the system. The project supported by Science Foundation of the Ministry of Education of China under Grant No. 99026

  17. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsiuk, Sergii

    2016-05-23

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  18. Multi-sensor Observations of the SpinSat Satellite

    Science.gov (United States)

    2015-10-18

    and off. Figure 1. Photograph of SpinSat (left, courtesy NASA ) mounted on the ISS mechanical arm before deployment, and an exploded-view of...this series; it was deployed into low-Earth orbit (LEO) from the International Space Station ( ISS ) in late November of 2014, a few weeks after having

  19. Most spin-1/2 transition-metal ions do have single ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Whangbo, Myung-Hwan, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 (United States); Koo, Hyun-Joo [Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Xiang, Hongjun, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 (China); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  20. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  1. M1 transitions between collective levels and F-spin purity

    International Nuclear Information System (INIS)

    von Brentano, P.; Frank, W.; Gelberg, A.; Harter, H.; Krips, W.; Casten, R.F.; Boerner, H.G.; Krusche, B.

    1987-01-01

    M1 transitions between low-lying collective levels in deformed nuclei are described within the IBM-2 framework. This is done by a special choice of the Hamiltonian which allows a simultaneous fit of energies, E2 and M1 transitions. Finally, the results are interpreted using the F-spin concept. 12 refs., 4 tabs

  2. Phase transitions between different spin-glass phases and between different chaoses in quenched random chiral systems

    Science.gov (United States)

    Ćaǧlar, Tolga; Berker, A. Nihat

    2017-09-01

    The left-right chiral and ferromagnetic-antiferromagnetic double-spin-glass clock model, with the crucially even number of states q =4 and in three dimensions d =3 , has been studied by renormalization-group theory. We find, for the first time to our knowledge, four spin-glass phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich, including regular and temperature-inverted devil's staircases and reentrances.

  3. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  4. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems

    Science.gov (United States)

    Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe

    2017-09-01

    The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.

  5. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Tamarat, Ph; Neumann, P; Gaebel, T; Jelezko, F; Wrachtrup, J [3. Physikalisches Institut, Universitaet Stuttgart, 70550, Stuttgart (Germany); Manson, N B; Harrison, J P; McMurtrie, R L [Laser Physics Centre, Australian National University, Canberra, ACT 0200 (Australia); Nizovtsev, A [Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072 (Belarus); Santori, C; Beausoleil, R G [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA, 94304 (United States); Hemmer, P [Texas A and M University, College Station, TX, 77843 (United States)], E-mail: j.wrachtrup@physik.uni-stuttgart.de

    2008-01-15

    We map out the first excited state sublevel structure of single nitrogen-vacancy (NV) colour centres in diamond. The excited state is an orbital doublet where one branch supports an efficient cycling transition, while the other can simultaneously support fully allowed optical Raman spin-flip transitions. This is crucial for the success of many recently proposed quantum information applications of the NV defects. We further find that an external electric field can be used to completely control the optical properties of a single centre. Finally, a group theoretical model is developed that explains the observations and provides good physical understanding of the excited state structure.

  6. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond

    Science.gov (United States)

    Tamarat, Ph; Manson, N. B.; Harrison, J. P.; McMurtrie, R. L.; Nizovtsev, A.; Santori, C.; Beausoleil, R. G.; Neumann, P.; Gaebel, T.; Jelezko, F.; Hemmer, P.; Wrachtrup, J.

    2008-01-01

    We map out the first excited state sublevel structure of single nitrogen-vacancy (NV) colour centres in diamond. The excited state is an orbital doublet where one branch supports an efficient cycling transition, while the other can simultaneously support fully allowed optical Raman spin-flip transitions. This is crucial for the success of many recently proposed quantum information applications of the NV defects. We further find that an external electric field can be used to completely control the optical properties of a single centre. Finally, a group theoretical model is developed that explains the observations and provides good physical understanding of the excited state structure.

  7. Quantum Phase Transition in a Cold Atomic Spin-Boson Mixture

    Science.gov (United States)

    Orth, Peter P.; Stanic, Ivan; Le Hur, Karyn

    2008-03-01

    We theoretically implement a spin array in a tunable bosonic environment using cold bosonic atoms with two (hyperfine) ground states, trapped by different potentials [1]. The first specie lies in a deep optical lattice with tightly confining wells and forms a spin array; spin-up/down corresponds to occupation by one/no atom at each site. The second specie forms a superfluid reservoir. Different species are coupled coherently via laser transitions and collisions. Whereas the laser coupling mimics a transverse field for the spins, the coupling to the reservoir phonons (sound modes) induces a ferromagnetic (Ising) coupling as well as dissipation. This results in a peculiar ferro-paramagnetic quantum phase transition where the effect of dissipation can be studied in a controllable manner. [1] Peter P. Orth, Ivan Stanic, and Karyn Le Hur, arXiv:0711.2309 [cond-mat.other].

  8. Reentrant transitions of a mixed-spin Ising model on the diced lattice

    Directory of Open Access Journals (Sweden)

    M.Jascur

    2005-01-01

    Full Text Available Magnetic behaviour of a mixed spin-1/2 and spin-1 Ising model on the diced lattice is studied using an exact star-triangle mapping transformation. It is found that the uniaxial as well as biaxial single-ion anisotropy acting on the spin-1 sites may potentially cause a reentrant transition with two consecutive critical points. Contrary to this, the effect of next-nearest-neighbour interaction between the spin-1/2 sites possibly leads to a reentrant transition with three critical temperatures in addition to the one with two critical points only. The shape of the total magnetization versus temperature dependence is particularly investigated for the case of ferrimagnetically ordered system.

  9. Design of transition edge sensor microcalorimeters for optimal performance

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E.; Stahle, C.K.; Boyce, K.; Brekosky, R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.; Lindeman, M.; Porter, F.S.; Saab, T

    2004-03-11

    We have developed a model for transition edge sensors to optimize performance under a variety of different conditions. There are three design trade-offs when engineering a microcalorimeter for a particular application: energy resolution, energy range and maximum count rate. All three are interdependent and are determined by various design parameters such as the detector heat capacity, the sharpness of the transition, and the thermal conductance of the detector to the frame. Our model includes all known sources of intrinsic noise in our calorimeters including the observed broad band excess noise. We will present the results of this model, and its predictions for optimally designed microcalorimeters.

  10. Spin-Peierls transition in TiOCl

    Czech Academy of Sciences Publication Activity Database

    Shaz, M.; van Smaalen, S.; Palatinus, Lukáš; Hoinkis, M.; Klemm, M.; Horn, S.; Classen, R.

    2005-01-01

    Roč. 71, č. 10 (2005), 100405/1-100405/4 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : spin-Peierls state * quantum magnet * cation-cation interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 3.185, year: 2005

  11. Continuous quantum phase transitions in the one-dimensional spin ...

    Indian Academy of Sciences (India)

    We have investigated the one-dimensional spin-1/2 axial next-nearest-neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a transverse field ...

  12. Continuous quantum phase transitions in the one-dimensional spin ...

    Indian Academy of Sciences (India)

    Abstract. We have investigated the one-dimensional spin-1/2 axial next-nearest- neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a ...

  13. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J

    2010-01-01

    We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand......-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  14. The spin-reorientation transition on Ni/Cu(0 0 1) surface covered with hydrogen

    International Nuclear Information System (INIS)

    Maca, F.; Shick, Alexander B.; Schneider, Guenter; Redinger, Josef

    2004-01-01

    We investigate the effect of an H-adlayer on the magnetic anisotropy energy (MAE) of Ni/Cu(0 0 1) making use of the total energy full-potential linearized augmented plane wave (FP-LAPW) method including spin-orbit coupling, and taking into account crystal structure relaxation effects. We find strong influence of H-adlayer on the surface MAE, providing the reduction of spin-reorientation transition critical thickness, in accordance with the recent experiments

  15. Characteristics of Ti films for transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Ukibe, M.; Koyanagi, M.; Ohkubo, M.; Pressler, H.; Kobayashi, N.

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness

  16. Characteristics of Ti films for transition-edge sensor microcalorimeters

    CERN Document Server

    Ukibe, M; Ohkubo, M; Pressler, H; Kobayashi, N

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a sup 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness.

  17. Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition.

    Science.gov (United States)

    Datta, Subhadeep; Cai, Yongqing; Yudhistira, Indra; Zeng, Zebing; Zhang, Yong-Wei; Zhang, Han; Adam, Shaffique; Wu, Jishan; Loh, Kian Ping

    2017-09-22

    Coupling spins of molecular magnets to two-dimensional (2D) materials provides a framework to manipulate the magneto-conductance of 2D materials. However, with most molecules, the spin coupling is usually weak and devices fabricated from these require operation at low temperatures, which prevents practical applications. Here, we demonstrate field-effect transistors based on the coupling of a magnetic molecule quinoidal dithienyl perylenequinodimethane (QDTP) to 2D materials. Uniquely, QDTP switches from a spin-singlet state at low temperature to a spin-triplet state above 370 K, and the spin transition can be electrically transduced by both graphene and molybdenum disulphide. Graphene-QDTP shows hole-doping and a large positive magnetoresistance ( ~ 50%), while molybdenum disulphide-QDTP demonstrates electron-doping and a switch to large negative magnetoresistance ( ~ 100%) above the magnetic transition. Our work shows the promise of spin detection at high temperature by coupling 2D materials and molecular magnets.Engineering a coupling between magnetic molecules and conducting materials at room temperature could help the development of spintronic devices. Loh et al. show that the spin state of QDTP molecules deposited on graphene and MoS 2 couples to their electronic structure, affecting magnetotransport.

  18. Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J. A., E-mail: wolny@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Garcia, Y. [Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) (Belgium); Faus, I.; Rackwitz, S. [University of Kaiserslautern, Department of Physics (Germany); Schlage, K.; Wille, H.-C. [DESY (Germany); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe {sub 2}L{sub 5}(NCS) {sub 4}] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or “feel” the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm {sup −1}, while the low-spin one displays two intense bands in the range from 390 to 430 cm {sup −1}, accompanied by a number of weaker bands below this area and one at ca. 490 cm {sup −1}. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated.

  19. Transition edge sensors for quench localization in SRF cavity tests

    Science.gov (United States)

    Furci, H.; Kovács, Z.; Koettig, T.; Vandoni, G.

    2017-12-01

    Transition Edge Sensors (TES) are bolometers based on the gradual superconducting transition of a thin film alloy. In the frame of improvement of non-contact thermal mapping for quench localisation in SRF cavity tests, TES have been developed in-house at CERN. Based on modern photolithography techniques, a fabrication method has been established and used to produce TES from Au-Sn alloys. The fabricated sensors superconducting transitions were characterised. The sensitive temperature range of the sensors spreads over 100 mK to 200 mK and its centre can be shifted by the bias current applied between 1.5 K and 2.1 K. Maximum sensitivity being in the range of 0.5 mV/mK, it is possible to detect fast temperature variations (in the 50 μs range) below 1 mK. All these characteristics are an asset for the detection of second sound. Second sound was produced by heaters and the TES were able to distinctively detect it. The value of the speed of second sound was determined and corresponds remarkably with literature values. Furthermore, there is a clear correlation between intensity of the signal and distance, opening possibilities for a more precise signal interpretation in quench localisation.

  20. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  1. Entanglement and fidelity signatures of quantum phase transitions in spin liquid models

    OpenAIRE

    Tribedi, Amit; Bose, Indrani

    2008-01-01

    We consider a spin ladder model which is known to have matrix product states as exact ground states with spin liquid characteristics. The model has two critical-point transitions at the parameter values u=0 and infinity. We study the variation of entanglement and fidelity measures in the ground states as a function of u and specially look for signatures of quantum phase transitions at u=0 and infinity. The two different entanglement measures used are S(i) (the single-site von Neumann entropy)...

  2. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  3. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  4. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  5. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-01

    Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables directly addressing the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have an astonishingly long spin relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes in order to process the spin-information.

  6. Spin glass transition in canonical AuFe alloys: A numerical study

    International Nuclear Information System (INIS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-01-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments. -- Highlights: ► By simulation we investigated the abnormal critical exponents observed in canonical SG alloys. ► The critical exponents obtained from our simulations agree well with those measured from experiments. ► Our results strongly support that RKKY interactions lead to SG transitions at finite temperatures.

  7. Exchange interactions, spin waves, and transition temperatures in itinerant magnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2006-01-01

    Roč. 86, č. 12 (2006), s. 1713-1752 ISSN 1478-6435 R&D Projects: GA AV ČR(CZ) IAA1010203; GA AV ČR(CZ) IBS2041105; GA ČR(CZ) GA202/04/0583; GA ČR(CZ) GA202/05/2111 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10100520 Keywords : exchange interactions * spin waves * itinerant magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.354, year: 2006

  8. Spin-state transition and phase separation in multi-orbital Hubbard model

    Science.gov (United States)

    Ishihara, Sumio; Suzuki, Ryo; Watanabe, Tsutomu

    2010-03-01

    Exotic phenomena in correlated electron systems are responsible for competition and cooperation between multi-electronic phases. In particular, in perovskite cobaltites, there is the spin-state degree of freedom, i.e., multiple spin states due to the different electron configurations in a single ion. The multiple spin states occur by changes in the carrier concentration, temperature and other parameters. In the lightly hole doped region between the low-spin band insulator (BI) and the high-spin (HS) ferromagnetic metallic (FM) states, several inhomogeneous features have been reported experimentally. We address the issues of the spin-state transition and the phase separation (PS) associated with this transition by analyzing the multi-orbital Hubbard model [1]. We examine the electronic structures in hole doped and undoped systems by the variational Monte-Carlo (VMC) method. We find that the electronic PS is realized between the nonmagnetic BI and the HS FM metal. We conclude that the different band widths play an essential role in the present electronic PS. [1] R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).

  9. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2013-11-01

    Prism modules of 20 nm-, 40 nm-, and 60 nm-thick spin-coated silver films both without and with an upper 100 nm-thick spin-coated polymer layer were fabricated for surface plasmon resonance (SPR) image sensor applications. The prism modules were applied to an SPR image sensor system. The coefficients of determination (R2s) for the 20 nm-, 40 nm- and 60 nm-thick silver films without the polymer layer were 0.9231, 0.9901, and 0.9889, respectively, and with the polymer layer 0.9228, 0.9951, and 0.9880, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The upper polymer layer has no effect on the R2. The prism modules of the 40-nm-thick spin-coated silver films had the highest R2 value of approximately 0.99. The durability of the 40 nm-thick spin-coated silver film with the 100 nm-thick polymer layer is much better than that without the upper low-loss polymer layer. The developed SPR image sensor module of the 40 nm-thick spin-coated silver film with the upper 100 nm-thick low-loss polymer film is expected to be a very cost-effective and robust solution because the films are formed at low temperatures in a short period of time without requiring a vacuum system and are very durable.

  10. The Academic Spin-Offs as an Engine of Economic Transition in Eastern Europe. A Path-Dependent Approach

    Science.gov (United States)

    Tchalakov, Ivan; Mitev, Tihomir; Petrov, Venelin

    2010-01-01

    The paper questions some of the premises in studying academic spin-offs in developed countries, claiming that when taken as characteristics of "academic spin-offs per se," they are of little help in understanding the phenomenon in the Eastern European countries during the transitional and post-transitional periods after 1989. It argues…

  11. Scaling of quantum Fisher information close to the quantum phase transition in the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ye, En-Jia, E-mail: yeenjia@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Wu, Wei [Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027 (China)

    2016-12-01

    The quantum phase transition of an XY spin chain is investigated by employing the quantum Fisher information encoded in the ground state. It is shown that the quantum Fisher information is an effective tool for characterizing the quantum criticality. The quantum Fisher information, its first and second derivatives versus the transverse field display the phenomena of sudden transition, sudden jump and divergence, respectively. Besides, the analysis of finite size scaling for the second derivative of quantum Fisher information is performed.

  12. Phase transitions in spin systems with modulated order

    International Nuclear Information System (INIS)

    Coutinho Filho, M.D.

    1984-01-01

    Spin systems which may display modulated structures are treated. A layered Ising model with competing interactions between nearest and next-nearest layers in the presence of a magnetic field is studied. In the context of a mean-field approximation, the high-temperature region of the phase diagram is studied analytically. The Λ surface, separating the paramagnetic and the modulated phases, is bounded by two lines of tricritical points which join smoothly at the Lifshitz point and terminate at multicritical points, beyond which lines of critical and double critical end points are expected to appear. The low-temperature region is studied numerically. T-H phase diagrams, which exhibit a variety of modulated phases, for various values of the ratio of the strength of the competing interactions are constructed. A theoretical interpretation for the occurrence of a Lifshitz point in the field-temperature phase diagram of MnP is presented. These results, which are based on a X-Y localized spin Hamiltonian, are in qualitative agreement with recently reported experiments. In particular, asymptotic expressions are obtained for the phase boundaries, which meet tangentially at the Lifshitz point, and for some other thermodynamic quantities of interest, such as the longitudinal and transverse susceptibilities. (Author) [pt

  13. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius

    2011-01-01

    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...... and for fields up to 16 T along a and b. The spin excitations in the high-field IC spiral phase have been studied in detail by inelastic neutron scattering. A mean-field analysis shows that the spin Hamiltonian derived previously from the low-temperature spin waves at zero field predicts the transition between...

  14. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  15. Glass transition in the spin-density wave phase of (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Lasjaunias, J.C.; Biljakovic, K.; Nad, F.

    1994-01-01

    We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state.......We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static...

  16. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    Science.gov (United States)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  17. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  18. Determination of the physical parameters distribution in spin transition compounds using experimental FORC diagram

    International Nuclear Information System (INIS)

    Tanasa, Radu; Linares, Jorge; Enachescu, Cristian; Varret, Francois; Stancu, Alexandru

    2006-01-01

    Spin transitions materials are characterized with an innovative experimental method, i.e. first-order reversal curve (FORC) diagram. The interpretation of the results is performed in the framework of two different Ising-like models: a mean-field approach and the exact solution done by the Monte Carlo entropic sampling (MCES) method

  19. Incommensurate interactions and nonconventional spin-Peierls transition in TiOBr

    Czech Academy of Sciences Publication Activity Database

    van Smaalen, S.; Palatinus, Lukáš; Schönleber, A.

    2005-01-01

    Roč. 72, č. 2 (2005), 020105/1-020105/4 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : spin-Peierls transition * quantum magnet * incommensurate structure Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 3.185, year: 2005

  20. Excitonic instability at the spin-state transition in the two-band Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 89, č. 11 (2014), "115134-1"-"115134-8" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * spin-state transition * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  1. Operation of transition-edge sensors with excess thermal noise

    International Nuclear Information System (INIS)

    Maasilta, I J; Kinnunen, K M; Nuottajaervi, A K; Leppaeniemi, J; Luukanen, A

    2006-01-01

    The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ∼100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess thermal (photon) noise power down by approximately a factor of five, allowing high resolution operation of the sensors

  2. Quantum phase transition of a magnet in a spin bath

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Parthasarathy, R.; Jensen, J.

    2005-01-01

    The excitation spectrum of a model magnetic system, LiHoF(4), was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine...

  3. Spin, Charge, and Bonding in Transition Metal Mono Silicides

    NARCIS (Netherlands)

    Marel, D. van der; Damascelli, A.; Schulte, K.; Menovsky, A. A.

    1997-01-01

    Published in: Physica B 244 (1998) 138-147 citations recorded in [Science Citation Index] Abstract: We review some of the relevant physical properties of the transition metal mono-silicides with the FeSi structure (CrSi, MnSi, FeSi, CoSi, NiSi, etc) and explore the relation between their structural

  4. Study on the spin crossover transition and glass transition for Fe(II) complex film, [Fe(II)(H-triazole){sub 3}]-Nafion, by means of Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Akio; Kamebuchi, Hajime, E-mail: cc106909@mail.ecc.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Masaya [Tokyo University of Science, Department of Chemistry, Faculty of Science Division I (Japan); Kojima, Norimichi [University of Tokyo, Graduate School of Arts and Sciences (Japan)

    2012-03-15

    [Fe(II)(H-trz){sub 3}]-Nafion (trz = triazole) is a transparent spin crossover complex film, where the spin crossover transition between the low-spin (S = 0) and the high-spin (S = 2) states takes place between 225 K and 300 K. In this film, two doublets corresponding to the low-spin and high-spin states were observed in the {sup 57}Fe Moessbauer spectra, reflecting the spin crossover transition. From the analysis of {sup 57}Fe Moessbauer spectra, the Debye temperatures of the low-spin and high-spin sites were estimated at 185 K and 176 K, respectively, in the temperature range between 10 K and 150 K. In this film, the total intensity of the Moessbauer spectra corresponding to the low-spin and high-spin sites drastically decreases above 200 K, reflecting the glass transition of Nafion, where the lattice vibration of [Fe(H-trz){sub 3}]{sub n}{sup 2n+} is softened just as in solution due to micro-Brown motion of the segment of Nafion polymer membrane.

  5. 55Mn nuclear spin relaxation and lifetime of magnons in MnF2 near the spin-flop transition

    International Nuclear Information System (INIS)

    Boucher, J.P.; King, A.R.

    1977-01-01

    A divergence in the nuclear relaxation rate (T 1 -1 ) of 55 Mn is observed in MnF 2 when the magnetic field approaches the field of the spin-flop transition (H=92.94Oe). The field dependence of T 1 -1 at 4.2 and 2K was studied together with its temperature dependence at 92.4 and 85 kOe. Near the transition, T 1 -1 is governed, below 8K, by the processes induced by the dipolar coupling and, above 8K, by those induced by exchange interactions. On the contrary, in weaker fields (H=85Oe), the only exchange induced processes are important [fr

  6. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Boukheddaden, Kamel, E-mail: kbo@physique.uvsq.fr [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Sy, Mouhamadou; Paez-Espejo, Miguel [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Slimani, Ahmed [Laboratoire des matériaux ferroélectriques, Département de Physique, Faculté des Sciences de Sfax, Route de la Soukra km 3.5 BP 1171, 3018 Sfax (Tunisia); Varret, François [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France)

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)–high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)_2}{sub 2}(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  7. Exploration of Geometric Noise Suppression in Transition Edge Sensors

    Science.gov (United States)

    Chervenak, J. A.; Allen, C. A.; Abrahams, J. A.; Miller, T. M.; Talley, D. J.; Staguhn, J. G.; Benford, D. J.; Mosely, S. H.; Finkbeiner, F. M.; Brekosky, R. G.

    2004-01-01

    We present noise data on Mo/Au superconducting transition edge sensors featuring the noise suppression geometry using normal metal bars transverse to the bias current. The effectiveness of the bars in far-infrared bolometers and x-ray microcalorimeters is evaluated. We have examined the effect of the resistivity of the superconducting bilayer on excess noise in bolometer devices. We have also studied the effect of bar density on energy resolution in x-ray devices. We address the question of whether the reduction is noise is necessarily coupled to a reduction in the effective transition sharpness. We propose a fabrication technique experiment to examine the dependence of alpha and noise suppression in similar transverse bar densities.

  8. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.

    2010-01-01

    We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.

  9. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  10. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  11. Exploiting pressure to induce a "guest-blocked" spin transition in a framework material

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Natasha F.; Ragon, Florence; Zenere, Katrina A.; Southon, Peter D.; Halder, Gregory J.; Chapman, Karena W.; Pineiro-Lopez, Lucia; Real, Jose A.; Kepert, Cameron J.; Neville, Suzanne M.

    2016-10-17

    A new functionalized 1,2,4-trizole ligand 4-[(E)-2-(5-methyl-2-thienyl)vinyl]-1,2,4-triazole (thiome) was prepared to assess the structural and magnetic consequence of ligand steric bulk in the resultant framework material [FeIIPd(CN)4(thiome)2]·2(H2O) (A·2(H2O)). Structural studies reveal that the pore size is smaller than realted 2-D Hofmann-type materials and that the water molecules can be reversibly removed with retention of the porous host framework. Magnetic measurements show ‘on-off’ sensing to the presence of water. The hydrated phase is spin crossover (SCO) inactive whereas the dehydrated phase undergoes an abrupt and hysteretic one-step spin transition. Partial dehydration (A·n(H2O), 0 ≤ n ≤ 2) leads to systematically varying spin transition temperatures further demonstrating qualitative sensing. These studies suggest that the SCO properties are governed by internal lattice pressure effects. Variable pressure structure and magnetic studies on the hydrated phase, A·2(H2O), reveal that such internal guest pressure effects can be overcome with moderate external pressure application (0 – 0.68 GPa) resulting in a two-step spin transition at ambient temperatures at 0.68 GPa.

  12. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  13. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  14. Spin glass phase transitions in the random feedback vertex set problem

    OpenAIRE

    Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun

    2016-01-01

    A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved after converting it into an appropriate spin glass model [H.-J. Zhou, Eur. Phys. J. B 86 (2013) 455]. In the present work we study the local stability and the phase transition properties of this spin glass model on random graphs. For both regul...

  15. Analytical study of orbital selective Mott transition using slave-spin method

    Science.gov (United States)

    Komijani, Yashar; Kotliar, Gabriel

    We study the orbital selective Mott transition using slave-spin and slave-boson techniques. Within a single-site approximation, we identify the competing ground states of the spin-sector of a two-band Hubbard Hamiltonian in presence of the Hund's rule coupling as well as inter-orbital tunneling and provide an analytical explanation for the orbital correlation (mode locking) and Kondo physics. By mapping the lattice to the impurity model we make connections to the dynamical mean-field theory.

  16. Review on the Traction System Sensor Technology of a Rail Transit Train

    Directory of Open Access Journals (Sweden)

    Jianghua Feng

    2017-06-01

    Full Text Available The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.

  17. Review on the Traction System Sensor Technology of a Rail Transit Train

    Science.gov (United States)

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-01-01

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615

  18. Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection.

    Science.gov (United States)

    Wu, Wen-Hao; Zhu, Ka-Di

    2015-01-09

    Nowadays hybrid spin-micro/nanomechanical systems are being actively explored for potential quantum sensing applications. In combination with the pump-probe technique or the spin resonance spectrum, we theoretically propose a realistic, feasible, and an exact way to measure the cantilever frequency in a hybrid spin-micromechanical cantilever system which has a strong coherent coupling of a single nitrogen vacancy center in the single-crystal diamond cantilever with the microcantilever. The probe absorption spectrum which exhibits new features such as mechanically induced three-photon resonance and ac Stark effect is obtained. Simultaneously, we further develop this hybrid spin-micromechanical system to be an ultrasensitive mass sensor, which can be operated at 300 K with a mass responsivity 0.137 Hz ag(-1), for accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules. And the best performance on the minimum detectable mass can be [Formula: see text] in vacuum. Finally, we illustrate an in situ measurement to detect Angiopoietin-1, a marker of tumor angiogenesis, accurately with this hybrid microcantilever at room temperature.

  19. Monte Carlo simulations of phase transitions and lattice dynamics in an atom-phonon model for spin transition compounds

    International Nuclear Information System (INIS)

    Apetrei, Alin Marian; Enachescu, Cristian; Tanasa, Radu; Stoleriu, Laurentiu; Stancu, Alexandru

    2010-01-01

    We apply here the Monte Carlo Metropolis method to a known atom-phonon coupling model for 1D spin transition compounds (STC). These inorganic molecular systems can switch under thermal or optical excitation, between two states in thermodynamical competition, i.e. high spin (HS) and low spin (LS). In the model, the ST units (molecules) are linked by springs, whose elastic constants depend on the spin states of the neighboring atoms, and can only have three possible values. Several previous analytical papers considered a unique average value for the elastic constants (mean-field approximation) and obtained phase diagrams and thermal hysteresis loops. Recently, Monte Carlo simulation papers, taking into account all three values of the elastic constants, obtained thermal hysteresis loops, but no phase diagrams. Employing Monte Carlo simulation, in this work we obtain the phase diagram at T=0 K, which is fully consistent with earlier analytical work; however it is more complex. The main difference is the existence of two supplementary critical curves that mark a hysteresis zone in the phase diagram. This explains the pressure hysteresis curves at low temperature observed experimentally and predicts a 'chemical' hysteresis in STC at very low temperatures. The formation and the dynamics of the domains are also discussed.

  20. Topological phase transition in anisotropic square-octagon lattice with spin-orbit coupling and exchange field

    Science.gov (United States)

    Yang, Yuan; Yang, Jian; Li, Xiaobing; Zhao, Yue

    2018-03-01

    We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin-orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.

  1. Spin electronic magnetic sensor based on functional oxides for medical imaging

    Science.gov (United States)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  2. Phase Transitions in Frustrated XY Models Studied Using Hard-Spin Mean-Field Theory

    Science.gov (United States)

    Behzadi, Azad E.; McKay, Susan R.

    1996-03-01

    The number and types of phase transitions occurring in the two- dimensional fully frustrated XY model have remained controversial in spite of over a decade of attention. In this study, we report the results of a hard-spin mean-field approach (R.R. Netz and A.N. Berker, Phys. Rev. Lett. 66), 377 (1991). applied to this system. We compute the effective field on a center site or plaquette using neighboring spins of unit magnitude rather than the average magnetization, as is done in conventional mean-field theory. The directions of the neighboring spins are chosen probabilistically to yield each site magnetization self-consistently. Our calculated inverse critical temperature is 1.444, significantly improved from the conventional mean-field result of 0.707. By locating the self-consistent solutions for the site magnetizations directly, this study avoid scaling, which is complicated in this case due to the possibility of two very closely spaced transitions (P. Ollson, Phys. Rev. Lett. 75), 2758 (1995).. These results are compared with simulations and the Monte Carlo implementation of hard-spin mean-field theory on this system Thesis, Dept. of Physics and Astronomy, U. of Maine (1995).

  3. Spin-glass-like transition in the majority-vote model with anticonformists

    Science.gov (United States)

    Krawiecki, Andrzej

    2018-03-01

    Majority-vote model on scale-free networks and random graphs is investigated in which a randomly chosen fraction p of agents (called anticonformists) follows an antiferromagnetic update rule, i.e., they assume, with probability governed by a parameter q (0 transition from a disordered (paramagnetic) state to a spin-glass-like state, characterized by a non-zero value of the spin-glass order parameter measuring the overlap of agents' opinions in two replicas of the system, and simultaneously by the magnetization close to zero. In the case of the model on scale-free networks the critical value of the parameter q weakly depends on the details of the degree distribution. As p is decreased, the critical value of q falls quickly to zero and only the disordered phase is observed. On the other hand, for p close to zero for decreasing q the usual ferromagnetic transition is observed.

  4. Analytic renormalized bipartite and tripartite quantum discords with quantum phase transition in XXZ spins chain

    Science.gov (United States)

    Joya, Wajid; Khan, Salman; Khalid Khan, M.; Alam, Sher

    2017-05-01

    The behavior of bipartite quantum discord (BQD) and tripartite quantum discord (TQD) in the Heisenberg XXZ spins chain is investigated with the increasing size of the system using the approach of the quantum renormalization group method. Analytical relations for both BQD and TQD are obtained and the results are checked through numerical optimization. In the thermodynamics limit, both types of discord exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated discord and zero discord. The first derivative of both discords becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Qualitatively identical, the amount of saturated BQD strongly depends on the relative positions of spins inside a block. TQD can be a better candidate than BQD both for analyzing QPT and implementing quantum information tasks. The scaling behavior in the vicinity of the critical point is discussed.

  5. Influence of an electric field on the spin-reorientation transition in Ni/Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, Lukas [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bonell, Frédéric; Suzuki, Yoshishige [CREST, Japan Science Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Wulfhekel, Wulf [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-10-13

    Magnetoelectric coupling offers the possibility to change the magnetic state of a material by an applied electric field. Over the last few years, metallic systems have come up as simple prototypes for this interaction. While the previous studies focused on Fe and Co thin films or their alloys, here we demonstrate magnetoelectric coupling in a Ni thin film which is close to a spin-reorientation transition. Our magneto-optic Kerr effect measurements on 10 ML of Ni/Cu(100) show a considerable influence of the applied electric field on the magnetism. This rounds off the range of magnetic metals that exhibit magnetoelectric coupling, and it reveals the possibility of an electric field control of a spin-reorientation transition.

  6. Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.

    2011-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  7. Spin glass transition in a thin-film NiO/permalloy bilayer

    Science.gov (United States)

    Ma, Tianyu; Urazhdin, Sergei

    2018-02-01

    We experimentally study magnetization aging in a thin-film NiO/permalloy bilayer. Aging characteristics are nearly independent of temperature below the exchange bias blocking temperature TB, but rapidly vary above it. The dependence on the magnetic history qualitatively changes across TB. The observed behaviors are consistent with the spin glass transition at TB, with significant implications for magnetism and magnetoelectronic phenomena in antiferromagnet/ferromagnet bilayers.

  8. Structural anomalies, spin transitions and charge disproportionation in LnCoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Henry, P.; André, G.

    2008-01-01

    Roč. 103, č. 7 (2008), 07B703/1-07B703/3 ISSN 0021-8979 R&D Projects: GA ČR GA202/06/0051 Institutional research plan: CEZ:AV0Z10100521 Keywords : LnCoO 3 * neutron diffraction * thermal expansion * spin-state transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.201, year: 2008

  9. Graphene on transition-metal dichalcogenides: a platform for proximity spin-orbit physics and optospintronics

    OpenAIRE

    Gmitra, Martin; Fabian, Jaroslav

    2015-01-01

    Hybrids of graphene and two dimensional transition metal dichalcogenides (TMDC) have the potential to bring graphene spintronics to the next level. As we show here by performing first-principles calculations of graphene on monolayer MoS$_2$, there are several advantages of such hybrids over pristine graphene. First, Dirac electrons in graphene exhibit a giant global proximity spin-orbit coupling, without compromising the semimetallic character of the whole system at zero field. Remarkably, th...

  10. First-order transition and tricritical behavior of the transverse crystal field spin-1 Ising model

    Science.gov (United States)

    Costabile, Emanuel; Viana, J. Roberto; de Sousa, J. Ricardo; de Arruda, Alberto S.

    2015-06-01

    The phase diagram of the spin-1 Ising model in the presence of a transverse crystal-field anisotropy (Dx) is studied within the framework of an effective-field theory with correlation. The effect of the coordination number (z) on the phase diagram in the T -Dx plane is investigated. We observe only second-order transitions for coordination number z Ricardo de Sousa and Branco, Phys. Rev. E 77 (2008) 012104] with a single tricritical point in the phase diagram.

  11. Development of X-ray microcalorimeters using transition edge sensors

    International Nuclear Information System (INIS)

    Ukibe, M; Hirayama, F.; Tanaka, K.; Koyanagi, M.; Ohkubo, M.; Kobayashi, N.; Morooka, T.; Chinone, K.

    2000-01-01

    We are developing X-ray microcalorimeters using superconducting transition edge sensors (TESs), which can be operated at relatively high temperatures in a 3 He cryostat, and DC-SQUID current amplifiers to realize an X-ray spectroscopy with a high energy resolution and a high counting rate. The TESs are proximity bilayers of Ti and Au on SiN x membranes with 500-1000 nm thicknesses. The typical TES has a T c value of 0.4 K and a ΔT c value of 2 mK. Two types of DC-SQUID amplifiers were developed; the single stage with 200-series SQUIDs and the double stage with an input SQUID and 50-series SQUIDs. The X-ray detection experiment is in progress. (author)

  12. Effect of random field disorder on the first order transition in p-spin interaction model

    Science.gov (United States)

    Sumedha; Singh, Sushant K.

    2016-01-01

    We study the random field p-spin model with Ising spins on a fully connected graph using the theory of large deviations in this paper. This is a good model to study the effect of quenched random field on systems which have a sharp first order transition in the pure state. For p = 2, the phase-diagram of the model, for bimodal distribution of the random field, has been well studied and is known to undergo a continuous transition for lower values of the random field (h) and a first order transition beyond a threshold, htp(≈ 0.439) . We find the phase diagram of the model, for all p ≥ 2, with bimodal random field distribution, using large deviation techniques. We also look at the fluctuations in the system by calculating the magnetic susceptibility. For p = 2, beyond the tricritical point in the regime of first order transition, we find that for htp ho = 1 / p!), the system does not show ferromagnetic order even at zero temperature. We find that the magnetic susceptibility for p ≥ 3 is discontinuous at the transition point for h

  13. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  14. Optimization of Advanced ACTPol Transition Edge Sensor Bolometer Operation Using R(T,I) Transition Measurements

    Science.gov (United States)

    Salatino, Maria

    2017-06-01

    In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.

  15. Spin-orbit transitions in α - and γ -CoV2O6

    Science.gov (United States)

    Wallington, F.; Arevalo-Lopez, A. M.; Taylor, J. W.; Stewart, J. R.; Garcia-Sakai, V.; Attfield, J. P.; Stock, C.

    2015-09-01

    γ -triclinic and α -monoclinic polymorphs of CoV2O6 are two of the few known transition-metal ion-based materials that display stepped 1/3 magnetization plateaus at low temperatures. Neutron diffraction [M. Markkula et al., Phys. Rev. B 86, 134401 (2012)], 10.1103/PhysRevB.86.134401, x-ray dichroism [N. Hollmann et al., Phys. Rev. B 89, 201101(R) (2014)], 10.1103/PhysRevB.89.201101, and dielectric measurements [J. Singh et al., J. Mater. Chem. 22, 6436 (2012)], 10.1039/c2jm16290c have shown a coupling between orbital, magnetic, and structural orders in CoV2O6 . We apply neutron inelastic scattering to investigate this coupling by measuring the spin-orbit transitions in both α and γ polymorphs. We find the spin exchange and anisotropy in monoclinic α -CoV2O6 to be weak in comparison with the spin-orbit coupling λ and estimate an upper limit of |J /λ |˜ 0.05 . However, the spin exchange is larger in the triclinic polymorph and we suggest the excitations are predominately two dimensional. The local compression of the octahedra surrounding the Co2 + ion results in a direct coupling between higher-energy orbital levels, the magnetic ground state, and elastic strain. CoV2O6 is therefore an example where the local distortion along with the spin-orbit coupling provides a means of intertwining structural and magnetic properties. We finish the paper by investigating the low-energy magnetic fluctuations within the ground-state doublet and report a magnetic excitation that is independent of the local crystalline electric field. We characterize the temperature and momentum dependence of these excitations and discuss possible connections to the magnetization plateaus.

  16. Phase transitions and multicritical points in the mixed spin-32 and spin-2 Ising system with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Bobak, A.; Dely, J.

    2007-01-01

    The effect of a single-ion anisotropy on the phase diagram of the mixed spin-32 and spin-2 Ising system is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the free energy. Topologically different kinds of phase diagrams are achieved by changing values of the parameter in the model Hamiltonian. Besides second-order transitions, lines of first-order transitions terminating either at a tricritical point or an isolated critical point, are found

  17. Theoretical investigation on spin-forbidden cooling transitions of gallium hydride.

    Science.gov (United States)

    Zhang, Yun-Guang; Zhang, Hua; Song, Hai-Yang; Yu, You; Wan, Ming-Jie

    2017-09-20

    Herein, the spin-forbidden cooling of a gallium hydride molecule is investigated using ab initio quantum chemistry. The cooling transition and the corresponding potential energy curves including , a 3 Π 0 - , a 3 Π 0 + , a 3 Π 1 , a 3 Π 2 , A 1 Π 1 , , 1 3 Σ, , , and 2 3 Σ states are simulated based on the multi-reference configuration interaction approach plus Davidson corrections method. By solving the nuclear Schrödinger equation, we calculate the spectroscopic constants of these states, which are in good agreement with the available experimental values. Based on the transition data, there seems to be a theoretical puzzle: highly diagonally distributed Franck-Condon factor f 00 for transitions , , and for the gallium hydride molecule but the intervening state A 1 Π 1 for transition is prohibitive to laser cooling. In addition, the transition does not have a suitable rate of optical cycling owing to a large radiative lifetime for state. Our theoretical simulation indicates the solution to the puzzle: the transition has a high emission rate, and there is a suitable radiative lifetime for a 3 Π 1 state, which can ensure rapid and efficient laser cooling of gallium hydride. The proposed laser drives transition by using three wavelengths (main pump laser λ 00 ; two repumping lasers λ 10 and λ 21 ). These results demonstrate the possibility of laser-cooling the gallium hydride molecule, and a sub-microkelvin cool temperature can be reached for this molecule.

  18. Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate

    Science.gov (United States)

    Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V.; Konotop, Vladimir V.; Chen, Xianfeng

    2016-08-01

    We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit.

  19. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Science.gov (United States)

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  20. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  1. X-ray microcalorimeter based on superconducting transition edge sensors.

    Science.gov (United States)

    Ohno, Masashi; Takahashi, Hiroyuki; Damayanthi, R M Thushara; Minamikawa, Yasuhiro; Mori, Fumiakira

    2008-01-01

    We have tried to realize an X-ray imaging spectrometer based on the superconducting transition edge sensor (TES) with high energy resolution, a large pixel array, a relatively high absorption efficiency and a high count rate. Our single pixel of Ir/Au TES achieved an excellent energy resolution of 9.4 eV for 5.9 keV X-rays. We have also proposed a pixellated array of Ir-TES where we slightly modify the bias point of each pixel and identify the pixel from the response function of each pixel. Our 10-pixel device, where all pixels are parallel biased, obtained 13 eV (FWHM) at 3 keV energy resolution and 80 microm position resolution. So far, we could successfully operate a 20-pixels device. Further, we are now trying to improve the count rate and the absorption efficiency of TESes, by developing our original new TES geometry which having a radiation absorber that self-adjusts the operating temperature.

  2. Optical response of Al/Ti bilayer transition edge sensors

    International Nuclear Information System (INIS)

    Zhang Qing-Ya; Liu Jian-She; Dong Wen-Hui; He Gen-Fang; Li Tie-Fu; Chen Wei; Wang Tian-Shun; Zhou Xing-Xiang

    2014-01-01

    We report the optical response characteristics of Al/Ti bilayer transition edge sensors (TESs), which are mainly comprised of Al/Ti bilayer thermometers and suspended SiN membranes for thermal isolation. The measurement was performed in a 3 He sorption refrigerator and the device's response to optical pulses was investigated using a pulsed laser source. Based on these measurements, we obtained the effective recovery time (τ eff ) of the devices at different biases and discussed the dependence of τ eff on the bias. The device with a 940 μm × 940 μm continuous suspended SiN membrane demonstrated a fast response speed with τ eff = 3.9 μs, which indicates a high temperature sensitivity (α = T/R · dR/dT = 326). The results also showed that the TES exhibits good linearity under optical pulses of variable widths. (interdisciplinary physics and related areas of science and technology)

  3. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  4. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  5. Anderson Transition of Cold Atoms with Synthetic Spin-Orbit Coupling in Two-Dimensional Speckle Potentials

    Science.gov (United States)

    Orso, Giuliano

    2017-03-01

    We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of noninteracting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the orthogonal class, where such a 2D transition is forbidden.

  6. Vison states and confinement transitions of Z2 spin liquids on the kagome lattice

    Science.gov (United States)

    Huh, Yejin; Punk, Matthias; Sachdev, Subir

    2011-09-01

    We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux (“visons”) are shown to transform under the 48 element group GL(2,Z3). Alternative exchange couplings can also lead to a second case with visons transforming under 288-element group GL(2,Z3)×D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order. The critical field theories and confining states are classified using the vison PSGs.

  7. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum.

    Science.gov (United States)

    Schaefer-Nolte, E; Reinhard, F; Ternes, M; Wrachtrup, J; Kern, K

    2014-01-01

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  8. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  9. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  10. Metal-insulator transition in SrIrO3 with strong spin-orbit interaction.

    Science.gov (United States)

    Wu, Fei-Xiang; Zhou, Jian; Zhang, L Y; Chen, Y B; Zhang, Shan-Tao; Gu, Zheng-Bin; Yao, Shu-Hua; Chen, Yan-Feng

    2013-03-27

    The thickness-dependent metal-insulator transition is observed in meta-stable orthorhombic SrIrO3 thin films synthesized by pulsed laser deposition. SrIrO3 films with thicknesses less than 3 nm demonstrate insulating behaviour, whereas those thicker than 4 nm exhibit metallic conductivity at high temperature, and insulating-like behaviour at low temperature. Weak/Anderson localization is mainly responsible for the observed thickness-dependent metal-insulator transition in SrIrO3 films. Temperature-dependent resistance fitting shows that electrical-conductivity carriers are mainly scattered by the electron-boson interaction rather than the electron-electron interaction. Analysis of the magneto-conductance proves that the spin-orbit interaction plays a crucial role in the magneto-conductance property of SrIrO3.

  11. Spin-dependent phonon-assisted optical transition in Si and Ge under strain

    Science.gov (United States)

    Li, Pengke; Trivedi, Dhara; Dery, Hanan

    2013-03-01

    In indirect bandgap semiconductors like Si and Ge, the transfer of angular momentum between free carriers and photons is intricate since they involve both radiation-matter and electron-phonon interactions. Moreover, the multi-valley conduction band of Si and Ge leads to dependence on light propagation. By breaking the degeneracies of conduction valleys and of valence bands, strain could be used as an experimental tool to regulate and validate the relation between the measured circular polarization degree of photons and the spin polarization of charge carriers. Using symmetry arguments, we present a theoretical study of the spin-dependent selection rules for various phonon-assisted optical transitions. We show how these selection rules are changed under different configurations of strain. These selection rules are verified by rigorous numerical calculation of the spin-dependent luminescence spectra in strained Si and Ge, as well as in relaxed SiGe alloys. Lastly, we also provide results of the inverse process, namely optical orientation. NSF-NRI Contract DMR-1124601 (NEB 2020), NSF Contract ECCS-1231570

  12. Transition edge sensors for bolometric applications: responsivity and saturation

    International Nuclear Information System (INIS)

    Goldie, D. J.; Audley, M. D.; Glowacka, D. M.; Tsaneva, V. N.; Withington, S.

    2008-01-01

    Microstrip-coupled transition edge sensors (TESs) combined with waveguide-horn technology produce sensitive bolometric detectors with well-defined, single-mode beam patterns and excellent polarization characteristics. These devices are now being deployed for astronomical observations. In bolometric applications, where power levels are monitored, the critical parameter that characterizes the detection is the power-to-current responsivity s I (ω), where ω is the postdetection angular frequency. In real applications, such as on a ground-based telescope, the signal of interest is superimposed on a background such as the thermal emission from the atmosphere. The power emitted by the atmosphere changes slowly in time and these changes may change the responsivity of the detector. A detailed understanding of how s I (ω) changes as a function of applied power levels and how the TES response saturates is vital for accurate calibration of astronomical data. In this paper we describe measurements of the changes in the current flowing through a TES as a function of the circuit bias and the applied power. From these measurements we calculate the efficiency of the coupling of power into the TES from a closely thermally coupled microstrip termination resistor and we determine the zero frequency responsivity s I (0) as a function of both the circuit bias and power. The variation of the responsivity is compared with predictions of a small-signal model: for the case when the loop gain L I is high, when simplifying approximations to the full solution to the electrothermal equations apply; and using the electrothermal parameters of the TES, determined by impedance measurements, as inputs to the full model solution. We find good agreement between theory and measurement in both cases in the relevant regimes

  13. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study

    Science.gov (United States)

    Perera, Dilina; Vogel, Thomas; Landau, David P.

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  14. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Entanglement and fidelity signatures of quantum phase transitions in spin liquid models

    Science.gov (United States)

    Tribedi, Amit; Bose, Indrani

    2008-03-01

    We consider a spin ladder model which is known to have matrix product states as exact ground states with spin liquid characteristics. The model has two critical-point transitions at the parameter values u=0 and ∞ . We study the variation of entanglement and fidelity measures in the ground states as a function of u and specially look for signatures of quantum phase transitions at u=0 and ∞ . The two different entanglement measures used are S(i) (the single-site von Neumann entropy) and S(i,j) (the two-body entanglement). At the quantum critical point (QCP) u=∞ , the entanglement measure E [=S(i),S(i,j)] vanishes but remains nonzero at the other QCP u=0 . The first and second derivatives of E with respect to the parameter u and the entanglement length associated with S(i,j) are further calculated to identify special features, if any, near the QCPs. We further determine the GS fidelity F and a quantity ln|D| related to the second derivative of F and show that these quantities calculated for finite-sized systems are good indicators of QPTs occurring in the infinite system.

  16. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  17. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    Science.gov (United States)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  18. In Situ AFM Imaging of Microstructural Changes Associated with The Spin Transition in [Fe(Htrz)₂(Trz)](Bf₄) Nanoparticles.

    Science.gov (United States)

    Manrique-Juárez, María D; Suleimanov, Iurii; Hernández, Edna M; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-06-30

    Topographic images of [Fe(Htrz)₂(trz)](BF₄) nanoparticles were acquired across the first-order spin transition using variable-temperature atomic force microscopy (AFM) in amplitude modulation mode. These studies revealed a complex morphology of the particles consisting of aggregates of small nanocrystals, which expand, separate and re-aggregate due to the mechanical stress during the spin-state switching events. Both reversible (prompt or slow recovery) and irreversible effects (fatigue) on the particle morphology were evidenced and correlated with the spin crossover properties.

  19. Very thin spin-coated silver films via transparent silver ink for surface plasmon resonance sensor applications.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2012-07-01

    We fabricated very thin silver films with thicknesses of 20 nm, 40 nm, and 60 nm on a prism using a spin coating method for surface plasmon resonance (SPR) image sensor module applications. An aqueous silver ionic complex solution was spin-coated and then thermally cured for 10 minutes at 150 degrees C in an oven. The spin-coated solid silver films possessed silver crystallinity. The prism modules with the 20-nm-, 40-nm- and 60-nm-thick thin silver films were applied to an SPR image sensor system. The coefficients of determination for the 20-nm-, 40-nm- and 60-nm-thick silver films were 0.923, 0.990 and 0.989, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The correlation is high-performed and the coefficients of determination are as close as 1. The spin coating method of very thin silver films for SPR image sensor modules is expected to be a very cost-effective solution because the films can be formed at a low temperature in a short period of time without requiring a vacuum system.

  20. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  1. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  2. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    Science.gov (United States)

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  3. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  4. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  5. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    Science.gov (United States)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  6. Tuning the presence of dynamical phase transitions in a generalized XY spin chain.

    Science.gov (United States)

    Divakaran, Uma; Sharma, Shraddha; Dutta, Amit

    2016-05-01

    We study an integrable spin chain with three spin interactions and the staggered field (λ) while the latter is quenched either slowly [in a linear fashion in time (t) as t/τ, where t goes from a large negative value to a large positive value and τ is the inverse rate of quenching] or suddenly. In the process, the system crosses quantum critical points and gapless phases. We address the question whether there exist nonanalyticities [known as dynamical phase transitions (DPTs)] in the subsequent real-time evolution of the state (reached following the quench) governed by the final time-independent Hamiltonian. In the case of sufficiently slow quenching (when τ exceeds a critical value τ_{1}), we show that DPTs, of the form similar to those occurring for quenching across an isolated critical point, can occur even when the system is slowly driven across more than one critical point and gapless phases. More interestingly, in the anisotropic situation we show that DPTs can completely disappear for some values of the anisotropy term (γ) and τ, thereby establishing the existence of boundaries in the (γ-τ) plane between the DPT and no-DPT regions in both isotropic and anisotropic cases. Our study therefore leads to a unique situation when DPTs may not occur even when an integrable model is slowly ramped across a QCP. On the other hand, considering sudden quenches from an initial value λ_{i} to a final value λ_{f}, we show that the condition for the presence of DPTs is governed by relations involving λ_{i},λ_{f}, and γ, and the spin chain must be swept across λ=0 for DPTs to occur.

  7. Tuning the presence of dynamical phase transitions in a generalized X Y spin chain

    Science.gov (United States)

    Divakaran, Uma; Sharma, Shraddha; Dutta, Amit

    2016-05-01

    We study an integrable spin chain with three spin interactions and the staggered field (λ ) while the latter is quenched either slowly [in a linear fashion in time (t ) as t /τ , where t goes from a large negative value to a large positive value and τ is the inverse rate of quenching] or suddenly. In the process, the system crosses quantum critical points and gapless phases. We address the question whether there exist nonanalyticities [known as dynamical phase transitions (DPTs)] in the subsequent real-time evolution of the state (reached following the quench) governed by the final time-independent Hamiltonian. In the case of sufficiently slow quenching (when τ exceeds a critical value τ1), we show that DPTs, of the form similar to those occurring for quenching across an isolated critical point, can occur even when the system is slowly driven across more than one critical point and gapless phases. More interestingly, in the anisotropic situation we show that DPTs can completely disappear for some values of the anisotropy term (γ ) and τ , thereby establishing the existence of boundaries in the (γ -τ ) plane between the DPT and no-DPT regions in both isotropic and anisotropic cases. Our study therefore leads to a unique situation when DPTs may not occur even when an integrable model is slowly ramped across a QCP. On the other hand, considering sudden quenches from an initial value λi to a final value λf, we show that the condition for the presence of DPTs is governed by relations involving λi,λf, and γ , and the spin chain must be swept across λ =0 for DPTs to occur.

  8. Quantum Monte Carlo studies of a metallic spin-density wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Max Henner

    2017-01-20

    Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.

  9. Sound dispersion in a spin-1 Ising system near the second-order phase transition point

    International Nuclear Information System (INIS)

    Erdem, Ryza; Keskin, Mustafa

    2003-01-01

    Sound dispersion relation is derived for a spin-1 Ising system and its behaviour near the second-order phase transition point or the critical point is analyzed. The method used is a combination of molecular field approximation and Onsager theory of irreversible thermodynamics. If we assume a linear coupling of sound wave with the order parameter fluctuations in the system, we find that the dispersion which is the relative sound velocity change with frequency behaves as ω 0 ε 0 , where ω is the sound frequency and ε the temperature distance from the critical point. In the ordered region, one also observes a frequency-dependent velocity or dispersion minimum which is shifted from the corresponding attenuation maxima. These phenomena are in good agreement with the calculations of sound velocity in other magnetic systems such as magnetic metals, magnetic insulators, and magnetic semiconductors

  10. Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound.

    Science.gov (United States)

    Carbery, William P; Verma, Archana; Turner, Daniel B

    2017-03-16

    Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr 6 ] 2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr 6 ] 2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.

  11. Static critical exponents of the ferromagnetic transition in spin glass re-entrant systems.

    Science.gov (United States)

    Haetinger, Cláudia M; Ghivelder, Luis; Schaf, Jacob; Pureur, Paulo

    2009-12-16

    The static critical phenomenology near the Curie temperature of the re-entrant metallic alloys Au(0.81)Fe(0.19), Ni(0.78)Mn(0.22), Ni(0.79)Mn(0.21) and amorphous a-Fe(0.98)Zr(0.08) is studied using a variety of experimental techniques and methods of analysis. We have generally found that the values for the exponents α, β, γ and δ depart significantly from the predictions for the 3D Heisenberg model and are intermediate between these expectations and the values characterizing a typical spin glass transition. Comparing the exponents obtained in our work with indices for other re-entrant systems reported in the literature, a weak universality class may be defined where the exponents are distributed within a certain range around average values.

  12. Magnetic stripe domains of [Pt/Co/Cu]10 multilayer near spin reorientation transition

    Directory of Open Access Journals (Sweden)

    L. Sun

    2016-05-01

    Full Text Available The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(tCo/Cu]10 film stack epitaxied on Cu (111 substrate have been studied as a function of the Co layer thickness tCo, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as tCo increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while tCo approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversal process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.

  13. Evidence for 3D isotropic long range spin-spin interaction near the ferromagnetic transition in bulk and thin film SrRuO3

    Science.gov (United States)

    Sow, Chanchal; Pramanik, A. K.; Kumar, P. S. Anil

    2015-05-01

    In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H → 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent β, γ and δ values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

  14. The influence of CO and H2 adsorption on the spin reorientation transition in Ni/Cu(001)

    NARCIS (Netherlands)

    van Dijken, S.; Vollmer, R.; Poelsema, Bene; Kirschner, J.

    2000-01-01

    A strong reduction of the critical thickness of the spin reorientation transition in Ni/Cu(0 0 1) has been observed when covered with CO or H2. For uncovered Ni films a critical thickness of 10.5 ML has been found at T=300 K. The critical thickness is reduced by about 3 and 4 ML after adsorption of

  15. Temperature and pressure-driven spin-state transitions in LaCoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kozlenko, D. P.; Golosova, N.O.; Jirák, Zdeněk; Dubrovinsky, L.S.; Savenko, B. N.; Tucker, M.G.; Le Godec, Y.; Glazkov, V. P.

    2007-01-01

    Roč. 75, č. 6 (2007), 064422/1-064422/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : LaCoO 3 * spin transition * thermal expansion * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  16. Manipulation of the spin in single molecule magnets via Landau-Zener transitions

    Science.gov (United States)

    Palii, Andrew; Tsukerblat, Boris; Clemente-Juan, Juan M.; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2011-11-01

    We theoretically investigate the effects of a magnetic pulse on a single-molecule magnet (SMM) initially magnetized by a dc field along the easy axis of magnetization. In the Landau-Zener (LZ) scheme, it is shown that the final spin state is a function of the shape and duration of the pulse, conditioned by the decoherence time of the SMM. In the case of coherent tunneling, the asymmetric pulses are shown to reverse the direction of the magnetization, while the symmetric pulses can only decrease the value of the initial magnetization. It is also demonstrated that the application of an external variable dc field in the hard plane of magnetization provides the possibility to tune the resulting magnetization due to quantum interference effects. The results and the conditions for the observation of the pulse-triggered LZ transitions are illustrated by the application of the proposed scheme to the well-studied single-molecule magnet Fe8. To put the results into perspective, some potential applications of SMMs experiencing pulse-induced LZ transitions, such as switching devices and qubits, are discussed.

  17. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    Science.gov (United States)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  18. Energetics of the spin-state transition in LaCoO3: Total energy calculations using DFT +DMFT

    Science.gov (United States)

    Nanguneri, Ravindra; Park, Hyowon

    In this talk, we will present the energetics of the spin-state transition in strongly correlated LaCoO3 by adopting total energy calculations within density functional theory plus dynamical mean field theory (DFT +DMFT). We computed total energy curves as a function of volume for different spin states including low spin (LS), high spin (HS), and 1:1 mixed HS-LS states. We will show that as the volume is expanded, the mixed HS-LS state becomes energetically stable with a reasonable energy gap to the ground-state LS state. The nature of the HS-LS state is a paramagnetic insulator consistent with experiment while the homogeneous HS state is energetically much higher compared to the LS state. To analyze the dynamical fluctuation effect on the energetics, we also computed DFT +U energy curves by adopting the maximally localized Wannier function as correlated orbitals, same as used in DFT +DMFT calculations. The static correlation effect treated in DFT +U overestimates the tendency to higher spin states and the mixed spin state is wrongly predicted to be the ground state. The effect of the Coulomb interaction U, the Hund's coupling J, and the double counting potential on the energetics will be also discussed.

  19. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    International Nuclear Information System (INIS)

    Yen, J. J.; Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-01-01

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  20. Spin reorientation and spin-flop transition in multiferroic manganites Y1-xTbxMnO3 (x = 0, 0.1, 0.2) single crystals

    Science.gov (United States)

    Li, H. N.; Huang, J. W.; Xiao, L. X.; Peng, L. P.; Wu, Y. Y.; Du, G. H.; Ouyang, Z. W.; Chen, B. R.; Xia, Z. C.

    2012-04-01

    We investigated the structure and magnetic properties of the multiferroic hexagonal manganite Y1-xTbxMnO3 (x = 0, 0.1, 0.2) single crystals. At 23 K, a Mn spin reorientation transition, which is not reported in the parent compound YMnO3, is observed in Y0.8Tb0.2MnO3. At a lower temperature, another new transition is observed in the doping system, which is attributed to the formation of long range antiferromagntic order of the doped Tb3+ moments. Based on the experimental results, we suggest that the effect of Tb doping is to bring about the increase of the Mn-O-Mn bond angle and the relief of the magnetic frustration. With increasing the doping level, for x = 0.2, when a magnetic field is applied parallel to the c axis, the field induced spin-flop transition is appeared, which indicates the reorientation of the Mn3+ moments along with the field-induced ferromagnetic ordering of the Tb3+ moments. These results suggest that the possibility of the Tb doping can change the magnetic structure and ferroelectricity properties of YMnO3.

  1. Spin-flip transitions in magneto-optics and magneto-transport

    International Nuclear Information System (INIS)

    Zawadzki, W.

    1978-01-01

    Three-level model for InSb- and HgTe-type semiconductors is used to describe recent observations of spin-flip magnetophonon oscillations, spin-flip scattering in Shubnikov-de Haas effect, phonon- and impurity-assisted magnetooptical resonances, and resonant spin-optic-phonon interaction. (Auth.)

  2. Microstructure for ferroelastic transitions from strain pseudo-spin clock models in two and three dimensions: a mean field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, Turab [Los Alamos National Laboratory; Vasseur, Romain [ECOLE NORMALE SUPERIEURE

    2009-01-01

    We obtain the microstructure of ferroelastic transitions in two and three dimensions from the solution of their corresponding discrete pseudo-spin models. In two dimensions we consider two transitions each from the high symmetry square and triangle symmetries: square-to-rectangle (SR), square-to-oblique (SO), triangle-to-centered rectangle (TR) and triangle-to-oblique (TO). In three dimensions we study the corresponding spin model for the cubic to tetragonal transition. The Landau free energies for these transitions result in N+ I states clock models (Z{sub N}) with long range interactions and we derive mean-field self-consistency equations for the clock model Hamiltonians. The microstructures from the mean-field solutions of the models are very similar to those obtained from the original continuum models or Monte Carlo simulations on the spin models (in the SR case), illustrating that these discrete models capture the salient physics. The models, in the presence of disorder, provide the basis for the study of the strain glass phase observed in martensitic alloys.

  3. First principles study on spin and orbital magnetism of 3d transition metal monatomic nanowires (Mn, Fe and Co).

    Science.gov (United States)

    Sargolzaei, Mahdi; Samaneh Ataee, S

    2011-03-30

    We have demonstrated the electronic structure and magnetic properties of 3d transition metal nanowires (Mn, Fe and Co) in the framework of relativistic density functional theory. The equilibrium bond lengths were optimized using the generalized gradient approximation. In a full relativistic regime individual spin and orbital moments induced from spin polarization via spin-orbit coupling were calculated. In order to get an upper estimate for orbital moments, we used an orbital polarization correction to our exchange-correlation functional. We found that the orbital magnetic moments of Fe and Co linear chains are strongly enhanced in the presence of an orbital polarization correction. We have calculated the exchange coupling parameters between two nearest-neighbor magnetic atoms according to a Heisenberg-like model in the presence of the orbital polarization correction. We found that the Co and Fe nanowires behave like a ferromagnetic linear chain whereas a Mn monatomic nanowire remains antiferromagnetic. © 2011 IOP Publishing Ltd

  4. Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Noh, Han-Jin; Jeong, Jinwon; Chang, Bin; Jeong, Dahee; Moon, Hyun Sook; Cho, En-Jin; Ok, Jong Mok; Kim, Jun Sung; Kim, Kyoo; Min, B. I.; Lee, Han-Koo; Kim, Jae-Young; Park, Byeong-Gyu; Kim, Hyeong-Do; Lee, Seongsu

    2014-01-01

    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system. PMID:24419488

  5. Spin time-relaxation within strongly coupled paramagnetic systems exhibiting paramagnetic-ferrimagnetic transitions

    CERN Document Server

    Chahid, M

    2000-01-01

    The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...

  6. Entanglement and quantum phase transitions in matrix-product spin-1 chains

    International Nuclear Information System (INIS)

    Alipour, S.; Karimipour, V.; Memarzadeh, L.

    2007-01-01

    We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that the entanglement of two sites have scaling behavior near the critical point

  7. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  8. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...

  9. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Ullom, Joel N; Bennett, Douglas A

    2015-01-01

    We present a review of emerging x-ray and gamma-ray spectrometers based on arrays of superconducting transition-edge sensors (TESs). Special attention will be given to recent progress in TES applications and in understanding TES physics. (paper)

  10. Characterisation of a spinning pipe gas lens using a Shack–Hartmann wavefront sensor

    CSIR Research Space (South Africa)

    Mafusire, C

    2007-01-01

    Full Text Available A heated horizontal spinning pipe causes gases inside it to assume dynamics resulting in a graded index lens – a spinning pipe gas lens (SPGL). A CFD model is presented which shows that gas exchanges of the SPGL with the surroundings resulting in a...

  11. Superconductor to spin-density-wave transition in quasi-one-dimensional metals with repulsive anisotropic interaction

    International Nuclear Information System (INIS)

    Rozhkov, A.V.

    2007-01-01

    A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap

  12. Simultaneous spin-state-insulator-metal transition in Pr0.5Ca0.5CoO3

    International Nuclear Information System (INIS)

    Saitoh, T.; Yamashita, Y.; Todoroki, N.; Kyomen, T.; Itoh, M.; Higashiguchi, M.; Shimada, K.

    2004-01-01

    The temperature-induced paramagnetism in LaCoO 3 around 100 K has long been known as a characteristic phenomenon of this compound, but its interpretation is not settled yet. One reason is that the low-spin (LS) ground state and other intermediate-spin (IS) or high-spin (HS) states cannot be resolved completely because such states are populated by thermal excitation. Here we present a first observation of a distinct change in the electronic structure due to a pure LS-IS transition of a Co oxide; Pr 0.5 Ca 0.5 CoO 3 exhibits a simultaneous LS-IS and insulator-metal first-order phase transition around 90 K with increasing temperature. Because of the first- order nature of the transition, the IS phase is not populated by thermal excitation, which enables us to investigate the electronic structure of the LS- and IS-Co 3d states, independently. Figure 1 shows temperature-dependent photoemission spec- tra of Pr 0.5 Ca 0.5 CoO 3 . The leading peak A, which is Co 3d t 2g states, is rapidly suppressed from 70 K to 100 K. Compared with a theoretical calculation, this change should be representing the LS to IS spin-state transition. The observed change between the 'pure' LS and IS spectra will exclude the simple LS-HS scenario in LaCoO 3 and hence demonstrates the importance of the IS state in both excited states and the carrier-doped region

  13. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    Science.gov (United States)

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  14. Probing Berezinskii–Kosterlitz–Thouless Phase Transition of Spin-Half XXZ Chain by Quantum Fisher Information

    International Nuclear Information System (INIS)

    Zheng Qiang; Yao Yao; Xu Xun-Wei

    2015-01-01

    The Berezinskii–Kosterlitz–Thouless phase transition of spin-1/2 XXZ chain is reinvestigated by the quantum Fisher information. Quantum Fisher informations of the whole N sites and the partial N/3 sites display remarkably similar behaviors near the critical point. The critical exponent of quantum Fisher information is obtained as β = 0.47, which is consistent with the results obtained by the concurrence and quantum discord. (paper)

  15. Characterization of Mo/Au Transition-Edge Sensors with Different Geometric Configurations

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S. J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.

    2014-08-01

    Mo/Au transition-edge sensors exhibit weak-link behavior in the measured temperature, and field, dependence of the critical current . This is a consequence of the longitudinal proximitization between the Nb electrical bias contacts and the bilayer. Understanding how weak-link superconductivity impacts the resistive transition and the detector energy resolution is of great interest. In this contribution we present studies of for three devices that have different geometries of metallic depositions on top of the sensor used for noise mitigation and X-ray absorption. Results show that these features change the measured compared to the previously seen measurements on devices without additional deposition layers. Measurements of the small signal transition parameters and also reveal differences between designs that impact the measured response to X-rays and energy resolution.

  16. Molybdenum-gold proximity bilayers as transition edge sensors for microcalorimeters and bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.C.; Bier, A.; DiCamillo, B. [Global Science and Technology Inc., Greenbelt, MD 20770 (United States); NASA/Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Finkbeiner, F. M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    1999-11-01

    Mo/Au proximity bilayers as transition edge sensors (TESs) are promising candidates for low-temperature thermometry. The transition temperature of the bilayers can be easily tuned between 50 and 600 mK, yielding sensors which can be used in a variety of calorimetric and bolometric applications. With phase transition widths of less than 1 mK, Mo/Au TESs show very high temperature sensitivity (d(logR)/d(logT){approx}2500). Also, Mo/Au TESs show improved thermal and chemical stability compared to most other bilayer configurations. Fabrication issues and detector performance of Mo/Au TESs on Si{sub 3}N{sub 4} membranes are discussed. (author)

  17. Molybdenum-gold proximity bilayers as transition edge sensors for microcalorimeters and bolometers

    International Nuclear Information System (INIS)

    Chen, T.C.; Bier, A.; DiCamillo, B.; Finkbeiner, F. M.

    1999-01-01

    Mo/Au proximity bilayers as transition edge sensors (TESs) are promising candidates for low-temperature thermometry. The transition temperature of the bilayers can be easily tuned between 50 and 600 mK, yielding sensors which can be used in a variety of calorimetric and bolometric applications. With phase transition widths of less than 1 mK, Mo/Au TESs show very high temperature sensitivity (d(logR)/d(logT)∼2500). Also, Mo/Au TESs show improved thermal and chemical stability compared to most other bilayer configurations. Fabrication issues and detector performance of Mo/Au TESs on Si 3 N 4 membranes are discussed. (author)

  18. Evidence for reentrant spin glass behavior in transition metal substituted Co-Ga alloys near critical concentration

    Science.gov (United States)

    Yasin, Sk. Mohammad; Srinivas, V.; Kasiviswanathan, S.; Vagadia, Megha; Nigam, A. K.

    2018-04-01

    In the present study magnetic and electrical transport properties of transition metal substituted Co-Ga alloys (near critical cobalt concentration) have been investigated. Analysis of temperature and field dependence of dc magnetization and ac susceptibility (ACS) data suggests an evidence of reentrant spin glass (RSG) phase in Co55.5TM3Ga41.5 (TM = Co, Cr, Fe, Cu). The magnetic transition temperatures (TC and Tf) are found to depend on the nature of TM element substitution with the exchange coupling strength Co-Fe > Co-Co > Co-Cu > Co-Cr. From magnetization dynamics precise transition temperatures for the glassy phases are estimated. It is found that characteristic relaxation times are higher than that of spin glasses with minimal spin-cluster formation. The RSG behavior has been further supported by the temperature dependence of magnetotransport studies. From the magnetic field and substitution effects it has been established that the magnetic and electrical transport properties are correlated in this system.

  19. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  20. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  1. Zero-momentum coupling induced transitions of ground states in Rashba spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Jin, Jingjing; Zhang, Suying; Han, Wei

    2014-06-01

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.

  2. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  3. Characterization and reduction of noise in Mo/Au transition edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, Mark A. E-mail: lindeman1@gsfc.nasa.gov; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Saab, Tarek; Stahle, Caroline K

    2004-03-11

    We measured noise in a variety of Mo/Au transition-edge sensor (TES) X-ray calorimeters. We investigated the relationship between the noise, bias, and the superconducting phase transition in the TESs. Our square TES calorimeters have achieved very good energy resolutions (2.4 eV at 1.5 keV) but their resolutions have been limited by broadband white excess noise generated by the TES when it is biased in the phase transition. We have recently fabricated Mo/Cu TESs with interdigitated normal metal bars deposited on top of the bilayer. The new TES calorimeters have demonstrated little or no excess noise in the phase transition. These results point the way to development of TES calorimeters with higher energy resolution.

  4. Characterization and reduction of noise in Mo/Au transition edge sensors

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Saab, Tarek; Stahle, Caroline K.

    2004-01-01

    We measured noise in a variety of Mo/Au transition-edge sensor (TES) X-ray calorimeters. We investigated the relationship between the noise, bias, and the superconducting phase transition in the TESs. Our square TES calorimeters have achieved very good energy resolutions (2.4 eV at 1.5 keV) but their resolutions have been limited by broadband white excess noise generated by the TES when it is biased in the phase transition. We have recently fabricated Mo/Cu TESs with interdigitated normal metal bars deposited on top of the bilayer. The new TES calorimeters have demonstrated little or no excess noise in the phase transition. These results point the way to development of TES calorimeters with higher energy resolution

  5. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  6. Surface dependent structural phase transition in SrTiO 3 observed with spin relaxation of 8Li

    Science.gov (United States)

    Smadella, M.; Salman, Z.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; MacFarlane, W. A.; Mansour, A. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Song, Q.; Wang, D.

    2009-04-01

    We investigate the 105 K structural phase transition in SrTiO 3 using depth controlled measurements of the spin relaxation of 8Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the 8Li ( I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some 8Li implantation sites, resulting in an observable loss of 8Li polarization. This loss of polarization begins at a temperature T*=150 K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T* is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO 3 sample.

  7. Surface dependent structural phase transition in SrTiO{sub 3} observed with spin relaxation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smadella, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Pearson, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Song, Q.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We investigate the 105 K structural phase transition in SrTiO{sub 3} using depth controlled measurements of the spin relaxation of {sup 8}Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the {sup 8}Li (I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some {sup 8}Li implantation sites, resulting in an observable loss of {sup 8}Li polarization. This loss of polarization begins at a temperature T{sup *}=150K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T{sup *} is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO{sub 3} sample.

  8. Characterizing Weak-Link Effects in Mo/Au Transition-Edge Sensors

    Science.gov (United States)

    Smith, Stephen

    2011-01-01

    We are developing Mo/Au bilayer transition-edge sensors (TESs) for applications in X-ray astronomy. Critical current measurements on these TESs show they act as weak superconducting links exhibiting oscillatory, Fraunhofer-like, behavior with applied magnetic field. In this contribution we investigate the implications of this behavior for TES detectors, under operational bias conditions. This includes characterizing the logarithmic resistance sensitivity with temperature, (alpha, and current, beta, as a function of applied magnetic field and bias point within the resistive transition. Results show that these important device parameters exhibit similar oscillatory behavior with applied magnetic field, which in turn affects the signal responsivity, noise and energy resolution.

  9. Microwave-induced direct spin-flip transitions in mesoscopic Pd/Co heterojunctions

    Science.gov (United States)

    Pietsch, Torsten; Egle, Stefan; Keller, Martin; Fridtjof-Pernau, Hans; Strigl, Florian; Scheer, Elke

    2016-09-01

    We experimentally investigate the effect of resonant microwave absorption on the magneto-conductance of tunable Co/Pd point contacts. At the interface a non-equilibrium spin accumulation is created via microwave absorption and can be probed via point contact spectroscopy. We interpret the results as a signature of direct spin-flip excitations in Zeeman-split spin-subbands within the Pd normal metal part of the junction. The inverse effect, which is associated with the emission of a microwave photon in a ferromagnet/normal metal point contact, can also be detected via its unique signature in transport spectroscopy.

  10. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  11. Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6

    Science.gov (United States)

    O'Neal, K. R.; Liu, Z.; Miller, Joel S.; Fishman, R. S.; Musfeldt, J. L.

    2014-09-01

    Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high → low spin transition in [Ru2(O2CMe)4]3[Cr(CN)6]. The extended nature of the diruthenium wave function combined with coupling to chromium-related local lattice distortions changes the relative energies of the π* and δ* orbitals and drives the high → low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.

  12. Evidence of spin transition and charge order in cobalt substituted La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3

    CERN Document Server

    Srivastava, C M; Gundurao, T K; Nigam, A K; Bahadur, D

    2003-01-01

    The transport and magnetic studies of a series of compounds having the general formula La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 Mn sub 1 sub - sub x Co sub x O sub 3 (0.1 = 0.25 there is a clear spin transition at low temperature from the high to the low spin state of trivalent cobalt and this leads to change in ferromagnetic (FM) and antiferromagnetic (AFM) phases. For x >= 0.25 there are two transitions for each value of x: the upper one gives the FM and AFM spin arrangement depending upon whether the DE or the SE dominates; the lower one is obtained due to the transition from the high to the low spin state of the trivalent cobalt ion.

  13. Angular velocity determination of spinning solar sails using only a sun sensor

    Directory of Open Access Journals (Sweden)

    Kun Zhai

    2017-02-01

    Full Text Available The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.

  14. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  15. High-spin transition quadrupole moments in neutron-rich Mo and Ru nuclei: Testing γ softness?

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, J.B. [Physics Department, Washington University, St. Louis, MO 63130 (United States); Reviol, W., E-mail: reviol@wustl.edu [Chemistry Department, Washington University, St. Louis, MO 63130 (United States); Sarantites, D.G. [Chemistry Department, Washington University, St. Louis, MO 63130 (United States); Afanasjev, A.V. [Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39762 (United States); Janssens, R.V.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Abusara, H. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine (Country Unknown); Carpenter, M.P. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Chen, X. [Chemistry Department, Washington University, St. Louis, MO 63130 (United States); Chiara, C.J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Greene, J.P.; Lauritsen, T. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); McCutchan, E.A. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Seweryniak, D.; Zhu, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-06-10

    The transition quadrupole moments, Q{sub t}, of rotational bands in the neutron-rich, even-mass {sup 102–108}Mo and {sup 108–112}Ru nuclei were measured in the 8–16 ℏ spin range with the Doppler-shift attenuation method. The nuclei were populated as fission fragments from {sup 252}Cf fission. The detector setup consisted of the Gammasphere spectrometer and the HERCULES fast-plastic array. At moderate spin, the Q{sub t} moments are found to be reduced with respect to the values near the ground states. Attempts to describe the observations in mean-field-based models, specifically cranked relativistic Hartree–Bogoliubov theory, illustrate the challenge theory faces and the difficulty to infer information on γ softness and triaxiality from the data.

  16. Metal-insulator-superconductor transition of spin-3/2 atoms on optical lattices

    Science.gov (United States)

    De Silva, Theja N.

    2018-01-01

    We use a slave-rotor approach within a mean-field theory to study the competition of metallic, Mott-insulating, and superconducting phases of spin-3/2 fermions subjected to a periodic optical lattice potential. In addition to the metallic, the Mott-insulating, and the superconducting phases that are associated with the gauge symmetry breaking of the spinon field, we identify an emerging superconducting phase that breaks both roton and spinon field gauge symmetries. This superconducting phase emerges as a result of the competition between spin-0 singlet and spin-2 quintet interaction channels naturally available for spin-3/2 systems. The two superconducting phases can be distinguished from each other by quasiparticle weight. We further discuss the properties of these phases for both two-dimensional square and three-dimensional cubic lattices at zero and finite temperatures.

  17. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  18. Neutron-scattering study of the spin-state transition and magnetic correlations in La1-xSrxCoO3 (x=0 and 0.08)

    International Nuclear Information System (INIS)

    Asai, K.; Yokokura, O.; Nishimori, N.; Chou, H.; Tranquada, J.M.; Shirane, G.; Higuchi, S.; Okajima, Y.; Kohn, K.

    1994-01-01

    LaCoO 3 exhibits two magnetic-electronic transitions, one near 90 K and a second near 500 K. A previous study of the paramagnetic scattering using polarized neutrons demonstrated that the low-temperature transition is associated with the thermal excitation of Co 3+ ions from the low-spin to the high-spin state. In the present work, we extend the paramagnetic-scattering measurements up to a temperature of 700 K. We find that the magnetic-scattering intensity decreases monotonically for temperatures above 300 K, indicating that the high-temperature transition is not dominantly magnetic in origin. Furthermore, the anomalous thermal expansion associated with the low-temperature transition is measured and shown to be consistent with a simple theoretical model for the spin-state transition. For comparison, paramagnetic-scattering measurements for La 0.92 Sr 0.08 CoO 3 are also presented. In this material the ferromagnetic correlations are substantially stronger than in the undoped compound, and no transition to the low-spin state is observed. Instead, the paramagnetic scattering increases steadily with decreasing temperature until saturating below 24 K, the same temperature at which the magnetization of the zero-field-cooled specimen shows a sharp cusp. These results suggest that the magnetic moments in the doped compound freeze into a spin-glass state at low temperature

  19. First results from Mo/Au transition-edge sensor X-ray calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.K. E-mail: caroline.k.stahle@gsfc.nasa.gov; Finkbeiner, F.M.; Boyce, K.R.; Chen, T.; Figueroa Feliciano, E.; Gygax, J.D.; Kelley, R.L.; Li, M.; Mattson, B.J.; Mott, D.B.; Porter, F.S.; Stahle, C.M.; Szymkowiak, A.E.; Tralshawala, N

    2000-04-07

    Superconducting bilayers made of thin films of molybdenum and gold show promise as robust transition-edge sensor (TES) thermometers for calorimeters. We present our first X-ray results from experiments with Mo/Au TES calorimeters on silicon-nitride membranes. These results include analysis of the signal pulse shape and noise as functions of the bias point, which is varied through changing the bias voltage for operation at different places within the superconducting transition and changing the heat sink temperature relative to the transition temperature. Ultimately, we determined that the performance of our devices is limited by the slew rate of the SQUID amplifier used to measure the change in current, which restricts the choice of bias. The amplifier must be replaced before further device characterization and optimization can proceed.

  20. Phase transitions and magnetization of the mixed-spin Ising–Heisenberg double sawtooth frustrated ladder

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2018-04-01

    The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.

  1. Comment on 'Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition'

    International Nuclear Information System (INIS)

    Krakoviack, V.

    2007-01-01

    Guided by old results on simple mode-coupling models displaying glass-glass transitions, we demonstrate, through a crude analysis of the solution with one step of replica symmetry breaking (1RSB) derived by Crisanti and Leuzzi for the spherical s+p mean-field spin glass [Phys. Rev. B 73, 014412 (2006)], that the phase behavior of these systems is not yet fully understood when s and p are well separated. First, there seems to be a possibility of glass-glass transition scenarios in these systems. Second, we find clear indications that the 1RSB solution cannot be correct in the full glassy phase. Therefore, while the proposed analysis is clearly naive and probably inexact, it definitely calls for a reassessment of the physics of these systems, with the promise of potentially interesting developments in the theory of disordered and complex systems

  2. Soft mode and energy gap in spin wave spectrum for a second order orientation phase transition. AFMR in YFe3

    International Nuclear Information System (INIS)

    Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.

    1987-01-01

    A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature

  3. Magnetic-field dependence of strongly anisotropic spin reorientation transition in NdFeO3: a terahertz study.

    Science.gov (United States)

    Jiang, Junjie; Song, Gaibei; Wang, Dongyang; Jin, Zuanming; Tian, Zhen; Lin, Xian; Han, Jiaguang; Ma, Guohong; Cao, Shixun; Cheng, Zhenxiang

    2016-03-23

    One of the biggest challenges in spintronics is finding how to switch the magnetization of a material. One way of the spin switching is the spin reorientation transition (SRT), a switching of macroscopic magnetization rotated by 90°. The macroscopic magnetization in a NdFeO3 single crystal rotates from Γ4 to Γ2 via Γ24 as the temperature is decreased from 170 to 100 K, while it can be switched back to Γ4 again by increasing the temperature. However, the precise roles of the magnetic-field induced SRT are still unclear. By using terahertz time-domain spectroscopy (THz-TDS), here, we show that the magnetic-field induced SRT between Γ4 and Γ2 is strongly anisotropic, depending on the direction of the applied magnetic field. Our experimental results are well interpreted by the anisotropy of rare-earth Nd(3+) ion. Furthermore, we find that the critical magnetic-field required for SRT can be modified by changing the temperature. Our study suggests that the anisotropic SRT in NdFeO3 single crystal provides a platform to facilitate the potential applications in robust spin memory devices.

  4. Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures

    Science.gov (United States)

    Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing

    2017-07-01

    Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.

  5. Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor

    Science.gov (United States)

    2016-08-19

    2016 PUBLISHED 9 June 2016 Original content from this workmay be used under the terms of the Creative CommonsAttribution 3.0 licence . Any further...24], is normally expected to attenuate the sensitivity of the compass by destroying the spin coherence that is essential for its operation [35]. It...μT) and the symmetry axis of the hyperfine tensor. qF ( )S was determined using the equation ofmotion for the radical pair density operator , r̂ ( )t

  6. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    Science.gov (United States)

    2006-11-01

    magnetic fields as small as parts of micro Oersted that is several orders below the magnitude of the constant Earth’s magnetic field. To...vehicle, is measured by the accurate frequency meter. Our main task is to develop an engineering theory of operation of the proposed devices and...scientific results. Using yttrium-iron garnet (YIG) as a medium for spin wave propagation, we developed engineering theory and experimentally tested (in

  7. Control over the magnetism and transition between high- and low-spin states of an adatom on trilayer graphene.

    Science.gov (United States)

    Zheng, Anmin; Gao, Guoying; Huang, Hai; Gao, Jinhua; Yao, Kailun

    2017-05-31

    Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

  8. Communication: Spin-boson model with diagonal and off-diagonal coupling to two independent baths: Ground-state phase transition in the deep sub-Ohmic regime

    International Nuclear Information System (INIS)

    Zhao, Yang; Zhao, Yang; Yao, Yao; Chernyak, Vladimir

    2014-01-01

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling

  9. Building on and spinning off: Sandia National Labs` creation of sensors for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R.

    1996-12-31

    This paper discusses Sandia National Laboratories` development of new technologies for use in the Vietnam War - specifically the seismic sensors deployed to detect troop and vehicle movement - first along the Ho Chi Minh Trail and later in perimeter defense for American military encampments in South Vietnam. Although the sensor story is a small one, it is interesting because it dovetails nicely with our understanding of the war in Vietnam and its frustrations; of the creation of new technologies for war and American enthusiasm for that technology; and of a technological military and the organizational research and a m am development structure created to support it. Within the defense establishment, the sensors were proposed within the context of a larger concept - that of a barrier to prevent the infiltration of troops and supplies from North Vietnam to the South. All of the discussion of the best way to fight in Vietnam is couched in the perception that this was a different kind of war than America was used to fighting. The emphasis was on countering the problems posed by guerrilla/revolutionary warfare and eventually by the apparent constraints of being involved in a military action, not an outright war. The American response was to find the right technology to do the job - to control the war by applying a technological tincture to its wounds and to make the war familiar and fightable on American terms. And, when doubts were raised about the effectiveness of applying existing technologies (namely, the bombing of North Vietnam and Laos), the doubters turned to new technologies. The sensors that were developed for use in Vietnam were a direct product of this sort of thinking - on the part of the engineers at Sandia who created the sensors, the civilian scientific advisors who recommended them, and, ultimately, the soldiers in the field who had to use them.

  10. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  11. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  12. Fabrication of transition edge sensor X-ray microcalorimeters for Constellation-X

    Energy Technology Data Exchange (ETDEWEB)

    Chervenak, J.A. E-mail: james.chervenak@nasa.gov; Finkbeiner, F.M.; Stevenson, T.R.; Talley, D.J.; Brekosky, R.P.; Bandler, S.R.; Figueroa-Feliciano, E.; Lindeman, M.A.; Kelley, R.L.; Saab, T.; Stahle, C.K

    2004-03-11

    NASA's Constellation-X (Con-X) mission is a driver for advancing low-temperature detector technologies, requiring 1000-pixel two-dimensional arrays with >95% filling fraction and quantum efficiency at 6 keV and better than 4 eV energy resolution for 1-10 keV photons. We describe a robust transition edge sensor fabrication process that can produce detector arrays with integrated absorbers approaching the specifications of Con-X. We address issues such as the methods of superconducting bilayer deposition, detector geometry definition, and absorber interface.

  13. Development of molybdenum-gold proximity bilayers as transition edge sensors for the SPEED camera

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.C. E-mail: tchen@stars.gsfc.nasa.gov; Bier, A.; Campano, B.A.; Cottingham, D.A.; Finkbeiner, F.M.; O' Dell, C.; Sharp, E.; Silverberg, R.F.; Wilson, G

    2004-03-11

    Bolometers are being developed with thermistor elements using Mo/Au proximity bilayers as superconducting transition edge sensor. These bolometers will be used by the Spectral Energy Distribution camera which is being developed to study the spectral energy distribution of high redshift galaxies. The bolometers are fabricated on 11x11 mm{sup 2} suspended 0.5 {mu}m thick low-stress LPCVD silicon nitride films supported by 475 {mu}m thick silicon frames. To obtain the required thermal conductivity, the films are perforated to form central disks suspended by thin legs. Here we discuss the design, fabrication process, and current test results of these bolometers.

  14. Characterization and modeling of transition edge sensors for high resolution X-ray calorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Saab, T. E-mail: tsaab@milkyway.gsfc.nasa.gov; Apodacas, E.; Bandler, S.R.; Boyce, K.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Hammock, C.; Kelley, R.; Lindeman, M.; Porter, F.S.; Stahle, C.K

    2004-03-11

    Characterizing and understanding, in detail, the behavior of a Transition Edge Sensor (TES) is required for achieving an energy resolution of 2 eV at 6 keV desired for future X-ray observatory missions. This paper will report on a suite of measurements (e.g. impedance and I-V among others) and simulations that were developed to extract a comprehensive set of TES parameters such as heat capacity, thermal conductivity, and R(T,I), {alpha}(T,I), and {beta}{sub i}(T,I) surfaces. These parameters allow for the study of the TES calorimeter behavior at and beyond the small signal regime.

  15. Percolation model of excess electrical noise in transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: lindeman@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Fallows, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rocks, L.E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-04-15

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R{sub N}) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.

  16. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  17. Thermal properties of calorimeters with Ti/Au transition-edge sensors on silicon nitride membranes

    International Nuclear Information System (INIS)

    Ukibe, M.; Tanaka, K.; Koyanagi, M.; Morooka, T.; Pressler, H.; Ohkubo, M.; Kobayashi, N.

    2000-01-01

    We are developing X-ray microcalorimeters employing superconducting-transition-edge sensors (TESs) for relatively high operation-temperatures of an 3 He cryostat. The TESs are proximity bilayers of Ti and Au. An important thermal parameters, the thermal conductance G, of the microcalorimeters on SiN x membranes was evaluated by a simple method using R-T curves at different bias currents. It has been shown that the G value can be controlled by altering the membrane thickness and size

  18. Spin transition diagram of (2Me-5Et-PyH)[Fe(Th-5Cl-Sa)2] studied by EPR

    International Nuclear Information System (INIS)

    Krupska, A.; Augustyniak-Jablokow, M.A.; Yablokov, V.Yu.; Zelentsov, V.V.

    2005-01-01

    The high-spin - low-spin transition in (2Me-5Et-PyH)[Fe(Th-5Cl-Sa) 2 ] was studied by EPR under hydrostatic pressure in the temperature range of 80-310 K. Two modifications of the low-spin complexes: low-pressure (LS-1) and high-pressure (S-2) ones were observed. The low-spin complexes are associated in domains. Under atmospheric pressure LS-1 appears or disappears at 220 K. The hydrostatic pressure shifts the transition to high temperatures. Above 410 MPa the abrupt changes of the g-factor and width ΔB of the EPR line is observed. The pressure-induced transition LS-1 - LS-2 is almost independent of T up to 275 K where under pressure 420 MPa a triple point is observed. When the pressure has been decreased the reverse transition from LS-2 to LS-1 or to high spin phase (at T > 260 K) occurs with a large hysteresis about 95 MPa. (author)

  19. Phonon-mediated particle detection using superconducting tungsten transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, Kent David [Stanford U.

    1995-02-01

    This thesis describes the development of several superconducting tungsten thin film based particle detector technologies. The initial motivation for this work was the construction of detectors sensitive to dark matter and neutrino scattering events. These technologies also show promise in other applications, including high resolution x-ray spectroscopy. The detectors described here consist of a tungsten thin film deposited on a silicon substrate. When an incident particle scatters in the silicon crystal, it deposits energy in the form of phonons which propagate to the surface of the crystal where they are absorbed in the tungsten thin film. The superconducting film is biased at or near its transition temperature. Changes in the resistance of the film are measured. The superconducting titanium transition-edge sensors previously developed by our group exhibit a threshold phonon energy density below which no signal is detectable. This threshold density poses severe restrictions on resolution, energy threshold, and absorber mass. In order to overcome these limitations, several new technologies were developed. In each case, a superconducting film with a sharp transition well below that of titanium (~ 380 mK) is necessary. To this end superconducting W films were developed with ~ 1 mK wide transitions at 70 mK. Before this work W thin films always exhibited transition temperatures > 600 mK. The first technology described here consists of a W thin film patterned into a 1 μm wide line 1.6 m long in a meander pattern. The line is biased at a constant current, and is temperature biased near the middle of its superconducting transition. When an event deposits energy in the W film, the resulting voltage pulse is measured with a cryogenic FET. A quantum efficient sensor is also described in which the heat capacity of individual, thermally isolated film segments biased just below their transition have heat capacities small enough that individual phonons drive them normal. The

  20. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  1. Electric control of spin-Hall effect by inter-valley transitions

    Czech Academy of Sciences Publication Activity Database

    Okamoto, N.; Kurebayashi, H.; Trypiniotis, T.; Farrer, I.; Ritchie, D. A.; Saitoh, E.; Sinova, Jairo; Mašek, Jan; Jungwirth, Tomáš; Barnes, C.H.W.

    2014-01-01

    Roč. 13, č. 10 (2014), s. 932-937 ISSN 1476-1122 R&D Projects: GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : spin Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 36.503, year: 2014

  2. Ferromagnetic transitions of a spin-one Ising film in a surface and bulk transverse fields

    International Nuclear Information System (INIS)

    Saber, A.; Lo Russo, S.; Mattei, G.; Mattoni, A.

    2002-01-01

    Using the effective field theory method, we have calculated the Curie temperature of a spin-one Ising ferromagnetic film in a surface and bulk transverse fields. Numerical calculations give phase diagrams under various parameters. Surface exchange enhancement is considered. The dependence of the critical transverse field on film thickness, and phase diagrams in the fields, critical surface transverse field versus the bulk one are presented

  3. Transport and magnetic study of the spin reorientation transition in the Tb5(Si0.5Ge0.5)4 magnetocaloric compound

    International Nuclear Information System (INIS)

    Araujo, J P; Pereira, A M; Braga, M E; Pinto, R P; Teixeira, J M; Correia, F C; Sousa, J B; Morellon, L; Algarabel, P A; Magen, C; Ibarra, M R

    2005-01-01

    Detailed measurements of the electrical resistivity ρ(T), thermopower S(T) and magnetization of Tb 5 (Si 0.5 Ge 0.5 ) 4 in the vicinity of the spin reorientation transitions observed in this compound are reported. Our results indicate a complex spin reorientation process associated with three different lattice sites occupied by the Tb ions. We identify two critical transition temperatures: one at T SR 1 = 57 K, as previously reported, and a new one at T SR 2 = 40 K. A simple model based on an approximate magnetic anisotropy energy is presented; it gives a satisfactory qualitative description of the main features of the reorientation processes

  4. Variational cluster approximation study of Mott transition with strong spin-orbit coupling

    International Nuclear Information System (INIS)

    Shirakawa, Tomonori; Watanabe, Hiroshi; Yunoki, Seiji

    2011-01-01

    Motivated by recent experiments on Sr 2 IrO 4 , the ground state magnetic and electronic structures are studied theoretically for a two-dimensional three-band Hubbard model with strong spin-orbit coupling. To treat spin-orbit coupling, local Coulomb interactions, and band structure effects on the same footing, the variational cluster approximation based on the self-energy functional theory is employed. It is found that for a relatively large coupling region, the ground state is an anisotropic antiferromagnetic Mott insulator of an effective local angular momentum J eff = 1/2 with xy plane as an easy plane. This anisotropy is caused by the strong spin-orbit coupling along with the inter-orbital Hund's coupling. The momentum resolved one-particle excitations are also studied for the Mott insulating phase. It is found that the low-energy one-particle excitations consist mostly of the J eff = 1/2 state, a direct evidence of a novel J eff = 1/2 Mott insulator.

  5. Implications of Weak Link Effects on Thermal Characteristics of Transition-Edge Sensors

    Science.gov (United States)

    Bailey, C. N.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chevenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kally, D. P.; Kilbourne, C. A.; hide

    2012-01-01

    Weak link behavior in transition-edge sensor (TES) microcalorimeters creates the need for a more careful characterization of a device's thermal characteristics through its transition. This is particularly true for small TESs where a small change in the bias current results in large changes in effective transition temperature. To correctly interpret measurements, especially complex impedance, it is crucial to know the temperature-dependent thermal conductance, G(T), and heat capacity, C(T), at each point through the transition. We present data illustrating these effects and discuss how we overcome the challenges that are present in accurately determining G and T from I-V curves. We also show how these weak link effects vary wi.th TES size. Additionally, we use this improVed understanding of G(T) to determine that, for these TES microcalorimeters. Kaptiza boundary resistance dominates the G of devices with absorbers while the electron-phonon coupling also needs to be considered when determining G for devices without absorbers

  6. The Role of Proximity Effects in Transition-Edge Sensor Design and Performance

    Science.gov (United States)

    Smith, Stephen J.

    2012-01-01

    Transition-edge sensor (TES) microcalorimeters and bolometers are under development by numerous groups worldwide for a variety of applications involving the measurement of particle and photon radiation. Recent experimental and theoretical progress has led to the realization that the fundamental physics of some TES systems involves the longitudinal proximity effect between the electrical bias contacts and the TES. As such, these devices are described as SS'S (or SN'S) weak-links exhibiting Fraunhofer-like magnetic field dependence, and exponential temperature dependence, of the critical current. These discoveries, for the first time, provide a realistic theoretical framework for predicting the resistive transition as a function of temperature, current and magnetic field. In this contribution, we review the latest theoretical and experimental results and investigate how proximity effects play an important role in determining the resistive transition characteristics, which ultimately determines the dynamic range and energy resolution of TES detectors. We investigate how these effects could be utilized in device design to engineer desired transition characteristics for a given application.

  7. Spin state switching in iron coordination compounds

    Directory of Open Access Journals (Sweden)

    Philipp Gütlich

    2013-02-01

    Full Text Available The article deals with coordination compounds of iron(II that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices.The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II, with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

  8. Field-driven quantum phase transitions in S =1/2 spin chains

    Science.gov (United States)

    Iaizzi, Adam; Damle, Kedar; Sandvik, Anders W.

    2017-05-01

    We study the magnetization process of a one-dimensional extended Heisenberg model, the J -Q model, as a function of an external magnetic field h . In this model, J represents the traditional antiferromagnetic Heisenberg exchange and Q is the strength of a competing four-spin interaction. Without external field, this system hosts a twofold-degenerate dimerized (valence-bond solid) state above a critical value qc≈0.85 where q ≡Q /J . The dimer order is destroyed and replaced by a partially polarized translationally invariant state at a critical field value. We find magnetization jumps (metamagnetism) between the partially polarized and fully polarized state for q >qmin , where we have calculated qmin=2/9 exactly. For q >qmin , two magnons (flipped spins on a fully polarized background) attract and form a bound state. Quantum Monte Carlo studies confirm that the bound state corresponds to the first step of an instability leading to a finite magnetization jump for q >qmin . Our results show that neither geometric frustration nor spin anisotropy are necessary conditions for metamagnetism. Working in the two-magnon subspace, we also find evidence pointing to the existence of metamagnetism in the unfrustrated J1-J2 chain (J1>0 ,J20 . While the expected "zero-scale-factor" universality is clearly seen for q =0 and q ≪qmin , for q closer to qmin we find that extremely low temperatures are required to observe the asymptotic behavior, due to the influence of the tricritical point at qmin. In the low-energy theory, one can expect the quartic nonlinearity to vanish at qmin and a marginal sixth-order term should govern the scaling, which leads to a crossover at a temperature T*(q ) between logarithmic tricritical scaling and zero-scale-factor universality, with T*(q ) →0 when q →qmin .

  9. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  10. Thermal Phase Transitions of Strongly Correlated Bosons with Spin-Orbit Coupling

    Science.gov (United States)

    Hickey, Ciarán; Paramekanti, Arun

    2014-12-01

    Experiments on ultracold atoms have started to explore lattice effects and thermal fluctuations for two-component bosons with spin-orbit coupling (SOC). Motivated by this, we derive and study a t J model for lattice bosons with equal Rashba-Dresselhaus SOC and strong Hubbard repulsion in a uniform Zeeman magnetic field. Using the Gutzwiller ansatz, we find strongly correlated ground states with stripe superfluid (SF) order. We formulate a finite temperature generalization of the Gutzwiller method, and show that thermal fluctuations in the doped Mott insulator drive a two-step melting of the stripe SF, revealing a wide regime of a stripe normal fluid.

  11. Area law violations and quantum phase transitions in modified Motzkin walk spin chains

    Science.gov (United States)

    Sugino, Fumihiko; Padmanabhan, Pramod

    2018-01-01

    Area law violations for entanglement entropy in the form of a square root have recently been studied for one-dimensional frustration-free quantum systems based on the Motzkin walks and their variations. Here we consider a Motzkin walk with a different Hilbert space on each step of the walk spanned by the elements of a symmetric inverse semigroup with the direction of each step governed by its algebraic structure. This change alters the number of paths allowed in the Motzkin walk and introduces a ground state degeneracy that is sensitive to boundary perturbations. We study the frustration-free spin chains based on three symmetric inverse semigroups, \

  12. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes

    Science.gov (United States)

    Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria

    2018-01-01

    The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.

  13. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  14. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  15. An Interesting Spin-State Transition for [Fe(PPIX)OH] Induced by High Pressure in a Diamond Anvil Cell

    International Nuclear Information System (INIS)

    Cornelius, V. J.; Titler, P. J.; Fern, G. R.; Miller, J. R.; Silver, J.; Snowden, M. J.; McCammon, C. A.

    2002-01-01

    A high-pressure Moessbauer spectroscopic study of [ 57 Fe(PPIX)OH] is reported under conditions where the pressure is increased and then released. Data were recorded over the pressure range from room pressure to 7.1 GPa using a modified Merril-Bassett Diamond Anvil cell. [ 57 Fe(PPIX)OH] exhibits an asymmetric quadrupole doublet at room temperature and pressure, caused by population of higher energy levels known as Kramer's doublets. Under the application of pressure a S=5/2 high spin to S=5/2,3/2 admixed spin state transition of the Fe(III) site is seen to occur above pressures of 2.2 GPa. This follows a general trend observed with other porphyrin compounds. This is thought to be evidence of movement of the ligand towards the iron atom and movement of the iron atom towards the porphyrin plane. Further evidence for this motion is found in the decrease in the asymmetry of the original site, which is caused by changes in population of the energy levels of the Kramer's doublets. At the highest reported pressures a reversal in asymmetry is observed for the inner S=5/2 quadrupole doublet.

  16. Spin-flip transition and Faraday effect in antiferromagnet KMnF3 in megagauss magnetic field

    International Nuclear Information System (INIS)

    Mukhin, A.A.; Plis, V.I.; Popov, A.I.; Zvezdin, A.K.; Platonov, V.; Tatsenko, O.M.

    1998-01-01

    Faraday effect in the antiferromagnet KMnF 3 has been investigated in pulse explosive fields up to 500 T at T=78 K. The laser wavelength 0.63 μm was used in the experiment. The magnetic field dependence of Faraday rotation in this antiferromagnet shows a unique feature of a lack of saturation effect in the fields up to 500 T whereas critical field of spin-flip transition is about 120 T. The theoretical analysis of microscopic nature of Faraday rotation, including the diamagnetic, magneto-dipole and paramagnetic mechanisms has been performed. The strong competition of these mechanisms is important to explain the extremely small value of the effect and its unusual magnetic field dependence

  17. Near-Surface Structural Phase Transition of SrTiO3 Studied with Zero-Field β-Detected Nuclear Spin Relaxation and Resonance

    Science.gov (United States)

    Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.

    2006-04-01

    We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.

  18. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-edge Sensors

    Science.gov (United States)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition

  19. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.

    Science.gov (United States)

    Daley, Monica A; Channon, Anthony J; Nolan, Grant S; Hall, Jade

    2016-10-15

    The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait-speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk-run and run-walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk-run and run-walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions. © 2016. Published by The Company of Biologists Ltd.

  20. Spin dynamics and structural phase transitions in quasi-2D R sub 2 CuO sub 4 (R=Pr, Sm and Eu) antiferromagnetics

    CERN Document Server

    Golovenchits, E I

    2001-01-01

    One studied spin dynamics and dynamics of lattice in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu) crystals within 20-250 GHz frequency range and within 50350 K temperature interval. One detected abrupt variation of absorption coefficient within wide range of frequencies above 120 GHz at 20, 80 and 150 K temperatures in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu), respectively. Absorption jumpings result from structural phase transitions. Wide ranges of spin-wave excitations were observed in all examined crystals in high-temperature phase. Close to temperatures of phase transitions within wide range of frequencies including frequencies corresponding to ranges of spin-wave excitations one observed lines of a absorption caused by lattice dynamics

  1. Searching new topological superfluids and phase transitions with spin-orbit coupled fermions in an optical lattice

    Science.gov (United States)

    Yixiang, Yu; Sun, Fadi; Ye, Jinwu; Song, Ningfang

    We study the global phase diagram of attractively interacting fermions hopping in a square lattice with any linear combinations of Rashba or Dresselhaus spin-orbit coupling (SOC) in a normal Zeeman field. Here, we focus on half filling case. We find there are 3 phases Band insulator, Superfluid (SF) and Topological SF with C =2. The TSF happens in small Zeeman fields and very weak interactions which is the experimentally most easily accessible regimes and has also the smallest heating effects. The transition from the BI to the SF is a first order one due to the multi-minima structure of the energy landscape. There is a topological phase transition from the SF to the TSF at the low critical field h_{c1}, then another one from the TSF to the BI at the upper critical field h_{c2}. We derive effective actions to describe the two topological phase transitions, then study the edge modes and the Majorana zero modes inside a vortex core of the C =2 TSF near both h_{c1}and h_{c2}. We map out the local Berry Curvature distribution near both h_{c1}and h_{c2}. We find a topological tri-critical point along h_{c1}and conjecture that any topological transitions can only be odd order. We also study some bulk-Berry curvature-edge-vortex correspondences. We thank W. M. Liu for encouragements and acknowledge AFOSR FA9550-16-1-0412 for supports.

  2. X-ray circular magnetic dichroism as a probe of spin reorientation transitions in Nd2Fe14B and Er2Fe14B systems

    International Nuclear Information System (INIS)

    Chaboy, J.; Marcelli, A.; Garcia, L.M.; Bartolome, J.; Kuz'min, M.D.; Maruyama, H.; Kobayashi, K.; Kawata, H.; Iwazumi, T.

    1995-01-01

    We present the first experimental observation of spin reorientation phase transitions (SRT) with the X-Ray circular magnetic dichroism (XCMD) technique. Both the first-order SRT in Er 2 Fe 14 B and the second-order one in Nd 2 Fe 14 B have been clearly detected, demonstrating the feasibility of this technique for studying SRTs. ((orig.))

  3. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  4. Comparing Transition-Edge Sensor Response Times in a Modified Contact Scheme with Different Support Beams

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.

    2013-01-01

    We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.

  5. An investigation of excess noise in transition-edge sensors on a solid silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, S.G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: sgcrowder@wisc.edu; Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bruijn, M.P. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, Utrecht 3584 CA (Netherlands); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Germeau, A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, Utrecht 3584 CA (Netherlands); Hoevers, H.F.C. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, Utrecht 3584 CA (Netherlands); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelly, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D.; Nelms, K.L.; Rocks, L.; Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S.; Saab, T.; Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    Transition-edge sensors (TESs) exhibit two major types of excess noise above the expected and unavoidable thermodynamic fluctuation noise (TFN) to the heat sink and Johnson noise. High-resistance TESs such as those made by the Netherlands Institute for Space Research (SRON) show excess noise consistent with internal TFN (ITFN) caused by random energy transport within the TES itself while low resistance TESs show an excess voltage noise of unknown origin seemingly unrelated to temperature fluctuations. Running a high-resistance TES on a high thermal conductivity substrate should suppress ITFN and allow detection of any excess voltage noise. We tested two TESs on a solid silicon substrate fabricated by SRON of a relatively high normal state resistance of {approx}200 m{omega}. After determining a linear model of the TES response to noise for the devices, we found little excess TFN and little excess voltage noise for bias currents of up to {approx}20 {mu}A.

  6. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    International Nuclear Information System (INIS)

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.

    2006-01-01

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed

  7. An investigation of excess noise in transition-edge sensors on a solid silicon substrate

    International Nuclear Information System (INIS)

    Crowder, S.G.; Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Bruijn, M.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Germeau, A.; Hoevers, H.F.C.; Iyomoto, N.; Kelly, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    Transition-edge sensors (TESs) exhibit two major types of excess noise above the expected and unavoidable thermodynamic fluctuation noise (TFN) to the heat sink and Johnson noise. High-resistance TESs such as those made by the Netherlands Institute for Space Research (SRON) show excess noise consistent with internal TFN (ITFN) caused by random energy transport within the TES itself while low resistance TESs show an excess voltage noise of unknown origin seemingly unrelated to temperature fluctuations. Running a high-resistance TES on a high thermal conductivity substrate should suppress ITFN and allow detection of any excess voltage noise. We tested two TESs on a solid silicon substrate fabricated by SRON of a relatively high normal state resistance of ∼200 mΩ. After determining a linear model of the TES response to noise for the devices, we found little excess TFN and little excess voltage noise for bias currents of up to ∼20 μA

  8. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  9. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  10. Development of transition edge sensors with rf-SQUID based multiplexing system for the HOLMES experiment

    Science.gov (United States)

    Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2017-09-01

    Measuring the neutrino mass is one the most compelling issue in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ˜70 mK using a dilution refrigerator. In order to gather the required 3 × 1013 events in a three year long data taking with a pile up fraction as low as 10-4, detectors must fulfill rather high speed and resolution requirements, i.e. 10 µs rise time and 4 eV resolution. To ensure such performances with an efficient read out technique for very large detectors array kept at low temperature inside a cryostat is no trivial matter: at the moment, the most appealing read out technique applicable to large arrays of Transition Edge Sensors is rf-SQUID multiplexing. It is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearisation purposes; the rf-SQUID is then coupled to a super-conductive λ/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique.

  11. The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    Science.gov (United States)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, Sarah Elizabeth; Chervenak J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J. P.; hide

    2012-01-01

    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  12. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  13. High temperature spin-glass-like transition in La0.67Sr0.33MnO3 nanofibers near the Curie point.

    Science.gov (United States)

    Lu, Ruie; Yang, Sen; Li, Yitong; Chen, Kaiyun; Jiang, Yun; Fu, Bi; Zhang, Yin; Zhou, Chao; Xu, Minwei; Zhou, Xuan

    2017-06-28

    The glassy transition of superparamagnetic (SPM) (r glass-like (SGL) behavior near the Curie point (T C ), i.e., T 0 = 330 K, in La 0.67 Sr 0.33 MnO 3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r 0 ), resulting in a significant increase of the glass transition temperature. This SGL transition near the T C of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δT f ∝ H 2/3 , exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.

  14. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Arias, Yesica, E-mail: yeika01@hotmail.com; Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Ammar, Souad [Laboratoires ITODYS, Université de Paris-Diderot, PRES Sorbonne Paris Cité, CNRS-UMR 7086, 75205 Paris Cedex (France)

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  15. Internal structure transition of spin-on glass by electron beam irradiation

    International Nuclear Information System (INIS)

    Araki, Makoto; Taniguchi, Jun; Sawada, Nobuo; Utsumi, Takayuki; Miyamoto, Iwao

    2007-01-01

    The effects of electron beam (EB) irradiation on spin-on glass (SOG) were investigated using thermal desorption spectroscopy. We were able to employ heat treatment as a 'development process', since we discovered that heat treatment breaks different bonds in SOG depending on whether it is applied before or after EB irradiation of SOG. In the case, when heat treatment was applied before EB irradiation of SOG, it was possible to break the Si-C bond at about 500 deg. C. In the case, when heat treatment was applied after EB irradiation of SOG, on the other hand, the -SiC bond could be broken at a lower temperature of about 400 deg. C. Using this difference between the two bond-breaking temperatures, it was possible to develop SOG using thermal desorption development (TDD). Moreover, the bond-breaking mechanisms revealed that the organic components in SOG play an important role in TDD. Hence, in order to determine the influence of organic components on TDD, the development characteristics of SOG samples with 10% and 15% organic contents were investigated

  16. Spin glass transition in the rhombohedral LiNi1/3Mn1/3Co1/3O2

    International Nuclear Information System (INIS)

    Bie, Xiaofei; Yang, Xu; Han, Bing; Chen, Nan; Liu, Lina; Wei, Yingjin; Wang, Chunzhong; Chen, Hong; Du, Fei; Chen, Gang

    2013-01-01

    Highlights: •The Rietveld analysis of XRD data reveals a single phase with rhombohedral structure. •Dc susceptibility data suggest a spin glass behavior at low T in the 333 compound. •The ac susceptibility measurements have been observed in the typical SG system. •Three models have been employed to study the behavior of the spin glass state. •Both geometrical frustration and disorder play important role in the formation of SG. -- Abstract: Layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 has been synthesized by co-precipitation method, and the magnetic properties were comprehensively studied by dc and ac susceptibilities. The dc magnetization curves show the irreversibility and spin freezing behavior at 109 K and 9 K. The evolution of real and imaginary part of ac susceptibility under different frequencies indicates a spin glass transition at low temperature. Three models (the Néel–Arrhenius law, the Vogel–Fulcher law, and the power law) have been employed to study the relaxation behavior of the spin glass state. Both frustration and disorder play important role in the formation of spin glass

  17. Spin Resonance Clock Transition of the Endohedral Fullerene ^{15}N@C_{60}.

    Science.gov (United States)

    Harding, R T; Zhou, S; Zhou, J; Lindvall, T; Myers, W K; Ardavan, A; Briggs, G A D; Porfyrakis, K; Laird, E A

    2017-10-06

    The endohedral fullerene ^{15}N@C_{60} has narrow electron paramagnetic resonance lines which have been proposed as the basis for a condensed-matter portable atomic clock. We measure the low-frequency spectrum of this molecule, identifying and characterizing a clock transition at which the frequency becomes insensitive to magnetic field. We infer a linewidth at the clock field of 100 kHz. Using experimental data, we are able to place a bound on the clock's projected frequency stability. We discuss ways to improve the frequency stability to be competitive with existing miniature clocks.

  18. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application

    NARCIS (Netherlands)

    Bergen, A.; Van Weers, H. J.; Bruineman, C.; Dhallé, M. M.J.; Krooshoop, H. J.G.; Ter Brake, H. J.M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.

    2016-01-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between

  19. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  20. Characterization and fabrication of Ti/Pd bilayers for transition-edge sensors

    International Nuclear Information System (INIS)

    Monticone, E; Taralli, E; Portesi, C; Fretto, M; Rocci, R; Cerri, R; Rajteri, M

    2009-01-01

    Transition-edge sensor (TES) microcalorimeters are extensively used as single photon detectors from infrared to x-ray. Their good energy resolution and photon number resolving capability at visible and near-infrared wavelengths make them powerful tools for quantum information and quantum computation. In this work we report details on the fabrication of Ti/Pd TESs deposited by e-beam evaporation on silicon nitride substrates. By the proximity effect between Ti and Pd, the Ti critical temperature was tuned down to 100 mK, usual working temperature for these devices. Sharp transition of two-three mK and reproducible Tc were obtained. The Pd material can be a valid alternative to widely used Au proximity material thanks to its stronger influence on the Ti layer, that allows to obtain the same temperature reduction with thinner layers. Thermal and electrical characteristics of Ti/Au and Ti/Pd bilayers are compared in view of single photon detection.

  1. Light-induced excited spin state transition in the [Fe(ptz)6 ](BF4 )2 observed with X-ray emission

    International Nuclear Information System (INIS)

    Togashi, T.; Osawa, H.; Shin, S.; Tanaka, K.; Isozumi, Y.; Iwazumi, T.; Nozowa, S.

    2004-01-01

    Full text:[Fe(ptz) 6 ](BF 4 ) 2 (ptz = 1-propyltetrazole) is one of the well-known iron(II) spin- crossover complexes. Thermal- and photo-induced phase transitions have been widely reported since 1985. According to Decurtines' report, this material shows only thermal-induced spin phase transition, low-spin (LS, S = 0) high-spin (HS, S = 2), at critical temperatures of 135 (in warming process) and 128 K (in cooling process), but also photo-indused (PI) phase transition below ∼ 50 K. In this study, we observed thermal- and photo-induced phase transition by X-ray emission spectroscopy (XES) at BL-28B of Photon Factory (PF), Institute of Materials Structure Science. The incident photons, provided by elliptical multipole wiggler, were fixed at 7300 eV using an Si(111) double crystal monochromator. Emitted X- rays from this sample were analyzed by a cylindrically bent Ge (440) crystal, and detected by a position-sensitive proportional counter (PSPC). We used a frequency-doubled Nd : YVO 4 laser (λ = 532 nm) for excitation light source from LS state to PI phase. 20-mW power was directed to the sample at a 9-mm diameter beam spot. The figure shows Fe 3p-1s XES spectra for 160 K (HS), 30 K (LS) and PI phase during (PI1) and after (PI2) Laser irradiation. PI2 was measured 30 minutes later from laser-off. PI1 shows the transition from LS state to PI phase similar to HS and the change from PI1 to PI2 means a decay process from the the PI phase to the LS state. Each spectrum could be described with the superposition of those of the HS and LS state

  2. Spin Triplet Nematic Pairing Symmetry and Superconducting Double Transition in U1-xThxBe13

    Science.gov (United States)

    Machida, Kazushige

    2018-03-01

    Motivated by a recent experiment on U1-xThxBe13 with x = 3%, we develop a theory to narrow down the possible pair symmetry to consistently describe the double transition utilizing various theoretical tools, including group theory and Ginzburg-Landau theory. It is explained in terms of the two-dimensional representation Eu with spin triplet. Symmetry breaking causes the degenerate Tc to split into two. The low-temperature phase is identified as the cyclic p wave: d(k) = \\hat{x}kx + ɛ \\hat{y}ky + ɛ 2\\hat{z}kz with ɛ3 = 1, whereas the biaxial nematic phase: d(k) = √{3} (\\hat{x}kx - \\hat{y}ky) is the high-temperature one. This allows us to simultaneously identify the uniaxial nematic phase: d(k) = 2\\hat{z}kz - \\hat{x}kx - \\hat{y}ky for UBe13, which spontaneously breaks the cubic symmetry of the system. Those pair functions are fully consistent with this description and existing data. We comment on the accidental scenario in addition to this degeneracy scenario and the intriguing topological nature hidden in this long-known material.

  3. Anchoring transition metal elements on graphene-like ZnO monolayer by CO molecule to obtain spin gapless semiconductor

    Science.gov (United States)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2017-09-01

    Graphene-like zinc oxide monolayer (g-ZnO) is a newfound two-dimensional material. Here we utilize the transition metal (TM) elements (Cr, Mn, Fe, Co, Ni, and Cu) to functionalize the g-ZnO with the aim of designing novel spintronics materials by using first-principles calculations. Our results show that although the adsorption of TM atoms can endow g-ZnO with magnetization and impurity states in the bandgap, the interaction between TM elements and g-ZnO is weak. We found that the attachment of CO molecule on TM is able to stabilize the TM elements on g-ZnO based on the 'donation and back-donation' mechanism. As a result, the adsorption energy of the CO-TM complex on g-ZnO is as high as 1.41-2.11 eV. Furthermore, the incorporation of CO molecule modulates the magnetic and electronic properties of the TM-decorated g-ZnO. In particular, the CO-Mn-g-ZnO is predicted to be a spin gapless semiconductor.

  4. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    Science.gov (United States)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  5. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    Science.gov (United States)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  6. Spin Transition in the Lower Mantle: Deep Learning and Pattern Recognition of Superplumes from the Mid-mantle and Mid-mantle Slab Stagnation

    Science.gov (United States)

    Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.

    2016-12-01

    The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different

  7. The Kubo-Greenwood spin-dependent electrical conductivity of 2D transition-metal dichalcogenides and group-IV materials: A Green's function study

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-04-01

    The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.

  8. Perpendicular magnetic anisotropy, unconventional magnetization texture and extraordinary gradual spin reorientation transition of cobalt films in contact with graphene (Conference Presentation)

    Science.gov (United States)

    Rougemaille, Nicolas; Vu, Anh Duc; Chen, Gong; N'Diaye, Alpha T.; Schmid, Andreas K.; Coraux, Johann

    2016-10-01

    Owing to its peculiar electronic band structure, high carrier mobility and long spin diffusion length, graphene is a promising two-dimensional material for microelectronics and spintronics. Graphene also shows interesting magnetic properties when in contact with a ferromagnetic metal (FM). For instance, graphene carries a net magnetic moment when deposited on Fe/Ni(111), and a significant spin splitting can be induced in graphene due to proximity with a heavy element. While these results illustrate potential advantages of integrating graphene within a magnetic stack, the influence of graphene on the magnetic properties of a FM is still largely unexplored. In particular, non-magnetic overlayers generally affect the magnetic anisotropy energy (MAE) of thin layers, where interfaces play an important role. We can then wonder how an interface with graphene would influence the MAE of a thin FM film. Using spin-polarized low-energy electron microscopy, we study how a graphene overlayer affects the magnetic properties of atomically flat, nm-thick Co films grown on Ir(111). In this contribution, we report several astonishing magnetic properties of graphene-covered Co films: 1) Perpendicular magnetic anisotropy is favored over an unusually large thickness range, 2) Vectorial magnetic imaging reveals an extraordinarily gradual thickness-dependent spin reorientation transition (SRT), 3) During the SRT, cobalt films are characterized by an unconventional spin texture, 4) Spectroscopy measurements indicate that incident spin-polarized electrons do not suffer substantial spin-dependent collisions a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism and spintronics.

  9. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  10. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  11. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  12. Near-surface structural phase transition of SrTiO3 studied with zero-field beta-detected nuclear spin relaxation and resonance.

    Science.gov (United States)

    Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A

    2006-04-14

    We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.

  13. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-01-01

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  14. Implanted muon spin spectroscopy on 2-O-adamantane: a model system that mimics the liquid[Formula: see text]glasslike transitions.

    Science.gov (United States)

    Romanini, M; Tamarit, J L; Pardo, L C; Bermejo, F J; Fernandez-Perea, R; Pratt, F L

    2017-03-01

    The transition taking place between two metastable phases in 2-O-adamantane, namely the [Formula: see text] cubic, rotator phase and the lower temperature P2 1 /c, Z  =  4 substitutionally disordered crystal is studied by means of muon spin rotation and relaxation techniques. Measurements carried out under zero, weak transverse and longitudinal fields reveal a temperature dependence of the relaxation parameters strikingly similar to those exhibited by structural glass[Formula: see text]liquid transitions (Bermejo et al 2004 Phys. Rev. B 70 214202; Cabrillo et al 2003 Phys. Rev. B 67 184201). The observed behaviour manifests itself as a square root singularity in the relaxation rates pointing towards some critical temperature which for amorphous systems is located some tens of degrees above that shown as the characteristic transition temperature if studied by thermodynamic means. The implications of such findings in the context of current theoretical approaches concerning the canonical liquid-glass transition are discussed.

  15. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  16. Non-adiabatic Landau-Zener transitions in low-spin molecular magnet V sub 1 sub 5

    CERN Document Server

    Chiorescu, I; Müller, A; Bögge, H; Barbara, B

    2000-01-01

    The V sub 1 sub 5 polyoxovanadate molecule is made of 15 spins ((1)/(2)) with antiferromagnetic couplings. It belongs to the class of molecules with very large Hilbert space dimension (2 sup 1 sup 5 in V sub 1 sub 5 , 10 sup 8 in Mn sub 1 sub 2 -AC). It is a low spin/large molecule with spin S=((1)/(2)). Contrary to large spins/large molecules of the Mn sub 1 sub 2 -AC type, V sub 1 sub 5 has no energy barrier against spin rotation. Magnetization measurements have been performed and despite the absence of a barrier, magnetic hysteresis is observed over a timescale of several seconds. This new phenomenon characterized by a 'butterfly' hysteresis loop is due to the effect of the environment on the quantum rotation of the entangled 15 spins of the molecule, in which the phonon density of states is not at its equilibrium (phonon bottleneck).

  17. Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy.

    Science.gov (United States)

    Li, Bang Lin; Setyawati, Magdiel Inggrid; Zou, Hao Lin; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing; Leong, David Tai

    2017-08-01

    Following research on two-dimensional (2D) transition metal dichalcogenides (TMDs), zero-dimensional (0D) TMDs nanostructures have also garnered some attention due to their unique properties; exploitable for new applications. The 0D TMDs nanostructures stand distinct from their larger 2D TMDs cousins in terms of their general structure and properties. 0D TMDs possess higher bandgaps, ultra-small sizes, high surface-to-volume ratios with more active edge sites per unit mass. So far, reported 0D TMDs can be mainly classified as quantum dots, nanodots, nanoparticles, and small nanoflakes. All exhibited diverse applications in various fields due to their unique and excellent properties. Of significance, through exploiting inherent characteristics of 0D TMDs materials, enhanced catalytic, biomedical, and photoluminescence applications can be realized through this exciting sub-class of TMDs. Herein, we comprehensively review the properties and synthesis methods of 0D TMDs nanostructures and focus on their potential applications in sensor, biomedicine, and energy fields. This article aims to educate potential adopters of these excitingly new nanomaterials as well as to inspire and promote the development of more impactful applications. Especially in this rapidly evolving field, this review may be a good resource of critical insights and in-depth comparisons between the 0D and 2D TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol

    Science.gov (United States)

    Henderson, Shawn W.; Stevens, Jason R.; Amiri, Mandana; Austermann, Jason; Beall, James A.; Chaudhuri, Saptarshi; Cho, Hsiao-Mei; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin T.; Duff, Shannon M.; Fitzgerald, Colin P.; Gallardo, Patricio A.; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Koopman, Brian J.; Li, Dale; Li, Yaqiong; McMahon, Jeff; Nati, Federico; Niemack, Michael; Reintsema, Carl D.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Vavagiakis, Eve M.; Ward, Jonathan T.

    2016-07-01

    Advanced ACTPol is an instrument upgrade for the six-meter Atacama Cosmology Telescope (ACT) designed to measure the cosmic microwave background (CMB) temperature and polarization with arcminute-scale angular resolution. To achieve its science goals, Advanced ACTPol utilizes a larger readout multiplexing factor than any previous CMB experiment to measure detector arrays with approximately two thousand transition-edge sensor (TES) bolometers in each 150 mm detector wafer. We present the implementation and testing of the Advanced ACTPol time-division multiplexing readout architecture with a 64-row multiplexing factor. This includes testing of individual multichroic detector pixels and superconducting quantum interference device (SQUID) multiplexing chips as well as testing and optimizing of the integrated readout electronics. In particular, we describe the new automated multiplexing SQUID tuning procedure developed to select and optimize the thousands of SQUID parameters required to readout each Advanced ACTPol array. The multichroic detector pixels in each array use separate channels for each polarization and each of the two frequencies, such that four TESes must be read out per pixel. Challenges addressed include doubling the number of detectors per multiplexed readout channel compared to ACTPol and optimizing the Nyquist inductance to minimize detector and SQUID noise aliasing.

  19. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  20. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  1. Single-Aperture GPS-based Attitude (GPS/A) Sensor for Spin-Stabilized Platforms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Attitude determination of spin-stabilized platforms is especially challenging. Current low-cost gyroscope technology does not lend itself to attitude determination...

  2. Quantum spin Hall effect in a transition metal oxide Na.sub.2./sub.IrO.sub.3./sub

    Czech Academy of Sciences Publication Activity Database

    Shitade, A.; Katsura, H.; Kuneš, Jan; Qi, X.-L.; Zhang, S.-Ch.; Nagaosa, N.

    2009-01-01

    Roč. 102, č. 25 (2009), 256403/1-256403/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum spin Hall effect * spin-orbit coupling * topological insulator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.328, year: 2009

  3. Objective characterization of daily living transitions in patients with Parkinson's disease using a single body-fixed sensor.

    Science.gov (United States)

    Bernad-Elazari, Hagar; Herman, Talia; Mirelman, Anat; Gazit, Eran; Giladi, Nir; Hausdorff, Jeffrey M

    2016-08-01

    Body-fixed sensors (BFS), e.g., accelerometers worn for several days, can be used to augment the traditional clinical assessment. Long-term recordings obtained with BFS have been applied to study tremor, postural control, freezing of gait, turning abilities, motor response fluctuations and fall risk among older adults and patients with Parkinson's disease (PD). We aimed to test whether BFS-derived measures of transitions differ between patients with PD and healthy controls, and to evaluate whether there are differences among patients with mild PD, compared to more severe patients, and to controls. We also explored the added value of the metrics extracted from the sensor as compared to traditional testing in the lab. Ninety-nine patients with PD and 38 healthy older adults (HOA) participated in this study and wore a body-fixed sensor for 3 days. Walk-to-sit (n = 3286) and Sit-to-walk (n = 2858) transitions were analyzed and a machine learning algorithm was applied to distinguish between the groups. Significant differences in transitions were observed between PD patients and HOA, between mild and severe PD, and between mild PD and HOA, both in temporal and distribution features. The machine learning algorithm discriminated patients from HOA (accuracy = 92.3 %), mild from severe patients (accuracy = 89.8 %), and mild patients from HOA (accuracy = 85.9 %). These initial results suggest that body-fixed sensor-derived metrics of everyday transitions can characterize disease severity and differentiate mild PD patients from healthy older adults. Perhaps this approach can help with the integration of BFS into clinical care and the tracking of disease progression and the response to therapy.

  4. A new high-pressure phase of Fe2SiO4 and the relationship between spin and structural transitions

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Nakamoto, Y.; Kharlamova, S. A.; Struzhkin, V. V.; Gramsch, S.; Mao, H.; Hemley, R. J.

    2013-12-01

    Structure transformation of Fe2SiO4 Angle-dispersive powder x-ray diffraction was carried out at beam line 16-BMD APS. Structure of a new high-pressure phase of I-Fe2SiO4 spinel was determined by Rietveld profile fitting of x-ray diffraction data up to 64GPa at ambient temperature. A structural transition from the cubic spinel to the new structure was observed at 34GPa. Diffraction patterns taken at 44.6GPa and 54.6GPa indicate a two-phase mixture of spinel and new high-pressure phase. Reversible transition from I-Fe2SiO4 to spinel was confirmed. Laser heating experiment at 1500K proved the decomposition of Fe2SiO4 spinel to two oxides of FeO and SiO2. Spin transition X-ray emission measurements of Fe2SiO4 were carried out up to 65GPa at ambient temperature at beam line 16-IDD APS. The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. Although the compression curve of the spinel is discontinuous at approximately 20 GPa, Fe Kβ emission measurements show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17GPa in the spinel phase. The IS electronic state is gradually enhanced with pressure, which results in an isostructural phase transition. HS-to-LS transition of iron bearing spinels starts from 15.6GPa in Fe3O4 and 19.6GPa in Fe2TiO4. The transition is more capable due to Fe2+ in the octahedral site. The extremely shortened octahedral bonds result in a distortion of 6-fold cation site. New structure of Fe2SiO4 Monte Carlo method was applied to find candidates for the high-pressure phase using the diffraction intensities with fixed lattice constants determined by DICVOL. Rietveld profile fitting was then performed using the initial model. The new structure is a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z=4, with two crystallographically distinct FeO6 octahedra. Silicon exists in six-fold coordination in I-Fe2Si

  5. Lattice dynamics, phase transitions and spin relaxation in [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Herber, R. H.; Felner, I.; Nowik, I., E-mail: nowik@vms.huji.ac.il [The Hebrew University, Racah Institute of Physics (Israel)

    2016-12-15

    The organometallic compound ferrocenium hexafluorophosphate, [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}, has been studied by Mössbauer spectroscopy in the past, mainly to determine the crystal structure at high temperatures. Here we present studies at 95 K to 305 K and analyze the spectra in terms of spin relaxation theory which yields accurately the hyperfine interaction parameters and the spin-spin and spin-lattice relaxation rates in this paramagnetic compound. The spectral area under the resonance curve yields the recoil free fraction and thus the mean square of the vibration amplitude . One observes a large discontinuity in the slope of versus T at 210 K, indicative of a phase transition. The analysis of the spectra proves that the quadrupole interaction is small but certainly negative, ½e{sup 2}qQ = -0.12(2) mm/s, and causes the asymmetry observed in the spectra. The detailed analysis yields also, for the first time, the fluctuating effective magnetic hyperfine field, H {sub eff} = 180(50) kOe.

  6. Investigation of spin-reorientation phase transitions at surface and in volume of alpha-Fe sub 2 O sub 3 monocrystals

    CERN Document Server

    Kamzin, A S

    2002-01-01

    The magnetic structure of the surface layer and volume and the processes, observed by the spin-reorientation phase transition (SRPT), are studied in the direct comparison of the properties of the thin surface layer and the volume of the hematite (alpha-Fe sub 2 O sub 3) macroscopic crystals. The method of simultaneous gamma, X-ray and electron Moessbauer spectroscopy was used in the studies. The direct data on the existence of the transition layer on the hematite crystals surface are obtained. It is established, that the Morin-type SRPT in the sample volume occurs by a jump (the first-order phase transition). The SRPT in the surface layer as well as in the crystal volume is accompanied by formation of the intermediate state, wherein the low- and high-temperature phases coexist. The obtained experimental data on the SRPT mechanism in the surface layer agree well with the conclusions of the phenomenological theory

  7. Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing...... above T-N. A linear spin-wave model based on Heisenberg exchange couplings and single-ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange...

  8. Thermo- and piezochromic properties of [Fe(hyptrz)]A{sub 2}·H{sub 2}O spin crossover 1D coordination polymer: Towards spin crossover based temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jureschi, Catalin-Maricel [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania); LISV, UVSQ, 78035 Versailles Cedex (France); Rusu, Ionela [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania); Codjovi, Epiphane [Groupe d’Etude de la Matière Condensée (GEMaC), CNRS-UMR 8635, UVSQ, 78035 Versailles Cedex (France); Linares, Jorge, E-mail: jorge.linares@uvsq.fr [Groupe d’Etude de la Matière Condensée (GEMaC), CNRS-UMR 8635, UVSQ, 78035 Versailles Cedex (France); Garcia, Yann [Institute of Condensed Matter and Nanosciences, Molecules, Solids, Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Rotaru, Aurelian, E-mail: rotaru@eed.usv.ro [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania)

    2014-09-15

    We have used reflectance measurements to investigate the effect of a hydrostatic pressure on the molecular 1D spin crossover coordination polymer [Fe(hyptrz)]A{sub 2}·H{sub 2}O (hyptrz=4-(3′-hydroxypropyl)-1,2,4-triazole and A=4-chloro-benzenesulfonate) Rev. Sci. Instrum. 80 (2009) 123901. Both thermal and pressure hysteresis have been recorded at different pressures and temperatures, respectively, in order to obtain valuable information about the optimal conditions of their use as wireless temperature and pressure sensors. The experimental analysis has been completed with a theoretical study and potential applications in terms of temperature and pressure wireless detection are discussed.

  9. Magnetic properties in ultrathin 3 d transition-metal binary alloys. II. Experimental verification of quantitative theories of damping and spin pumping

    Science.gov (United States)

    Schoen, Martin A. W.; Lucassen, Juriaan; Nembach, Hans T.; Koopmans, Bert; Silva, T. J.; Back, Christian H.; Shaw, Justin M.

    2017-04-01

    A systematic experimental study of Gilbert damping is performed via ferromagnetic resonance for the disordered crystalline binary 3 d transition-metal alloys Ni-Co, Ni-Fe, and Co-Fe over the full range of alloy compositions. After accounting for inhomogeneous linewidth broadening, the damping shows clear evidence of both interfacial damping enhancement (by spin pumping) and radiative damping. We quantify these two extrinsic contributions and thereby determine the intrinsic damping. The comparison of the intrinsic damping to multiple theoretical calculations yields good qualitative and quantitative agreement in most cases. Furthermore, the values of the damping obtained in this study are in good agreement with a wide range of published experimental and theoretical values. Additionally, we find a compositional dependence of the spin mixing conductance.

  10. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  11. Study of the first-order transition in the spin-1 Blume–Capel model by using effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Costabile, Emanuel [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus, AM (Brazil); Amazonas, Marcio A. [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus, AM (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, 1975, Sete de Setembro, 69020-120, Manaus, AM (Brazil); Viana, J. Roberto [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus, AM (Brazil); Sousa, J. Ricardo de, E-mail: jsousa@ufam.edu.br.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus, AM (Brazil)

    2012-10-01

    The spin-1 Blume–Capel model on a square lattice is studied by using an effective-field theory (EFT) with correlation. We propose an expression for the free energy within the EFT. The phase diagram is constructed in the temperature (T) and single-ion anisotropy amplitude (D) plane. The first-order transition line is obtained by Maxwell construction (comparison between free energies). Our results predict first-order transitions at low temperatures and large anisotropy strengths, which correspond in the phase diagram to the existence of a tricritical point (TCP). We compare our results with mean-field approximation (MFA), that show a qualitative correct behavior for the phase diagram. -- Highlights: ► In this Letter we have studied the spin-1 Blume–Capel model by using effective-field theory (EFT). ► The first-order line is obtained for the first time. ► The model presents second and first-order phase transitions. ► We propose a functional to treat the first-order line. ► We discuss other alternative by using EFT to study first-order line.

  12. Direct Observation of the Quantum Phase Transition of SrCu2(BO3)2 by High-Pressure and Terahertz Electron Spin Resonance

    Science.gov (United States)

    Sakurai, Takahiro; Hirao, Yuki; Hijii, Keigo; Okubo, Susumu; Ohta, Hitoshi; Uwatoko, Yoshiya; Kudo, Kazutaka; Koike, Yoji

    2018-03-01

    High-pressure and high-field electron spin resonance (ESR) measurements have been performed on a single crystal of the orthogonal-dimer spin system SrCu2(BO3)2. With frequencies below 1 THz, ESR signals associated with transitions from the singlet ground state to the one-triplet excited states and the two-triplet bound state were observed at pressures up to 2.1 GPa. We obtained directly the pressure dependence of the gap energies, finding a clear first-order phase transition at Pc = 1.85 ± 0.05 GPa. By comparing this pressure dependence with the calculated excitation energies obtained from an exact diagonalization, we determined the precise pressure dependence for inter- (J') and intra-dimer (J) exchange interactions considering the Dzyaloshinski-Moriya interaction. Thus this system undergoes a first-order quantum phase transition from the dimer singlet phase to a plaquette singlet phase above the ratio (J'/J)c = 0.660 ± 0.003.

  13. Influence of the spin quantum number $s$ on the zero-temperature phase transition in the square lattice $J$-$J'$ model

    OpenAIRE

    Darradi, R.; Richter, J.; Farnell, D. J. J.

    2004-01-01

    We investigate the phase diagram of the Heisenberg antiferromagnet on the square lattice with two different nearest-neighbor bonds $J$ and $J'$ ($J$-$J'$ model) at zero temperature. The model exhibits a quantum phase transition at a critical value $J'_c > J$ between a semi-classically ordered N\\'eel and a magnetically disordered quantum paramagnetic phase of valence-bond type, which is driven by local singlet formation on $J'$ bonds. We study the influence of spin quantum number $s$ on this p...

  14. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in...

  15. Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (B i1 -xB ax) (F e1 -xT ix ) O3 system

    Science.gov (United States)

    Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai

    2018-03-01

    For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all

  16. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  17. Electronic and structural aspects of spin transitions observed by optical microscopy. The case of [Fe(ptz)6](BF4)2.

    Science.gov (United States)

    Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François

    2010-02-11

    The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS LS) and structural (order disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.

  18. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model.

    Science.gov (United States)

    Opatrný, Tomáš; Richterek, Lukáš; Opatrný, Martin

    2018-01-31

    We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model describing phenomena of various branches of quantum physics. Classical effects such as free precession of a symmetric top, Feynman's wobbling plate, tennis-racket instability and the Dzhanibekov effect, attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand the range of explored quantum phase transitions in the generalized LMG model, as well as to present a classical analogy of the recently proposed LMG Floquet time crystal.

  19. Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions

    DEFF Research Database (Denmark)

    Johannessen, Christian; Thulstrup, Peter W.

    2007-01-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...... of (6S, 7S)-1,3,5,8,10,12-hexaaza-2,4,9,11-tetraoxo-6,7-diphenyl-dodecanato(4-) cobaltate( III) in DMSO solution and in potassium bromide pellets. The chiral anion exhibits an unusual geometry for cobalt( III), being four-coordinate, planar, and paramagnetic with an intermediate spin state....... The spectroscopic results were compared to measurements performed on the free ligand and to theoretical calculations using density functional theory (B3LYP/TZVP). The results of the VCD analysis of the coordination compound identified an electronic, dipole-forbidden, magnetic dipole-allowed low-lying d-d transition...

  20. Spin-driven pyroelectricity in Ni{sub 3}TeO{sub 6} without ferroelectric signatures of the transition at Neel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Komarek, A.C. [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Du, C.H. [Department of Physics, Tamkang University, Tamsui, Taiwan (China)

    2017-07-15

    Here we report on dielectric studies on Ni{sub 3}TeO{sub 6}. We confirm the spin-driven pyroelectric transition at the Neel temperature (T{sub N}) of ∝52.5 K. The measurement of single crystalline and polycrystalline samples excludes a ferroelectric nature of the transition at T{sub N} in this compound. The excellent pyroelectric properties without any intrinsic ferroelectric hysteresis make Ni{sub 3}TeO{sub 6} appropriate for applications in future devices. Pyroelectric measurements on our Ni{sub 3}TeO{sub 6} single crystals. The polarization that appears on cooling through T{sub N} can not be inverted by opposite poling fields (applied when cooling from above T{sub N} to base temperature). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A parity-breaking electronic nematic phase transition in the spin-orbit coupled correlated metal Cd2Re2O7

    Science.gov (United States)

    Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.

    Strong interactions between electrons are known to drive metallic systems toward a variety of well-known symmetry-broken phases, including superconducting, electronic liquid crystalline, and charge- and spin-density wave ordered states. In contrast, the electronic instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncover a novel multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially-resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic liquid crystalline phases, this multipolar nematic phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 K in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order parameter.

  2. Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft.

    Science.gov (United States)

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  3. Evolution of the phonon density of states of LaCoO.sub.3./sub. over the spin state transition

    Czech Academy of Sciences Publication Activity Database

    Golosova, N.O.; Kozlenko, D. P.; Kolesnikov, A.I.; Kazimirov, V.Y.; Smirnov, M. B.; Jirák, Zdeněk; Savenko, B. N.

    2011-01-01

    Roč. 83, č. 21 (2011), "214305-1"-"214305-6" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : first-principles theory * spin crossover Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  4. Contributed review: camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor

    DEFF Research Database (Denmark)

    Wojciechowski, Adam M.; Karadas, Mürsel; Huck, Alexander

    2018-01-01

    Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small (≪10−2), fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic field sensitivity resulting from the limited number of photoelectrons...... that a camera can record in a given time. Several types of camera sensors are analyzed, and the smallest measurable magnetic field change is estimated for each type. We show that most common sensors are of a limited use in such applications, while certain highly specific cameras allow achieving nanotesla...

  5. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  6. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure.

    Science.gov (United States)

    Howard, Touché; Ferrara, Thomas W; Townsend-Small, Amy

    2015-07-01

    Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with

  7. Spin-orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides

    Science.gov (United States)

    Horvat, Alen; Žitko, Rok; Mravlje, Jernej

    2017-08-01

    We investigate the effects of spin-orbit coupling (SOC) in a three-orbital impurity model with a Kanamori interaction using the numerical renormalization group method. We focus on the impurity occupancy Nd=2 relevant to the dynamical mean-field theory studies of Hund's metals. Depending on the strength of SOC λ , we identify three regimes: the usual Hund's impurity for |λ |λc , and a J =2 impurity for λ <-λc . They all correspond to a Fermi liquid but with very different quasiparticle phase shifts and different physical properties. The crossover between these regimes is controlled by an emergent scale, the orbital Kondo temperature λc=TKorb , that drops with increasing interaction strength. This implies that oxides with strong electronic correlations are more prone to the effects of spin-orbit coupling.

  8. Influence of the spin reorientation transition on the hysteresis characteristics of Nd-Fe-B film and bulk magnets

    International Nuclear Information System (INIS)

    Lileev, A.S.; Parilov, A.A.; Reissner, M.; Steiner, W.

    2004-01-01

    A comparison was made of the hysteresis characteristics of hard magnetic films with those of bulk samples based on Nd 2 Fe 14 B in the temperature range between 4.2 and 293 K. In both types of specimens characteristic 'dips' appear below 135 K in the demagnetisation curves which are caused by both the spin reorientation from easy axis to easy cone and the deviation from a perfect texture of the sample

  9. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    Science.gov (United States)

    Shyamkumar, Prashanth

    -invasive, cuff-less Blood pressure estimation based on Pulse Transit Time with multiple synchronized sensor nodes, is implemented with e-nanoflex and the results are discussed.

  10. Contributed Review: Camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor

    Science.gov (United States)

    Wojciechowski, Adam M.; Karadas, Mürsel; Huck, Alexander; Osterkamp, Christian; Jankuhn, Steffen; Meijer, Jan; Jelezko, Fedor; Andersen, Ulrik L.

    2018-03-01

    Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small (≪10-2), fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic field sensitivity resulting from the limited number of photoelectrons that a camera can record in a given time. Several types of camera sensors are analyzed, and the smallest measurable magnetic field change is estimated for each type. We show that most common sensors are of a limited use in such applications, while certain highly specific cameras allow achieving nanotesla-level sensitivity in 1 s of a combined exposure. Finally, we demonstrate the results obtained with a lock-in camera that paves the way for real-time, wide-field magnetometry at the nanotesla level and with a micrometer resolution.

  11. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  12. Magnetic ordering transitions of the effective XY-spin-1/2 compound Cs{sub 2}CoCl{sub 4} in transverse magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Oliver; Dax, Christian; Mueller, Ralf; Lorenz, Thomas [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Sela, Eran; Buldmann, Benjamin; Garst, Markus [Institut fuer Theoretische Physik, Universitaet zu Koeln (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2012-07-01

    Cs{sub 2}CoCl{sub 4} is a model system for studying the magnetism of one-dimensional spin chains. It contains CoCl{sub 4} tetrahedra, which form one-dimensional chains along the crystallographic b axis. The orbital groundstate of Co{sup 2+} is split by the crystal field into doublets and an easy-plane anisotropy of the magnetization is established. The ground-state doublet is separated from the first excited doublet state by approximately 15 K, such that at temperatures between 0.3 and 4 K the compound is well described by the one-dimensional XXZ model. Decreasing temperature further, magnetic order arises at field-dependent temperatures T{sub C}(H). According to spins are confined to the bc-plane in the ordered phase. Measuring thermal expansion with a magnetic field applied along the crystallographic b-axis, we observe a series of magnetic transitions within the ordered state. We discuss thermodynamic properties of the magnetically ordered state.

  13. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  14. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  15. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  16. Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations

    Science.gov (United States)

    Golafrooz Shahri, S.; Roknabadi, M. R.; Radfar, R.

    2017-12-01

    In this present paper, the non-equilibrium Green function (NEGF) method along with the density functional theory (DFT) were used to investigate the effect of doping a single transition-metal atom on transport and electronic properties of armchair graphyne (γ-graphyne) nanoribbons. It can be deduced from the results that among the doped TM atoms, Mn and Fe cause stronger polarized currents comparing to Co and Ni. Mn-AGyNR represents the features of a half-semiconductor and behaves like a semiconductor in both up and down spin channels. On the other hand, Fe-AGyNR shows a great potential in spintronic applications due to its half-metal properties. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.

  17. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Divan, Ralu [Argonne National Laboratory, Argonne, Illinois 60439, USA; Gades, Lisa M. [Argonne National Laboratory, Argonne, Illinois 60439, USA; Kenesei, Peter [Argonne National Laboratory, Argonne, Illinois 60439, USA; Madden, Timothy J. [Argonne National Laboratory, Argonne, Illinois 60439, USA; Miceli, Antonino [Argonne National Laboratory, Argonne, Illinois 60439, USA; Park, Jun-Sang [Argonne National Laboratory, Argonne, Illinois 60439, USA; Patel, Umeshkumar M. [Argonne National Laboratory, Argonne, Illinois 60439, USA; Quaranta, Orlando [Argonne National Laboratory, Argonne, Illinois 60439, USA; Northwestern Univeristy, Evanston, Illinois 60208, USA; Sharma, Hemant [Argonne National Laboratory, Argonne, Illinois 60439, USA; Bennett, Douglas A. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Doriese, William B. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Fowler, Joseph W. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Gard, Johnathon D. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; University of Colorado, Boulder, Colorado 80309, USA; Hays-Wehle, James P. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Morgan, Kelsey M. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; University of Colorado, Boulder, Colorado 80309, USA; Schmidt, Daniel R. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Swetz, Daniel S. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305, USA; University of Colorado, Boulder, Colorado 80309, USA

    2017-11-06

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters. Published by AIP Publishing.

  18. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Stevenson, T.; Benford, D.; Bennett, C.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.; Kogut, A.; Moseley, S.; Panek, J.; Schneider, G.; Travers, D.; U-Yen, K.; Voellmer, G.; Wollack, E.

    2008-04-01

    We describe a prototype detector system designed for precise measurements of Cosmic Microwave Background polarization. The design combines a quasi-optical polarization modulator, a metal feedhorn, a superconducting planar microwave circuit, and a pair of transition-edge sensor (TES) bolometers operating at <100 mK. The circular feedhorn produces highly symmetric beams with very low cross-polarization. The planar circuit preserves symmetry in coupling to bolometers measuring orthogonal polarizations. We implement the circuit with superconducting niobium transmission lines. Three-dimensional interfaces between the planar circuit and waveguides leading to feedhorn and backshort have been carefully designed with electromagnetic simulations. Power is thermalized in resistors and conducted to bolometers via normal electrons. Our system is designed for a 29 43 GHz signal band. We have tested individual circuit elements in this frequency range. Fabrication of a full single-pixel system is underway.

  19. A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-Wave Applications

    Science.gov (United States)

    Lowitz, A. E.; Barrentine, E. M.; Golwala, S. R.; Timbie, P. T.

    2014-08-01

    Kinetic inductance detectors (KIDs) show promise as a competitive technology for astronomical observations over a wide range of wavelengths. We are interested in comparing the fundamental limitations to the sensitivity of KIDs with that of transition edge sensors (TESs) at millimeter wavelengths, specifically over the wavelengths required for studies of the Cosmic Microwave Background (CMB). We calculate the total fundamental noise arising from optical and thermal excitations in TESs and KIDs for a variety of bath temperatures and optical loading scenarios for applications at millimeter wavelengths. Special consideration is given to the case of ground-based observations of 100 GHz radiation with a 100 mK bath temperature, conditions consistent with the planned second module of the QUBIC telescope, a CMB instrument Battistelli (Astropart Phys 34:705, 2011). Under these conditions, a titanium nitride KID with optimized critical temperature pays a few percent noise penalty compared to a typical optimized TES.

  20. The CRESST-III iStick veto. Stable operation of multiple transition edge sensors in one readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Johannes [Max-Planck-Institut f. Physik (Werner-Heisenberg-Institut) (Germany); Ludwig-Maximilians-Universitaet Muenchen (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    To enable complete rejection of holder-related events in the upcoming CRESST-III dark matter search experiment, the scintillating target crystals are held by calcium tungstate sticks (iSticks) instrumented with tungsten transition edge sensors (TESs). Since the iStick signals are used exclusively for vetoing, it is sufficient to register if an event happened in any stick, without knowing which one. This allows the operation of all iSticks in a single readout circuit, requiring just one SQUID magnetometer. The talk describes the effect of bias current heating and corresponding hysteresis phenomena known in single-TES circuits, and the resulting conditions for stability in multiple-TES circuits. The fundamentally different behaviour of parallel and series circuits and resulting design choices are explored.

  1. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2017-11-01

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.

  2. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  3. Investigation of possible phase transition of the frustrated spin-1/2 J 1-J 2-J 3 model on the square lattice.

    Science.gov (United States)

    Hu, Ai-Yuan; Wang, Huai-Yu

    2017-09-05

    The frustrated spin-1/2 J 1 -J 2 -J 3 antiferromagnet with exchange anisotropy on the two-dimensional square lattice is investigated. The exchange anisotropy is presented by η with 0 ≤ η J 1 , J 2 , J 3 and anisotropy on the possible phase transition of the Néel state and collinear state are studied comprehensively. Our results indicate that for J 3  > 0 there are upper limits [Formula: see text] and η c values. When 0 J 3  ≤ [Formula: see text] and 0 ≤ η ≤ η c , the Néel and collinear states have the same order-disorder transition point at J 2  = J 1 /2. Nevertheless, when the J 3 and η values beyond the upper limits, it is a paramagnetic phase at J 2  = J 1 /2. For J 3  J 2  = J 1 /2. Therefore, for J 2  = J 1 /2, under such parameters, a first-order phase transition between the two states for these two cases below the critical temperatures may occur. When J 2  ≠ J 1 /2, the Néel and collinear states may also exist, while they have different critical temperatures. When J 2  > J 1 /2, a first-order phase transition between the two states may also occur. However, for J 2  J 1 /2, the Néel state is always more stable than the collinear state.

  4. Progress in the Development of Mo-Au Transition-Edge Sensors for X-Ray Spectroscopy

    Science.gov (United States)

    Stahle, Caroline K.; Brekosky, Regis P.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Gygax, John D.; Li, Mary J.; Lindeman, Mark A..; Porter, F. Scott; Tralshawalaa, Nilesh

    2000-01-01

    X-ray microcalorimeters using transition-edge sensors (TES) show great promise for use in astronomical x-ray spectroscopy. We have obtained very high energy resolution (2.8 electronvolts at 1.5 kiloelectronvolts and 3.7 electronvolts at 3.3 kiloelectronvolts) in a large, isolated TES pixel using a Mo/Au proximity-effect bilayer on a silicon nitride membrane. We will discuss the performance and our characterization of that device. In order to be truly suitable for use behind an x-ray telescope, however, such devices need to be arrayed with a pixel size and focal-plane coverage commensurate with the telescope focal length and spatial resolution. Since this requires fitting the TES and its thermal link, a critical component of each calorimeter pixel, into a far more compact geometry than has previously been investigated, we must study the fundamental scaling laws in pixel optimization. We have designed a photolithography mask that will allow us to probe the range in thermal conductance that can be obtained by perforating the nitride membrane in a narrow perimeter around the sensor. This mask will also show the effects of reducing the TES area. Though we have not yet tested devices of the compact designs, we will present our progress in several of the key processing steps and discuss the parameter space of our intended investigations.

  5. Tables of the 3-j, 6-j, Fsub(k)-, Asub(k)-, Rsub(k)-, and Asub(kk)-coefficients for angular correlation measurements involving half integer spins up to 15/2 and transitions up to L = 3

    International Nuclear Information System (INIS)

    Gueven, H.H.; Kardon, B.; Seyfarth, H.

    1975-07-01

    Theoretical directional correlation coefficiencts are given as 3-j, 6-j, Fsub(k), Asub(k), Rsub(k) and Asub(kk) coefficients for half integer spins up to 15/2 and for transitions up to L = 3. (WL) [de

  6. Dynamic phase transition in the kinetic spin-3/2 Blume-Emery-Griffiths model in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2006-07-26

    The dynamic phase transitions are studied, within a mean-field approach, in the kinetic Blume-Emery-Griffiths model under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The behaviour of the time-dependence of the order parameters and the behaviour of the average order parameters in a period, which is also called the dynamic order parameters, as a function of reduced temperature, are investigated. The nature (continuous and discontinuous) of transition is characterized by studying the average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one, two, or three dynamic tricritical points and a dynamic double critical end point, and besides a disordered and two ordered phases, seven coexistence phase regions exist, which strongly depend on interaction parameters. We also calculate the Liapunov exponent to verify the stability of solutions and the dynamic phase transition points.

  7. Dynamic phase transition in the kinetic spin-3/2 Blume-Emery-Griffiths model in an oscillating field

    International Nuclear Information System (INIS)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2006-01-01

    The dynamic phase transitions are studied, within a mean-field approach, in the kinetic Blume-Emery-Griffiths model under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The behaviour of the time-dependence of the order parameters and the behaviour of the average order parameters in a period, which is also called the dynamic order parameters, as a function of reduced temperature, are investigated. The nature (continuous and discontinuous) of transition is characterized by studying the average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one, two, or three dynamic tricritical points and a dynamic double critical end point, and besides a disordered and two ordered phases, seven coexistence phase regions exist, which strongly depend on interaction parameters. We also calculate the Liapunov exponent to verify the stability of solutions and the dynamic phase transition points

  8. Phase transition and critical behaviors of spin-orbital coupling spinel compound CdV2O4

    Science.gov (United States)

    Wang, Li; Sun, Duohua; Wang, Rongjuan; Zhu, Yuanyuan; Lu, Zhihong; Xiong, Rui; Liu, Yong; Shi, Jing

    2016-03-01

    The temperature dependent susceptibility and specific heat of spinel compound CdV2O4 were investigated. The structural transition accompanied with orbital order appearing at 89.6 K is confirmed to be a first order transition, while the magnetic transitions at 30.2 K is revealed to be a second order one. For the paramagnetism-antiferromagnetic transition, the width of critical region was estimated to be about 1.5 K by differentiating with Gaussian fluctuation. In critical region, the critical behavior of specific heat was compared with renormalization-group theory. Critical exponent α and critical amplitude ratio (A+/A-) fitting to the data was found to be -0.017 and 1.26, respectively. The value of A+/A- shows the critical behavior of CdV2O4's deviates from 3D-Heisenberg and shifts to 3D-XY. The analysis of specific heat in low temperature range gives out that Debye temperature ΘD for CdV2O4 is estimated to be 190 K.

  9. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  10. Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3

    Directory of Open Access Journals (Sweden)

    S. Narayana Jammalamadaka

    2011-12-01

    Full Text Available We report on isothermal pulsed (20 ms field magnetization, temperature dependent AC – susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10. The saturation field for the magnetization of PCMO10 (∼ 250 kOe is found to be reduced in comparison with that of bulk PCMO (∼300 kOe. With increasing temperature, the critical magnetic field required to ‘melt’ the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications.

  11. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the ...

  12. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    Abstract. I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length ...

  13. Recent advances of spin crossover research

    NARCIS (Netherlands)

    Gutlich, P; van Koningsbruggen, PJ; Renz, F; Schonherr, T

    2004-01-01

    Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing

  14. Quasiparticle Diffusion in Al Films Coupled to Tungsten Transition Edge Sensors

    Science.gov (United States)

    Yen, J. J.; Young, B. A.; Cabrera, B.; Brink, P. L.; Cherry, M.; Moffatt, R.; Pyle, M.; Redl, P.; Tomada, A.; Tortorici, E. C.

    2014-08-01

    We report recent results obtained from several W/Al test devices on Si wafers fabricated specifically to better understand energy collection in phonon sensors used for the Cryogenic Dark Matter Search (CDMS) experiment. The devices under study consist of three different lengths of 250 m-wide by 300 nm-thick Al absorber films, coupled to 250 m x 250 m (40 nm thick) W-TESs at each end of the Al film. An Fe source was used to excite a NaCl reflector producing 2.6 keV Cl X-rays that were absorbed in our test device after passing through a collimator. The impinging X-rays broke Cooper pairs in the Al film, producing quasiparticles that we detected after they propagated into the W-TESs. We studied the diffusion of these quasiparticles in the Al, trapping effects in the Al film, and energy transmission at the Al/W interfaces.

  15. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    Science.gov (United States)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  16. Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality

    Science.gov (United States)

    Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro

    2018-03-01

    We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

  17. Spin-symmetric solution of an interacting quantum dot attached to superconducting leads: Andreev states and the 0-pi transition

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav; Žonda, M.

    2016-01-01

    Roč. 89, č. 9 (2016), 1-12, č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : mesoscopic and nanoscale systems * And reev bound states * 0-pi transition * perturbation theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.461, year: 2016

  18. Hysteresis and change of transition temperature in thin films of Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2}, a new sublimable spin-crossover molecule

    Energy Technology Data Exchange (ETDEWEB)

    Davesne, V.; Gruber, M. [Institut de Physique et de Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg (France); Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Studniarek, M. [Institut de Physique et de Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette (France); Doh, W. H.; Zafeiratos, S. [Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, UMR 7515 CNRS, Université de Strasbourg, 25 rue Becquerel, 67087 Cedex 2 Strasbourg (France); Joly, L.; Schmerber, G.; Bowen, M.; Weber, W.; Boukari, S.; Da Costa, V.; Arabski, J.; Beaurepaire, E. [Institut de Physique et de Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg (France); Sirotti, F.; Silly, M. G. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette (France); Gaspar, A. B.; Real, J. A. [Institut de Ciència Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez 2, 46980 Paterna (València) (Spain); and others

    2015-05-21

    Thin films of the spin-crossover (SCO) molecule Fe([Me{sub 2}Pyrz]{sub 3}BH){sub 2} (Fe-pyrz) were sublimed on Si/SiO{sub 2} and quartz substrates, and their properties investigated by X-ray absorption and photoemission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen){sub 2}(NCS){sub 2}, the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition temperature decreases when the thickness is decreased, and the hysteresis is affected. We explain this behavior in the light of recent studies focusing on the role of surface energy in the thermodynamics of the spin transition in nano-structures. In the high-spin state at room temperature, the films have a large optical gap (∼5 eV), decreasing at thickness below 50 nm, possibly due to film morphology.

  19. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  20. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-06-15

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f{sub 2}) phases, and the f{sub 2}+d, f{sub 2}+fq, fq+d, f{sub 2}+f{sub 1}+fq and f{sub 2}+fq+d, where f{sub 1} are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  1. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Canko, Osman; Keskin, Mustafa

    2008-01-01

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f 2 ) phases, and the f 2 +d, f 2 +fq, fq+d, f 2 +f 1 +fq and f 2 +fq+d, where f 1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters

  2. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Science.gov (United States)

    Ertaş, Mehmet; Canko, Osman; Keskin, Mustafa

    We extend our recent paper [M. Keskin, O. Canko, M. Ertaş, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered ( d) and the ferromagnetic-2 ( f2) phases, and the f2+ d, f2+ fq, fq+ d, f2+ f1+ fq and f2+ fq+ d, where f1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  3. First-order transition on the frustrated spin-1/2 Heisenberg ferromagnet on an anisotropic square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, Rodrigo S.; Mendonça, Griffith [Departamento de Fi' sica, Universidade Federal de Minas Gerais, CP 702, 30161-970 Belo Horizonte, MG (Brazil); Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Roberto Viana, J. [Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@ufam.edu.br [Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, Departamento de Fisica, 3000, Japiim, 69077-000 Manaus, AM (Brazil)

    2014-11-15

    We have studied the quantum spin-1/2 frustrated Heisenberg model with two ferromagnetic interactions: nearest-neighbor (NN) with different coupling strengths J{sub 1} and J{sub 1}{sup ′} along x and y directions, respectively, competing with a next-nearest-neighbor (NNN) with coupling J{sub 2}. Using the effective-field theory we obtain the ground-state phase diagram in the (λ,α) space, where λ=J{sub 1}{sup ′}/J{sub 1} and α=J{sub 2}/J{sub 1}. Depending on the values of λ and α we observe three different states: ferromagnetic (F), collinear ferromagnetic (CF) and quantum paramagnetic (QP). We observe a QP state between the ordered F and CF phases in the region λ{sub 1}<λ<1 (λ{sub 1}≃0.62). - Highlights: • We study the ferromagnetic J{sub 1}−J{sub 1}{sup ′}−J{sub 2} model on an anisotropic square lattice by using effective-field theory. • We obtain the ground phase diagram in the λ−α plane (λ=J{sub 1}{sup ′}/J{sub 1} and α=J{sub 2}/J{sub 1}). • A comparison with the results of the antiferromagnetic J{sub 1}−J{sub 1}{sup ′}−J{sub 2} model. • We propose a functional for the free energy.

  4. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  5. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  6. Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis

    International Nuclear Information System (INIS)

    Tanaka, Keiichi; Odawara, Akikazu; Nagata, Atsushi; Ikeda, Masanori; Baba, Yukari; Nakayama, Satoshi; Chinone, Kazuo

    2006-01-01

    A cryogen-free energy-dispersive spectrometer (EDS) using a transition edge sensor (TES) was developed for material analysis. This system can maintain a temperature at 130 mK within 30 μK, and has good energy resolution (19 eV for Mn-Kα) for long-time measurement with a drift in the DC level of less than 0.02 eV/min. This system utilizes a dilution refrigerator (φ 272 mmxheight 572 mm) and has a snout (370 mm long and φ25 mm) similar to that in a conventional EDS system. The dilution refrigerator is pre-cooled by a GM refrigerator. A flexible tube between the dilution refrigerator and GM refrigerator damps the mechanical vibration of the GM refrigerator. Two shields (4 and 80 K) thermally protect the Cu rod (φ8 mm) cooled to be 100 mK. Windows composed of polyimide+Al film allow X-ray detection above the C-Kα line. A TES (6 mmx6 mm) and array SQUID amplifier (1.5 mmx3 mm) are mounted on top of the Cu rod. For Mn-Kα, the pulse height is 5.5 μA and decay time (τ eff ) is 90 μs. The maximum count rate (1/20 τ eff ) is estimated at about 500 cps

  7. Ultra-Sensitive Transition-Edge Sensors (TESs) for Far-IR/Submm Space-Borne Spectroscopy

    Science.gov (United States)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J .J.; Leduc, H. G.

    2011-01-01

    We have built surface micromachined thin-film metallized Si(x)N(y) optical absorbers for transition-edge sensors (TESs) suitable for the Background - Limited far-IR/Submm Spectrograph (BLISS). BLISS is a broadband (38 micrometers - 433 micrometers), grating spectrometer consisting of five wavebands each with a modest resolution of R (is) approx. 1000. Because BLISS requires the effective noise equivalent power (NEP) of the TES to be below 10 (exp 19) W/Hz(exp 1/2), our TESs consist of four long (1000 micrometers), narrow (0.4 micrometers ), and thin (0.25 micrometers ) Si(x) N(y) support beams that reduce the thermal conductance G between the substrate and the optical absorber. To reduce the heat capacity of the absorber and make the response time tau fast enough for BLISS, our absorbers are patterned into a mesh geometry with a fill factor of less than 10%. We use a bilayer of Ti/Au to make the effective impedance of the absorber match the impedance of the incoming radiation for each band. Measurements of the response time of the metallized absorbers to heat pulses show that their heat capacity exceeds the predictions of the Debye model. Our results are suggestive that the surface of the low pressure chemical vapor deposition (LPCVD) Si(x)N(y) used in the absorbers' construction is the source of microstates that dominate the heat capacity.

  8. Ultra-Sensitive Transition-Edge Sensors for the Background Limited Infrared/Sub-mm Spectrograph (BLISS)

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B.-H.; Day, P. K.; Bock, J. J.; Holmes, W.A.; Bradford, C. M.

    2011-01-01

    We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 micron with R approx. 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP = 10(exp -19) W/Hz(exp 1/2) with an ultimate goal of NEP= 5 x 10(exp -20) W/Hz(exp 1/2) to achieve background limited noise performance. The required and goal response times are tau = 150 ms and tau = 50ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP = 6 x 10(exp -18) W/Hz(exp 1/2) and tau = 1.4 ms with a Ti TES (T(sub C) = 565 mK) and NEP approx. 2.5 x 10(exp -19) W/Hz(exp 1/2) and tau approximates 4.5 ms with an Ir TES (T(sub C) = 130 mK). Dark power for these tests is estimated at 1-5 fW.

  9. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  10. Thermal entanglement properties of small spin clusters

    OpenAIRE

    Bose, Indrani; Tribedi, Amit

    2005-01-01

    Exchange interactions in spin systems can give rise to quantum entanglement in the ground and thermal states of the systems. In this paper, we consider a spin tetramer, with spins of magnitude 1/2, in which the spins interact via nearest-neighbour, diagonal and four-spin interactions of strength J1, J2 and K respectively. The ground and thermal state entanglement properties of the tetramer are calculated analytically in the various limiting cases. Signatures of quantum phase transition (QPT) ...

  11. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  12. Canted spin structure and the first order magnetic transition in CoFe{sub 2}O{sub 4} nanoparticles coated by amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, I.S. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Starchikov, S.S., E-mail: sergey.s.starchikov@gmail.com [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Gervits, N.E.; Korotkov, N.Yu.; Dmitrieva, T.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Lin, Chun-Rong, E-mail: crlinspin@gmail.com [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Tseng, Yaw-Teng [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Shih, Kun-Yauh [Department of Applied Chemistry, National Pingtung University, Pingtung County 90003, Taiwan (China); Lee, Jiann-Shing [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Wang, Cheng-Chien [Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan (China)

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe{sub 2}O{sub 4}/SiO{sub 2} composites. The spinel type crystal structure of CoFe{sub 2}O{sub 4} ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe{sub 2}O{sub 4}/SiO{sub 2} hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe{sub 2}O{sub 4} nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe{sub 2}O{sub 4}/SiO{sub 2} particles (2.2–4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation. - Highlights: • CoFe{sub 2}O{sub 4}/SiO{sub 2} nanocomposites in shell of hollow microcapsules designed for biomedical applications • The CoFe{sub 2}O{sub 4} particle size and magnetic properties can be tuned by thermal treatment • Canted spin structure in the CoFe{sub 2}O{sub 4} nanoparticles coated by SiO{sub 2} • The first order magnetic transition in the CoFe{sub 2}O{sub 4} nanoparticles coated by silica.

  13. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  14. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.

    Science.gov (United States)

    Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K

    2016-10-01

    The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well

  15. Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors

    Directory of Open Access Journals (Sweden)

    H. Senghor

    2017-07-01

    Full Text Available The impact of desert aerosols on climate, atmospheric processes, and the environment is still debated in the scientific community. The extent of their influence remains to be determined and particularly requires a better understanding of the variability of their distribution. In this work, we studied the variability of these aerosols in western Africa using different types of satellite observations. SeaWiFS (Sea-Viewing Wide Field-of-View Sensor and OMI (Ozone Monitoring Instrument data have been used to characterize the spatial distribution of mineral aerosols from their optical and physical properties over the period 2005–2010. In particular, we focused on the variability of the transition between continental western African and the eastern Atlantic Ocean. Data provided by the lidar scrolling CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization onboard the satellite CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations for the period 2007–2013 were then used to assess the seasonal variability of the vertical distribution of desert aerosols. We first obtained a good representation of aerosol optical depth (AOD and single-scattering albedo (SSA from the satellites SeaWiFS and OMI, respectively, in comparison with AERONET estimates, both above the continent and the ocean. Dust occurrence frequency is higher in spring and boreal summer. In spring, the highest occurrences are located between the surface and 3 km above sea level, while in summer the highest occurrences are between 2 and 5 km altitude. The vertical distribution given by CALIOP also highlights an abrupt change at the coast from spring to fall with a layer of desert aerosols confined in an atmospheric layer uplifted from the surface of the ocean. This uplift of the aerosol layer above the ocean contrasts with the winter season during which mineral aerosols are confined in the atmospheric boundary layer. Radiosondes at Dakar Weather Station (17.5

  16. Seasonal cycle of desert aerosols in western Africa: analysis of the coastal transition with passive and active sensors

    Science.gov (United States)

    Senghor, Habib; Machu, Éric; Hourdin, Frédéric; Thierno Gaye, Amadou

    2017-07-01

    The impact of desert aerosols on climate, atmospheric processes, and the environment is still debated in the scientific community. The extent of their influence remains to be determined and particularly requires a better understanding of the variability of their distribution. In this work, we studied the variability of these aerosols in western Africa using different types of satellite observations. SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) and OMI (Ozone Monitoring Instrument) data have been used to characterize the spatial distribution of mineral aerosols from their optical and physical properties over the period 2005-2010. In particular, we focused on the variability of the transition between continental western African and the eastern Atlantic Ocean. Data provided by the lidar scrolling CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) onboard the satellite CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) for the period 2007-2013 were then used to assess the seasonal variability of the vertical distribution of desert aerosols. We first obtained a good representation of aerosol optical depth (AOD) and single-scattering albedo (SSA) from the satellites SeaWiFS and OMI, respectively, in comparison with AERONET estimates, both above the continent and the ocean. Dust occurrence frequency is higher in spring and boreal summer. In spring, the highest occurrences are located between the surface and 3 km above sea level, while in summer the highest occurrences are between 2 and 5 km altitude. The vertical distribution given by CALIOP also highlights an abrupt change at the coast from spring to fall with a layer of desert aerosols confined in an atmospheric layer uplifted from the surface of the ocean. This uplift of the aerosol layer above the ocean contrasts with the winter season during which mineral aerosols are confined in the atmospheric boundary layer. Radiosondes at Dakar Weather Station (17.5° W, 14.74° N) provide

  17. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    Science.gov (United States)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  18. Transition Matrix Cluster Algorithms

    OpenAIRE

    Yevick, David; Lee, Yong Hwan

    2018-01-01

    We demonstrate that a series of simple procedures for increasing the efficiency of transition matrix calculations can be realized by integrating the standard single-spin reversal transition matrix method with global cluster inversion techniques.

  19. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  20. Solvation dynamics monitored by combined X-ray spectroscopies and scattering: photoinduced spin transition in aqueous [Fe(bpy)3]2+

    DEFF Research Database (Denmark)

    Bressler, C.; Gawelda, W.; Galler, A.

    2014-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay be...

  1. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  2. The invariance of spin

    International Nuclear Information System (INIS)

    Bramson, B.D.

    1978-01-01

    An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)

  3. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights......The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...

  4. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hollerith, C.

    2006-07-05

    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  5. Organic magnetic field sensor

    Science.gov (United States)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  6. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    Directory of Open Access Journals (Sweden)

    Qijun Hu

    2017-06-01

    Full Text Available Bus Rapid Transit (BRT has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT object tracking algorithm is adopted and further developed together with oriented brief (ORB keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  7. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV

    Science.gov (United States)

    Lee, S. J.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2015-11-01

    We are developing arrays of X-ray microcalorimeters on a 50-µm pitch that utilize transition-edge sensors as the sensor to measure the temperature rise when X-rays are absorbed. An array of this type of pixel has great potential for the study of point sources in future X-ray observatory missions. The pixels have gold absorbers with dimensions 45 × 45 × 4.2 µm3. We measured an energy resolution of 0.72 ± 0.03 eV full width at half maximum for the Al Kα complex in a subset of pixels within the array, which is the best resolution to date using a non-dispersive detector at this energy. We describe our characterization of this device including measurements of the heat capacity, thermal conductance to the heat bath, and the temperature and current sensitivity of the detector, and discuss its potential for improved performance.

  8. Deformed Fredkin spin chain with extensive entanglement

    Science.gov (United States)

    Salberger, Olof; Udagawa, Takuma; Zhang, Zhao; Katsura, Hosho; Klich, Israel; Korepin, Vladimir

    2017-06-01

    We introduce a new spin chain which is a deformation of the Fredkin spin chain and has a phase transition between bounded and extensive entanglement entropy scaling. In this chain, spins have a local interaction of three nearest neighbors. The Hamiltonian is frustration-free and its ground state can be described analytically as a weighted superposition of Dyck paths that depends on a deformation parameter t. In the purely spin 1/2 case, whenever t\

  9. Simultaneous valence shift of Pr and Tb ions at the spin-state transition in (Pr.sub.1-y./sub.Tb.sub.y./sub.).sub.0.7./sub.Ca.sub.0.3./sub.CoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Fujishiro, H.; Naito, T.; Takeda, D.; Yoshida, N.; Watanabe, T.; Nitta, K.; Hejtmánek, Jiří; Knížek, Karel; Jirák, Zdeněk

    2013-01-01

    Roč. 87, č. 15 (2013), "155153-1"-"155153-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/0713 Institutional support: RVO:68378271 Keywords : metal-insulator transitions and other electronic transitions * X-ray absorption spectra * spin crossover Subject RIV: BE - Theoretical Physics Impact factor: 3.664, year: 2013

  10. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  11. Universal spin dynamics in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, E. A.; Zülicke, U.; Winkler, R.

    2017-10-01

    We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.

  12. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    Science.gov (United States)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  14. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  15. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  16. Detecting phase transitions in a CaCl2-H2O system at low temperatures using a fiber-optic Fresnel reflection sensor.

    Science.gov (United States)

    Priyadarshini, Mani; Machavaram, Venkata Rajanikanth; Sivaramakrishna, Akella; Arulmozhivarman, Pachiyappan

    2017-04-10

    Temperature-induced crystallization events in an aqueous calcium chloride solution in the concentration range of 15-40 mass% are monitored using an optical fiber Fresnel reflection sensor in the temperature range of 30°C to -200°C. The deviation of the phase boundary from equilibrium and the formation of an eutectic mixture followed by its densification during rapid cooling are inferred from the distinct signatures of the optical fiber sensor via the changes in refractive index. During the natural heating at laboratory ambient conditions, the optical signals impart the completion of dissolution of ice and CaCl2·6H2O. The corresponding temperatures have been used in Linke's equations to obtain the salinities, which are in good agreement with the intended solution concentrations. The sensor signal imparts simultaneous melting of the constituents of the eutectic mixture of a 29.7 mass% solution during the natural heating phase. The persistence of the metastable liquid phase at -200°C for tens of minutes followed by solidification is observed at all the concentrations studied. Finally, the feasibility of monitoring phase transitions in a NaCl-CaCl2-H2O system has been demonstrated.

  17. Pressure Effect on the Structural Transition and Suppression of the High-Spin State in the Triple-Layer T;#8242;-La[subscript 4]Ni[subscript 3]O[subscript 8

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, J.B.; Zhou, H.D.; Matsubayashi, K.; Uwatoko, Y.; Kong, P.P.; Jin, C.Q.; Yang, W.G.; Shen, G.Y. (U of Tokyo); (CIW); (FSU); (Chinese Aca. Sci.); (Texas)

    2012-07-25

    We report a comprehensive high-pressure study on the triple-layer T{prime}-La{sub 4}Ni{sub 3}O{sub 8} with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at P{sub c} {approx} 6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P > 20 GPa, the ambient T{prime} structure transforms gradually to a T-type structure, which involves a structural reconstruction from fluorite La-O{sub 2}-La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallic phase under pressure has been discussed in terms of local displacements of O{sup 2-} ions in the fluorite block under pressure before a global T phase is established.

  18. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  19. Magnetic Exchange Couplings from Local Spin Analysis

    Science.gov (United States)

    Joshi, Rajendra; Abate, Bayileyegn Akanie; Peralta, Juan

    We propose a method to calculate the magnetic exchange coupling parameters in transition metal complexes from a single spin-configuration. Our method uses constraint density functional theory and a local spin population analysis in combination to a non spin formalism to effectively extract the magnetic exchange parameter from the derivative of the electronic energy and spin pair correlation values. We show proof-of-concept calculations on the H-He-H systems and small transition metal complexes. DOE DE-SC0005027.

  20. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  1. Study of beam spin asymmetry during photon electro-production near the CLAS spectrometer at the Jefferson Lab and development of Micromegas sensors for the future CLAS12 spectrometer; Etude de l'asymetrie de spin du faisceau dans l'electroproduction de photons aupres du spectrometre CLAS au Jefferson Lab et developpement de detecteurs Micromegas pour le futur spectrometre CLAS12

    Energy Technology Data Exchange (ETDEWEB)

    Konczykowski, Piotr

    2010-12-17

    After having discussed the theoretical aspects of the study of the nucleon structure with the introduction of the Generalized Parton Distributions, this research thesis proposes an overview of the Jefferson Lab and describes the different components of the CLAS spectrometer. The author details the experiment, the calibration of the different apparatus. He analyzes the obtained data and comments the beam spin asymmetries. He details the energy rise project for the Jefferson Lab, presents the future spectrometer and the expected results. He finally reports the development of Micromegas sensors for this new spectrometer, and results obtained in magnetic fields (1, 5 T in Saclay and 4, 5 T in the Jefferson Lab) which validate the use of Micromegas in a high transverse magnetic field

  2. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2012-01-01

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.

  3. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume-Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)

    2012-04-15

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.

  4. The transition from dynamics to statics in the electron-spin-resonance spectra of impurity Mn.sup.2+./sup. ions in strontium titanate

    Czech Academy of Sciences Publication Activity Database

    Zverev, D.G.; Yusupov, R.V.; Rodionov, A.A.; Kvyatkovskii, O.E.; Jastrabík, Lubomír; Dejneka, Alexandr; Trepakov, Vladimír

    2014-01-01

    Roč. 116, č. 6 (2014), s. 818-822 ISSN 0030-400X R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : electron-spin-resonance * impurity Mn 2+ ions * strontium titanate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.723, year: 2014

  5. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  6. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy.

    Science.gov (United States)

    Hoover, Andrew S; Bond, Evelyn M; Croce, Mark P; Holesinger, Terry G; Kunde, Gerd J; Rabin, Michael W; Wolfsberg, Laura E; Bennett, Douglas A; Hays-Wehle, James P; Schmidt, Dan R; Swetz, Daniel; Ullom, Joel N

    2015-04-07

    We have developed a new category of sensor for measurement of the (240)Pu/(239)Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the (240)Pu/(239)Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  7. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  8. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  9. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  10. Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition.

    Science.gov (United States)

    Kinoshita, Takumi; Fujisawa, Jun-Ichi; Nakazaki, Jotaro; Uchida, Satoshi; Kubo, Takaya; Segawa, Hiroshi

    2012-02-02

    A new osmium (Os) complex of the [Os(tcterpy)-(4,4'-bis(p-butoxystyryl)-2,2'-bipyridine)Cl]PF6 (Os-stbpy) has been synthesized and characterized for dye-sensitized solar cells (DSSCs). The Os-stbpy dye shows enhanced spin-forbidden absorptions around 900 nm. The DSSCs with Os-stbpy show a wide-band spectral response up to 1100 nm with high overall conversion efficiency of 6.1% under standard solar illumination.

  11. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  12. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  13. Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal-Organic Frameworks.

    Science.gov (United States)

    Piñeiro-López, Lucı A; Valverde-Muñoz, Francisco Javier; Seredyuk, Maksym; Muñoz, M Carmen; Haukka, Matti; Real, José Antonio

    2017-06-19

    The synthesis, crystal structure, magnetic, calorimetric, and Mössbauer studies of a series of new Hofmann-type spin crossover (SCO) metal-organic frameworks (MOFs) is reported. The new SCO-MOFs arise from self-assembly of Fe II , bis(4-pyridyl)butadiyne (bpb), and [Ag(CN) 2 ] - or [M II (CN) 4 ] 2- (M II = Ni, Pd). Interpenetration of four identical 3D networks with α-Po topology are obtained for {Fe(bpb)[Ag I (CN) 2 ] 2 } due to the length of the rod-like bismonodentate bpb and [Ag(CN) 2 ] - ligands. The four networks are tightly packed and organized in two subsets orthogonally interpenetrated, while the networks in each subset display parallel interpenetration. This nonporous material undergoes a very incomplete SCO, which is rationalized from its intricate structure. In contrast, the single network Hofmann-type MOFs {Fe(bpb)[M II (CN) 4 ]}·nGuest (M II = Ni, Pd) feature enhanced porosity and display complete one-step or two-step cooperative SCO behaviors when the pores are filled with two molecules of nitrobenzene or naphthalene that interact strongly with the pyridyl and cyano moieties of the bpb ligands via π-π stacking. The lack of these guest molecules favors stabilization of the high-spin state in the whole range of temperatures. However, application of hydrostatic pressure induces one- and two-step SCO.

  14. Spin-lattice-coupling-mediated magnetoferroelectric phase transition induced by uniaxial pressure in multiferroic CuFe1 -xMxO2 (M =Ga , Al)

    Science.gov (United States)

    Tamatsukuri, Hiromu; Mitsuda, Setsuo; Nakamura, Tenfu; Takata, Kouhei; Nakajima, Taro; Prokes, Karel; Yokaichiya, Fabiano; Kiefer, Klaus

    2017-05-01

    We have investigated magnetic and ferroelectric (dielectric) properties of multiferroic CuFe0.982Ga0.018O2 , CuFe0.965Ga0.035O2 , and CuFe0.95Al0.05O2 under applied uniaxial pressure p up to 600 MPa. Unlike the results of the almost same experiments on CuFeO2 [Tamatsukuri et al., Phys. Rev. B 94, 174402 (2016), 10.1103/PhysRevB.94.174402], we have found that the application of p induces a new ferroelectric phase, which is different from the well-studied spin-driven ferroelectric phase with helical magnetic ordering, in all the doped samples investigated here. We have also constructed the temperature versus p magnetoelectric phase diagrams of the three samples. The ferroelectric polarization in the p -induced ferroelectric phase lies along the [110] direction as in the helical magnetoferroelectric phase, and its value is comparable with or larger than that in the helical magnetoferroelectric phase. The magnetic structure in the p -induced ferroelectric phase seems to be of a collinear sinusoidal type. Although this magnetic structure itself does not break the inversion symmetry, it is considered to play an important role in the origin of ferroelectricity in the p -induced ferroelectric phase through the spin-lattice coupling in this system.

  15. Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

  16. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h -BN heterostructures

    Science.gov (United States)

    Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter

    2018-02-01

    Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.

  17. D-A type sensor array for differentiation and identification of white wine varieties based on specific solvent effect activated by CT-LE transition

    Science.gov (United States)

    Han, Jingqi; Zhang, Xin; Li, Hao; Hou, Yue; Hou, Jingdan; Li, Zhongfeng; Yang, Feng; Liu, Yang; Han, Tianyu

    2018-02-01

    In this work, we synthesize a series of compounds with electron donor (D) and acceptor (A) units. They show general solvent effect in aprotic solvents, suggesting a charge transfer (CT) process. While in protic solvents including water, ethanol and methanol, the spectra exert no polarity-dependence but a remarkable hypochromatic shift together with the fading of CT band. Dynamic analysis implies that intermolecular hydrogen bond will be formed between carboxylic acid and protic solvent, boosting another deactivation pathway that jumps off a bigger energy gap, in other words, favoring the locally excited (LE) state emission. The CT-LE transition involves variations in both absorption and emission spectra, and further poses competition with other mechanisms including activated/restricted intramolecular rotation (IR/RIR). Inspired by the cross-reactivity, we turn our attention to the development of sensor array, in order to identify white wine varieties. The differential spectral responses are recorded, generating multiple factors including absorption wavelength (λab), emission wavelength (λem), absorbance (Abs.) and emission intensity (Int.). These factors are processed with principal component analysis (PCA), creating a three-dimensional fingerprint data base for white wines. The data points in the coordinate system are clustered into 10 different groups, demonstrating a clear differentiation of all the white wines. More importantly, as our final test for whether the sensor array can identify the counterfeits, an adulterated liquor sample, which is provided by police officers, is fingerprinted on the three-dimensional diagram. Its canonical factors fall into an area distinct from the adulterated wine, indicating a clear identification.

  18. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  19. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  20. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  1. Spin noise spectroscopy in {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Boentgen, Tammo; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Riemann, Helge [Institut fuer Kristallzuechtung, Berlin (Germany)

    2009-07-01

    We employ spin noise spectroscopy to examine the intrinsic spin lifetime of electrons bound to phosphorus donors in isotopically pure {sup 28}Si at low temperatures. The up to now reported spin lifetime of these electrons are already extremely long but no measurement of the intrinsic lifetime has been undertaken yet. In addition we will measure the ultra narrow exciton transition lines in {sup 28}Si. These transition lines scale with the isotopical purity of the sample and should be according to calculations as small as 100 neV in the studied silicon.

  2. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  3. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  4. Nuclear shape transitions and some properties of aligned-particle configurations at very high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Mansour, N.; Bayomy, T.; Awwad, Z.

    1990-01-01

    We will present results on an collective ΔI = 2 ground band level sequence in the spherical six-valence-particle nucleus 152 Dy and the variation of shapes for nuclei in the N = 88 to 92 transitional region. Finally, we will present results for some even-even nuclei without any backbending behaviour, showed a clear backbending in the diagram of 2Φ/(h/2π) 2 versus (hw/2π) 2 . (author)

  5. Hydrostatic pressure effect on the spin reorientation transition of ferromagnetic Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) polycrystals

    Science.gov (United States)

    Thiyagarajan, R.; Arumugam, S.; Sivaprakash, P.; Kannan, M.; Saravanan, C.; Yang, Wenge

    2017-06-01

    The hydrostatic pressure effect on the resistivity and magnetization of the narrow band gap manganite Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) systems has been investigated. At ambient pressure measurements, the parent compound Sm0.7Sr0.3MnO3 showed a ferromagnetic-insulating nature, whereas the 10% La-doped compound Sm0.6La0.1Sr0.3MnO3 showed a ferromagnetic-metallic nature. Furthermore, both samples showed a spin-reorientation transition (TSR) below Curie temperature, which originated from the Mn sublattice and was supported by an antiferromagnetic Sm(4f)-Mn(3d) interaction. Both samples exhibited a normal and inverse magnetocaloric effect as a result of these two different magnetic transitions. Magnetization measurements on Sm0.7Sr0.3MnO3 under pressure did not show an appreciable change in the Curie temperature, but enhanced TSR, whereas an insulator-metallic transition was observed during resistivity measurements under pressure. On the other hand, for Sm0.6La0.1Sr0.3MnO3, TC increased and TSR reduced upon the application of pressure. The metallic nature which is observed at ambient pressure resistivity measurement was further enhanced with 97% of piezoresistance. The pressure did not change the normal magnetocaloric effect of Sm0.7Sr0.3MnO3, but increased it in Sm0.6La0.1Sr0.3MnO3. However, there was not much change in the inverse magnetocaloric effect of both compounds. These studies were analyzed based on the pressure effect on the activation energy and scattering interaction factors.

  6. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  7. Magnetic-ordering transitions of the effective XY-spin-1/2 compound Cs{sub 2}CoCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Oliver; Niesen, Sandra; Mueller, Ralf; Lorenz, Thomas [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Sela, Eran; Rosch, Achim; Buldmann, Benjamin [Institut fuer Theoretische Physik, Universitaet zu Koeln (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2013-07-01

    Cs{sub 2}CoCl{sub 4} is a model system for studying the magnetism of one-dimensional spin chains with an XY-like anisotropy. It contains CoCl{sub 4} tetrahedra which form chains along the crystallographic b axis. Due to a strong crystal field, an easy-plane anisotropy of magnetization is established. For symmetry reasons, easy planes in Cs{sub 2}CoCl{sub 4} appear in two orientations. At temperatures between 0.3 and 4 K, the compound is well described by the one-dimensional XXZ model. At lower temperatures magnetic order arises due to finite inter-chain coupling. Our measurements of thermal expansion and specific heat down to 50 mK and in magnetic fields up to 3 T reveal a field-dependent ordering temperature T{sub C}(H). Depending on the orientation of the magnetic field with respect to the easy planes' orientation various ordered phases arise. We present phase diagrams for different field directions and discuss possible ordering mechanisms.

  8. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.

    Science.gov (United States)

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-06-24

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23-230) as detected by [(1)H, (15)N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn(2+)-binding to the octarepeat motif.

  9. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results.

    Science.gov (United States)

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

  10. Formation of gapless Z 2 spin liquid phase manganites in the (Sm1- y Gd y )0.55Sr0.45MnO3 system in zero magnetic field: Topological phase transitions to states with low and high density of 2D-vortex pairs induced by the magnetic field

    Science.gov (United States)

    Bukhan'ko, F. N.; Bukhan'ko, A. F.

    2017-12-01

    The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.

  11. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    Science.gov (United States)

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment

  12. Spin-Peierls instability of three-dimensional Kitaev spin liquids with Majorana Fermi surface

    Science.gov (United States)

    Hermanns, Maria; Trebst, Simon; Rosch, Achim

    The Kitaev honeycomb model is one of the paradigmatic examples of a frustrated spin system exhibiting a quantum spin liquid ground state. The emergent low-energy degrees of freedom are Majorana fermions that can form various different (semi-)metallic states. Three-dimensional variants of this model can, in particular, harbor gapless quantum spin liquids with a Majorana Fermi surface. In this talk, we discuss Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling), which induce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the details of the interactions, the Majorana Fermi surface is always unstable. Generically, the system spontaneously dimerizes at exponentially small temperatures and forms a quantum spin liquid with nodal lines. Depending on the microscopic details, further symmetries of the system may be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

  13. Quadrupole moments of low-lying baryons with spin- , spin- , and ...

    Indian Academy of Sciences (India)

    2013-02-03

    . 3. 2. +. , and spin-. 3. 2. +. → 1. 2. + transitions. NEETIKA SHARMA and HARLEEN DAHIYA. ∗. Department of Physics, Dr. B.R. Ambedkar National Institute of Technology,. Jalandhar 144 011, India. ∗. Corresponding author.

  14. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  15. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  16. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  17. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  18. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  19. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  20. Mixed spin Ising model with four-spin interaction and random crystal field

    Energy Technology Data Exchange (ETDEWEB)

    Benayad, N., E-mail: n.benayad@fsac.ac.ma [Groupe de Mecanique Statistique, Laboratoire de physique theorique et appliquee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Laboratoire de physique des hautes energies et de la matiere condensee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Ghliyem, M. [Groupe de Mecanique Statistique, Laboratoire de physique theorique et appliquee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Laboratoire de physique des hautes energies et de la matiere condensee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco)

    2012-01-01

    The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.

  1. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  2. Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2014-01-01

    Recent developments in the synthesis and characterization of spin crossover (SCO) nanoparticles and their prospects of switching at molecular level turned these bistable compounds into possible candidates for replacing the materials used in recording media industry for development of solid state pressure and temperature sensors or for bringing contributions in engineering. Compared to bulk samples with the same chemical structure, SCO nanoparticles display different characteristics of the hysteretic and relaxation properties like the shift of the transition temperature towards lower values along with decrease of the hysteresis width with nanoparticles size. Using an Ising-like model with specific boundary conditions within a Monte Carlo procedure, we here reproduce most of the hysteretic properties of SCO nanoparticles by considering the interaction between spin crossover edge molecules and embedding surfactant molecules and we propose a complex analysis concerning the effect of the interactions and sizes during the thermal transition in systems of SCO nanoparticles by using the First Order Reversal Curves diagram method and by comparison with similar effects in mixed crystal systems. - Highlights: • The influence of size effects in spin crossover nanoparticles is analyzed. • The environment shifts the hysteresis loop towards lower temperatures. • First Order Reversal Curves technique is employed. • One determines the distributions of switching temperatures. • One disentangles between kinetics and non-kinetic parts of the hysteresis

  3. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  4. Polarisation of a spin- {1}/{2} β-NMR probe 11Be using collinear laser optical pumping

    Science.gov (United States)

    Levy, C. D. P.; Pearson, M. R.; Morris, G. D.; Lassen, J.; Chow, K. H.; Hossain, M. D.; Kiefl, R. F.; Labbé, R.; MacFarlane, W. A.; Parolin, T. J.; Root, L.; Saadaoui, H.; Smadella, M.; Wang, D.

    2009-04-01

    Spin {1}/{2} probes have special importance in the field of NMR, since they have no electric quadrupole moment and are thus pure magnetic sensors. The absence of quadrupolar splittings greatly simplifies the NMR frequency spectrum. That the muon is spin {1}/{2} is one of the reasons it has become so useful as a magnetic probe. Until now there has been no spin {1}/{2} probe suitable for beta-detected NMR. Such a probe would be particularly useful in complex materials, which are in general non-cubic. In this paper we describe the development of a low energy beam of spin-polarised 11Be, which is the lightest spin {1}/{2} isotope suitable for β-NMR. The intensity of the 11Be+ beam-generated by a laser ionisation source-is about 106/s. The 11Be nuclei are polarised by collinear laser optical pumping with an externally frequency doubled dye laser tuned to the 2S- 2P transition of 11Be+ at 313 nm.

  5. Polarisation of a spin-1/2 beta-NMR probe {sup 11}Be using collinear laser optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, C.D.P., E-mail: levy@triumf.c [TRIUMF, Wesbrook Mall 4004, Vancouver, British Columbia, V6T 2A3 (Canada); Pearson, M.R.; Morris, G.D.; Lassen, J. [TRIUMF, Wesbrook Mall 4004, Vancouver, British Columbia, V6T 2A3 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Kiefl, R.F. [TRIUMF, Wesbrook Mall 4004, Vancouver, British Columbia, V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario, M5G 1Z8 (Canada); Labbe, R. [Departement de Physique, Universite Laval, Quebec, G1K 7P4 (Canada); MacFarlane, W.A.; Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Root, L. [TRIUMF, Wesbrook Mall 4004, Vancouver, British Columbia, V6T 2A3 (Canada); Saadaoui, H.; Smadella, M.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)

    2009-04-15

    Spin 1/2 probes have special importance in the field of NMR, since they have no electric quadrupole moment and are thus pure magnetic sensors. The absence of quadrupolar splittings greatly simplifies the NMR frequency spectrum. That the muon is spin 1/2 is one of the reasons it has become so useful as a magnetic probe. Until now there has been no spin 1/2 probe suitable for beta-detected NMR. Such a probe would be particularly useful in complex materials, which are in general non-cubic. In this paper we describe the development of a low energy beam of spin-polarised {sup 11}Be, which is the lightest spin 1/2 isotope suitable for beta-NMR. The intensity of the {sup 11}Be{sup +} beam-generated by a laser ionisation source-is about 10{sup 6}/s. The {sup 11}Be nuclei are polarised by collinear laser optical pumping with an externally frequency doubled dye laser tuned to the {sup 2}S{sub 1/2}-{sup 2}P{sub 1/2} transition of {sup 11}Be{sup +} at 313 nm.

  6. Reprint of ;Surface-environment effects in spin crossover solids;

    Science.gov (United States)

    Gudyma, Iu.; Maksymov, A.

    2017-12-01

    The impact of surface effects on thermal induced spin crossover phenomenon is a subject of a broad and current interest. Using the modified Ising-like model of spin crossover solids with the ligand field as function of the molecule' positions and random component on surface by means of Metropolis Monte Carlo algorithm the thermal spin transition curves were calculated. The analysis of spin configuration during transition gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuations strength has been described.

  7. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  8. Spin relaxation in disordered media

    International Nuclear Information System (INIS)

    Dzheparov, F S

    2011-01-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  9. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  10. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... High spin states; nuclear structure; gamma-ray spectroscopy;. ½¿. Pr energy levels. PACS Nos 21.10.-k; 23.20.-g; 27.60.+j; 29.30.Kv. 1. Introduction. The transitional nuclei in the A. ½ ¼ region with N between 77 and 81 are interesting as it offer good scope to look for possible shape changes, similar to ...

  11. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    effect on spin orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification of the nature of the torque (field like and damping-like component) when crossing the topological phase transition. The relative agnitude of the two torque components can be significantly modifies by changing the magnetization direction. Finally, motivated by recent experimental results, we conclude by investigating the features of spin-orbit torque in magnetic transition metal dichalcogenides. We find the torque is associated with the valley polarization. By changing the magnetization direction, the torque can be changed from a finite value to zero when the valley polarization decreases from a finite value to zero.

  12. Spin-crossover behavior of polymeric iron(III) complexes

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Miyamoto, Makoto; Takashima, Yoshimasa; Oshio, Hiroaki

    1989-01-01

    Polymeric spin-crossover iron(III) complexes possessing poly(4-vinylpyridine), poly(N-vinylimidazole) or poly(octylmethacrylate-co-4-vinylpyridine) as ligand are prepared. In this experience enriched 57 Fe was used to get strong Moessbauer absorption. The enriched behavior of the complexes were examined by magnetic susceptibilities measurement, and Moessbauer and esr spectroscopies. Some of them show spin-state behavior over a wide range of temperature. Some of them show rapid spin-state interexchange compared to the Moessbauer time scale and others not. Spin-crossover behavior of polymeric complexes is characterized of wide spin-state transition temperature range

  13. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  14. The spin-Peierls chain revisited

    International Nuclear Information System (INIS)

    Hager, Georg; Weisse, Alexander; Wellein, Gerhard; Jeckelmann, Eric; Fehske, Holger

    2007-01-01

    We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gapless to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes

  15. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  16. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Science.gov (United States)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  17. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  18. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced......The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...

  19. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  20. Spin interferometry in anisotropic spin-orbit fields

    Science.gov (United States)

    Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku

    2018-03-01

    Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

  1. Quantum statistical metastability for a finite spin

    Science.gov (United States)

    Garanin, D. A.; Chudnovsky, E. M.

    2001-01-01

    We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spins S=10 (such as Mn12Ac and Fe8) and S=100 by a direct numerical approach. At second-order transitions the level making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between first- and second-order transitions are shifted, favoring a second-order transition: For Fe8 in zero field the transition should be first order according to a theory with S-->∞, but we show that there are no skipped levels at the transition. Applying a field along the hard axis in Fe8 makes transition the strongest first order. For the same model with S=100 we confirmed the existence of a region where a second-order transition is followed by a first-order transition [X. Martínes Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter 12, 4243 (2000)].

  2. Effect of Second-Order Spin-Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems.

    Science.gov (United States)

    Sousa, Carmen; Domingo, Alex; de Graaf, Coen

    2017-11-16

    The second-order spin-orbit coupling is evaluated in two transition-metal complexes to establish the effect on the deactivation mechanism of the excited low-spin state in systems that undergo spin transitions under the influence of light. We compare the standard perturbational approach to calculate the second-order interaction with a variational strategy based on the effective Hamiltonian theory and show that the former one can only be applied in some special cases and even then gives results that largely overestimate the interaction. The combined effect of geometry distortions and second-order spin-orbit coupling leads to sizeable interactions for states that are nearly uncoupled in the symmetric (average) structure of the complex. This opens the possibility of a direct deactivation from the singlet and triplet states of the metal-to-ligand charge-transfer manifold to the final high-spin state as suggested from the interpretation of experimental data but so far not supported by theoretical descriptions of the light-induced spin crossover. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design considerations for TES and QET sensors

    International Nuclear Information System (INIS)

    Cabrera, B.

    2000-01-01

    We summarize some of the effects that must be taken into account in the design of superconducting Transition Edge Sensors (TES) and Quasiparticle-trap-assisted Electrothermal-feedback Transition-edge-sensors (QET). For the TES these include determining time constants, maintaining voltage bias, avoid electrothermal oscillations, critical current limitations, and saturation. For QET phonon sensors, voltage bias was conceived to allow the simultaneous biasing of parallel TESs with different transition temperatures, and preventing normal-superconducting phase separation

  4. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  5. Electric field control of emergent electrodynamics in quantum spin ice

    Science.gov (United States)

    Lantagne-Hurtubise, Étienne; Bhattacharjee, Subhro; Moessner, R.

    2017-09-01

    We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin ice, a 3+1-dimensional U (1 ) quantum spin liquid. We find that a uniform electric field can be used to tune the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently strong electric field triggers a quantum phase transition into new U (1 ) quantum spin liquid phases, which trap emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field. Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice, emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin ice material with non-Kramers spin doublets.

  6. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  7. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  8. High spin rate magnetic controller for nanosatellites

    Science.gov (United States)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  9. Spin-Peierls Instability of Three-Dimensional Spin Liquids with Majorana Fermi Surfaces

    Science.gov (United States)

    Hermanns, Maria; Trebst, Simon; Rosch, Achim

    2015-10-01

    Three-dimensional (3D) variants of the Kitaev model can harbor gapless spin liquids with a Majorana Fermi surface on certain tricoordinated lattice structures such as the recently introduced hyperoctagon lattice. Here, we investigate Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling) which introduce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the sign and structure of the interactions, the Majorana surface is always unstable. Generically, the system spontaneously doubles its unit cell at exponentially small temperatures and forms a spin liquid with line nodes. Depending on the microscopics, further symmetries of the system can be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

  10. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    Science.gov (United States)

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  11. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    and 46 new transitions (marked by an asterisk in figure 1) have been observed and prop- erly placed in the level scheme, thereby the level scheme is extended up to an excitation energy of 10.574 MeV and spin-parity of (41/2· ). This data establishes transitions at. 1074, 1155, 1227, and 1349 keV which form the upper part ...

  12. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  13. Film edge nonlocal spin valves.

    Science.gov (United States)

    McCallum, Andrew T; Johnson, Mark

    2009-06-01

    Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.

  14. Andreev spin qubits in multichannel Rashba nanowires

    Science.gov (United States)

    Park, Sunghun; Yeyati, A. Levy

    2017-09-01

    We theoretically analyze the Andreev bound states and their coupling to external radiation in superconductor-nanowire-superconductor Josephson junctions. We provide an effective Hamiltonian for the junction projected onto the Andreev level subspace and incorporating the effects of nanowire multichannel structure, Rashba spin-orbit coupling, and Zeeman field. Based on this effective model, we investigate the dependence of the Andreev levels and the matrix elements of the current operator on system parameters such as chemical potential, nanowire dimensions, and normal transmission. We show that the combined effect of the multichannel structure and the spin-orbit coupling gives rise to finite current matrix elements between odd-parity states having different spin polarizations. Moreover, our analytical results allow to determine the appropriate parameters range for the detection of transitions between even as well as odd states in circuit-QED-like experiments, which may provide a way for the Andreev spin-qubit manipulation.

  15. Spin Waves in the FCC Kagome Lattice

    Science.gov (United States)

    Leblanc, Martin; Southern, Byron; Plumer, Martin; Whitehead, John

    2014-03-01

    The impact of an effective local cubic anisotropy on the spin wave excitations and inelastic neutron scattering intensity peaks of the Heisenberg model on the 3D fcc kagome lattice are examined through a linear spin wave theory. Previous Monte Carlo simulations revealed that the addition of anisotropy to the fcc kagome lattice changes the order of the phase transition from weakly first order to continuous and restricts the T = 0 spin configuration to a number of discrete ground states, removing the continuous degeneracy. It is shown that the addition of anisotropy removes the number of zero energy modes in the excitation spectrum associated with the removed degeneracies. These results are relevant to Ir-Mn alloys which have been widely used by the magnetic storage industry in thin-film form as the antiferromagnetic pinning layer in GMR and TMR spin valves. Supported by NSERC of Canada.

  16. A Kinetics Study on Electrical Resistivity Transition of In Situ Polymer Aging Sensors Based on Carbon-Black-Filled Epoxy Conductive Polymeric Composites (CPCs)

    Science.gov (United States)

    Liang, Qizhen; Nyugen, Mark T.; Moon, Kyoung-Sik; Watkins, Ken; Morato, Lilian T.; Wong, Ching Ping

    2013-06-01

    Sensors based on carbon-black-filled bisphenol A-type epoxy conductive polymeric composites (CPCs) have been prepared and applied to monitor thermal oxidation aging of polymeric materials. Thermogravimetric analysis (TGA) is applied to characterize weight loss of epoxy resin in the aging process. By using a mathematical model based on the Boltzmann equation, a relationship between the electrical resistivity of the sensors based on epoxy/carbon black composites and aging time is established, making it possible to monitor and estimate the aging status of polymeric components in situ based on a fast and convenient electrical resistance measurement.

  17. Neutron spin optics: Fundamentals and verification

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru

    2017-05-01

    Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.

  18. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  19. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  20. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-01-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.